1
|
Human adenovirus type 5 vectors deleted of early region 1 (E1) undergo limited expression of early replicative E2 proteins and DNA replication in non-permissive cells. PLoS One 2017; 12:e0181012. [PMID: 28700677 PMCID: PMC5507307 DOI: 10.1371/journal.pone.0181012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/23/2017] [Indexed: 11/23/2022] Open
Abstract
Adenovirus (Ad) vectors deleted of the early region 1 (E1) are widely used for transgene delivery in preclinical and clinical gene therapy studies. Although proteins encoded within the E1 region are required for efficient virus replication, previous studies have suggested that certain viral or cellular proteins can functionally compensate for E1, leading to expression of the early region 2 (E2)-encoded replicative proteins and subsequent virus replication. We have generated a series of E1-encoding and E1-deficient Ad vectors containing a FLAG-epitope tag on each of the E2-encoded proteins: DNA-binding protein (DBP), terminal protein (TP) and DNA polymerase (Pol). Using these constructs, we show that for the replication-competent virus, the expression level of each E2-encoded protein declines with increasing distance from the E2 promoter, with E2A-encoded DBP expression being ~800-fold higher than E2B-encoded TP. Pol was expressed at extremely low levels in infected cells, and immunoprecipitation from cell lysates was required prior to its detection by immunoblot. We further show that DBP was expressed 200- to 400-fold less efficiently from an E1-deficient virus compared to a replication-competent virus in A549 and HepG2 cells, which was accompanied by a very small increase in genome copy number. For the E1-deficient virus, late gene expression (a marker of virus replication) was only observed at very high multiplicities of infection. These data show that E1-deleted Ad gives rise to limited expression of the E2-encoded genes and replication in infected cells, but highlight the importance of considering viral dose-dependent effects in gene therapy studies.
Collapse
|
2
|
Brenkman AB, Breure EC, van der Vliet PC. Molecular architecture of adenovirus DNA polymerase and location of the protein primer. J Virol 2002; 76:8200-7. [PMID: 12134025 PMCID: PMC155156 DOI: 10.1128/jvi.76.16.8200-8207.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 05/13/2002] [Indexed: 11/20/2022] Open
Abstract
Adenovirus (Ad) DNA polymerase (pol) belongs to the distinct subclass of the polalpha family of DNA pols that employs the precursor terminal protein (pTP) as primer. Ad pol forms a stable heterodimer with this primer, and together, they bind specifically to the core origin in order to start replication. After initiation of Ad replication, the resulting pTP-trinucleotide intermediate jumps back and pTP starts to dissociate. Compared to free Ad pol, the pTP-pol complex shows reduced polymerase and exonuclease activities, but the reason for this is not understood. Furthermore, the interaction domains between these proteins have not been defined and the contribution of each protein to origin binding is unclear. To address these questions, we used oligonucleotides with a translocation block and show here that pTP binds at the entrance of the primer binding groove of Ad pol, thereby explaining the decreased synthetic activities of the pTP-pol complex and providing insight into how pTP primes Ad replication. Employing an exonuclease-deficient mutant polymerase, we further show that the polymerase and exonuclease active sites of Ad pol are spatially distinct and that the exonuclease activity of Ad pol is located at the N-terminal part of the protein. In addition, by probing the distances between both active sites and the surface of Ad pol, we show that Ad pol binds a DNA region of 14 to 15 nucleotides. Based on these results, a model for binding of the pTP-pol complex at the origin of replication is proposed.
Collapse
Affiliation(s)
- Arjan B Brenkman
- University Medical Centre, Department of Physiological Chemistry and Centre for Biomedical Genetics, Utrecht, The Netherlands
| | | | | |
Collapse
|
3
|
Brenkman AB, Heideman MR, Truniger V, Salas M, van der Vliet PC. The (I/Y)XGG motif of adenovirus DNA polymerase affects template DNA binding and the transition from initiation to elongation. J Biol Chem 2001; 276:29846-53. [PMID: 11390396 DOI: 10.1074/jbc.m103159200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenovirus DNA polymerase (Ad pol) is a eukaryotic-type DNA polymerase involved in the catalysis of protein-primed initiation as well as DNA polymerization. The functional significance of the (I/Y)XGG motif, highly conserved among eukaryotic-type DNA polymerases, was analyzed in Ad pol by site-directed mutagenesis of four conserved amino acids. All mutant polymerases could bind primer-template DNA efficiently but were impaired in binding duplex DNA. Three mutant polymerases required higher nucleotide concentrations for effective polymerization and showed higher exonuclease activity on double-stranded DNA. These observations suggest a local destabilization of DNA substrate at the polymerase active site. In agreement with this, the mutant polymerases showed reduced initiation activity and increased K(m)(app) for the initiating nucleotide, dCMP. Interestingly, one mutant polymerase, while capable of elongating on the primer-template DNA, failed to elongate after protein priming. Further investigation of this mutant polymerase showed that polymerization activity decreased after each polymerization step and ceased completely after formation of the precursor terminal protein-trinucleotide (pTP-CAT) initiation intermediate. Our results suggest that residues in the conserved motif (I/Y)XGG in Ad pol are involved in binding the template strand in the polymerase active site and play an important role in the transition from initiation to elongation.
Collapse
Affiliation(s)
- A B Brenkman
- University Medical Center, Department of Physiological Chemistry and Center for Biomedical Genetics, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
4
|
Botting CH, Hay RT. Role of conserved residues in the activity of adenovirus preterminal protein. J Gen Virol 2001; 82:1917-1927. [PMID: 11457998 DOI: 10.1099/0022-1317-82-8-1917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Preterminal protein (pTP) is a component of the preinitiation complex which forms at the adenovirus origin of DNA replication and acts as the protein primer during DNA synthesis. In order to determine the role of various regions of the molecule a series of 18 mutations was introduced into conserved motifs of pTP which were predicted to be surface exposed, and the mutants expressed in insect cells using a baculovirus expression system. Their ability to initiate DNA replication was assessed and the effect the mutations have on the individual interactions which contribute to the formation of the pre-initiation complex was determined. Classes of mutants could be identified which were unable to bind DNA or interact with the adenovirus DNA polymerase, but one class of mutants retained these activities and yet failed to initiate DNA replication. These mutants therefore identify regions of pTP required for different aspects of adenovirus DNA replication.
Collapse
Affiliation(s)
- Catherine H Botting
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, Biomolecular Sciences Building, North Haugh, St Andrews, Fife KY16 9ST, UK1
| | - Ronald T Hay
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, Biomolecular Sciences Building, North Haugh, St Andrews, Fife KY16 9ST, UK1
| |
Collapse
|
5
|
Lin HJ, Flint SJ. Identification of a cellular repressor of transcription of the adenoviral late IVa(2) gene that is unaltered in activity in infected cells. Virology 2000; 277:397-410. [PMID: 11080487 DOI: 10.1006/viro.2000.0598] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene encoding the adenovirus type 2 IVa(2) protein, a sequence-specific activator of transcription from the viral major late promoter, is itself transcribed only during the late phase of infection. We previously identified a cellular protein (IVa(2)-RF) that binds specifically to an intragenic sequence of the IVa(2) transcription unit. We now report that precise substitutions within the IVa(2)-RF-binding site that decreased binding affinity increased the efficiency of IVa(2) transcription in in vitro reactions containing IVa(2)-RF. Consistent with the conclusion that this cellular protein represses IVa(2) transcription, mutations that led to more efficient transcription in the presence of IVa(2)-RF were without effect in reactions lacking this cellular protein. No change in the concentration or activity of IVa(2)-RF could be detected in adenovirus-infected cells during the period in which the IVa(2) gene is transcribed. We therefore propose that restriction of IVa(2) transcription to the late phase is the result of titration of this cellular repressor as the number of copies of the IVa(2) promoter increases upon replication of the viral genome.
Collapse
Affiliation(s)
- H J Lin
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|
6
|
Schaack J, Ho WY, Tolman S, Ullyat E, Guo X, Frank N, Freimuth PI, Roovers DJ, Sussenbach JS. Construction and preliminary characterization of a library of "lethal" preterminal protein mutant adenoviruses. J Virol 1999; 73:9599-603. [PMID: 10516069 PMCID: PMC112995 DOI: 10.1128/jvi.73.11.9599-9603.1999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenoviruses containing lethal in-frame insertion mutant alleles of the preterminal protein (pTP) gene were constructed with cell lines that express pTP. Thirty in-frame insertion mutant alleles, including 26 alleles previously characterized as lethal and 4 newly constructed mutant alleles, were introduced into the viral chromosome in place of the wild-type pTP gene. The viruses were tested for ability to form plaques at 37 degrees C in HeLa-pTP cells and at 32 degrees C and 39.5 degrees C in HeLa cells. Two of the newly constructed viruses exhibited temperature sensitivity for plaque formation, one virus did not form plaques in the absence of complementation, seven additional mutants exhibited a greater than 10-fold reduction in plaque formation in the absence of complementation, and another eight mutants exhibited stronger phenotypes than did previously characterized in-frame insertion mutants in the plaque assay. These mutant viruses offer promise for analysis of pTP functions.
Collapse
Affiliation(s)
- J Schaack
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Parker EJ, Botting CH, Webster A, Hay RT. Adenovirus DNA polymerase: domain organisation and interaction with preterminal protein. Nucleic Acids Res 1998; 26:1240-7. [PMID: 9469832 PMCID: PMC147410 DOI: 10.1093/nar/26.5.1240] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adenovirus DNA polymerase is one of three viral proteins and two cellular proteins required for replication of the adenovirus genome. During initiation of viral DNA synthesis the viral DNA polymerase transfers dCMP onto the adenovirus preterminal protein, to which it is tightly bound. The domain structure of the 140 kDa DNA polymerase has been probed by partial proteolysis and the sites of proteolytic cleavage determined by N-terminal sequencing. At least four domains can be recognised within the DNA polymerase. Adenovirus preterminal protein interacts with three of the four proteolytically derived domains. This was confirmed by cloning and expression of each of the individual domains. These data indicate that, like other members of the pol alpha family of DNA polymerases, the adenovirus DNA polymerase has a multidomain structure and that interaction with preterminal protein takes place with non-contiguous regions of the polypeptide chain over a large surface area of the viral DNA polymerase.
Collapse
Affiliation(s)
- E J Parker
- School of Biomedical Science, Irvine Building, University of St Andrews, North Street, St Andrews, Fife KY16 9AL, UK
| | | | | | | |
Collapse
|
8
|
Abstract
Nucleotide sequence of the genomic region between map units 25 and 31 of the fowl adenovirus serotype 10 (FAV 10) was determined and analyzed. An open reading frame (ORF) running from right to left (that is on /-strand) of 1806 nucleotides in length was found. This ORF encoded a polypeptide of 602 amino acids with a molecular weight (M[r]) of approximately 70.4 kilo-Daltons. The genomic location of the ORF was determined to be between map units 25.5 and 29.5, similar to the genomic position of the human adenovirus (HAV) terminal protein precursor (pTP). From its size, approximate genomic location and direction of transcription, this ORF was suspected to be the FAV10 homologue of the pTP. Amino acid sequence comparison with the HAV2 pTP revealed an amino acid sequence similarity of 32.4% but was 51 amino acids shorter in length. A potential proteolytic cleavage site was identified which would create a post-cleavage terminal protein of 316 amino acids, again comparable to the 322 amino acids of the post-cleavage TP of HAV.
Collapse
Affiliation(s)
- R J McCoy
- Commonwealth Scientific and Industrial Research Organization, Division of Animal Health, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | |
Collapse
|
9
|
Webster A, Leith IR, Nicholson J, Hounsell J, Hay RT. Role of preterminal protein processing in adenovirus replication. J Virol 1997; 71:6381-9. [PMID: 9261355 PMCID: PMC191911 DOI: 10.1128/jvi.71.9.6381-6389.1997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Preterminal protein (pTP), the protein primer for adenovirus DNA replication, is processed at two sites by the virus-encoded protease to yield mature terminal protein (TP). Here we demonstrate that processing to TP, via an intermediate (iTP), is conserved in all serotypes sequenced to date; and in determining the sites cleaved in Ad4 pTP, we extend the previously published substrate specificity of human adenovirus proteases to include a glutamine residue at P4. Furthermore, using monoclonal antibodies raised against pTP, we show that processing to iTP and TP are temporally separated in the infectious cycle, with processing to iTP taking place outside the virus particles. In vitro and in vivo studies of viral DNA replication reveal that iTP can act as a template for initiation and elongation and argue against a role for virus-encoded protease in switching off DNA replication. Virus DNA with TP attached to its 5' end (TP-DNA) has been studied extensively in in vitro DNA replication assays. Given that in vivo pTP-DNA, not TP-DNA, is the template for all but the first round of replication, the two templates were compared in vitro and shown to have different properties. Immunofluorescence studies suggest that a region spanning the TP cleavage site is involved in defining the subnuclear localization of pTP. Therefore, a likely role for the processing of pTP-DNA is to create a distinct template for early transcription (TP-DNA), while the terminal protein moiety, be it TP or pTP, serves to guide the template to the appropriate subcellular location through the course of infection.
Collapse
Affiliation(s)
- A Webster
- School of Biological and Medical Science, University of St. Andrews, Fife, Scotland
| | | | | | | | | |
Collapse
|
10
|
Abstract
In adenovirus-infected cells, the virus-encoded preterminal protein and DNA polymerase form a heterodimer that is directly involved in initiation of DNA replication. Monoclonal antibodies were raised against preterminal protein, and epitopes recognized by the antibodies were identified by using synthetic peptides. Partial proteolysis of preterminal protein reveals that it has a tripartite structure, with the three domains being separated by two protease-sensitive areas, located at sites processed by adenovirus protease. These areas of protease sensitivity are probably surface-exposed loops, as they are the sites, along with the C-terminal region of preterminal protein, recognized by the monoclonal antibodies. Preterminal protein is protected from proteolytic cleavage when bound to adenovirus DNA polymerase, suggesting either multiple contact points between the proteins or a DNA polymerase-induced conformational change in preterminal protein. Two of the preterminal protein-specific antibodies induced dissociation of the preterminal protein-adenovirus DNA polymerase heterodimer and inhibited initiation of adenovirus DNA replication in vitro. Antibodies binding close to the primary processing sites of adenovirus protease inhibited DNA binding, consistent with UV cross-linking results which reveal that an N-terminal, protease-resistant domain of preterminal protein contacts DNA. Monoclonal antibodies recognizing epitopes within the C-terminal 60 amino acids of preterminal protein stimulate DNA binding, an effect mediated through a decrease in the dissociation rate constant. These results suggest that preterminal protein contains a large, noncontiguous surface required for interaction with DNA polymerase, an N-terminal DNA binding domain, and a C-terminal regulatory domain.
Collapse
Affiliation(s)
- A Webster
- School of Biological and Medical Science, University of St. Andrews, Fife, Scotland
| | | | | |
Collapse
|
11
|
Schaack J, Guo X, Ho WY, Karlok M, Chen C, Ornelles D. Adenovirus type 5 precursor terminal protein-expressing 293 and HeLa cell lines. J Virol 1995; 69:4079-85. [PMID: 7769665 PMCID: PMC189142 DOI: 10.1128/jvi.69.7.4079-4085.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HeLa and 293 cell lines that express biologically active adenovirus type 5 precursor terminal protein (pTP) have been made. The amount of pTP synthesized in these cell lines ranges from barely detectable to greater than that observed in cells infected with the wild-type virus. The pTP-expressing cell lines permit the growth of a temperature-sensitive terminal protein mutant virus sub100r at the nonpermissive temperature. A higher percentage of the stably transfected 293 cell lines expressed terminal protein, and generally at considerably higher levels, than did the HeLa cell lines. While 293 cells appeared to tolerate pTP better than did HeLa cells, high-level pTP expression in 293 cells led to a significantly reduced growth rate. The 293-pTP cell lines produce infectious virus after transfection with purified viral DNA and form plaques when overlaid with Noble agar after infection at low multiplicity. These cell lines offer promise for the production of adenoviruses lacking pTP expression and therefore completely defective for replication.
Collapse
Affiliation(s)
- J Schaack
- Department of Microbiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- P C Van der Vliet
- Laboratory for Physiological Chemistry, University of Utrecht, The Netherlands
| |
Collapse
|
13
|
Webster A, Leith IR, Hay RT. Activation of adenovirus-coded protease and processing of preterminal protein. J Virol 1994; 68:7292-300. [PMID: 7933113 PMCID: PMC237170 DOI: 10.1128/jvi.68.11.7292-7300.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Adenoviruses code for a protease that is essential for infectivity and is activated by a disulfide-linked peptide, derived from the C terminus of the virus structural protein pVI (pVI-CT). The protease was synthesized at relatively high levels late in infection and was detected in both cytoplasmic and nuclear fractions of adenovirus-infected cells. DNA was not found to be a cofactor of the protease, as previously proposed (W. F. Mangel, W. J. McGrath, D. Toledo, and C. W. Anderson, Nature [London] 361:274-275, 1993), but a role for DNA in facilitating the activation of the protease by pVI-CT in vivo cannot be ruled out. Adenovirus preterminal protein is a substrate for the virus-coded protease, with digestion to the mature terminal protein proceeding via the formation of two intermediates. Each of the three cleavage sites in the preterminal protein was identified by N-terminal sequencing and shown to conform to the substrate specificity of adenovirus protease, (M,L,I)XGX-X. Functional studies revealed that preterminal protein and intermediates but not mature terminal protein associated with adenovirus polymerase, while only the intact preterminal protein and none of its digestion products bound to DNA. These results suggest that the virus-coded protease may influence viral DNA replication by cleavage of both genome-bound and freely soluble preterminal protein, with consequent alterations to their functional properties.
Collapse
Affiliation(s)
- A Webster
- School of Biological and Medical Sciences, University of St. Andrews, Fife, United Kingdom
| | | | | |
Collapse
|
14
|
Taddie JA, Traktman P. Genetic characterization of the vaccinia virus DNA polymerase: cytosine arabinoside resistance requires a variable lesion conferring phosphonoacetate resistance in conjunction with an invariant mutation localized to the 3'-5' exonuclease domain. J Virol 1993; 67:4323-36. [PMID: 8389930 PMCID: PMC237803 DOI: 10.1128/jvi.67.7.4323-4336.1993] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In this report, we describe the isolation, molecular genetic mapping, and phenotypic characterization of vaccinia virus mutants resistant to cytosine arabinoside (araC) and phosphonoacetic acid (PAA). At 37 degrees C, 8 microM araC was found to prevent macroscopic plaque formation by wild-type virus and to cause a 10(4)-fold reduction in viral yield. Mutants resistant to 8 microM araC were selected by serial passage of a chemically mutagenized viral stock in the presence of drug. Because recovery of mutants required that initial passages be performed under less stringent selective conditions, and because plaque-purified isolates were found to be cross-resistant to 200 micrograms of PAA per ml, it seemed likely that resistance to araC required more than one genetic lesion. This hypothesis was confirmed by genetic and physical mapping of the responsible mutations. PAAr was accorded by the acquisition of one of three G-A transitions in the DNA polymerase gene which individually alter cysteine 356 to tyrosine, glycine 372 to aspartic acid, or glycine 380 to serine. AraCr was found to require one of these substitutions plus an additional T-C transition within codon 171 of the DNA polymerase gene, a change which replaces the wild-type phenylalanine with serine. Congenic viral stocks carrying one of the three PAAr lesions, either alone or in conjunction with the upstream araCr lesion, in an otherwise wild-type background were generated. The PAAr mutations conferred nearly complete resistance to PAA, a slight degree of resistance to araC, hypersensitivity to aphidicolin, and decreased spontaneous mutation frequency. Addition of the mutation at codon 171 significantly augmented araC resistance and aphidicolin hypersensitivity but caused no further change in mutation frequency. Several lines of evidence suggest that the PAAr mutations primarily affect the deoxynucleoside triphosphate-binding site, whereas the codon 171 mutation, lying within a conserved motif associated with 3'-5' exonuclease function, is postulated to affect the proofreading exonuclease of the DNA polymerase.
Collapse
Affiliation(s)
- J A Taddie
- Department of Cell Biology, Cornell University Medical College, New York, New York 10021
| | | |
Collapse
|
15
|
Pronk R, van der Vliet PC. The adenovirus terminal protein influences binding of replication proteins and changes the origin structure. Nucleic Acids Res 1993; 21:2293-300. [PMID: 8506126 PMCID: PMC309523 DOI: 10.1093/nar/21.10.2293] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The adenovirus terminal protein (TP) is covalently linked to the 5' ends of the adenovirus genome and enhances DNA replication in vitro by increasing template activity. To study the effect of TP in more detail we isolated short origin fragments containing functional TP using anion exchange chromatography. These fragments were highly active as templates for DNA replication in a reconstituted system. Employing band-shift assays we found that the affinity of the precursor terminal protein-DNA polymerase complex for the TP-containing origin was increased 2 to 3-fold. Binding affinities of two other replication stimulating proteins, NFI and Oct-1, were not influenced by the terminal protein. Upon DNaseI footprinting we observed, unexpectedly, that the breakdown pattern had changed at various positions in the origin, notably in the area 3-6 and 41-51 by the presence of TP. Some differences in the footprint pattern of NFI and Oct-1 were also found. Our results indicate that TP induces subtle changes in the origin structure that influence the interaction of other replication proteins.
Collapse
Affiliation(s)
- R Pronk
- Laboratory for Physiological Chemistry, University of Utrecht, The Netherlands
| | | |
Collapse
|
16
|
Roovers DJ, van der Lee FM, van der Wees J, Sussenbach JS. Analysis of the adenovirus type 5 terminal protein precursor and DNA polymerase by linker insertion mutagenesis. J Virol 1993; 67:265-76. [PMID: 8416372 PMCID: PMC237360 DOI: 10.1128/jvi.67.1.265-276.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A series of adenovirus type 5 precursor terminal protein (pTP) and DNA polymerase (Ad pol) genes with linker insertion mutations were separately introduced into the vaccinia virus genome under the control of a late vaccinia virus promoter. The recombinant viruses were used for overexpression of the mutant genes in HeLa cells. In total, 22 different mutant pTP and 10 different Ad pol vaccinia virus recombinants were constructed, including some that expressed carboxyl-terminus-truncated forms of both proteins and one that produced the mutant H5ts149 Ad pol. To investigate the structure-function relationships of both proteins, extracts from cells infected with the recombinant viruses were tested for in vitro complementation of the initiation and elongation steps in adenovirus DNA replication. The results were in accordance with those of earlier in vivo experiments with these insertion mutants and indicate that multiple regions of both proteins are essential for adenovirus DNA replication. The carboxyl termini of both pTP and Ad pol were shown to be essential for proper functioning of these proteins during initiation of adenovirus DNA replication. Three different DNA replication-negative pTP mutants were shown to have residual activity in the initiation assay, suggesting not only that pTP is required for initiation but also that it may play a role in DNA replication after the deoxycytidylation step.
Collapse
Affiliation(s)
- D J Roovers
- Laboratory for Physiological Chemistry, State University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
17
|
Pronk R, Stuiver MH, van der Vliet PC. Adenovirus DNA replication: the function of the covalently bound terminal protein. Chromosoma 1992; 102:S39-45. [PMID: 1291241 DOI: 10.1007/bf02451784] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Initiation of Adenovirus DNA replication in vitro requires the presence of three viral proteins (pTP, pol, DBP) and two cellular transcription factors, NFI and Oct-1, that stimulate replication more than 100-fold. NFI assists in binding and positioning of the DNA polymerase in the origin whereas Oct-1 changes the structure of origin DNA. Optimal templates contain, in addition to origin sequences, the covalently bound viral terminal protein (TP). This terminal protein stimulates the template activity over 20 fold compared to protein-free templates. To study the way in which TP exerts its function in vitro we devised a novel method to isolate and label a short origin containing fragment in which the TP was bound in a functional form. This fragment replicated very efficiently and could be used for studying the binding of other replication proteins. Employing alpha-chymotrypsin digestion we show that for enhancement of replication in vitro only a small part of TP is required.
Collapse
Affiliation(s)
- R Pronk
- Laboratory for Physiological Chemistry, Utrecht University, The Netherlands
| | | | | |
Collapse
|
18
|
Polymerization activity of an alpha-like DNA polymerase requires a conserved 3'-5' exonuclease active site. Mol Cell Biol 1991. [PMID: 1652064 DOI: 10.1128/mcb.11.9.4786] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most DNA polymerases are multifunctional proteins that possess both polymerizing and exonucleolytic activities. For Escherichia coli DNA polymerase I and its relatives, polymerase and exonuclease activities reside on distinct, separable domains of the same polypeptide. The catalytic subunits of the alpha-like DNA polymerase family share regions of sequence homology with the 3'-5' exonuclease active site of DNA polymerase I; in certain alpha-like DNA polymerases, these regions of homology have been shown to be important for exonuclease activity. This finding has led to the hypothesis that alpha-like DNA polymerases also contain a distinct 3'-5' exonuclease domain. We have introduced conservative substitutions into a 3'-5' exonuclease active site homology in the gene encoding herpes simplex virus DNA polymerase, an alpha-like polymerase. Two mutants were severely impaired for viral DNA replication and polymerase activity. The mutants were not detectably affected in the ability of the polymerase to interact with its accessory protein, UL42, or to colocalize in infected cell nuclei with the major viral DNA-binding protein, ICP8, suggesting that the mutation did not exert global effects on protein folding. The results raise the possibility that there is a fundamental difference between alpha-like DNA polymerases and E. coli DNA polymerase I, with less distinction between 3'-5' exonuclease and polymerase functions in alpha-like DNA polymerases.
Collapse
|
19
|
Fredman JN, Pettit SC, Horwitz MS, Engler JA. Linker insertion mutations in the adenovirus preterminal protein that affect DNA replication activity in vivo and in vitro. J Virol 1991; 65:4591-7. [PMID: 1870189 PMCID: PMC248913 DOI: 10.1128/jvi.65.9.4591-4597.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Eighteen linker insertion mutants with mutations in the adenovirus precursor to terminal protein (pTP), which were originally constructed and tested in virions by Freimuth and Ginsberg (Proc. Natl. Acad. Sci. USA 83:7816-7820, 1986), were transferred to expression plasmids for assay of the various functions of the isolated pTP. Function was measured by the ability of individual pTP mutant proteins to participate in the initiation of replication from an adenovirus DNA end, by their activity in assays of DNA elongation, and by the intracellular distribution of pTP demonstrated by indirect immunofluorescence. Ten of the 11 mutants that were active in virion formation were also functional in DNA replication reactions in extracts, while 1 had reduced function. Four mutants with mutations that were lethal to virus production were also inactive in DNA replication reactions. These four mutations are probably located at sites required for the function of pTP in DNA synthesis. Three pTP mutants with mutations that were lethal or partially defective with respect to virion formation were active in reactions requiring pTP for initiation and elongation in extracts. All three of these mutant pTPs targeted normally to the nucleus, suggesting a defect after this step in replication. Since pTP has been reported to bind the nuclear matrix, these pTP mutants may have mutations that define sites necessary for binding to this structure. Several mutants with mutations that lie outside the putative nuclear targeting region were aberrantly localized, suggesting either that additional domains are important in nuclear localization or that there are alterations in protein structure that affect nuclear transport for some pTP mutants.
Collapse
Affiliation(s)
- J N Fredman
- Department of Biochemistry, University of Alabama, Birmingham 35294
| | | | | | | |
Collapse
|
20
|
Gibbs JS, Weisshart K, Digard P, deBruynKops A, Knipe DM, Coen DM. Polymerization activity of an alpha-like DNA polymerase requires a conserved 3'-5' exonuclease active site. Mol Cell Biol 1991; 11:4786-95. [PMID: 1652064 PMCID: PMC361382 DOI: 10.1128/mcb.11.9.4786-4795.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most DNA polymerases are multifunctional proteins that possess both polymerizing and exonucleolytic activities. For Escherichia coli DNA polymerase I and its relatives, polymerase and exonuclease activities reside on distinct, separable domains of the same polypeptide. The catalytic subunits of the alpha-like DNA polymerase family share regions of sequence homology with the 3'-5' exonuclease active site of DNA polymerase I; in certain alpha-like DNA polymerases, these regions of homology have been shown to be important for exonuclease activity. This finding has led to the hypothesis that alpha-like DNA polymerases also contain a distinct 3'-5' exonuclease domain. We have introduced conservative substitutions into a 3'-5' exonuclease active site homology in the gene encoding herpes simplex virus DNA polymerase, an alpha-like polymerase. Two mutants were severely impaired for viral DNA replication and polymerase activity. The mutants were not detectably affected in the ability of the polymerase to interact with its accessory protein, UL42, or to colocalize in infected cell nuclei with the major viral DNA-binding protein, ICP8, suggesting that the mutation did not exert global effects on protein folding. The results raise the possibility that there is a fundamental difference between alpha-like DNA polymerases and E. coli DNA polymerase I, with less distinction between 3'-5' exonuclease and polymerase functions in alpha-like DNA polymerases.
Collapse
Affiliation(s)
- J S Gibbs
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | |
Collapse
|
21
|
Epstein LH, Young CS. Adenovirus homologous recombination does not require expression of the immediate-early E1a gene. J Virol 1991; 65:4475-9. [PMID: 1830115 PMCID: PMC248888 DOI: 10.1128/jvi.65.8.4475-4479.1991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To investigate whether early genes other than those involved directly in DNA replication are required for efficient adenovirus recombination, pairs of viruses with deletions in E1a, E1b 496R, E1b 196R, or E4 and containing differing restriction site markers were used to infect both permissive and non- or semipermissive cells. Recombination was assayed among intracellular and extracellular genomes by restriction digestion and blot hybridization. Recombination was delayed in infections of nonpermissive cells with E1a- viruses until a time consistent with the late onset of DNA replication characteristic of the cell type. This shows that E1a expression is not absolutely required for adenovirus recombination. Similar tests with deletion mutations in E1b and E4 also show that these genes are not required for efficient recombination. Taken together with earlier results showing that recombination depends on DNA replication, it is likely that adenovirus recombination is a consequence of cellular repair functions acting on the substrates produced by replication.
Collapse
Affiliation(s)
- L H Epstein
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | | |
Collapse
|