1
|
Alexander LE, Winkelman D, Stenback KE, Lane M, Campbell KR, Trost E, Flyckt K, Schelling MA, Rizhsky L, Yandeau-Nelson MD, Nikolau BJ. The impact of the GLOSSY2 and GLOSSY2-LIKE BAHD-proteins in affecting the product profile of the maize fatty acid elongase. FRONTIERS IN PLANT SCIENCE 2024; 15:1403779. [PMID: 39055356 PMCID: PMC11269236 DOI: 10.3389/fpls.2024.1403779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
The maize glossy2 and glossy2-like genes are homologs, which encode proteins that belong to the BAHD family of acyltransferases. In planta genetic studies have demonstrated that these genes may be involved in the elongation of very long chain fatty acids (VLCFAs) that are precursors of the cuticular wax fraction of the plant cuticle. VLCFAs are synthesized by a fatty acyl-CoA elongase complex (FAE) that consists of four component enzymes. Previously, we functionally identified the maize FAE component enzymes by their ability to complement haploid Saccharomyces cerevisiae strains that carry lethal deletion alleles for each FAE component enzyme. In this study we used these complemented haploid strains and wild-type diploid strains to evaluate whether the co-expression of either GLOSSY2 or GLOSSY2-LIKE with individual maize FAE component enzymes affects the VLCFA product-profile of the FAE system. Wild-type diploid strains produced VLCFAs of up to 28-carbon chain length. Co-expression of GLOSSY2 or GLOSSY2-LIKE with a combination of maize 3-ketoacyl-CoA synthases stimulated the synthesis of longer VLCFAs, up to 30-carbon chain lengths. However, such results could not be recapitulated when these co-expression experiments were conducted in the yeast haploid mutant strains that lacked individual components of the endogenous FAE system. Specifically, lethal yeast mutant strains that are genetically complemented by the expression of maize FAE-component enzymes produce VLCFAs that range between 20- and 26-carbon chain lengths. However, expressing either GLOSSY2 or GLOSSY2-LIKE in these complemented strains does not enable the synthesis of longer chain VLCFAs. These results indicate that the apparent stimulatory role of GLOSSY2 or GLOSSY2-LIKE to enable the synthesis of longer chain VLCFAs in diploid yeast cells may be associated with mixing plant enzyme components with the endogenous FAE complex.
Collapse
Affiliation(s)
- Liza Esther Alexander
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Dirk Winkelman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kenna E. Stenback
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Madison Lane
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Katelyn R. Campbell
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Elysse Trost
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kayla Flyckt
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Michael A. Schelling
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Ludmila Rizhsky
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Marna D. Yandeau-Nelson
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Maury J, Germann SM, Baallal Jacobsen SA, Jensen NB, Kildegaard KR, Herrgård MJ, Schneider K, Koza A, Forster J, Nielsen J, Borodina I. EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae. PLoS One 2016; 11:e0150394. [PMID: 26934490 PMCID: PMC4775045 DOI: 10.1371/journal.pone.0150394] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/13/2016] [Indexed: 01/08/2023] Open
Abstract
Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred option. However, integration of pathway genes in single or few copies, especially those encoding rate-controlling steps, is often not sufficient to sustain high metabolic fluxes. By exploiting the sequence diversity in the long terminal repeats (LTR) of Ty retrotransposons, we developed a new set of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the β-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP producing clone, with 5.45 g.L-1 of 3HP, produced 11 times more 3HP than the lowest producing clone, which demonstrates the capability of EasyCloneMulti vectors to impact metabolic pathway enzyme activity.
Collapse
Affiliation(s)
- Jérôme Maury
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
- * E-mail:
| | - Susanne M. Germann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | | | - Niels B. Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Kanchana R. Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Markus J. Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Konstantin Schneider
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Anna Koza
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Jens Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
3
|
Görgens JF, Bressler DC, van Rensburg E. EngineeringSaccharomyces cerevisiaefor direct conversion of raw, uncooked or granular starch to ethanol. Crit Rev Biotechnol 2014; 35:369-91. [DOI: 10.3109/07388551.2014.888048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Wittrup KD, Bailey JE, Ratzkin B, Patel A. Propagation of an amplifiable recombinant plasmid in Saccharomyces cerevisiae: flow cytometry studies and segregated modeling. Biotechnol Bioeng 2009; 35:565-77. [PMID: 18592552 DOI: 10.1002/bit.260350604] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Efficient expression of a foreign protein product by the yeast Saccharomyces cerevisiae requires a stable recombinant vector present at a high number of copies per cell. A conditional centromere yeast plasmid was constructed which can be amplified to high copy number by a process of unequal partitioning at cell division, followed by selection for increased copy number. However, in the absence of selection pressure for plasmid amplification, copy number rapidly drops from 25 plasmids/cell to 6 plasmids/cell in less than 10 generations of growth. Copy number subsequently decreases from 6 plasmids/cell to 2 plasmids/cell over a span of 50 generations. A combination of flow cytometric measurement of copy number distributions and segregated mathematical modeling were applied to test the predictions of a conceptual model of conditional centromere plasmid propagation. Measured distributions of plasmid content displayed a significant subpopulation of cells with a copy number of 4-6, even in a population whose mean copy number was 13.5. This type of copy number distribution was reproduced by a mathematical model which assumes that a maximum of 4-6 centromere plasmids per cell can be stably partitioned at cell division. The model also reproduces the observed biphasic kinetics of plasmid number instability. The agreement between simulation and experimental results provides support for the proposed model and demonstrates the utility of the flow cytometry/segregated modeling approach for the study of multicopy recombinant vector propagation.
Collapse
Affiliation(s)
- K D Wittrup
- Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
5
|
Görgens JF, Planas J, van Zyl WH, Knoetze JH, Hahn-Hägerdal B. Comparison of three expression systems for heterologous xylanase production by S. cerevisiae in defined medium. Yeast 2005; 21:1205-17. [PMID: 15515128 DOI: 10.1002/yea.1175] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The influence of the auxotrophic deficiencies of the host strain and expression vector selection on the production of a heterologous protein was investigated. Heterologous xylanase production by two prototrophic S. cerevisiae transformants, containing either a plasmid-based, YEp-type expression system or an integrative, YIp-type expression system, were compared with production by an auxotrophic transformant, containing an identical YEp-type expression system, in batch and continuous cultivation, using a chemically defined medium. Heterologous xylanase production by the auxotrophic strains in defined medium was critically dependent on the availability of amino acids, as extracellular xylanase production increased dramatically when amino acids were over-consumed from the medium to the point of saturating the cell. Saturation with amino acids, indicated by an increased leakage of amino acids from the cell, was thus a prerequisite for high level of heterologous protein production by the auxotrophic strain. Maximal xylanase production levels by the auxotrophic strain corresponded to the levels obtained with a similar prototrophic strain during cultivation in defined medium without amino acids. Superfluous auxotrophic markers thus had a strong deleterious effect on heterologous protein production by recombinant yeasts, and the use of such strains should be limited to initial exploratory investigations. The increased copy number and foreign gene dosage of the YEp-based expression vector, stabilized by the ura3 fur1 autoselection system, significantly improved production levels of heterologous xylanase, compared to the YIp system, which is based on a single integration into the yeast genome. No evidence was found of the possible saturation of the host secretory capacity by multicopy overexpression. Stable production of heterologous xylanase at high levels by the prototrophic YEp-based recombinant strain, compared to the YIp system, was demonstrated.
Collapse
Affiliation(s)
- Johann F Görgens
- Department of Applied Microbiology, Lund University, Box 124, S-221 00 Lund, Sweden
| | | | | | | | | |
Collapse
|
6
|
Ferreira BS, Calado CRC, van Keulen F, Fonseca LP, Cabral JMS, da Fonseca MMR. Recombinant Saccharomyces cerevisiae strain triggers acetate production to fuel biosynthetic pathways. J Biotechnol 2004; 109:159-67. [PMID: 15063624 DOI: 10.1016/j.jbiotec.2003.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2002] [Accepted: 10/14/2003] [Indexed: 10/26/2022]
Abstract
Although the metabolism and physiology of the growth of yeast strains has been extensively studied, many questions remain unanswered when the induced production of a recombinant protein is concerned. This work addresses the production of a Fusarium solani pisi cutinase by a recombinant Saccharomyces cerevisiae strain induced through the use of a galactose promoter. It was observed that whenever the strain needed to activate biosynthetic pathways, either for cutinase synthesis, or for the synthesis of the enzymes required for galactose intake, acetate production occurred. The on-line detection of acetate in the medium might prove useful for the control and the supervision of recombinant protein production processes using yeast. The volumes of acid and base added to control the pH throughout the time course of the cultivations were used to calculate an on-line estimator for acetate concentration.
Collapse
Affiliation(s)
- Bruno S Ferreira
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
7
|
Kang IS, Wang JJ, Shih JCH, Lanier TC. Extracellular production of a functional soy cystatin by Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:5052-6. [PMID: 15291474 DOI: 10.1021/jf049711x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A recombinant Bacillus subtilis producing soy cystatin was developed by subcloning with a soy cystatin gene cloned in Escherichia coli. An active form of cystatin against the cysteine protease from Pacific whiting fillets contaminated with Myxosporidia parasite was constitutively expressed and secreted extracelluarly into the medium. Two gene fragments of signal peptides from kerA and sacB were introduced and compared for secretion efficiency of cystatin. The secretion level of active cystatin improved with the signal peptide of kerA when compared to that of sacB. Inhibitor activity was reduced rapidly after peak expression of the target protein at 36 h of fermentation. The addition of 1% glucose, a suppressor of protease, into the medium sustained the increase of the cystatin activity during fermentation. This study introduced a potential new method for fermentation production of cystatin.
Collapse
Affiliation(s)
- Ik Soon Kang
- Department of Food Science, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
8
|
Ferreira BS, Calado CRC, van Keulen F, Fonseca LP, Cabral JMS, da Fonseca MMR. Towards a cost effective strategy for cutinase production by a recombinant Saccharomyces cerevisiae: strain physiological aspects. Appl Microbiol Biotechnol 2003; 61:69-76. [PMID: 12658517 DOI: 10.1007/s00253-002-1196-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2002] [Revised: 11/04/2002] [Accepted: 11/08/2002] [Indexed: 11/29/2022]
Abstract
Although the physiology and metabolism of the growth of yeast strains has been extensively studied, many questions remain unanswered where the induced production of a recombinant protein is concerned. This work addresses the production of a Fusarium solani pisi cutinase by a recombinant Saccharomyces cerevisiae strain induced through the use of a galactose promoter. The strain is able to metabolise the inducer, galactose, which is a much more expensive carbon source than glucose. Both the transport of galactose into the cell-required for the induction of cutinase production-and galactose metabolism are highly repressed by glucose. Different fermentation strategies were tested and the culture behaviour was interpreted in view of the strain metabolism and physiology. A fed-batch fermentation with a mixed feed of glucose and galactose was carried out, during which simultaneous consumption of both hexoses was achieved, as long as the glucose concentration in the medium did not exceed 0.20 g/l. The costs, in terms of hexoses, incurred with this fermentation strategy were reduced to 23% of those resulting from a fermentation carried out using a more conventional strategy, namely a fed-batch fermentation with a feed of galactose.
Collapse
Affiliation(s)
- B S Ferreira
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. bsf@ ist.utl.pt
| | | | | | | | | | | |
Collapse
|
9
|
Ekino K, Hayashi H, Moriyama M, Matsuda M, Goto M, Yoshino S, Furukawa K. Engineering of polyploid Saccharomyces cerevisiae for secretion of large amounts of fungal glucoamylase. Appl Environ Microbiol 2002; 68:5693-7. [PMID: 12406766 PMCID: PMC129939 DOI: 10.1128/aem.68.11.5693-5697.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We engineered Saccharomyces cerevisiae cells that produce large amounts of fungal glucoamylase (GAI) from Aspergillus awamori var. kawachi. To do this, we used the delta-sequence-mediated integration vector system and the heat-induced endomitotic diploidization method. delta-Sequence-mediated integration is known to occur mainly in a particular chromosome, and the copy number of the integration is variable. In order to construct transformants carrying the GAI gene on several chromosomes, haploid cells carrying the GAI gene on different chromosomes were crossed with each other. The cells were then allowed to form spores, which was followed by dissection. Haploid cells containing GAI genes on multiple chromosomes were obtained in this way. One such haploid cell contained the GAI gene on five chromosomes and exhibited the highest GAI activity (5.93 U/ml), which was about sixfold higher than the activity of a cell containing one gene on a single chromosome. Furthermore, we performed heat-induced endomitotic diploidization for haploid transformants to obtain polyploid mater cells carrying multiple GAI genes. The copy number of the GAI gene increased in proportion to the ploidy level, and larger amounts of GAI were secreted.
Collapse
Affiliation(s)
- Keisuke Ekino
- Department of Applied Microbial Technology, Sojo University, Kumamoto, 860-0082, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Calado CRC, Mannesse M, Egmond M, Cabral JMS, Fonseca LP. Production of wild-type and peptide fusion cutinases by recombinant Saccharomyces cerevisiae MM01 strains. Biotechnol Bioeng 2002; 78:692-8. [PMID: 11992534 DOI: 10.1002/bit.10252] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study focused on the growth of Saccha-romyces cerevisiae MM01 recombinant strains and the respective production of three extracellular heterologous cutinases: a wild-type cutinase and two cutinases in which the primary structure was fused with the peptides (WP)(2) and (WP)(4), respectively. Different cultivation and strategies were tested in a 2-L shake flask and a 5-L bioreactor, and the respective cell growth and cutinase production were analyzed and compared for the three yeast strains. The highest cutinase productions and productivities were obtained in the fed-batch culture, where wild-type cutinase was secreted up to a level of cutinase activity per dry cell weight (specific cell activity) of 4.1 Umg(-1) with activity per protein broth (specific activity) of 266 Umg(-1), whereas cutinase-(WP)(2) was secreted with a specific cell activity of 2.1 Umg(-1) with a specific activity of 200 Umg(-1), and cutinase-(WP)(4) with a specific cell activity of 0.7 Umg(-1) with a specific activity of 15 Umg(-1). The results indicate that the fusion of hydrophobic peptides to cutinase that changes the physical properties of the fused protein limits cutinase secretion and subsequently leads to a lower plasmid stability and lower yeast cell growth. These effects were observed under different cultivation conditions (shake flask and bioreactor) and cultivation strategies (batch culture versus fed-batch culture).
Collapse
Affiliation(s)
- Cecília R C Calado
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
11
|
Cho KM, Yoo YJ, Kang HS. δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(99)00011-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Yebra MJ, Blasco A, Sanz P. Expression and secretion of Bacillus polymyxa neopullulanase in Saccharomyces cerevisiae. FEMS Microbiol Lett 1999; 170:41-9. [PMID: 9919651 DOI: 10.1111/j.1574-6968.1999.tb13353.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have isolated the gene encoding the neopullulanase enzyme from Bacillus polymyxa CECT 155. It consists of an open reading frame of 1545 bp that could code for a protein of 515 amino acids. This open reading frame was expressed in Bacillus subtilis and the corresponding transformants produced extracellular neopullulanase. The neopullulanase gene was also expressed in Saccharomyces cerevisiae placing it under the control of the yeast actin gene (ACT1) promoter. Clones containing the intact neopullulanase gene, including its own bacterial signal sequence, gave rise to the synthesis of active, but intracellular, enzyme by S. cerevisiae transformants. When sequences specifying the signal sequence and leader region of the yeast mating pheromone alpha-factor (MF alpha 1) were fused upstream of the gene encoding the neopullulanase enzyme, the enzyme was secreted by S. cerevisiae. The secreted protein presented the same biochemical properties and the same apparent molecular mass as the Bacillus polymyxa original enzyme. The predicted amino acid sequence of the neopullulanase protein contained sequence motifs conserved among amylolytic enzymes. Northern blot analysis indicated that the transcription of the neopullulanase gene in B. polymyxa was induced by the presence of the substrate, pullulan, in the culture, and was repressed by glucose.
Collapse
Affiliation(s)
- M J Yebra
- Dept. Biotecnología, Consejo Superior de Investigaciones Científicas, Burjassot, Spain.
| | | | | |
Collapse
|
13
|
van Rensburg P, van Zyl WH, Pretorius IS. Over-expression of the Saccharomyces cerevisiae exo-beta-1,3-glucanase gene together with the Bacillus subtilis endo-beta-1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene in yeast. J Biotechnol 1997; 55:43-53. [PMID: 9226961 DOI: 10.1016/s0168-1656(97)00059-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The EXG1 gene encoding the main Saccharomyces cerevisiae exo-beta-1,3-glucanase was cloned and over-expressed in yeast. The Bacillus subtilis endo-1,3-1,4-beta-glucanase gene (beg1) and the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene (end1) were fused to the secretion signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1S) and inserted between the yeast alcohol dehydrogenase II gene promoter (ADH2P) and terminator (ADH2T). Constructs ADH2P-MF alpha 1S-beg1-ADH2T and ADH2P-MF alpha 1S-end 1-ADH2T designated BEG1 and END1, respectively, were expressed separately and jointly with EXG1 in S. cerevisiae. The construction of fur 1 ura3 S. cerevisiae strains allowed for the autoselection of these multicopy URA3-based plasmids in rich medium. Enzyme assays confirmed that co-expression of EXG1, BEG1 and END1 enhanced glucan degradation by S. cerevisiae.
Collapse
Affiliation(s)
- P van Rensburg
- Institute for Wine Biotechnology, University of Stellenbosch, South Africa
| | | | | |
Collapse
|
14
|
Robinson AS, Bockhaus JA, Voegler AC, Wittrup KD. Reduction of BiP levels decreases heterologous protein secretion in Saccharomyces cerevisiae. J Biol Chem 1996; 271:10017-22. [PMID: 8626555 DOI: 10.1074/jbc.271.17.10017] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Increased levels of the endoplasmic reticulum-resident protein folding chaperone BiP would be expected to either increase protein secretory capacity by improved solubilization of folding precursors or decrease secretory capacity by binding and retaining misfolded proteins. To address this question, the relationship between BiP levels and heterologous secretion in yeast was determined. A yeast strain was constructed in which BiP expression is tunable from 5 to 250% of wild-type levels, and this strain was used to explore the effect of varying BiP level on overall secretion of three heterologous proteins: human granulocyte colony-stimulating factor, Schizosaccharomyces pombe acid phosphatase, and bovine pancreatic trypsin inhibitor. For all three proteins examined, reduction in BiP expression below wild-type level diminished overall secretion, whereas 5-fold BiP overexpression from a constitutive glycolytic promoter did not substantially increase or decrease secretion titers. These results are consistent with a positive role for BiP in promoting membrane translocation and solubilization of folding precursors but are inconsistent with a negative role in proofreading and improper retention of heterologous secreted proteins.
Collapse
Affiliation(s)
- A S Robinson
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
15
|
Breeding of a new type of baker's yeast by δ-integration for overproduction of glucoamylase using a homothallic yeast. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0922-338x(96)87584-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
van Rensburg P, van Zyl WH, Pretorius IS. Expression of the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene together with the Erwinia pectate lyase and polygalacturonase genes in Saccharomyces cerevisiae. Curr Genet 1994; 27:17-22. [PMID: 7750141 DOI: 10.1007/bf00326573] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recombinant Saccharomyces cerevisiae strains capable of simultaneous secretion of bacterial glucanase and pectinase enzymes have been developed. The Butyrivibrio fibrrisolvens endo-beta-1,4-glucanase gene (end1), the Erwinia chrysanthemi pectate lyase gene (pelE) and E. carotovora polygalacturonase gene (peh1) were each inserted between a yeast expression-secretion cassette and yeast gene terminator, and cloned into yeast-centromeric shuttle vectors. Transcription initiation signals present in the expression-secretion cassette were derived from the yeast alcohol dehydrogenase gene promoter (ADC1P), whereas the transcription termination signals were derived from the yeast tryptophan synthase gene terminator (TRP5T). Secretion of glucanase and pectinases was directed by the signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1S). These YCplac111-based constructs, designated END1, PEL5, AND PEH1, respectively, were transformed into S. cerevisiae. The END1, PEL5 and PEH1 constructs were co-expressed in laboratory strains of S. cerevisiae as well as in wine and distillers' yeasts. DNA-RNA hybridization analysis showed the presence of END1, PEL5 and PEH1 transcripts. Carboxymethylcellulose and polypectate agarose assays revealed the production of biologically active endo-beta-1,4-glucanase, pectate lyase and polygalacturonase by the S. cerevisiae transformants. Interestingly, although the same expression-secretion cassette was used in all three constructs, time-course assays indicated that the pectinases were secreted before the glucanase. It is tempting to speculate that the bulkiness of the END1-encoded protein and the five alternating repeats of Pro-Asp-Pro-Thr(Gln)-Pro-Val-Asp within the glucanase moiety could be involved in the delayed secretion of the glucanase.
Collapse
Affiliation(s)
- P van Rensburg
- Department of Microbiology, University of Stellenbosch, South Africa
| | | | | |
Collapse
|
17
|
Wittrup KD, Robinson AS, Parekh RN, Forrester KJ. Existence of an optimum expression level for secretion of foreign proteins in yeast. Ann N Y Acad Sci 1994; 745:321-30. [PMID: 7530433 DOI: 10.1111/j.1749-6632.1994.tb44385.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- K D Wittrup
- Department of Chemical Engineering, University of Illinois, Urbana 61801
| | | | | | | |
Collapse
|
18
|
Kirk N, Piper PW. Growth rate influences MF alpha 1 promoter activity in MAT alpha Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1994; 42:340-5. [PMID: 7765775 DOI: 10.1007/bf00902739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The signal sequences of the MF alpha 1 prepro alpha-factor gene are frequently used to direct secretion of heterologous proteins from Saccharomyces cerevisiae. They are often employed together with the MF alpha 1 promoter in secretion vectors, such that this promoter directs the transcription of many heterologous gene cassettes in yeast. Most of the existing literature indicates that the MF alpha 1 promoter is constitutive in MAT alpha cells, although some data suggests that it may be more active in respiratory or late logarithmic fermentative cultures. To identify whether there is a growth rate or medium control over MF alpha 1 promoter activity a strain was constructed with an integrated MF alpha 1 promoter-beta-galactosidase (lacZ) reporter gene fusion. Intracellular beta-galactosidase of this strain during batch culture on glucose, raffinose and acetate showed that MF alpha 1 promoter activity was higher during respiratory growth on acetate as compared to more rapid fermentative growth on glucose or raffinose, a result that might indicate this activity being inversely related to growth rate. Chemostat culture confirmed that growth rate does indeed influence MF alpha 1 promoter activity in glucose-grown cells, the activity of this promoter increasing 2- to 2.5-fold as dilution (growth) rates were reduced from maximal values to 0.2 h-1, but then decreasing with the further decreases in dilution rate needed for fully respiratory growth. Thus a promoter generally thought to be constitutive in MAT alpha cells is nevertheless subject to a complex growth rate control.
Collapse
Affiliation(s)
- N Kirk
- Department of Biochemistry and Molecular Biology, University College London, UK
| | | |
Collapse
|
19
|
Robinson AS, Hines V, Wittrup KD. Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1994; 12:381-4. [PMID: 7764684 DOI: 10.1038/nbt0494-381] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Overexpression of protein disulfide isomerase (PDI) from a single chromosomally integrated copy in Saccharomyces cerevisiae results in ten-fold higher levels of secretion of human platelet derived growth factor B homodimer, and a four-fold increase in secretion of Schizosaccharomyces pombe acid phosphatase. This result provides evidence that inefficient protein folding limits the secretion of some heterologous proteins, and that manipulation of the endoplasmic reticulum lumenal environment can help overcome this limitation.
Collapse
Affiliation(s)
- A S Robinson
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign 61801
| | | | | |
Collapse
|
20
|
Ludwig DL, Ugolini S, Bruschi CV. High-level heterologous gene expression in Saccharomyces cerevisiae from a stable 2 microns plasmid system. Gene 1993; 132:33-40. [PMID: 8406040 DOI: 10.1016/0378-1119(93)90511-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The best candidate for a high-copy-number and mitotic stability expression system in yeast is the endogenous 2 microns plasmid. Nevertheless, derivatives of the 2 microns plasmid typically exhibit lower copy numbers and require selection for adequate maintenance within cells. We report the construction and utilization of an efficient heterologous gene expression system containing a 4.5-kb inducible expression cassette inserted into the 2 microns plasmid and selected in cells utilizing a carrier plasmid which is subsequently lost via FRT/Flp recombination. The non-selectable 2 micron plasmid, containing the cassette, was found to be stably maintained in cells, without selection, at high copy number. The dynamics of resolution and partitioning of this plasmid were analyzed during the course of 50 generations of growth under non-selective conditions. The heterologous lacZ reporter gene coding for beta-galactosidase (beta Gal) is driven by the hybrid, galactose-inducible promoter GAL10::pMF alpha 1. Upon induction, beta Gal was secreted into the periplasm and culture supernatant at levels which could be detected directly from Coomassie blue-stained SDS-PAGE. Furthermore, plasmid-containing cells could be maintained directly on rich YPD medium and identified either by utilizing XGal or by observing inhibition of colony growth on YPGal solid medium. The cassette was designed for direct, high-level, inducible expression of cloned genes downstream from the MF alpha 1 signal sequence, with or without a C-terminal lacZ fusion. This vector represents the first demonstration of a non-selectable, mitotically stable, episomal plasmid system capable of expressing recombinant proteins at high levels.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D L Ludwig
- Microbiology Department, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | |
Collapse
|
21
|
Laing E, Pretorius IS. A note on the primary structure and expression of an Erwinia carotovora polygalacturonase-encoding gene (peh1) in Escherichia coli and Saccharomyces cerevisiae. THE JOURNAL OF APPLIED BACTERIOLOGY 1993; 75:149-58. [PMID: 8407675 DOI: 10.1111/j.1365-2672.1993.tb02760.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A 1209-base pair (bp) DNA fragment containing the endopolygalacturonase-encoding gene (peh1) from Erwinia carotovora subsp. carotovora was amplified by the polymerase chain reaction (PCR) technique and expressed in Escherichia coli. The nucleotide sequence of the PCR product was determined and found to be highly homologous to the primary structures of other polygalacturonase-encoding genes. The peh1 DNA fragment encoding the mature polygalacturonase was inserted between two different yeast expression-secretion cassettes and a yeast gene terminator, generating recombinant yeast-integrating shuttle plasmids pAMS10 and pAMS11. These YIp5-derived plasmids were transformed and stably integrated into the genome of a laboratory strain of Saccharomyces cerevisiae. Transcription initiation signals present in these expression-secretion cassettes were derived from the yeast alcohol dehydrogenase (ADC1P) or mating pheromone alpha-factor (MF alpha 1P) gene promoters. The transcription termination signals were derived from the yeast tryptophan synthase gene terminator (TRP5T). Secretion of polygalacturonase was directed by the signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1S). Northern blot analysis revealed the presence of peh1 mRNA in the yeast transformants and a polypectate agarose test was used to monitor polygalacturonase production.
Collapse
Affiliation(s)
- E Laing
- Department of Microbiology, University of Stellenbosch, South Africa
| | | |
Collapse
|
22
|
Southgate VJ, Steyn AJ, Pretorius IS, Van Vuuren HJ. Expression and secretion of Bacillus amyloliquefaciens alpha-amylase by using the yeast pheromone alpha-factor promoter and leader sequence in Saccharomyces cerevisiae. Appl Environ Microbiol 1993; 59:1253-8. [PMID: 8476297 PMCID: PMC202271 DOI: 10.1128/aem.59.4.1253-1258.1993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Replacement of the regulatory and secretory signals of the alpha-amylase gene (AMY) from Bacillus amylolique-faciens with the complete yeast pheromone alpha-factor prepro region (MF alpha 1p) resulted in increased levels of extracellular alpha-amylase production in Saccharomyces cerevisiae. However, the removal of the (Glu-Ala)2 peptide from the MF alpha 1 spacer region (Lys-Arg-Glu-Ala-Glu-Ala) yielded decreased levels of extracellular alpha-amylase.
Collapse
Affiliation(s)
- V J Southgate
- Department of Microbiology, University of Stellenbosch, South Africa
| | | | | | | |
Collapse
|
23
|
Kolvenbach CG, Elliott S, Sachdev R, Arakawa T, Narhi LO. Characterization of two fluorescent tryptophans in recombinant human granulocyte-colony stimulating factor: comparison of native sequence protein and tryptophan-deficient mutants. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:229-36. [PMID: 7683885 DOI: 10.1007/bf01026045] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to probe the role of the individual tryptophans of granulocyte-colony stimulating factor (G-CSF) in pH and guanidine HCl-induced fluorescence changes, site-directed mutagenesis was used to generate mutants replacing Trp118,Trp58, or both with phenylalanine. Neither Trp to Phe mutation affected the folding or activity of the recombinant G-CSF, and the material expressed in yeast behaved identically to that expressed in Escherichia coli. All of the G-CSF species responded to pH and guanidine HCl in qualitatively the same manner. Trp58 has a fluorescence maximum at 350 nm and is quenched to a greater extent by the addition of guanidine HCl, indicating that it is fully solvent-exposed. Trp118 has a fluorescence maximum at 344 nm, and is less solvent-accessible than Trp58. The analog in which both tryptophans have been replaced with phenylalanine shows only tyrosine fluorescence, with a peak at 304 nm which decreases with increasing pH. The intensity of the tyrosine fluorescence in this analog is much greater than that of the native sequence protein or single tryptophan mutants, indicating that energy transfer is taking place from tyrosine to tryptophan in these molecules. Below neutral pH the tyrosine fluorescence is much greater in the [Phe58]G-CSF than in the [Phe118]G-CSF, indicating that Trp58 might be a more efficient recipient of energy transfer from the tyrosine(s).
Collapse
Affiliation(s)
- C G Kolvenbach
- Amgen, Inc., Amgen Center, Thousand Oaks, California 91320
| | | | | | | | | |
Collapse
|
24
|
Pang SZ, Oberhaus SM, Rasmussen JL, Knipple DC, Bloomquist JR, Dean DH, Bowman KD, Sanford JC. Expression of a gene encoding a scorpion insectotoxin peptide in yeast, bacteria and plants. Gene 1992; 116:165-72. [PMID: 1634114 DOI: 10.1016/0378-1119(92)90512-n] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleotide sequence encoding the scorpion insectotoxin I5A was chemically synthesized and expressed in yeast, bacteria and tobacco. The I5A peptides produced in these organisms were purified using an immunoaffinity chromatography procedure. I5A produced using the bacterial secretion system was efficiently secreted and released into the culture medium. In contrast, only a trace amount of I5A was detected in bacterial cytosols when expressed from a direct expression vector, suggesting that I5A was unstable in bacterial cells. I5A secreted from yeast using an alpha-factor signal sequence was shown to have an N-terminal (Glu-Ala)2 extension, indicating incomplete processing of the secreted peptide by dipeptidyl aminopeptidase A. In tobacco, a nonsecreted form of the protein was produced. No measurable insect toxicity was observed when insect larvae were assayed, regardless of whether I5A was produced in yeast, bacteria or tobacco. The lack of toxicity is almost certainly the result of improper folding due to incorrect disulfide bond formation. The inability to produce a biologically active peptide must be overcome before scorpion toxins might be used for the genetic engineering of plants for insect resistance. The yeast and bacterial expression systems described here may be useful for further studies on the problem of expressing a biologically active peptide.
Collapse
Affiliation(s)
- S Z Pang
- Department of Horticultural Sciences, Cornell University, Geneva 14456
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gill GS, Zaworski PG. Use of yeasts in production and discovery of pharmaceuticals. Ann N Y Acad Sci 1991; 646:172-80. [PMID: 1809187 DOI: 10.1111/j.1749-6632.1991.tb18575.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- G S Gill
- Molecular Biology Research, Upjohn Company, Kalamazoo, Michigan 49007
| | | |
Collapse
|
26
|
Kinsella BT, Hogan S, Larkin A, Cantwell BA. Primary structure and processing of the Candida tsukubaensis alpha-glucosidase. Homology with the rabbit intestinal sucrase-isomaltase complex and human lysosomal alpha-glucosidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:657-64. [PMID: 1761061 DOI: 10.1111/j.1432-1033.1991.tb16420.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleotide sequence of a 4.39-kb DNA fragment encoding the alpha-glucosidase gene of Candida tsukubaensis is reported. The cloned gene contains a major open reading frame (ORF 1) which encodes the alpha-glucosidase as a single precursor polypeptide of 1070 amino acids with a predicted molecular mass of 119 kDa. N-terminal amino acid sequence analysis of the individual subunits of the purified enzyme, expressed in the recombinant host Saccharomyces cerevisiae, confirmed that the alpha-glucosidase precursor is proteolytically processed by removal of an N-terminal signal peptide to yield the two peptide subunits 1 and 2, of molecular masses 63-65 kDa and 50-52 kDa, respectively. Both subunits are secreted by the heterologous host S. cerevisiae in a glycosylated form. Coincident with its efficient expression in the heterologous host, the C. tsukubaensis alpha-glucosidase gene contains many of the canonical features of highly expressed S. cerevisiae genes. There is considerable sequence similarity between C. tsukubaensis alpha-glucosidase, the rabbit sucrase-isomaltase complex (proSI) and human lysosomal acid alpha-glucosidase. The cloned DNA fragment from C. tsukubaensis contains a second open reading frame (ORF 2) which has the capacity to encode a polypeptide of 170 amino acids. The function and identity of the polypeptide encoded by ORF 2 is not known.
Collapse
Affiliation(s)
- B T Kinsella
- Guinness Brewing Worldwide Research Centre, St. James's Gate Brewery, Dublin, Ireland
| | | | | | | |
Collapse
|
27
|
Bitter GA, Chang KK, Egan KM. A multi-component upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter. MOLECULAR & GENERAL GENETICS : MGG 1991; 231:22-32. [PMID: 1753943 DOI: 10.1007/bf00293817] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The majority of the activation potential of the Saccharomyces cerevisiae TDH3 gene promoter is contained within nucleotides -676 to -381 (relative to the translation initiation codon). An upstream activation sequence (UAS) in this region has been characterized by in vitro and in vivo assays and demonstrated to be composed of two small, adjacent DNA sequence elements. The essential determinant of this upstream UAS is a general regulatory factor 1 (GRF1) binding site at nucleotides -513 to -501. A synthetic DNA element comprising this sequence, or an analogue in which two of the degenerate nucleotides of the GRF1 site consensus sequence were altered, activated 5' deleted TDH3 and CYC1 promoters. The second DNA element of the UAS is a 7 bp sequence which is conserved in the promoters of several yeast genes encoding glycolytic enzymes and occurs at positions -486 to -480 of the TDH3 promoter. This DNA sequence represents a novel promoter element: it contains no UAS activity itself, yet potentiates the activity of a GRF1 UAS. The potentiation of the GRF1 UAS by this element occurs when placed upstream from the TATA box of either the TDH3 or CYC1 promoters. The characteristics of this element (termed GPE for GRF1 site potentiator element) indicate that it represents a binding site for a different yeast protein which increases the promoter activation mediated by the GRF1 protein. Site-specific deletion and promoter reconstruction experiments suggest that the entire activation potential of the -676 to -381 region of the TDH3 gene promoter may be accounted for by a combination of the GRF1 site and the GPE.
Collapse
Affiliation(s)
- G A Bitter
- Department of Molecular Genetics, Amgen Inc., Thousand Oaks, CA 91320
| | | | | |
Collapse
|
28
|
Sakai A, Ozawa F, Higashizaki T, Shimizu Y, Hishinuma F. Enhanced Secretion of Human Nerve Growth Factor from Saccharomyces cerevisiae using an Advanced δ–Integration System. ACTA ACUST UNITED AC 1991; 9:1382-5. [PMID: 1369353 DOI: 10.1038/nbt1291-1382] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have designed an advanced delta-integration system (integration of genes into the delta-sequence of yeast retrotransposon Ty) and used it for secretion of human nerve growth factor (hNGF) from Saccharomyces cerevisiae. The expression and secretion of hNGF was directed by the PGK promoter and MF alpha 1 prepro-signal. Using two selectable markers (URA3 and leu2-d), haploid yeast strains were constructed with approximately 20 copies of a delta-integrated hNGF expression cassette on four chromosomes. The strain secreted hNGF at levels 3-4 fold higher than a 2 micron-based plasmid. Northern and Western analyses revealed that the oversecretion was caused by an increased amount of mRNA. We also detected an unusual processing of the MF alpha 1 prepro-hNGF fusion protein that required the pep4 mutation. Application of this system for industrial purposes is discussed.
Collapse
Affiliation(s)
- A Sakai
- Laboratory of Molecular Genetics, Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | | | | | |
Collapse
|
29
|
Kinsella BT, Cantwell BA. Analysis of the expression and secretion of the Candida tsukubaensis alpha-glucosidase gene in the yeast Saccharomyces cerevisiae. Yeast 1991; 7:445-54. [PMID: 1897311 DOI: 10.1002/yea.320070503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The alpha-glucosidase gene of Candida tsukubaensis is contained within a 3.47 kb BamH1-Mlul fragment which, when introduced into Saccharomyces cerevisiae AH22 on a yeast-Escherichia coli shuttle vector, allows the transformants to utilize maltose as sole carbon source. Thus, the cloned gene confers a dominant selectable phenotype on transformed strains of S. cerevisiae which are otherwise unable to grow in nutrient media containing maltose, dextrin or other alpha-1.4-linked alpha-D-glucopyranosides, specifically hydrolysed by the alpha-glucosidase. The cloned enzyme expressed in yeast is secreted into the extracellular medium in a glycosylated form which accounts for up to 60% of the secreted protein and has a molecular size of 70-80 kilodalton (kDa). Deglycosylation of the alpha-glucosidase showed that the enzyme is composed of two distinct polypeptides with subunit molecular weights of 63-65 kDa (peptide 1) and 50-52 kDa (peptide 2). An increase in the level of expression of the alpha-glucosidase by yeast transformants in selective minimal medium was obtained by using a vector with increased copy number containing the leu2-d gene as selectable marker. The alpha-glucosidase gene promoter functions more effectively than the Gall-10 promoter in directing alpha-glucosidase expression in S. cerevisiae. It also directs the expression of high levels of beta-galactosidase activity in yeast when fused to a promoterless E. coli lacZ gene. Expression of the alpha-glucosidase gene under the control of its own promoter is constitutive, orientation dependent and not subject to catabolite repression.
Collapse
Affiliation(s)
- B T Kinsella
- Guinness Brewing Worldwide Research Centre, Dublin, Ireland
| | | |
Collapse
|
30
|
Mason CA. Physiological aspects of growth and recombinant DNA stability in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 1991; 59:269-83. [PMID: 1883230 DOI: 10.1007/bf00583680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite the fact that plasmid stability in the yeast Saccharomyces cerevisiae is influenced by both genetical and physiological parameters most attention has been focused on the former. Physiological factors affecting the stability of plasmids have been poorly characterized despite the need for such information in order to optimize the use of S. cerevisiae as a host for recombinant protein production processes. The physiology of wild type S. cerevisiae differs considerably when grown using different cultivation techniques. A limited amount of phenomenological data has been reported concerning plasmid instability effects under these different conditions and in this article these have been collected together with the intention of providing an overview to instability effects and to try and propose reasons as to how the physiological response to different growth conditions can be manifested as stability/instability effects.
Collapse
Affiliation(s)
- C A Mason
- Swiss Federal Institute for Water Resources and Water Pollution Control (EAWAG), Zürich
| |
Collapse
|
31
|
Hiramatsu R, Yamashita T, Aikawa J, Horinouchi S, Beppu T. The prepro-peptide of Mucor rennin directs the secretion of human growth hormone by Saccharomyces cerevisiae. Appl Environ Microbiol 1990; 56:2125-32. [PMID: 2117879 PMCID: PMC184571 DOI: 10.1128/aem.56.7.2125-2132.1990] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An aspartic proteinase, Mucor pusillus rennin (MPR), of filamentous fungus Mucor pusillus, is efficiently secreted from a transformant of Saccharomyces cerevisiae containing the intact MPR gene. To test the usefulness of the MPR leader peptide in secretion of heterologous proteins from yeast cells, several plasmids encoding the fusion proteins composed of different parts of the NH2-terminal region of prepro-MPR and human growth hormone (hGH) were constructed. The parts of the leader peptide upstream of hGH were the whole prepro-peptide following the NH2-terminal region of mature MPR in JGH1, the intact pre-sequence and a part of the pro-sequence in JGH2, and the putative signal sequences of the NH2-terminal 18 and 22 amino acids in JGH3 and JGH7, respectively. When the hGH genes fused to these leader sequences were expressed in yeast cells under the control of the yeast GAL7 promoter, proteins of various sizes immunoreactive with the anti-hGH antibody were secreted into the medium. Among the plasmids mentioned above, JGH2 directed the greatest secretion of the protein of 23 kilodaltons in size, which contained the expected NH2-terminal amino acid sequence of an additional eight amino acids derived from the pro-peptide of MPR. The addition of the GAL10 terminator downstream of the hGH gene in JGH2 resulted in a greater than three- to fivefold increase in the secretion, whereas the insertion of the GAL4 gene, which is a positive regulator for the GAL system, had no significant effect. The improved yield of the total protein of hGH secreted into the medium reached approximately 10 mg/liter.
Collapse
Affiliation(s)
- R Hiramatsu
- Department of Agricultural Chemistry, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
32
|
Caunt P, Impoolsup A, Greenfield PF. A method for the stabilisation of recombinant plasmids in yeast. J Biotechnol 1990; 14:311-20. [PMID: 1367484 DOI: 10.1016/0168-1656(90)90115-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stability of a yeast plasmid can be improved using deliberately induced cyclic changes in the dissolved oxygen tension (DOT), during continuous culture in a non-selective, undefined medium. The resultant stability of the plasmid under DOT cycled conditions is strongly dependent on the growth rate of the culture, with complete stabilisation at lower growth rates. We propose a mechanism for the stabilisation and suggest that the method can be applied to other recombinant yeast strains.
Collapse
Affiliation(s)
- P Caunt
- Centre for Molecular Biology and Biotechnology, University of Queensland, St. Lucia, Australia
| | | | | |
Collapse
|
33
|
Sakai A, Shimizu Y, Hishinuma F. Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a delta sequence of yeast retrotransposon Ty. Appl Microbiol Biotechnol 1990; 33:302-6. [PMID: 1369269 DOI: 10.1007/bf00164526] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Distribution of a delta (delta) sequence of the Ty element on a chromosome of the yeast Saccharomyces cerevisiae was analysed by pulsed-field gel electrophoresis. More than 100 copies of the delta sequence were nonrandomly distributed on the chromosome. Using the delta sequence as a recombination site, mouse alpha-amylase and human beta-endorphin genes were introduced into the chromosomal DNA. The integration occurred on a particular chromosome in each case and the copy number was estimated as three to five. It was also found that single- or multi-copy integration occurred at a single or multiple sites on the particular chromosome. The integrants secreted alpha-amylase and beta-endorphin by three-to fivefold compared with single-copy integrants. This type of integration was mitotically stable over a period of 50 generations under non-selective conditions.
Collapse
Affiliation(s)
- A Sakai
- Laboratory of Molecular Genetics, Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | |
Collapse
|
34
|
Elliott S, Fagin KD, Narhi LO, Miller JA, Jones M, Koski R, Peters M, Hsieh P, Sachdev R, Rosenfeld RD. Yeast-derived recombinant human insulin-like growth factor I: production, purification, and structural characterization. JOURNAL OF PROTEIN CHEMISTRY 1990; 9:95-104. [PMID: 2187475 DOI: 10.1007/bf01024990] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recombinant human insulin-like growth factor I (IGF-I) is efficiently expressed and secreted from Saccharomyces cerevisiae using a yeast alpha-factor leader to direct secretion. However, approximately 10-20% of the IGF-I was in a monomeric form, the remaining materials being disulfide-linked aggregates. When the purified material was subjected to reverse-phase high-performance liquid chromatography (rp-HPLC), it gave two doublet peaks, I and II. Upon reduction, doublet peaks I and II converged to one doublet peak. This suggests that peaks I and II result from different disulfide structures, and the doublet feature of each peak results from other causes. Different disulfide structures between peaks I and II were also suggested from the near UV circular dichroism of these proteins. Only the peak II was biologically active, indicating that peak II has the correct disulfide structure. Concanavalin A affinity chromatography of the purified peak II doublet showed binding of the subpeak with an earlier rp-HPLC retention time, indicating that it was glycosylated. Sequence analysis of tryptic peptides suggested that Thr29 was the site of glycosylation. Site-directed mutagenesis was used to convert Thr29 to Asn29. This substitution reduced, but did not eliminate IGF-I glycosylation, suggesting additional glycosylation sites. The site of carbohydrate addition was consistent with the model that O-glycosylations occur on hydroxyl amino acids near proline residues in beta-turns.
Collapse
Affiliation(s)
- S Elliott
- Amgen Inc., Thousand Oaks, California 91320
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
A method for introducing heterologous DNA into Saccharomyces cerevisiae rapidly and efficiently by electroporation was developed. Transformant colonies appeared somewhat sooner than by the LiCl or spheroplast transformation method, and the time spent in manipulation was much less than for these two methods. The pores in the cell membrane formed by the high voltage of electroporation were resealed within 6 to 7 min after electroporation. At a capacitance of 25 microF, the optimum voltage was 2.0 to 2.25 kV/cm. Log-phase cells concentrated to 10 to 20 units at an optical density of 600 nm in 200 microliters of fresh rich medium and electroporated at 2.25 kV/cm in the presence of 0.1 microgram of supercoiled plasmid DNA will yield 1,000 to 4,500 colonies per microgram of DNA.
Collapse
Affiliation(s)
- E Delorme
- Amgen Inc., Thousand Oaks, California 91320
| |
Collapse
|
36
|
Elliott S, Giffin J, Suggs S, Lau EP, Banks AR. Secretion of glycosylated human erythropoietin from yeast directed by the alpha-factor leader region. Gene 1989; 79:167-80. [PMID: 2673934 DOI: 10.1016/0378-1119(89)90102-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The pre-pro alpha-factor leader region of the yeast MF alpha 1 gene was used to direct the secretion of the human glycoprotein, erythropoietin (EPO), into the culture medium. An examination of the role of expression level on secretion of biologically active EPO indicated that there are several rate-limiting steps. These include processing of the alpha-factor-EPO precursor protein by the KEX2-encoded endoproteinase and transport of the protein through the secretory pathway. The rate-limiting steps for transport were early in the secretory pathway, probably from the endoplasmic reticulum to the Golgi apparatus.
Collapse
|
37
|
Bitter GA, Egan KM. Expression of interferon-gamma from hybrid yeast GPD promoters containing upstream regulatory sequences from the GAL1-GAL10 intergenic region. Gene X 1988; 69:193-207. [PMID: 2853097 DOI: 10.1016/0378-1119(88)90430-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The expression of human immune interferon (IFN-gamma) is toxic to yeast, resulting in low plasmid stability and copy number. The Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene (GPD) promoter [Bitter and Egan, Gene 32 (1984) 263-274] has been modified by introduction of upstream regulatory sequences from the yeast GAL1-GAL10 intergenic region [UASG; Guarente et al., Proc. Natl. Acad. Sci. USA 79 (1982) 7410-7414] and utilized to express IFN-gamma. In contrast to the native GPD promoter, the GPD(G) hybrid promoters are regulated by the carbon source. With glucose as the carbon source, a level of expression is observed which is much lower than that obtained with the native GPD promoter. Expression of the hybrid promoters is induced approx. 150- to 200-fold in shaker flask cultures by growth in galactose and similar levels of expression are observed after growth in lactate plus galactose. However, full galactose induction is not observed in the presence of glucose.? Utilization of these regulated promoters has allowed maintenance of plasmids at high copy number with glucose as the carbon source and, after induction with galactose, production of IFN-gamma mRNA at levels more than ten times higher than the native yeast PGK gene transcript. In contrast, the native GPD promoter directs comparable levels of expression when grown in either glucose or galactose resulting in low plasmid copy number and a correspondingly lower IFN-gamma transcript abundance. It is demonstrated that nucleotide sequences more than 240 bp upstream from the TATA box are required for optimal activity of the native GPD promoter.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
38
|
Abstract
In mammalian cells, the glucocorticoid receptor binds specifically to glucocorticoid response element (GRE) DNA sequences and enhances transcription from linked promoters. It is shown here that derivatives of the glucocorticoid receptor also enhance transcription when expressed in yeast. Receptor-mediated enhancement in yeast was observed in fusions of GRE sequences to the yeast cytochrome c1 (CYC1) promoter; the CYC1 upstream activator sequences were not essential, since enhancement was observed in fusions of GREs to mutant CYC1 promoters retaining only the TATA region and transcription startpoints. It is concluded that the receptor operates by a common, highly conserved mechanism in yeast and mammalian cells.
Collapse
Affiliation(s)
- M Schena
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | |
Collapse
|
39
|
|
40
|
Bitter GA, Egan KM, Burnette WN, Samal B, Fieschko JC, Peterson DL, Downing MR, Wypych J, Langley KE. Hepatitis B vaccine produced in yeast. J Med Virol 1988; 25:123-40. [PMID: 3292698 DOI: 10.1002/jmv.1890250202] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A gene encoding the 226 amino acid hepatitis B surface antigen (HBsAg), subtype adw, was cloned into a generalized vector for the expression of heterologous genes in Saccharomyces cerevisiae. The 5' end of the genomic HBsAg gene was replaced with a chemically synthesized DNA segment that conserved the amino acid sequence of the protein but utilized DNA sequences that optimize translation initiation in yeast. High-cell-density fermentations of laboratory strains of Saccharomyces cerevisiae have been developed in which HBsAg production increases linearly with respect to cell mass. The HBsAg is present as a lipoprotein particle in cell lysates and has been purified to homogeneity. The evidence presented indicates that the HBsAg particles may be formed during lysis of the yeast cells. The purified HBsAg particles have a morphology similar to that of the 22 nm particles present in the serum of human chronic carriers of hepatitis B. The reactivity of the yeast-derived HBsAg particles with a series of monoclonal antibodies is essentially identical to that of human plasma HBsAg. By this analysis, therefore, the structure of the HBsAg protein is similar in yeast and in human particles. The purified yeast HBsAg particles were formulated with alum adjuvant and subsequently were shown to confer immunity in chimpanzees to challenge with two heterologous serotypes (adr, ayw) of hepatitis B virus.
Collapse
|