1
|
Jain N, Qi HX, Raman A, Lyon D, Kaas JH. Cortical reorganization following dorsal spinal injuries in newborn monkeys reveals a critical period in the development of the somatosensory cortex. Proc Natl Acad Sci U S A 2025; 122:e2417417122. [PMID: 39835892 PMCID: PMC11789031 DOI: 10.1073/pnas.2417417122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Lesions of the dorsal columns of the spinal cord in adult macaque monkeys lead to the loss of hand inputs and large-scale expansion of the face inputs in the hand region of the somatosensory cortex. Inputs from alternate spinal pathways do not reactivate the deafferented regions of area 3b. Here, we determined how transections of the dorsal columns done within a few days after birth affect the developing somatosensory cortex. Dorsal columns were transected between the 3rd and 12th postnatal day (PND), and the somatosensory cortex was mapped when the macaques were over 3 y old. There were two distinct outcomes depending on the age at the time of the lesion. In monkeys lesioned between the 3rd and 5th PND, neurons in the entire hand region of area 3b and the adjacent somatosensory cortex responded to touch on the hand. An alternate spinal pathway must have replaced the lost pathway. In monkeys lesioned between the 9th and 12th PND, neurons in the deafferented hand region did not respond to touch on the hand. There was medialward expansion of the face representation into the deafferented cortex and a lateral expansion of the arm representation as in lesioned adults. Thus, different mechanisms underlie the reorganization of area 3b and the adjacent somatosensory cortex following identical spinal cord injuries sustained as early or late newborns. The results suggest that alternate spinal cord pathways can develop within a critical period before the 9th PND, but not later.
Collapse
Affiliation(s)
- Neeraj Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur342030, India
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| | - Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| | - Arun Raman
- National Brain Research Centre, Manesar122 051, India
| | - David Lyon
- Department of Psychology, Vanderbilt University, Nashville, TN37240
- Department of Anatomy and Neurobiology, University of California, Irvine, CA92697
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| |
Collapse
|
2
|
Malania M, Lin YS, Hörmandinger C, Werner JS, Greenlee MW, Plank T. Training-induced changes in population receptive field properties in visual cortex: Impact of eccentric vision training on population receptive field properties and the crowding effect. J Vis 2024; 24:7. [PMID: 38771584 PMCID: PMC11114612 DOI: 10.1167/jov.24.5.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/15/2024] [Indexed: 05/22/2024] Open
Abstract
This study aimed to investigate the impact of eccentric-vision training on population receptive field (pRF) estimates to provide insights into brain plasticity processes driven by practice. Fifteen participants underwent functional magnetic resonance imaging (fMRI) measurements before and after behavioral training on a visual crowding task, where the relative orientation of the opening (gap position: up/down, left/right) in a Landolt C optotype had to be discriminated in the presence of flanking ring stimuli. Drifting checkerboard bar stimuli were used for pRF size estimation in multiple regions of interest (ROIs): dorsal-V1 (dV1), dorsal-V2 (dV2), ventral-V1 (vV1), and ventral-V2 (vV2), including the visual cortex region corresponding to the trained retinal location. pRF estimates in V1 and V2 were obtained along eccentricities from 0.5° to 9°. Statistical analyses revealed a significant decrease of the crowding anisotropy index (p = 0.009) after training, indicating improvement on crowding task performance following training. Notably, pRF sizes at and near the trained location decreased significantly (p = 0.005). Dorsal and ventral V2 exhibited significant pRF size reductions, especially at eccentricities where the training stimuli were presented (p < 0.001). In contrast, no significant changes in pRF estimates were found in either vV1 (p = 0.181) or dV1 (p = 0.055) voxels. These findings suggest that practice on a crowding task can lead to a reduction of pRF sizes in trained visual cortex, particularly in V2, highlighting the plasticity and adaptability of the adult visual system induced by prolonged training.
Collapse
Affiliation(s)
- Maka Malania
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Yih-Shiuan Lin
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | | | - John S Werner
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Mark W Greenlee
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Tina Plank
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Eysel UT, Jancke D. Induction of excitatory brain state governs plastic functional changes in visual cortical topology. Brain Struct Funct 2024; 229:531-547. [PMID: 38041743 PMCID: PMC10978694 DOI: 10.1007/s00429-023-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Adult visual plasticity underlying local remodeling of the cortical circuitry in vivo appears to be associated with a spatiotemporal pattern of strongly increased spontaneous and evoked activity of populations of cells. Here we review and discuss pioneering work by us and others about principles of plasticity in the adult visual cortex, starting with our study which showed that a confined lesion in the cat retina causes increased excitability in the affected region in the primary visual cortex accompanied by fine-tuned restructuring of neuronal function. The underlying remodeling processes was further visualized with voltage-sensitive dye (VSD) imaging that allowed a direct tracking of retinal lesion-induced reorganization across horizontal cortical circuitries. Nowadays, application of noninvasive stimulation methods pursues the idea further of increased cortical excitability along with decreased inhibition as key factors for the induction of adult cortical plasticity. We used high-frequency transcranial magnetic stimulation (TMS), for the first time in combination with VSD optical imaging, and provided evidence that TMS-amplified excitability across large pools of neurons forms the basis for noninvasively targeting reorganization of orientation maps in the visual cortex. Our review has been compiled on the basis of these four own studies, which we discuss in the context of historical developments in the field of visual cortical plasticity and the current state of the literature. Overall, we suggest markers of LTP-like cortical changes at mesoscopic population level as a main driving force for the induction of visual plasticity in the adult. Elevations in excitability that predispose towards cortical plasticity are most likely a common property of all cortical modalities. Thus, interventions that increase cortical excitability are a promising starting point to drive perceptual and potentially motor learning in therapeutic applications.
Collapse
Affiliation(s)
- Ulf T Eysel
- Department of Neurophysiology, Ruhr University Bochum, 44780, Bochum, Germany.
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
4
|
Mowery TM, Garraghty PE. Adult neuroplasticity employs developmental mechanisms. Front Syst Neurosci 2023; 16:1086680. [PMID: 36762289 PMCID: PMC9904365 DOI: 10.3389/fnsys.2022.1086680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
Although neural plasticity is now widely studied, there was a time when the idea of adult plasticity was antithetical to the mainstream. The essential stumbling block arose from the seminal experiments of Hubel and Wiesel who presented convincing evidence that there existed a critical period for plasticity during development after which the brain lost its ability to change in accordance to shifts in sensory input. Despite the zeitgeist that mature brain is relatively immutable to change, there were a number of examples of adult neural plasticity emerging in the scientific literature. Interestingly, some of the earliest of these studies involved visual plasticity in the adult cat. Even earlier, there were reports of what appeared to be functional reorganization in adult rat somatosensory thalamus after dorsal column lesions, a finding that was confirmed and extended with additional experimentation. To demonstrate that these findings reflected more than a response to central injury, and to gain greater control of the extent of the sensory loss, peripheral nerve injuries were used that eliminated ascending sensory information while leaving central pathways intact. Merzenich, Kaas, and colleagues used peripheral nerve transections to reveal unambiguous reorganization in primate somatosensory cortex. Moreover, these same researchers showed that this plasticity proceeded in no less than two stages, one immediate, and one more protracted. These findings were confirmed and extended to more expansive cortical deprivations, and further extended to the thalamus and brainstem. There then began a series of experiments to reveal the physiological, morphological and neurochemical mechanisms that permitted this plasticity. Ultimately, Mowery and colleagues conducted a series of experiments that carefully tracked the levels of expression of several subunits of glutamate (AMPA and NMDA) and GABA (GABAA and GABAB) receptor complexes in primate somatosensory cortex at several time points after peripheral nerve injury. These receptor subunit mapping experiments revealed that membrane expression levels came to reflect those seen in early phases of critical period development. This suggested that under conditions of prolonged sensory deprivation the adult cells were returning to critical period like plastic states, i.e., developmental recapitulation. Here we outline the heuristics that drive this phenomenon.
Collapse
Affiliation(s)
- Todd M. Mowery
- Department of Otolaryngology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Preston E. Garraghty
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
5
|
Tao J, Wang D, Jin A, Xue J, Yu H. Response of the somatosensory cortex following thermal stimuli to dental implants. Neurosci Lett 2022; 784:136750. [PMID: 35728681 DOI: 10.1016/j.neulet.2022.136750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
In the current study, we investigated the cortical response of the somatosensory cortex following thermal stimuli to dental implants. Five implants were inserted at the site of the left upper canine with immediate implant placement protocols in five cats. Intrinsic signal optical imaging was applied to measure the cortical responses evoked by thermal sensing via dental implants. The cortical response evoked by 60 g of tactile stimulus to implants was also examined. The response strength and activated location were compared between implants and natural teeth. Thermal stimuli via the implant could evoke reliable cortical responses in the tooth-related region. However, the response amplitude evoked by the cold stimuli applied to the implants was significantly lower than that evoked by the cold stimuli applied to the natural teeth, indicating that the implants were less sensitive to thermal change than the natural tooth. The response evoked by tactile stimuli to implants was significantly stronger than that evoked by cold stimuli. Thermal and tactile stimuli activated the same location of the tooth-related somatosensory cortex in both the implants and natural teeth. Therefore, the thermal change in implants could be detected at the cortical response level. Multimodal sensory integration of thermal and tactile functions existed for implants.
Collapse
Affiliation(s)
- Jianxiang Tao
- Department of Prosthodontics, School & Hospital of Stomatology Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Duo Wang
- Vision Research Laboratory, School of Life Sciences, The State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Anqi Jin
- Vision Research Laboratory, School of Life Sciences, The State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Jinlang Xue
- Department of Prosthodontics, School & Hospital of Stomatology Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Hongbo Yu
- Vision Research Laboratory, School of Life Sciences, The State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
6
|
Kang MT, Wang B, Ran AR, Gan J, Du J, Yusufu M, Liang X, Li SM, Wang N. Brain Activation Induced by Myopic and Hyperopic Defocus From Spectacles. Front Hum Neurosci 2021; 15:711713. [PMID: 34594194 PMCID: PMC8477670 DOI: 10.3389/fnhum.2021.711713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose: To assess neural changes in perceptual effects induced by myopic defocus and hyperopic defocus stimuli in ametropic and emmetropic subjects using functional magnetic resonance imaging (fMRI). Methods: This study included 41 subjects with a mean age of 26.0 ± 2.9 years. The mean spherical equivalence refraction was −0.54 ± 0.51D in the emmetropic group and −3.57 ± 2.27D in the ametropic group. The subjects were instructed to view through full refractive correction, with values of +2.00D to induce myopic defocus state and −2.00D to induce hyperopic defocus state. This was carried over in three random sessions. Arterial spin labeling (ASL) perfusion was measured using fMRI to obtain quantified regional cerebral blood flow (rCBF). Behavioral tests including distant visual acuity (VA) and contrast sensitivity (CS), were measured every 5 min for 30 min. Results: Myopic defocus induced significantly greater rCBF increase in four cerebral regions compared with full correction: right precentral gyrus, right superior temporal gyrus, left inferior parietal lobule, and left middle temporal gyrus (P < 0.001). The differences were less significant in low myopes than emmetropes. In the hyperopic defocus session, the increased responses of rCBF were only observed in the right and left precentral gyrus. Myopic defocused VA and CS improved significantly within 5 min and reached a plateau shortly after. Conclusion: This study revealed that myopic defocus stimuli can significantly increase blood perfusion in visual attention-related cerebral regions, which suggests a potential direction for future investigation on the relationship between retinal defocus and its neural consequences.
Collapse
Affiliation(s)
- Meng-Tian Kang
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Bo Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - An-Ran Ran
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiahe Gan
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jialing Du
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Mayinuer Yusufu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xintong Liang
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shi-Ming Li
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
NGF Eye Administration Recovers the TrkB and Glutamate/GABA Marker Deficit in the Adult Visual Cortex Following Optic Nerve Crush. Int J Mol Sci 2021; 22:ijms221810014. [PMID: 34576177 PMCID: PMC8471133 DOI: 10.3390/ijms221810014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022] Open
Abstract
Eye-drop recombinant human nerve growth factor (ed-rhNGF) has proved to recover the retina and optic nerve damage in animal models, including the unilateral optic nerve crush (ONC), and to improve visual acuity in humans. These data, associated with evidence that ed-rhNGF stimulates the brain derived neurotrophic factor (BDNF) in retina and cortex, suggests that NGF might exert retino-fugal effects by affecting BDNF and its receptor TrkB. To address these questions, their expression and relationship with the GABAergic and glutamatergic transmission markers, GAD65 and GAD67, vesicular inhibitory amino acid transporter (VGAT), and vesicular glutamate transporters 1 and 2 (VGLUT-1 and VGLUT-2) were investigated in adult ONC rats contralateral and ipsilateral visual cortex (VCx). Ed-rhNGF recovers the ONC-induced alteration of GABAergic and glutamatergic markers in contralateral VCx, induces an upregulation of TrkB, which is positively correlated with BDNF precursor (proBDNF) decrease in both VCx sides, and strongly enhances TrkB+ cell soma and neuronal endings surrounded by GAD65 immuno-reactive afferents. These findings contribute to enlarging the knowledge on the mechanism of actions and cellular targets of exogenously administrated NGF, and suggest that ed-rhNGF might act by potentiating the activity-dependent TrkB expression in GAD+ cells in VCx following retina damage and/or ONC.
Collapse
|
8
|
Ajla P, Melisa AP, Ivana M, Senad G, Alma B, Aida P. Laser keratomileusis in treatment of anisometropic amblyopia in adults. Taiwan J Ophthalmol 2021; 12:452-456. [PMID: 36660114 PMCID: PMC9843570 DOI: 10.4103/tjo.tjo_22_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/05/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To compare and evaluate improvement in corrected distant visual acuity (CDVA) between myopia and hyperopia after laser in situ keratomileusis (LASIK) in adult patients with anisometropic amblyopia. MATERIALS AND METHODS This prospective clinical study included 103 amblyopic eyes (103 patients), which underwent LASIK correction of refractive error from January 2013 to January 2018. Uncorrected distance visual acuity (UDVA), CDVA, spherical equivalent (SE), postoperative astigmatism, and intraocular pressure were evaluated at time points of 1, 6, and 12 months. RESULTS Patients were divided into two groups according to refractive error. Group 1: Forty-six patients with myopia and Group 2: Fifty-seven patients with hyperopia. Mean CDVA (logarithm of the minimum angle of resolution [logMAR]) preoperatively was 0.23 ± 0.16 in Group 1 and 0.40 ± 0.19 in Group 2. Postoperative CDVA (logMAR) was 0.17 ± 0.13 in Group 1 and 0.32 ± 0.17 in Group 2. There was statistically significant increase in UDVA (P < 0.0001) postoperatively and no change during the follow-up period of 12 months in both groups. Group 1 showed more expectable results, 95% of variability SE achieved was dependent on SE intended (R2 = 0.95), while in Group 2, the percentage was slightly lower of expected 87% (R2 = 0.87). There was statistical significance in respect of CDVA change postoperatively and preoperatively in both groups. Correlation factors are low, in Group 1 r = -0.53 and in Group 2 r = -0.39. CONCLUSION LASIK can improve CDVA in a considerable portion of amblyopic eyes, both myopic and hyperopic. Eyes with better initial CDVA and those with myopia were associated with greater improvement in postoperative CDVA.
Collapse
Affiliation(s)
- Pidro Ajla
- Eye Clinic Svjetlost, Sarajevo, Bosnia and Herzegovina,Address for correspondence: Dr. Pidro Ajla, Kalemova 9, Sarajevo, Bosnia and Herzegovina. E-mail:
| | | | | | | | - Biščević Alma
- Eye Clinic Svjetlost, Sarajevo, Bosnia and Herzegovina
| | - Pidro Aida
- Department of Ophthalmology, General Hospital Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
9
|
Akselrod M, Martuzzi R, van der Zwaag W, Blanke O, Serino A. Relation between palm and finger cortical representations in primary somatosensory cortex: A 7T fMRI study. Hum Brain Mapp 2021; 42:2262-2277. [PMID: 33621380 PMCID: PMC8046155 DOI: 10.1002/hbm.25365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Many studies focused on the cortical representations of fingers, while the palm is relatively neglected despite its importance for hand function. Here, we investigated palm representation (PR) and its relationship with finger representations (FRs) in primary somatosensory cortex (S1). Few studies in humans suggested that PR is located medially with respect to FRs in S1, yet to date, no study directly quantified the somatotopic organization of PR and the five FRs. Importantly, the link between the somatotopic organization of PR and FRs and their activation properties remains largely unexplored. Using 7T fMRI, we mapped PR and the five FRs at the single subject level. First, we analyzed the cortical distance between PR and FRs to determine their somatotopic organization. Results show that PR was located medially with respect to D5. Second, we tested whether the observed cortical distances would predict the relationship between PR and FRs activations. Using three complementary measures (cross-activations, pattern similarity and resting-state connectivity), we show that the relationship between PR and FRs activations were not determined by their somatotopic organization, that is, there was no gradient moving from D5 to D1, except for resting-state connectivity, which was predicted by the somatotopy. Instead, we show that the representational geometry of PR and FRs activations reflected the physical structure of the hand. Collectively, our findings suggest that the spatial proximity between topographically organized neuronal populations do not necessarily predicts their functional properties, rather the structure of the sensory space (e.g., the hand shape) better describes the observed results.
Collapse
Affiliation(s)
- Michel Akselrod
- Laboratory MySpace, Department of Clinical Neuroscience, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Laboratory of Cognitive Neuroscience, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), Geneva, Switzerland.,Minded Program, CMON Unit, Italian Institute of Technology, Genoa, Italy
| | - Roberto Martuzzi
- Laboratory of Cognitive Neuroscience, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), Geneva, Switzerland.,Foundation Campus Biotech Geneva, Geneva, Switzerland
| | | | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), Geneva, Switzerland.,Department of Neurology, University Hospital, Geneva, Switzerland
| | - Andrea Serino
- Laboratory MySpace, Department of Clinical Neuroscience, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Laboratory of Cognitive Neuroscience, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology of Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
10
|
Levi DM. Amblyopia. HANDBOOK OF CLINICAL NEUROLOGY 2021; 178:13-30. [PMID: 33832673 DOI: 10.1016/b978-0-12-821377-3.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amblyopia is a neurodevelopmental abnormality that results in physiological alterations in the visual pathways and impaired vision in one eye, less commonly in both. It reflects a broad range of neural, perceptual, oculomotor, and clinical abnormalities that can occur when normal visual development is disrupted early in life. Aside from refractive error, amblyopia is the most common cause of vision loss in infants and young children. It causes a constellation of perceptual deficits in the vision of the amblyopic eye, including a loss of visual acuity, position acuity, and contrast sensitivity, particularly at high spatial frequencies, as well as increased internal noise and prolonged manual and saccadic reaction times. There are also perceptual deficits in the strong eye, such as certain types of motion perception, reflecting altered neural responses and functional connectivity in visual cortex (Ho et al., 2005). Treatment in young children consists of correction of any refractive error and patching of the strong eye. Compliance with patching is challenging and a substantial proportion of amblyopic children fail to achieve normal acuity or stereopsis even after extended periods of treatment. There are a number of promising experimental treatments that may improve compliance and outcomes, such as the playing of action video games with the strong eye patched. Although there may be a sensitive period for optimal effects of treatment, there is evidence that amblyopic adults may still show some benefit of treatment. However, there is as yet no consensus on the treatment of adults with amblyopia.
Collapse
Affiliation(s)
- Dennis M Levi
- School of Optometry & Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States.
| |
Collapse
|
11
|
Groleau M, Nazari-Ahangarkolaee M, Vanni MP, Higgins JL, Vézina Bédard AS, Sabel BA, Mohajerani MH, Vaucher E. Mesoscopic cortical network reorganization during recovery of optic nerve injury in GCaMP6s mice. Sci Rep 2020; 10:21472. [PMID: 33293617 PMCID: PMC7723052 DOI: 10.1038/s41598-020-78491-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022] Open
Abstract
As the residual vision following a traumatic optic nerve injury can spontaneously recover over time, we explored the spontaneous plasticity of cortical networks during the early post-optic nerve crush (ONC) phase. Using in vivo wide-field calcium imaging on awake Thy1-GCaMP6s mice, we characterized resting state and evoked cortical activity before, during, and 31 days after ONC. The recovery of monocular visual acuity and depth perception was evaluated in parallel. Cortical responses to an LED flash decreased in the contralateral hemisphere in the primary visual cortex and in the secondary visual areas following the ONC, but was partially rescued between 3 and 5 days post-ONC, remaining stable thereafter. The connectivity between visual and non-visual regions was disorganized after the crush, as shown by a decorrelation, but correlated activity was restored 31 days after the injury. The number of surviving retinal ganglion cells dramatically dropped and remained low. At the behavioral level, the ONC resulted in visual acuity loss on the injured side and an increase in visual acuity with the non-injured eye. In conclusion, our results show a reorganization of connectivity between visual and associative cortical areas after an ONC, which is indicative of spontaneous cortical plasticity.
Collapse
Affiliation(s)
- Marianne Groleau
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, H3T 1P1, Canada
| | - Mojtaba Nazari-Ahangarkolaee
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Matthieu P Vanni
- Laboratoire de Neurophotonique, École d'Optométrie, Université de Montréal, Montréal, QC, H3T 1P1, Canada
| | - Jacqueline L Higgins
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, H3T 1P1, Canada
| | - Anne-Sophie Vézina Bédard
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, H3T 1P1, Canada
| | - Bernhard A Sabel
- Institute of Medical Psychology, Medical Faculty, Otto-V.-Guericke University of Magdeburg, 39120, Magdeburg, Germany
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, H3T 1P1, Canada.
| |
Collapse
|
12
|
V1 Projection Zone Signals in Human Macular Degeneration Depend on Task Despite Absence of Visual Stimulus. Curr Biol 2020; 31:406-412.e3. [PMID: 33157025 DOI: 10.1016/j.cub.2020.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/12/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022]
Abstract
Identifying the plastic and stable components of the visual cortex after retinal loss is an important topic in visual neuroscience and neuro-ophthalmology.1-5 Humans with juvenile macular degeneration (JMD) show significant blood-oxygen-level-dependent (BOLD) responses in the primary visual area (V1) lesion projection zone (LPZ),6 despite the absence of the feedforward signals from the degenerated retina. Our previous study7 reported that V1 LPZ responds to full-field visual stimuli during the one-back task (OBT), not during passive viewing, suggesting the involvement of task-related feedback signals. Aiming to clarify whether visual inputs to the intact retina are necessary for the LPZ responses, here, we measured BOLD responses to tactile and auditory stimuli for both JMD patients and control participants with and without OBT. Participants were instructed to close their eyes during the experiment for the purpose of eliminating retinal inputs. Without OBT, no V1 responses were detected in both groups of participants. With OBT, to the contrary, both stimuli caused substantial V1 responses in JMD patients, but not controls. Furthermore, we also found that the task-dependent activity in V1 LPZ became less pronounced when JMD patients opened their eyes, suggesting that task-related feedback signals can be partially suppressed by residual feedforward signals. Modality-independent V1 LPZ responses only in the task condition suggest that V1 LPZ responses reflect task-related feedback signals rather than reorganized feedforward visual inputs.
Collapse
|
13
|
Abstract
Recent work has transformed our ideas about the neural mechanisms, behavioral consequences and effective therapies for amblyopia. Since the 1700's, the clinical treatment for amblyopia has consisted of patching or penalizing the strong eye, to force the "lazy" amblyopic eye, to work. This treatment has generally been limited to infants and young children during a sensitive period of development. Over the last 20 years we have learned much about the nature and neural mechanisms underlying the loss of spatial and binocular vision in amblyopia, and that a degree of neural plasticity persists well beyond the sensitive period. Importantly, the last decade has seen a resurgence of research into new approaches to the treatment of amblyopia both in children and adults, which emphasize that monocular therapies may not be the most effective for the fundamentally binocular disorder that is amblyopia. These approaches include perceptual learning, video game play and binocular methods aimed at reducing inhibition of the amblyopic eye by the strong fellow eye, and enhancing binocular fusion and stereopsis. This review focuses on the what we've learned over the past 20 years or so, and will highlight both the successes of these new treatment approaches in labs around the world, and their failures in clinical trials. Reconciling these results raises important new questions that may help to focus future directions.
Collapse
Affiliation(s)
- Dennis M Levi
- University of California, Berkeley, School of Optometry & Helen Wills Neuroscience Institute, Berkeley, CA, USA.
| |
Collapse
|
14
|
Liu X, Schallhorn SC, Hannan SJ, Teenan D, Schallhorn JM. Three-Month Outcomes of Laser Vision Correction for Myopia and Hyperopia in Adults With Amblyopia. J Refract Surg 2020; 36:511-519. [PMID: 32785724 DOI: 10.3928/1081597x-20200612-02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/12/2020] [Indexed: 11/20/2022]
Abstract
PURPOSE To evaluate the visual outcomes of laser vision correction in adults with myopic and hyperopic amblyopia. METHODS The medical records of patients diagnosed as having amblyopia who underwent laser refractive surgery between February 2013 and October 2017 were retrospectively reviewed. Eyes with amblyopia were analyzed, and the nonamblyopic fellow eyes of the patients who underwent laser vision correction were used as controls. The uncorrected distance visual acuity (UDVA), subjective manifest refraction, and corrected distance visual acuity (CDVA) were analyzed at the 3-month postoperative time point. RESULTS This study included 323 eyes of 164 patients. All patients underwent laser in situ keratomileusis (90.1%, 291 eyes) or photorefractive keratectomy (9.9%, 32 eyes). Three months postoperatively, the manifest spherical equivalent was -0.07 ± 0.55 diopters (D) (range: -1.75 to +1.30 D) and -0.10 ± 0.54 D (range: -2.13 to +1.30 D) in the amblyopia group and fellow eye group, respectively. The percentage of eyes achieving UDVA of 20/20 or better was 16.9% (15 eyes) in the amblyopia group and 61.9% (52 eyes) in the fellow eye group. The percentage of eyes that gained two or more lines of CDVA was 27.9% (24 eyes) in the amblyopia group and 6.2% (5 eyes) in the fellow eye group (P < .01). In the amblyopia group, there was no statistically significant difference in the mean manifest spherical equivalent between the myopic eyes and hyper-opic eyes at any follow-up visit (P = .87, 1 month postoperatively; P = .68, 3 months postoperatively). CONCLUSIONS Laser vision correction was found to be effective and safe in adult patients with amblyopia. [J Refract Surg. 2020;36(8):511-519.].
Collapse
|
15
|
Léné P, Ouerfelli-Ethier J, Fournet R, Laurin AS, Gosselin F, Khan AZ. Changes in eye movement parameters in the presence of an artificial central scotoma. Restor Neurol Neurosci 2020; 38:203-222. [PMID: 32675431 DOI: 10.3233/rnn-190957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Central vision loss, such as in the case of age-related macular degeneration (AMD), has a a major negative impact on patients' quality of life. However, some patients have shown spontaneous adaptive strategies development, mostly relying on their peripheral vision. OBJECTIVE This study assesses eye movement and eccentric visual function adaptive behaviors of a healthy population in the presence of simulated central vision loss. We wished to determine how central vision loss affects eye movements, specifically the foveal-target alignment. METHODS Fifteen healthy participants (7 females, M = 21.69, SD = 2.13) discriminated the orientation of a Gabor relative to the vertical located at 12 deg of eccentricity to the right of fixation, in the presence of a gaze-contingent artificial central scotoma either visible or invisible. The artificial central scotoma was 4° diameter in order to simulate an earlier stage of degenerative disease while still impairing foveal vision. The target's orientation varied between 10° counter-clockwise and 10° clockwise. Each participant performed four blocks of 75 trials each per day over 10 days, the first day being a baseline without scotoma. RESULTS We found changes in the endpoints of the 1st saccade over the practice days. The most common pattern was a gradual upward shift. We also observed a significant increase in discrimination performance over the 9 days of practice. We did not find any difference linked to the scotoma types. CONCLUSIONS These findings suggest that the presence of an artificial central scotoma combined with a challenging discrimination task induces both changes in saccade planning mechanisms, resulting in a new eccentric-target alignment, and improvements in eccentric visual functions. This demonstrates the potential of this research paradigm to understand and potentially improve visual function in patients with central vision loss.
Collapse
Affiliation(s)
- Paul Léné
- Laboratory of Vision, Attention and Action, École d'optométrie, Université de Montréal, Montreal, Quebec, Canada.,Département de psychologie, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Ouerfelli-Ethier
- Laboratory of Vision, Attention and Action, École d'optométrie, Université de Montréal, Montreal, Quebec, Canada
| | - Romain Fournet
- Laboratory of Vision, Attention and Action, École d'optométrie, Université de Montréal, Montreal, Quebec, Canada
| | - Anne-Sophie Laurin
- Laboratory of Vision, Attention and Action, École d'optométrie, Université de Montréal, Montreal, Quebec, Canada
| | - Frédéric Gosselin
- Département de psychologie, Université de Montréal, Montreal, Quebec, Canada.,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montreal, Quebec, Canada
| | - Aarlenne Zein Khan
- Laboratory of Vision, Attention and Action, École d'optométrie, Université de Montréal, Montreal, Quebec, Canada.,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Rapid topographic reorganization in adult human primary visual cortex (V1) during noninvasive and reversible deprivation. Proc Natl Acad Sci U S A 2020; 117:11059-11067. [PMID: 32354998 DOI: 10.1073/pnas.1921860117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Can the primary visual cortex (V1), once wired up in development, change in adulthood? Although numerous studies have demonstrated topographic reorganization in adult V1 following the loss of bottom-up input, others have challenged such findings, offering alternative explanations. Here we use a noninvasive and reversible deprivation paradigm and converging neural and behavioral approaches to address these alternatives in the experimental test case of short-term topographic reorganization in adult human V1. Specifically, we patched one eye in typical adults, thereby depriving the cortical representation of the other eye's blind spot (BS), and immediately tested for topographic reorganization using functional magnetic resonance imaging and psychophysics. Strikingly, within just minutes of eye-patching, the BS representation in V1 began responding to stimuli presented outside of the BS, and these same stimuli were perceived as elongated toward the BS. Thus, we provide converging neural and behavioral evidence of rapid topographic reorganization in adult human V1, and the strongest evidence yet that visual deprivation produces bona fide cortical change.
Collapse
|
17
|
Ribic A. Stability in the Face of Change: Lifelong Experience-Dependent Plasticity in the Sensory Cortex. Front Cell Neurosci 2020; 14:76. [PMID: 32372915 PMCID: PMC7186337 DOI: 10.3389/fncel.2020.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Plasticity is a fundamental property of the nervous system that enables its adaptations to the ever-changing environment. Heightened plasticity typical for developing circuits facilitates their robust experience-dependent functional maturation. This plasticity wanes during adolescence to permit the stabilization of mature brain function, but abundant evidence supports that adult circuits exhibit both transient and long-term experience-induced plasticity. Cortical plasticity has been extensively studied throughout the life span in sensory systems and the main distinction between development and adulthood arising from these studies is the concept that passive exposure to relevant information is sufficient to drive robust plasticity early in life, while higher-order attentional mechanisms are necessary to drive plastic changes in adults. Recent work in the primary visual and auditory cortices began to define the circuit mechanisms that govern these processes and enable continuous adaptation to the environment, with transient circuit disinhibition emerging as a common prerequisite for both developmental and adult plasticity. Drawing from studies in visual and auditory systems, this review article summarizes recent reports on the circuit and cellular mechanisms of experience-driven plasticity in the developing and adult brains and emphasizes the similarities and differences between them. The benefits of distinct plasticity mechanisms used at different ages are discussed in the context of sensory learning, as well as their relationship to maladaptive plasticity and neurodevelopmental brain disorders. Knowledge gaps and avenues for future work are highlighted, and these will hopefully motivate future research in these areas, particularly those about the learning of complex skills during development.
Collapse
Affiliation(s)
- Adema Ribic
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
18
|
Persic D, Thomas ME, Pelekanos V, Ryugo DK, Takesian AE, Krumbholz K, Pyott SJ. Regulation of auditory plasticity during critical periods and following hearing loss. Hear Res 2020; 397:107976. [PMID: 32591097 PMCID: PMC8546402 DOI: 10.1016/j.heares.2020.107976] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Sensory input has profound effects on neuronal organization and sensory maps in the brain. The mechanisms regulating plasticity of the auditory pathway have been revealed by examining the consequences of altered auditory input during both developmental critical periods—when plasticity facilitates the optimization of neural circuits in concert with the external environment—and in adulthood—when hearing loss is linked to the generation of tinnitus. In this review, we summarize research identifying the molecular, cellular, and circuit-level mechanisms regulating neuronal organization and tonotopic map plasticity during developmental critical periods and in adulthood. These mechanisms are shared in both the juvenile and adult brain and along the length of the auditory pathway, where they serve to regulate disinhibitory networks, synaptic structure and function, as well as structural barriers to plasticity. Regulation of plasticity also involves both neuromodulatory circuits, which link plasticity with learning and attention, as well as ascending and descending auditory circuits, which link the auditory cortex and lower structures. Further work identifying the interplay of molecular and cellular mechanisms associating hearing loss-induced plasticity with tinnitus will continue to advance our understanding of this disorder and lead to new approaches to its treatment. During CPs, brain plasticity is enhanced and sensitive to acoustic experience. Enhanced plasticity can be reinstated in the adult brain following hearing loss. Molecular, cellular, and circuit-level mechanisms regulate CP and adult plasticity. Plasticity resulting from hearing loss may contribute to the emergence of tinnitus. Modifying plasticity in the adult brain may offer new treatments for tinnitus.
Collapse
Affiliation(s)
- Dora Persic
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Vassilis Pelekanos
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - David K Ryugo
- Hearing Research, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Katrin Krumbholz
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
19
|
Cisneros-Franco JM, Voss P, Kang MS, Thomas ME, Côté J, Ross K, Gaudreau P, Rudko DA, Rosa-Neto P, de-Villers-Sidani É. PET Imaging of Perceptual Learning-Induced Changes in the Aged Rodent Cholinergic System. Front Neurosci 2020; 13:1438. [PMID: 32038142 PMCID: PMC6985428 DOI: 10.3389/fnins.2019.01438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
The cholinergic system enhances attention and gates plasticity, making it a major regulator of adult learning. With aging, however, progressive degeneration of the cholinergic system impairs both the acquisition of new skills and functional recovery following neurological injury. Although cognitive training and perceptual learning have been shown to enhance auditory cortical processing, their specific impact on the cholinergic system remains unknown. Here we used [18F]FEOBV, a positron emission tomography (PET) radioligand that selectively binds to the vesicular acetylcholine transporter (VAChT), as a proxy to assess whether training on a perceptual task results in increased cholinergic neurotransmission. We show for the first time that perceptual learning is associated with region-specific changes in cholinergic neurotransmission, as detected by [18F]FEOBV PET imaging and corroborated with immunohistochemistry.
Collapse
Affiliation(s)
- J Miguel Cisneros-Franco
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Patrice Voss
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Min Su Kang
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Maryse E Thomas
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Jonathan Côté
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Karen Ross
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pierrette Gaudreau
- Réseau Québécois de Recherche sur le Vieillissement, Université de Montréal, Montreal, QC, Canada
| | - David A Rudko
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Pedro Rosa-Neto
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Étienne de-Villers-Sidani
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Switching Operation Modes in the Neocortex via Cholinergic Neuromodulation. Mol Neurobiol 2019; 57:139-149. [DOI: 10.1007/s12035-019-01764-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Indexed: 12/26/2022]
|
21
|
Schnell AE, Van den Bergh G, Vermaercke B, Gijbels K, Bossens C, de Beeck HO. Face categorization and behavioral templates in rats. J Vis 2019; 19:9. [PMID: 31826254 DOI: 10.1167/19.14.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Rodents have become a popular model in vision science. It is still unclear how vision in rodents relates to primate vision when it comes to complex visual tasks. Here we report on the results of training rats in a face-categorization and generalization task. Additionally, the Bubbles paradigm is used to determine the behavioral templates of the animals. We found that rats are capable of face categorization and can generalize to previously unseen exemplars. Performance is affected-but remains above chance-by stimulus modifications such as upside-down and contrast-inverted stimuli. The behavioral templates of the rats overlap with a pixel-based template, with a bias toward the upper left parts of the stimuli. Together, these findings significantly expand the evidence about the extent to which rats learn complex visual-categorization tasks.
Collapse
Affiliation(s)
- Anna Elisabeth Schnell
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium.,Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Gert Van den Bergh
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium.,Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ben Vermaercke
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium.,Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Kim Gijbels
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium.,Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Christophe Bossens
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium.,Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium
| | - Hans Op de Beeck
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium.,Leuven Brain Institute, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
22
|
Contemori G, Battaglini L, Casco C. Contextual influences in the peripheral retina of patients with macular degeneration. Sci Rep 2019; 9:9284. [PMID: 31243292 PMCID: PMC6594941 DOI: 10.1038/s41598-019-45648-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Macular degeneration (MD) is the leading cause of low vision in the elderly population worldwide. In case of complete bilateral loss of central vision, MD patients start to show a preferred retinal region for fixation (PRL). Previous literature has reported functional changes that are connected with the emergence of the PRL. In this paper, we question whether the PRL undergoes a use-dependent cortical reorganization that alters the range of spatial lateral interactions between low-level filters. We asked whether there is a modulation of the excitatory/inhibitory lateral interactions or whether contextual influences are well accounted for by the same law that describes the integration response in normal viewers. In a group of 13 MD patients and 7 age-matched controls, we probed contextual influences by measuring the contrast threshold for a vertical target Gabor, flanked by two collinear high-contrast Gabors. Contextual influences of the collinear flankers were indicated by the changes in contrast threshold obtained at different target-to-flanker distances (λs) relative to the baseline orthogonal condition. Results showed that MDs had higher thresholds in the baseline condition and functional impairment in the identification tasks. Moreover, at the shortest λ, we found facilitatory rather than inhibitory contextual influence. No difference was found between the PRL and a symmetrical retinal position (non-PRL). By pulling together data from MD and controls we showed that in the periphery this inversion occurs when the target threshold approach the flankers’ contrast (about 1:3 ratio) and that for patients it does occur in both the PRL and a symmetrical retinal position (non-PRL). We conclude that contrary to previous interpretations, this modulation doesn’t seem to reflect use-dependent cortical reorganization but rather, it might result from a reduction of contrast gain for the target that promotes target-flankers grouping.
Collapse
Affiliation(s)
- Giulio Contemori
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy. .,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy. .,Université de Toulouse-UPS, Centre de Recherche Cerveau et Cognition, Toulouse, France.
| | - Luca Battaglini
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| | - Clara Casco
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy.,Neuro.Vis.U.S. Laboratory, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Takahata T, Patel NB, Balaram P, Chino YM, Kaas JH. Long-term histological changes in the macaque primary visual cortex and the lateral geniculate nucleus after monocular deprivation produced by early restricted retinal lesions and diffuser induced form deprivation. J Comp Neurol 2018; 526:2955-2972. [PMID: 30004587 DOI: 10.1002/cne.24494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 06/02/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022]
Abstract
Ocular dominance (OD) plasticity has been extensively studied in various mammalian species. While robust OD shifts are typically observed after monocular eyelid suture, relatively poor OD plasticity is observed for early eye removal or after tetrodotoxin (TTX) injections in mice. Hence, abnormal binocular signal interactions in the visual cortex may play a critical role in eliciting OD plasticity. Here, we examined the histochemical changes in the lateral geniculate nucleus (LGN) and the striate cortex (V1) in macaque monkeys that experienced two different monocular sensory deprivations in the same eye beginning at 3 weeks of age: restricted laser lesions in macular or peripheral retina and form deprivation induced by wearing a diffuser lens during the critical period. The monkeys were subsequently reared for 5 years under a normal visual environment. In the LGN, atrophy of neurons and a dramatic increase of GFAP expression were observed in the lesion projection zones (LPZs). In V1, although no obvious shift of the LPZ border was found, the ocular dominance columns (ODCs) for the lesioned eye shrunk and those for the intact eye expanded over the entirety of V1. This ODC size change was larger in the area outside the LPZ and in the region inside the LPZ near the border compared to that in the LPZ center. These developmental changes may reflect abnormal binocular interactions in V1 during early infancy. Our observations provide insights into the nature of degenerative and plastic changes in the LGN and V1 following early chronic monocular sensory deprivations.
Collapse
Affiliation(s)
- Toru Takahata
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Nimesh B Patel
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas
| | - Pooja Balaram
- Department of Psychology, Vanderbilt University, Nashville, Tennessee.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Yuzo M Chino
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
24
|
Axonal plasticity associated with perceptual learning in adult macaque primary visual cortex. Proc Natl Acad Sci U S A 2018; 115:10464-10469. [PMID: 30262651 DOI: 10.1073/pnas.1812932115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Perceptual learning is associated with changes in the functional properties of neurons even in primary sensory areas. In macaque monkeys trained to perform a contour detection task, we have observed changes in contour-related facilitation of neuronal responses in primary visual cortex that track their improvement in performance on a contour detection task. We have previously explored the anatomical substrate of experience-dependent changes in the visual cortex based on a retinal lesion model, where we find sprouting and pruning of the axon collaterals in the cortical lesion projection zone. Here, we attempted to determine whether similar changes occur under normal visual experience, such as that associated with perceptual learning. We labeled the long-range horizontal connections in visual cortex by virally mediated transfer of genes expressing fluorescent probes, which enabled us to do longitudinal two-photon imaging of axonal arbors over the period during which animals improve in contour detection performance. We found that there are substantial changes in the axonal arbors of neurons in cortical regions representing the trained part of the visual field, with sprouting of new axon collaterals and pruning of preexisting axon collaterals. Our findings indicate that changes in the structure of axonal arbors are part of the circuit-level mechanism of perceptual learning, and further support the idea that the learned information is encoded at least in part in primary visual cortex.
Collapse
|
25
|
Farias MF, Ungerleider LG, Pereira SS, Amorim AKJ, Soares JGM, Gattass R. Time course of cytochrome oxidase blob plasticity in the primary visual cortex of adult monkeys after retinal laser lesions. J Comp Neurol 2018; 527:600-613. [PMID: 29574781 DOI: 10.1002/cne.24434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 11/09/2022]
Abstract
We studied the time course of changes of cytochrome oxidase (CytOx) blob spatial density and blob cross-sectional area of deprived (D) and nondeprived (ND) portions of V1 in four capuchin monkeys after massive and restricted retinal laser lesions. Laser shots at the border of the optic disc produced massive retinal lesions, while low power laser shots in the retina produced restricted retinal lesions. These massive and restricted retinal lesions were intended to simulate glaucoma and diabetic retinopathy, respectively. We used a Neodymium-YAG dual frequency laser to make the lesions. We measured Layer III blobs in CytOx-reacted tangential sections of flat-mounted preparations of V1. The plasticity of the blob system and that of the ocular dominance columns (ODC) varied with the degree of retinal lesions. We found that changes in the blob system were different from that of the ODC. Blob sizes changed drastically in the region corresponding to the retinal lesion. Blobs were larger and subjectively darker above and below the non deprived ODC than in the deprived columns. With restricted lesions, blobs corresponding to the ND columns had sizes similar to those from non-lesioned areas. In contrast, blobs corresponding to the deprived columns were smaller than those from nonlesioned areas. With massive lesions, ND blobs were larger than the deprived blobs. Plastic changes in blobs described here occur much earlier than previously described.
Collapse
Affiliation(s)
- Mariana F Farias
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Leslie G Ungerleider
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sandra S Pereira
- Department of Ophthalmology, School of Medicine, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Ana Karla J Amorim
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Juliana G M Soares
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Ricardo Gattass
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Heczko J, Sierpina D. Rapid neuroadaptation to surgically-induced aniseikonia in a 17-year-old patient with high preoperative anisometropia: A case report. Am J Ophthalmol Case Rep 2018; 9:75-76. [PMID: 29577095 PMCID: PMC5861630 DOI: 10.1016/j.ajoc.2018.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose To report a case of rapid neuroadaptation to surgically-induced aniseikonia in a 17-year-old with preoperative anisometropia of 9.5 D. Observations A 17-year-old female with a history of retinopathy of prematurity (ROP) and progressive high myopia with resulting anisometropia secondary to conventional laser photocoagulation in her right eye was found to have diplopia after undergoing cataract surgery in that eye. Other etiologies of diplopia were ruled out and reversal of anisometropia remained the only viable diagnosis. Her diplopia fully resolved without intervention within one month of the surgery. Conclusion and Importance In cases of neuroadaptation to long standing anisometropia, even if that anisometropia develops in infancy, abrupt reversal following surgery can be surprisingly well tolerated.
Collapse
Affiliation(s)
- Joshua Heczko
- Corresponding author. 11370 Anderson St, Loma Linda, CA 92354, USA.11370 Anderson StLoma LindaCA92354USA
| | | |
Collapse
|
27
|
Najarpour Foroushani A, Pack CC, Sawan M. Cortical visual prostheses: from microstimulation to functional percept. J Neural Eng 2018; 15:021005. [DOI: 10.1088/1741-2552/aaa904] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Thomas ME, Friedman NHM, Cisneros-Franco JM, Ouellet L, de Villers-Sidani É. The Prolonged Masking of Temporal Acoustic Inputs with Noise Drives Plasticity in the Adult Rat Auditory Cortex. Cereb Cortex 2018; 29:1032-1046. [DOI: 10.1093/cercor/bhy009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/08/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maryse E Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| | - Nathan H M Friedman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J Miguel Cisneros-Franco
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| | - Lydia Ouellet
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| |
Collapse
|
29
|
Gannon MA, Long SM, Parks NA. Homeostatic plasticity in human extrastriate cortex following a simulated peripheral scotoma. Exp Brain Res 2017; 235:3391-3401. [PMID: 28821922 DOI: 10.1007/s00221-017-5042-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
Neuroimaging and patient work over the past decade have indicated that, following retinal deafferentation, the human visual cortex undergoes a large-scale and enduring reorganization of its topography such that the classical retinotopic organization of deafferented visual cortex remaps to represent non-classical regions of visual space. Such long-term visual reorganization is proposed to occur through changes in the functional balance of deafferented visual circuits that engage more lasting changes through activity-dependent neuroplasticity. Here, we investigated the short-term changes in functional balance (short-term plasticity; homeostatic plasticity) that occur within deafferented human visual cortices. We recorded electroencephalogram (EEG) while observers were conditioned for 6 s with a simulated retinal scotoma (artificial scotoma) positioned 8.0° in the periphery. Visual evoked potentials (VEPs) evoked by the onset of sinusoidal visual probes that varied in their tilt were used to examine changes in cortical excitability within and around cortical representations of the simulated scotoma. Psychophysical orientation functions obtained from discrimination of visual probe tilt were used to examine alterations in the stimulus selectivity within the scotoma representations. Consistent with a mechanism of homeostatic disinhibition, an early extrastriate component of the VEP (the early phase P1) exhibited increased amplitude following the condition with a simulated scotoma relative to a stimulus-matched control condition. This increased visual cortical response was associated with a reduction in the slope of the psychophysical orientation function, suggesting a broader tuning of neural populations within scotoma representations. Together, these findings support a mechanism of disinhibition in promoting visual plasticity and topographical reorganization.
Collapse
Affiliation(s)
- Matthew A Gannon
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA.
| | - Stephanie M Long
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Nathan A Parks
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
30
|
Voss P, Thomas ME, Cisneros-Franco JM, de Villers-Sidani É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front Psychol 2017; 8:1657. [PMID: 29085312 PMCID: PMC5649212 DOI: 10.3389/fpsyg.2017.01657] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
A growing number of research publications have illustrated the remarkable ability of the brain to reorganize itself in response to various sensory experiences. A traditional view of this plastic nature of the brain is that it is predominantly limited to short epochs during early development. Although examples showing that neuroplasticity exists outside of these finite time-windows have existed for some time, it is only recently that we have started to develop a fuller understanding of the different regulators that modulate and underlie plasticity. In this article, we will provide several lines of evidence indicating that mechanisms of neuroplasticity are extremely variable across individuals and throughout the lifetime. This variability is attributable to several factors including inhibitory network function, neuromodulator systems, age, sex, brain disease, and psychological traits. We will also provide evidence of how neuroplasticity can be manipulated in both the healthy and diseased brain, including recent data in both young and aged rats demonstrating how plasticity within auditory cortex can be manipulated pharmacologically and by varying the quality of sensory inputs. We propose that a better understanding of the individual differences that exist within the various mechanisms that govern experience-dependent neuroplasticity will improve our ability to harness brain plasticity for the development of personalized translational strategies for learning and recovery following brain injury or disease.
Collapse
Affiliation(s)
- Patrice Voss
- *Correspondence: Étienne de Villers-Sidani, Patrice Voss,
| | | | | | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealQC, Canada
| |
Collapse
|
31
|
Cholinergic Potentiation of Restoration of Visual Function after Optic Nerve Damage in Rats. Neural Plast 2017; 2017:6928489. [PMID: 28928986 PMCID: PMC5592016 DOI: 10.1155/2017/6928489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/26/2017] [Accepted: 06/04/2017] [Indexed: 01/03/2023] Open
Abstract
Enhancing cortical plasticity and brain connectivity may improve residual vision following a visual impairment. Since acetylcholine plays an important role in attention and neuronal plasticity, we explored whether potentiation of the cholinergic transmission has an effect on the visual function restoration. To this end, we evaluated for 4 weeks the effect of the acetylcholinesterase inhibitor donepezil on brightness discrimination, visually evoked potentials, and visual cortex reactivity after a bilateral and partial optic nerve crush in adult rats. Donepezil administration enhanced brightness discrimination capacity after optic nerve crush compared to nontreated animals. The visually evoked activation of the primary visual cortex was not restored, as measured by evoked potentials, but the cortical neuronal activity measured by thallium autometallography was not significantly affected four weeks after the optic nerve crush. Altogether, the results suggest a role of the cholinergic system in postlesion cortical plasticity. This finding agrees with the view that restoration of visual function may involve mechanisms beyond the area of primary damage and opens a new perspective for improving visual rehabilitation in humans.
Collapse
|
32
|
Plasticity Beyond V1: Reinforcement of Motion Perception upon Binocular Central Retinal Lesions in Adulthood. J Neurosci 2017; 37:8989-8999. [PMID: 28821647 DOI: 10.1523/jneurosci.1231-17.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 11/21/2022] Open
Abstract
Induction of a central retinal lesion in both eyes of adult mammals is a model for macular degeneration and leads to retinotopic map reorganization in the primary visual cortex (V1). Here we characterized the spatiotemporal dynamics of molecular activity levels in the central and peripheral representation of five higher-order visual areas, V2/18, V3/19, V4/21a,V5/PMLS, area 7, and V1/17, in adult cats with central 10° retinal lesions (both sexes), by means of real-time PCR for the neuronal activity reporter gene zif268. The lesions elicited a similar, permanent reduction in activity in the center of the lesion projection zone of area V1/17, V2/18, V3/19, and V4/21a, but not in the motion-driven V5/PMLS, which instead displayed an increase in molecular activity at 3 months postlesion, independent of visual field coordinates. Also area 7 only displayed decreased activity in its LPZ in the first weeks postlesion and increased activities in its periphery from 1 month onward. Therefore we examined the impact of central vision loss on motion perception using random dot kinematograms to test the capacity for form from motion detection based on direction and velocity cues. We revealed that the central retinal lesions either do not impair motion detection or even result in better performance, specifically when motion discrimination was based on velocity discrimination. In conclusion, we propose that central retinal damage leads to enhanced peripheral vision by sensitizing the visual system for motion processing relying on feedback from V5/PMLS and area 7.SIGNIFICANCE STATEMENT Central retinal lesions, a model for macular degeneration, result in functional reorganization of the primary visual cortex. Examining the level of cortical reactivation with the molecular activity marker zif268 revealed reorganization in visual areas outside V1. Retinotopic lesion projection zones typically display an initial depression in zif268 expression, followed by partial recovery with postlesion time. Only the motion-sensitive area V5/PMLS shows no decrease, and even a significant activity increase at 3 months post-retinal lesion. Behavioral tests of motion perception found no impairment and even better sensitivity to higher random dot stimulus velocities. We demonstrate that the loss of central vision induces functional mobilization of motion-sensitive visual cortex, resulting in enhanced perception of moving stimuli.
Collapse
|
33
|
Horton JC, Fahle M, Mulder T, Trauzettel-Klosinski S. Adaptation, perceptual learning, and plasticity of brain functions. Graefes Arch Clin Exp Ophthalmol 2017; 255:435-447. [PMID: 28091782 PMCID: PMC5323482 DOI: 10.1007/s00417-016-3580-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/06/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022] Open
Abstract
The capacity for functional restitution after brain damage is quite different in the sensory and motor systems. This series of presentations highlights the potential for adaptation, plasticity, and perceptual learning from an interdisciplinary perspective. The chances for restitution in the primary visual cortex are limited. Some patterns of visual field loss and recovery after stroke are common, whereas others are impossible, which can be explained by the arrangement and plasticity of the cortical map. On the other hand, compensatory mechanisms are effective, can occur spontaneously, and can be enhanced by training. In contrast to the human visual system, the motor system is highly flexible. This is based on special relationships between perception and action and between cognition and action. In addition, the healthy adult brain can learn new functions, e.g. increasing resolution above the retinal one. The significance of these studies for rehabilitation after brain damage will be discussed.
Collapse
Affiliation(s)
| | - Manfred Fahle
- Center for Cognitive Sciences, University of Bremen, Bremen, Germany
| | - Theo Mulder
- Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | |
Collapse
|
34
|
Abstract
PURPOSE In this experiment, we tested whether perceptually delineating the scotoma location and border with a gaze contingent polygon overlay improves reading speed and reading eye movements in patients with bilateral central scotomas. METHODS Eight patients with age-related macular degeneration and bilateral central scotomas read aloud MNRead style sentences with their preferred eye. Eye movement signals from an EyeLink II eyetracker were used to create a gaze contingent display in which a polygon overlay delineating the area of the patient's scotoma was superimposed on the text during 18 of the 42 trials. Blocks of six trials with the superimposed polygon were alternated with blocks of six trials without the polygon. Reading speed and reading eye movements were assessed before and after the subjects practiced reading with the polygon overlay. RESULTS All of the subjects but one showed an increase in reading speed. A paired-samples t-test for the group as a whole revealed a statistically significant increase in reading speed of 0.075 ± 0.060 (SD) log wpm after reading with the superimposed polygon. Individual subjects demonstrated significant changes in reading eye movements, with the greatest number of subjects demonstrating a shift in the average vertical fixation locus. Across subjects, there was no significant difference between the initial and final reading eye movements in terms of saccades per second, average fixation duration, average amplitude of saccades, or proportion of non-horizontal saccades. CONCLUSIONS The improvement in reading speed (0.075 log wpm or 19%) over the short experimental session for the majority of subjects indicates that making the scotoma location more visible is potentially beneficial for improving reading speed in patients with bilateral central scotomas. Additional research to examine the efficacy of more extended training with this paradigm is warranted.
Collapse
|
35
|
Smolders K, Vreysen S, Laramée ME, Cuyvers A, Hu TT, Van Brussel L, Eysel UT, Nys J, Arckens L. Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system. Eur J Neurosci 2016; 44:2165-75. [PMID: 26663520 DOI: 10.1111/ejn.13143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
Abstract
Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level.
Collapse
Affiliation(s)
- Katrien Smolders
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Samme Vreysen
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Marie-Eve Laramée
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Annemie Cuyvers
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Tjing-Tjing Hu
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Leen Van Brussel
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Ulf T Eysel
- Department of Neurophysiology, Medical School, Bochum, Germany
| | - Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| |
Collapse
|
36
|
Sammons RP, Keck T. Adult plasticity and cortical reorganization after peripheral lesions. Curr Opin Neurobiol 2015; 35:136-41. [PMID: 26313527 DOI: 10.1016/j.conb.2015.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/29/2015] [Accepted: 08/04/2015] [Indexed: 11/26/2022]
Abstract
Following loss of input due to peripheral lesions, functional reorganization occurs in the deprived cortical region in adults. Over a period of hours to months, cells in the lesion projection zone (LPZ) begin to respond to novel stimuli. This reorganization is mediated by two processes: a reduction of inhibition in a gradient throughout the cortex and input remapping via sprouting of axonal arbors from cortical regions spatially adjacent to the LPZ, and strengthening of pre-existing subthreshold inputs. Together these inputs facilitate receptive field remapping of cells in the LPZ. Recent experiments have revealed time courses and potential interactions of the mechanisms associated with functional reorganization, suggesting that large scale reorganization in the adult may utilize plasticity mechanisms prominent during development.
Collapse
Affiliation(s)
- Rosanna P Sammons
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Tara Keck
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
37
|
Nonlinear population receptive field changes in human area V5/MT+ of healthy subjects with simulated visual field scotomas. Neuroimage 2015; 120:176-90. [PMID: 26146195 PMCID: PMC5327354 DOI: 10.1016/j.neuroimage.2015.06.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/25/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022] Open
Abstract
There is extensive controversy over whether the adult visual cortex is able to reorganize following visual field loss (scotoma) as a result of retinal or cortical lesions. Functional magnetic resonance imaging (fMRI) methods provide a useful tool to study the aggregate receptive field properties and assess the capacity of the human visual cortex to reorganize following injury. However, these methods are prone to biases near the boundaries of the scotoma. Retinotopic changes resembling reorganization have been observed in the early visual cortex of normal subjects when the visual stimulus is masked to simulate retinal or cortical scotomas. It is not known how the receptive fields of higher visual areas, like hV5/MT+, are affected by partial stimulus deprivation. We measured population receptive field (pRF) responses in human area V5/MT+ of 5 healthy participants under full stimulation and compared them with responses obtained from the same area while masking the left superior quadrant of the visual field (“artificial scotoma” or AS). We found that pRF estimations in area hV5/MT+ are nonlinearly affected by the AS. Specifically, pRF centers shift towards the AS, while the pRF amplitude increases and the pRF size decreases near the AS border. The observed pRF changes do not reflect reorganization but reveal important properties of normal visual processing under different test-stimulus conditions.
Collapse
|
38
|
Abstract
The functional architecture of adult cerebral cortex retains a capacity for experience-dependent change. This is seen after focal binocular lesions as rapid changes in receptive field (RF) of the lesion projection zone (LPZ) in the primary visual cortex (V1). To study the dynamics of the circuitry underlying these changes longitudinally, we implanted microelectrode arrays in macaque (Macaca mulatta) V1, eliminating the possibility of sampling bias, which was a concern in previous studies. With this method, we observed a rapid initial recovery in the LPZ and, during the following weeks, 63-89% of the sites in the LPZ showed recovery of visual responses with significant position tuning. The RFs shifted ∼3° away from the scotoma. In the absence of a lesion, visual stimulation surrounding an artificial scotoma did not elicit visual responses, suggesting that the postlesion RF shifts resulted from cortical reorganization. Interestingly, although both spikes and LFPs gave consistent prelesion position tuning, only spikes reflected the postlesion remapping.
Collapse
|
39
|
Reorganization of visual processing in age-related macular degeneration depends on foveal loss. Optom Vis Sci 2014; 91:e199-206. [PMID: 24978868 DOI: 10.1097/opx.0000000000000325] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE When individuals with central vision loss due to macular degeneration (MD) view stimuli in the periphery, most of them activate the region of retinotopic cortex normally activated only by foveal stimuli-a process often referred to as reorganization. Why do some show this reorganization of visual processing whereas others do not? We reported previously that six individuals with complete bilateral loss of central vision showed such reorganization, whereas two with bilateral central vision loss but with foveal sparing did not, and we hypothesized that the effect occurs only after complete bilateral loss of foveal vision. Here, we conduct a stronger test of the dependence of reorganization of visual processing in MD on complete loss of foveal function, by bringing back one (called MD6) of the two participants who previously did not show reorganization and who showed foveal sparing. MD6 has now lost all foveal function, and we predicted that if large-scale reorganization of visual processing in MD individuals depends on complete loss of foveal input, then we will now see such reorganization in this individual. METHODS MD6 and two normally sighted control subjects were scanned. Stimuli were gray-scale photographs of objects presented at either the fovea or a peripheral retinal location (i.e., the MD participant's preferred retinal locus or the control participants' matched peripheral location). RESULTS In MD6, visual stimulation at the preferred retinal locus significantly activated not only the expected "peripheral" retinotopic cortex but also the deprived "foveal" cortex. Crucially, MD6 exhibited no such large-scale reorganization 5 years earlier when she had some foveal sparing. By contrast, in the control participants, stimulation at the matched peripheral location produced significant activation in peripheral retinotopic cortex only. CONCLUSIONS We conclude that complete loss of foveal function may be a necessary condition for large-scale reorganization of visual processing in individuals with MD.
Collapse
|
40
|
Elston GN, Fujita I. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat 2014; 8:78. [PMID: 25161611 PMCID: PMC4130200 DOI: 10.3389/fnana.2014.00078] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/22/2014] [Indexed: 01/12/2023] Open
Abstract
Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1) prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE) and granular prefrontal cortex (gPFC; Brodmann's area 12) grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the “use it or lose it” notion of synaptic reinforcement may speak to only part of the story, “use it but you still might lose it” may be just as prevalent in the cerebral cortex.
Collapse
Affiliation(s)
- Guy N Elston
- Centre for Cognitive Neuroscience Sunshine Coast, QLD, Australia
| | - Ichiro Fujita
- Graduate School of Frontier Biosciences and Center for Information and Neural Networks, Osaka University and National Institute of Communication Technology Suita, Japan
| |
Collapse
|
41
|
Haak KV, Langers DR, Renken R, van Dijk P, Borgstein J, Cornelissen FW. Abnormal visual field maps in human cortex: A mini-review and a case report. Cortex 2014; 56:14-25. [DOI: 10.1016/j.cortex.2012.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/21/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
|
42
|
Population receptive field analysis of the primary visual cortex complements perimetry in patients with homonymous visual field defects. Proc Natl Acad Sci U S A 2014; 111:E1656-65. [PMID: 24706881 DOI: 10.1073/pnas.1317074111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Injury to the primary visual cortex (V1) typically leads to loss of conscious vision in the corresponding, homonymous region of the contralateral visual hemifield (scotoma). Several studies suggest that V1 is highly plastic after injury to the visual pathways, whereas others have called this conclusion into question. We used functional magnetic resonance imaging (fMRI) to measure area V1 population receptive field (pRF) properties in five patients with partial or complete quadrantic visual field loss as a result of partial V1+ or optic radiation lesions. Comparisons were made with healthy controls deprived of visual stimulation in one quadrant ["artificial scotoma" (AS)]. We observed no large-scale changes in spared-V1 topography as the V1/V2 border remained stable, and pRF eccentricity versus cortical-distance plots were similar to those of controls. Interestingly, three observations suggest limited reorganization: (i) the distribution of pRF centers in spared-V1 was shifted slightly toward the scotoma border in 2 of 5 patients compared with AS controls; (ii) pRF size in spared-V1 was slightly increased in patients near the scotoma border; and (iii) pRF size in the contralesional hemisphere was slightly increased compared with AS controls. Importantly, pRF measurements yield information about the functional properties of spared-V1 cortex not provided by standard perimetry mapping. In three patients, spared-V1 pRF maps overlapped significantly with dense regions of the perimetric scotoma, suggesting that pRF analysis may help identify visual field locations amenable to rehabilitation. Conversely, in the remaining two patients, spared-V1 pRF maps failed to cover sighted locations in the perimetric map, indicating the existence of V1-bypassing pathways able to mediate useful vision.
Collapse
|
43
|
Zhang JY, Cong LJ, Klein SA, Levi DM, Yu C. Perceptual learning improves adult amblyopic vision through rule-based cognitive compensation. Invest Ophthalmol Vis Sci 2014; 55:2020-30. [PMID: 24550359 DOI: 10.1167/iovs.13-13739] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We investigated whether perceptual learning in adults with amblyopia could be enabled to transfer completely to an orthogonal orientation, which would suggest that amblyopic perceptual learning results mainly from high-level cognitive compensation, rather than plasticity in the amblyopic early visual brain. METHODS Nineteen adults (mean age = 22.5 years) with anisometropic and/or strabismic amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal orientation via practicing an irrelevant task. Training was first performed at a lower spatial frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye. RESULTS Perceptual learning was initially orientation specific. However, after exposure to the orthogonal orientation, learning transferred to an orthogonal orientation completely. Reversing the exposure and training order failed to produce transfer. Initial lower SF training led to broad improvement of contrast sensitivity, and later higher SF training led to more specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P < 0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also improved stereoacuity by 53% (P < 0.001). CONCLUSIONS The complete transfer of learning suggests that perceptual learning in amblyopia may reflect high-level learning of rules for performing a visual discrimination task. These rules are applicable to new orientations to enable learning transfer. Therefore, perceptual learning may improve amblyopic vision mainly through rule-based cognitive compensation.
Collapse
Affiliation(s)
- Jun-Yun Zhang
- Department of Psychology, IDG/McGovern Institute for Brain Research, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
44
|
Abstract
Single-unit recordings demonstrated that the adult mammalian visual cortex is capable of reorganizing after induced retinal lesions. In humans, whether the adult cortex is capable of reorganizing has only been studied using functional magnetic resonance imaging, with equivocal results. Here, we exploited the phenomenon of visual crowding, a major limitation on object recognition, to show that, in humans with long-standing retinal (macular) lesions that afflict the fovea and thus use their peripheral vision exclusively, the signature properties of crowding are distinctly different from those of the normal periphery. Crowding refers to the inability to recognize objects when the object spacing is smaller than the critical spacing. Critical spacing depends only on the retinal location of the object, scales linearly with its distance from the fovea, and is approximately two times larger in the radial than the tangential direction with respect to the fovea, thus demonstrating the signature radial-tangential anisotropy of the crowding zone. Using retinal imaging combined with behavioral measurements, we mapped out the crowding zone at the precise peripheral retinal locations adopted by individuals with macular lesions as the new visual reference loci. At these loci, the critical spacings are substantially smaller along the radial direction than expected based on the normal periphery, resulting in a lower scaling of critical spacing with the eccentricity of the peripheral locus and a loss in the signature radial-tangential anisotropy of the crowding zone. These results imply a fundamental difference in the substrate of cortical processing in object recognition following long-term adaptation to macular lesions.
Collapse
|
45
|
Butz M, van Ooyen A. A simple rule for dendritic spine and axonal bouton formation can account for cortical reorganization after focal retinal lesions. PLoS Comput Biol 2013; 9:e1003259. [PMID: 24130472 PMCID: PMC3794906 DOI: 10.1371/journal.pcbi.1003259] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 08/08/2013] [Indexed: 12/24/2022] Open
Abstract
Lasting alterations in sensory input trigger massive structural and functional adaptations in cortical networks. The principles governing these experience-dependent changes are, however, poorly understood. Here, we examine whether a simple rule based on the neurons' need for homeostasis in electrical activity may serve as driving force for cortical reorganization. According to this rule, a neuron creates new spines and boutons when its level of electrical activity is below a homeostatic set-point and decreases the number of spines and boutons when its activity exceeds this set-point. In addition, neurons need a minimum level of activity to form spines and boutons. Spine and bouton formation depends solely on the neuron's own activity level, and synapses are formed by merging spines and boutons independently of activity. Using a novel computational model, we show that this simple growth rule produces neuron and network changes as observed in the visual cortex after focal retinal lesions. In the model, as in the cortex, the turnover of dendritic spines was increased strongest in the center of the lesion projection zone, while axonal boutons displayed a marked overshoot followed by pruning. Moreover, the decrease in external input was compensated for by the formation of new horizontal connections, which caused a retinotopic remapping. Homeostatic regulation may provide a unifying framework for understanding cortical reorganization, including network repair in degenerative diseases or following focal stroke. The adult brain is less hard-wired than traditionally thought. About ten percent of synapses in the mature visual cortex is continually replaced by new ones (structural plasticity). This percentage greatly increases after lasting changes in visual input. Due to the topographically organized nerve connections from the retina in the eye to the primary visual cortex in the brain, a small circumscribed lesion in the retina leads to a defined area in the cortex that is deprived of input. Recent experimental studies have revealed that axonal sprouting and dendritic spine turnover are massively increased in and around the cortical area that is deprived of input. However, the driving forces for this structural plasticity remain unclear. Using a novel computational model, we examine whether the need for activity homeostasis of individual neurons may drive cortical reorganization after lasting changes in input activity. We show that homeostatic growth rules indeed give rise to structural and functional reorganization of neuronal networks similar to the cortical reorganization observed experimentally. Understanding the principles of structural plasticity may eventually lead to novel treatment strategies for stimulating functional reorganization after brain damage and neurodegeneration.
Collapse
Affiliation(s)
- Markus Butz
- Simulation Lab Neuroscience - Bernstein Facility for Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Forschungszentrum Jülich, Jülich, Germany
- * E-mail:
| | | |
Collapse
|
46
|
Agca A, Ozgürhan EB, Baz O, Bozkurt E, Ozkaya A, Yaşa D, Demirok A. Laser in situ keratomileusis in adult patients with anisometropic amblyopia. Int J Ophthalmol 2013; 6:362-9. [PMID: 23826534 DOI: 10.3980/j.issn.2222-3959.2013.03.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 05/12/2013] [Indexed: 11/02/2022] Open
Abstract
AIM To evaluate the increase in corrected distance visual acuity (CDVA) after laser in situ keratomileusis (LASIK) in adults with anisometropic amblyopia. METHODS The medical records of consecutive patients diagnosed with anisometropic amblyopia at the time of refractive evaluation who underwent LASIK were retrospectively reviewed. Patients with at least a two-line difference of visual acuity (VA) between the eyes with a spherical refractive error difference of at least 3.00 diopters (D) or an astigmatic difference of at least 2.00D were included. Patients with any other possible reason for amblyopia other than anisometropia or those who had undergone previous amblyopia treatment were excluded. Amblyopic eyes with myopia or myopic astigmatism were considered as group 1, hypermetropia or hypermetropic astigmatism constituted group 2, and mixed astigmatism patients comprised group 3. Uncorrected distance visual acuity (UDVA), subjective manifest refraction, and CDVA were analyzed at 1 week and 1 month, 3, and 6 months. RESULTS The study included 57 eyes of 57 patients. There were 33 eyes in group 1, 12 eyes in group 2, and 12 eyes in group 3. The preoperative mean values for spherical equivalent of subjective manifest refraction (SE) in groups 1, 2, and 3 were (-4.66±1.97)D, (4.40±1.00)D, and (0.15±1.05)D, respectively. Mean CDVA improved 0.1 log units (1 line LogMAR) at 6 months (P<0.05). Sixteen eyes (28%) exhibited an improvement in CDVA in week 1. Fourteen eyes (25%) experienced two or more lines of CDVA improvement at month 6. There were no statistically significant differences among the groups in terms of CDVA (P>0.05). Moreover, age, the amount of preoperative refractive error, and the levels of preoperative corrected and UDVA had no effect on postoperative CDVA improvement (P>0.05). CONCLUSION Correction of refractive errors with LASIK produced significant CDVA improvement in adult patients with anisometropic amblyopia and no previous amblyopia treatment.
Collapse
Affiliation(s)
- Alper Agca
- Beyoglu Eye Research and Training Hospital, Istanbul 34421, Turkey
| | | | | | | | | | | | | |
Collapse
|
47
|
Prentice award lecture 2011: removing the brakes on plasticity in the amblyopic brain. Optom Vis Sci 2012; 89:827-38. [PMID: 22581119 DOI: 10.1097/opx.0b013e318257a187] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Experience-dependent plasticity is closely linked with the development of sensory function. Beyond this sensitive period, developmental plasticity is actively limited; however, new studies provide growing evidence for plasticity in the adult visual system. The amblyopic visual system is an excellent model for examining the "brakes" that limit recovery of function beyond the critical period. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. However, new clinical and experimental studies in both animals and humans provide evidence for neural plasticity beyond the critical period. The results suggest that perceptual learning and video game play may be effective in improving a range of visual performance measures and importantly the improvements may transfer to better visual acuity and stereopsis. These findings, along with the results of new clinical trials, suggest that it might be time to reconsider our notions about neural plasticity in amblyopia.
Collapse
|
48
|
Vuori E, Vanni S, Henriksson L, Tervo TMT, Holopainen JM. Refractive surgery in anisometropic adult patients induce plastic changes in primary visual cortex. Acta Ophthalmol 2012; 90:669-76. [PMID: 21470391 DOI: 10.1111/j.1755-3768.2011.02152.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To prospectively study the effect of refractive surgery in the primary visual cortex of adult anisometropic and isometropic myopic patients. METHODS Two anisometropic and two isometropic myopic patients were examined with multifocal functional magnetic resonance imaging technique (mffMRI) before refractive surgery and at 3, 6, 9 and 12 months postoperatively. Two controls without refractive surgery were also examined with mffMRI in the beginning and in the end of the study. Anisometropic patients had only their more myopic eye operated to correct the anisometropia. The myopic isometropic patients had their both eyes operated. RESULTS Operated anisometropic eyes showed 65% reduced amount of active voxels in foveal data at 12 months postoperatively compared with the preoperative situation. In unoperated anisometropic eyes, the corresponding value was 86% and in myopic patients and controls 31% and 1%, respectively. To confirm this finding, the number of activated voxels representing the innermost ring of the stimulus was also calculated, and an exactly similar phenomenon was encountered in the anisometropic patients. Both anisometropic patients improved the best-spectacle-corrected visual acuity in the operated eye after refractive surgery. CONCLUSION Our results suggest that plastic changes may take place in the primary visual cortex of anisometropic adult patients after refractive surgery.
Collapse
Affiliation(s)
- Elisa Vuori
- Department of Ophthalmology, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
49
|
Abstract
The visual cortex has the capacity for experience-dependent change, or cortical plasticity, that is retained throughout life. Plasticity is invoked for encoding information during perceptual learning, by internally representing the regularities of the visual environment, which is useful for facilitating intermediate-level vision--contour integration and surface segmentation. The same mechanisms have adaptive value for functional recovery after CNS damage, such as that associated with stroke or neurodegenerative disease. A common feature to plasticity in primary visual cortex (V1) is an association field that links contour elements across the visual field. The circuitry underlying the association field includes a plexus of long-range horizontal connections formed by cortical pyramidal cells. These connections undergo rapid and exuberant sprouting and pruning in response to removal of sensory input, which can account for the topographic reorganization following retinal lesions. Similar alterations in cortical circuitry may be involved in perceptual learning, and the changes observed in V1 may be representative of how learned information is encoded throughout the cerebral cortex.
Collapse
|
50
|
Botelho EP, Ceriatte C, Soares JGM, Gattass R, Fiorani M. Quantification of early stages of cortical reorganization of the topographic map of V1 following retinal lesions in monkeys. Cereb Cortex 2012; 24:1-16. [PMID: 23010747 PMCID: PMC3862261 DOI: 10.1093/cercor/bhs208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We quantified the capacity for reorganization of the topographic representation of area V1 in adult monkeys. Bias-free automated mapping methods were used to delineate receptive fields (RFs) of an array of neuronal clusters prior to, and up to 6 h following retinal lesions. Monocular lesions caused a significant reorganization of the topographic map in this area, both inside and outside the cortical lesion projection zone (LPZ). Small flashed stimuli revealed responses up to 0.85 mm inside the boundaries of the LPZ, with RFs representing regions of undamaged retina immediately surrounding the lesion. In contrast, long moving bars that spanned the scotoma resulting from the lesion revealed responsive units up to 1.87 mm inside the LPZ, with RFs representing interpolated responses in this region. This reorganization is present immediately after monocular retinal lesioning. Both stimuli showed a similar and significant (5-fold) increase of the RF scatter in the LPZ, 0.56 mm (median), compared with the undamaged retina, 0.12 mm. Our results reveal an array of preexisting subthreshold functional connections of up to 2 mm in V1, which can be rapidly mobilized independently from the differential qualitative reorganization elicited by each stimulus.
Collapse
Affiliation(s)
- Eliã P Botelho
- Programa de Neurobiologia, Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ 21941-900, Brazil
| | | | | | | | | |
Collapse
|