1
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
2
|
Abstract
Cysteine cathepsins are proteases critical in physiopathological processes and show potential as targets or biomarkers for diseases and medical conditions. The 11 members of the cathepsin family are redundant in some cases but remarkably independent of others, demanding the development of both pan-cathepsin targeting tools as well as probes that are selective for specific cathepsins with little off-target activity. This review addresses the diverse design strategies that have been employed to accomplish this tailored selectivity among cysteine cathepsin targets and the imaging modalities incorporated. The power of these diverse tools is contextualized by briefly highlighting the nature of a few prominent cysteine cathepsins, their involvement in select diseases, and the application of cathepsin imaging probes in research spanning basic biochemical studies to clinical applications.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.
| |
Collapse
|
3
|
Two SPRi biosensors for the determination of cathepsin S in blood plasma. Talanta 2021; 225:121900. [PMID: 33592693 DOI: 10.1016/j.talanta.2020.121900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022]
Abstract
Cathepsin S is an emerging marker for ovarian cancer. Two 'analytically specific' SPRi biosensors for the determination of Cath S have been developed. The reception part of one of the biosensors consists of the rat monoclonal antibody specific for cathepsin S attached to the gold surface via covalent bonds with cysteamine linker, while the second biosensor consists of the inhibitor LY3000328 attached via hydrophobic interaction with the 1-octadecanothiol linker. Under optimized conditions, in terms of pH and receptor concentration, both biosensors have linear response ranges between LOQ (0.14 ng mL-1) and 2.5 ng mL-1, which is suitable for the determination of Cath S in blood plasma samples of ovarian cancer patients and healthy individuals, after corresponding dilution with 0.15 M PBS buffer. Precision and recoveries are quite acceptable: below 7% and 98-101% respectively for the biosensor with antibody, and below 12% and 101-103% for the biosensor with inhibitor. The biosensors were validated by the determination of Cath S in series of plasma from ovarian cancer patients and healthy volunteers using both biosensors and ELISA, giving Pearson coefficients close to 1. Plasma Cath S concentration can be used as an ovarian cancer marker, in view of the highly elevated concentrations detected.
Collapse
|
4
|
Michiels TJM, Tilstra W, Hamzink MRJ, de Ridder JW, Danial M, Meiring HD, Kersten GFA, Jiskoot W, Metz B. Degradomics-Based Analysis of Tetanus Toxoids as a Quality Control Assay. Vaccines (Basel) 2020; 8:vaccines8040712. [PMID: 33271767 PMCID: PMC7712181 DOI: 10.3390/vaccines8040712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023] Open
Abstract
Currently, batch release of toxoid vaccines, such as diphtheria and tetanus toxoid, requires animal tests to confirm safety and immunogenicity. Efforts are being made to replace these tests with in vitro assays in a consistency approach. Limitations of current in vitro assays include the need for reference antigens and most are only applicable to drug substance, not to the aluminum adjuvant-containing and often multivalent drug product. To overcome these issues, a new assay was developed based on mimicking the proteolytic degradation processes in antigen-presenting cells with recombinant cathepsin S, followed by absolute quantification of the formed peptides by liquid chromatography-mass spectrometry. Temperature-exposed tetanus toxoids from several manufacturers were used as aberrant samples and could easily be distinguished from the untreated controls by using the newly developed degradomics assay. Consistency of various batches of a single manufacturer could also be determined. Moreover, the assay was shown to be applicable to Al(OH)3 and AlPO4-adsorbed tetanus toxoids. Overall, the assay shows potential for use in both stability studies and as an alternative for in vivo potency studies by showing batch-to-batch consistency of bulk toxoids as well as for aluminum-containing vaccines.
Collapse
Affiliation(s)
- Thomas J. M. Michiels
- Leiden Academic Centre for Drug Research (LACDR), Division of BioTherapeutics, Leiden University, 2333 CC Leiden, The Netherlands;
- Intravacc, Institute for Translational Vaccinology, 3721 MA Bilthoven, The Netherlands; (W.T.); (M.R.J.H.); (J.W.d.R.); (M.D.); (H.D.M.); (B.M.)
- Correspondence: (T.J.M.M.); (G.F.A.K.)
| | - Wichard Tilstra
- Intravacc, Institute for Translational Vaccinology, 3721 MA Bilthoven, The Netherlands; (W.T.); (M.R.J.H.); (J.W.d.R.); (M.D.); (H.D.M.); (B.M.)
| | - Martin R. J. Hamzink
- Intravacc, Institute for Translational Vaccinology, 3721 MA Bilthoven, The Netherlands; (W.T.); (M.R.J.H.); (J.W.d.R.); (M.D.); (H.D.M.); (B.M.)
| | - Justin W. de Ridder
- Intravacc, Institute for Translational Vaccinology, 3721 MA Bilthoven, The Netherlands; (W.T.); (M.R.J.H.); (J.W.d.R.); (M.D.); (H.D.M.); (B.M.)
| | - Maarten Danial
- Intravacc, Institute for Translational Vaccinology, 3721 MA Bilthoven, The Netherlands; (W.T.); (M.R.J.H.); (J.W.d.R.); (M.D.); (H.D.M.); (B.M.)
| | - Hugo D. Meiring
- Intravacc, Institute for Translational Vaccinology, 3721 MA Bilthoven, The Netherlands; (W.T.); (M.R.J.H.); (J.W.d.R.); (M.D.); (H.D.M.); (B.M.)
| | - Gideon F. A. Kersten
- Leiden Academic Centre for Drug Research (LACDR), Division of BioTherapeutics, Leiden University, 2333 CC Leiden, The Netherlands;
- Intravacc, Institute for Translational Vaccinology, 3721 MA Bilthoven, The Netherlands; (W.T.); (M.R.J.H.); (J.W.d.R.); (M.D.); (H.D.M.); (B.M.)
- Correspondence: (T.J.M.M.); (G.F.A.K.)
| | - Wim Jiskoot
- Leiden Academic Centre for Drug Research (LACDR), Division of BioTherapeutics, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Bernard Metz
- Intravacc, Institute for Translational Vaccinology, 3721 MA Bilthoven, The Netherlands; (W.T.); (M.R.J.H.); (J.W.d.R.); (M.D.); (H.D.M.); (B.M.)
| |
Collapse
|
5
|
Heinz A. Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol Biol 2020; 55:252-273. [PMID: 32530323 DOI: 10.1080/10409238.2020.1768208] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Elastin is an important protein of the extracellular matrix of higher vertebrates, which confers elasticity and resilience to various tissues and organs including lungs, skin, large blood vessels and ligaments. Owing to its unique structure, extensive cross-linking and durability, it does not undergo significant turnover in healthy tissues and has a half-life of more than 70 years. Elastin is not only a structural protein, influencing the architecture and biomechanical properties of the extracellular matrix, but also plays a vital role in various physiological processes. Bioactive elastin peptides termed elastokines - in particular those of the GXXPG motif - occur as a result of proteolytic degradation of elastin and its non-cross-linked precursor tropoelastin and display several biological activities. For instance, they promote angiogenesis or stimulate cell adhesion, chemotaxis, proliferation, protease activation and apoptosis. Elastin-degrading enzymes such as matrix metalloproteinases, serine proteases and cysteine proteases slowly damage elastin over the lifetime of an organism. The destruction of elastin and the biological processes triggered by elastokines favor the development and progression of various pathological conditions including emphysema, chronic obstructive pulmonary disease, atherosclerosis, metabolic syndrome and cancer. This review gives an overview on types of human elastases and their action on human elastin, including the formation, structure and biological activities of elastokines and their role in common biological processes and severe pathological conditions.
Collapse
Affiliation(s)
- Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Cheloha RW, Li Z, Bousbaine D, Woodham AW, Perrin P, Volarić J, Ploegh HL. Internalization of Influenza Virus and Cell Surface Proteins Monitored by Site-Specific Conjugation of Protease-Sensitive Probes. ACS Chem Biol 2019; 14:1836-1844. [PMID: 31348637 DOI: 10.1021/acschembio.9b00493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commonly used methods to monitor internalization of cell surface structures involve application of fluorescently or otherwise labeled antibodies against the target of interest. Genetic modification of the protein of interest, for example through creation of fusions with fluorescent or enzymatically active protein domains, is another approach to follow trafficking behavior. The former approach requires indirect methods, such as multiple rounds of cell staining, to distinguish between a target that remains surface-disposed and an internalized and/or recycled species. The latter approach necessitates the creation of fusions whose behavior may not accurately reflect that of their unmodified counterparts. Here, we report a method for the characterization of protein internalization in real time through sortase-mediated, site-specific labeling of single-domain antibodies or viral proteins with a newly developed, cathepsin-sensitive quenched-fluorophore probe. Quenched probes of this type have been used to measure enzyme activity in complex environments and for different cell types, but not as a sensor of protein movement into living cells. This approach allows a quantitative assessment of the movement of proteins into protease-containing endosomes in real time in living cells. We demonstrate considerable variation in the rate of endosomal delivery for different cell surface receptors. We were also able to characterize the kinetics of influenza virus delivery to cathepsin-positive compartments, showing highly coordinated arrival in endosomal compartments. This approach should be useful for identifying proteins expressed on cells of interest for targeted endosomal delivery of payloads, such as antibody-drug conjugates or antigens that require processing.
Collapse
Affiliation(s)
- Ross W. Cheloha
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Zeyang Li
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Djenet Bousbaine
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Andrew W. Woodham
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Priscillia Perrin
- Massachusetts Institute of Technology, 455 Main St, Cambridge, Massachusetts 02142, United States
| | - Jana Volarić
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Hidde L. Ploegh
- Boston Children’s Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Fan W, Zhang W, Jia Y, Brusnahan SK, Garrison JC. Investigation into the Biological Impact of Block Size on Cathepsin S-Degradable HPMA Copolymers. Mol Pharm 2017; 14:1405-1417. [PMID: 28263073 PMCID: PMC5507698 DOI: 10.1021/acs.molpharmaceut.6b01038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymers have been studied as an efficient carrier for drug delivery and tumor imaging. However, as with many macromolecular platforms, the substantial accumulation of HPMA copolymer by the mononuclear phagocyte system (MPS)-associated tissues, such as the blood, liver, and spleen, has inhibited its clinical translation. Our laboratory is pursuing approaches to improve the diagnostic and radiotherapeutic effectiveness of HPMA copolymers by reducing the nontarget accumulation. Specifically, we have been investigating the use of a cathepsin S (Cat S)-cleavable peptidic linkers to degrade multiblock HPMA copolymers to increase MPS-associated tissue clearance. In this study, we further our investigation into this area by exploring the impact of copolymer block size on the biological performance of Cat S-degradable HPMA copolymers. Using a variety of in vitro and in vivo techniques, including dual labeling of the copolymer and peptide components, we investigated the constructs using HPAC pancreatic ductal adenocarcinoma models. The smaller copolymer block size (S-CMP) demonstrated significantly faster Cat S cleavage kinetics relative to the larger system (L-CMP). Confocal microscopy demonstrated that both constructs could be much more efficiently internalized by human monocyte-differentiated macrophage (hMDM) compared to HPAC cells. In the biodistribution studies, the multiblock copolymers with a smaller block size exhibited faster clearance and lower nontarget retention while still achieving good tumor targeting and retention. Based on the radioisotopic ratios, fragmentation and clearance of the copolymer constructs were higher in the liver compared to the spleen and tumor. Overall, these results indicate that block size plays an important role in the biological performance of Cat S-degradable polymeric constructs.
Collapse
Affiliation(s)
- Wei Fan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 985830, United States
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska 985830, United States
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 985830, United States
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska 985830, United States
| | - Yinnong Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 985830, United States
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska 985830, United States
| | - Susan K. Brusnahan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 985830, United States
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska 985830, United States
| | - Jered C. Garrison
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 985830, United States
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska 985830, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 985830, United States
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 985830, United States
| |
Collapse
|
8
|
Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep 2016; 6:29256. [PMID: 27387133 PMCID: PMC4937378 DOI: 10.1038/srep29256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/14/2016] [Indexed: 01/10/2023] Open
Abstract
EGF-mediated EGFR endocytosis plays a crucial role in the attenuation of EGFR activation by sorting from early endosomes to late endosomes and transporting them into lysosomes for the final proteolytic degradation. We previously observed that cathepsin S (CTSS) inhibition induces tumour cell autophagy through the EGFR-mediated signalling pathway. In this study, we further clarified the relationship between CTSS activities and EGFR signalling regulation. Our results revealed that CTSS can regulate EGFR signalling by facilitating EGF-mediated EGFR degradation. CTSS inhibition delayed the EGFR degradation process and caused EGFR accumulation in the late endosomes at the perinuclear region, which provides spatial compartments for prolonged EGFR and sustained downstream signal transducer and activator of transcription 3 and AKT signalling. Notably, cellular apoptosis was markedly enhanced by combining treatment with the EGFR inhibitor Iressa and CTSS inhibitor 6r. The data not only reveal a biological role of CTSS in EGFR signalling regulation but also evidence a rationale for its clinical evaluation in the combination of CTSS and EGFR tyrosine kinase inhibitors.
Collapse
|
9
|
Cytokine and Growth Factor Activation In Vivo and In Vitro after Spinal Cord Injury. Mediators Inflamm 2016; 2016:9476020. [PMID: 27418745 PMCID: PMC4935915 DOI: 10.1155/2016/9476020] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury results in a life-disrupting series of deleterious interconnected mechanisms encompassed by the primary and secondary injury. These events are mediated by the upregulation of genes with roles in inflammation, transcription, and signaling proteins. In particular, cytokines and growth factors are signaling proteins that have important roles in the pathophysiology of SCI. The balance between the proinflammatory and anti-inflammatory effects of these molecules plays a critical role in the progression and outcome of the lesion. The excessive inflammatory Th1 and Th17 phenotypes observed after SCI tilt the scale towards a proinflammatory environment, which exacerbates the deleterious mechanisms present after the injury. These mechanisms include the disruption of the spinal cord blood barrier, edema and ion imbalance, in particular intracellular calcium and sodium concentrations, glutamate excitotoxicity, free radicals, and the inflammatory response contributing to the neurodegenerative process which is characterized by demyelination and apoptosis of neuronal tissue.
Collapse
|
10
|
Deffit SN, Blum JS. Macronutrient deprivation modulates antigen trafficking and immune recognition through HSC70 accessibility. THE JOURNAL OF IMMUNOLOGY 2015; 194:1446-53. [PMID: 25589076 DOI: 10.4049/jimmunol.1402472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B lymphocytes exploit macroautophagy to capture cytoplasmic and nuclear proteins within autophagosomes. Fusion of autophagosomes with lysosomes and endosomes facilitates content proteolysis, with the resulting peptides selectively binding MHC class II (MHC II) molecules, which are displayed for recognition by T lymphocytes. Nutrient deprivation or stress amplified this pathway, favoring increased MHC II presentation of cytoplasmic Ags targeted to autophagosomes. By contrast, this stress diminished MHC II presentation of membrane Ags including the BCR and cytoplasmic proteins that use the chaperone-mediated autophagy pathway. Whereas intracellular protease activity increased with nutrient stress, endocytic trafficking and proteolytic turnover of the BCR was impaired. Addition of macronutrients such as high molecular mass proteins restored endocytosis and Ag presentation, evidence of tightly regulated membrane trafficking dependent on macronutrient status. Altering cellular levels of the cytosolic chaperone HSC70 was sufficient to overcome the inhibitory effects of nutritional stress on BCR trafficking and Ag presentation. Together, these results reveal a key role for macronutrient sensing in regulating immune recognition and the importance of HSC70 in modulating membrane trafficking pathways during cellular stress.
Collapse
Affiliation(s)
- Sarah N Deffit
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
11
|
Pišlar A, Kos J. Cysteine cathepsins in neurological disorders. Mol Neurobiol 2013; 49:1017-30. [PMID: 24234234 DOI: 10.1007/s12035-013-8576-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 10/21/2013] [Indexed: 12/13/2022]
Abstract
Increased proteolytic activity is a hallmark of several pathological processes, including neurodegeneration. Increased expression and activity of cathepsins, lysosomal cysteine proteases, during degeneration of the central nervous system is frequently reported. Recent studies reveal that a disturbed balance of their enzymatic activities is the first insult in brain aging and age-related diseases. Leakage of cathepsins from lysosomes, due to their membrane permeability, and activation of pro-apoptotic factors additionally contribute to neurodegeneration. Furthermore, in inflammation-induced neurodegeneration the cathepsins expressed in activated microglia play a pivotal role in neuronal death. The proteolytic activity of cysteine cathepsins is controlled by endogenous protein inhibitors-the cystatins-which evidently fail to perform their function in neurodegenerative processes. Exogenous synthetic inhibitors, which may augment their inhibitory potential, are considered as possible therapeutic tools for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia,
| | | |
Collapse
|
12
|
Dana D, Davalos AR, De S, Rathod P, Gamage RK, Huestis J, Afzal N, Zavlanov Y, Paroly SS, Rotenberg SA, Subramaniam G, Mark KJ, Chang EJ, Kumar S. Development of cell-active non-peptidyl inhibitors of cysteine cathepsins. Bioorg Med Chem 2013; 21:2975-87. [PMID: 23623677 DOI: 10.1016/j.bmc.2013.03.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/15/2013] [Accepted: 03/23/2013] [Indexed: 11/26/2022]
Abstract
Cysteine cathepsins are an important class of enzymes that coordinate a variety of important cellular processes, and are implicated in various types of human diseases. However, small molecule inhibitors that are cell-permeable and non-peptidyl in nature are scarcely available. Herein the synthesis and development of sulfonyloxiranes as covalent inhibitors of cysteine cathepsins are reported. From a library of compounds, compound 5 is identified as a selective inhibitor of cysteine cathepsins. Live cell imaging and immunocytochemistry of metastatic human breast carcinoma MDA-MB-231 cells document the efficacy of compound 5 in inhibiting cysteine cathepsin activity in living cells. A cell-motility assay demonstrates that compound 5 is effective in mitigating the cell-migratory potential of highly metastatic breast carcinoma MDA-MB-231 cells.
Collapse
Affiliation(s)
- Dibyendu Dana
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of The City University of New York, Queens, NY 11367-1597, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Geurink PP, van der Linden WA, Mirabella AC, Gallastegui N, de Bruin G, Blom AEM, Voges MJ, Mock ED, Florea BI, van der Marel GA, Driessen C, van der Stelt M, Groll M, Overkleeft HS, Kisselev AF. Incorporation of non-natural amino acids improves cell permeability and potency of specific inhibitors of proteasome trypsin-like sites. J Med Chem 2013; 56:1262-75. [PMID: 23320547 DOI: 10.1021/jm3016987] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteasomes degrade the majority of proteins in mammalian cells by a concerted action of three distinct pairs of active sites. The chymotrypsin-like sites are targets of antimyeloma agents bortezomib and carfilzomib. Inhibitors of the trypsin-like site sensitize multiple myeloma cells to these agents. Here we describe systematic effort to develop inhibitors with improved potency and cell permeability, yielding azido-Phe-Leu-Leu-4-aminomethyl-Phe-methyl vinyl sulfone (4a, LU-102), and a fluorescent activity-based probe for this site. X-ray structures of 4a and related inhibitors complexed with yeast proteasomes revealed the structural basis for specificity. Nontoxic to myeloma cells when used as a single agent, 4a sensitized them to bortezomib and carfilzomib. This sensitizing effect was much stronger than the synergistic effects of histone acetylase inhibitors or additive effects of doxorubicin and dexamethasone, raising the possibility that combinations of inhibitors of the trypsin-like site with bortezomib or carfilzomib would have stronger antineoplastic activity than combinations currently used clinically.
Collapse
Affiliation(s)
- Paul P Geurink
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mirabella AC, Pletnev AA, Downey SL, Florea BI, Shabaneh TB, Britton M, Verdoes M, Filippov DV, Overkleeft HS, Kisselev AF. Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib. CHEMISTRY & BIOLOGY 2011; 18:608-18. [PMID: 21609842 PMCID: PMC3134264 DOI: 10.1016/j.chembiol.2011.02.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/15/2011] [Accepted: 02/22/2011] [Indexed: 01/04/2023]
Abstract
Proteasomes degrade the majority of proteins in mammalian cells, are involved in the regulation of multiple physiological functions, and are established targets of anticancer drugs. The proteasome has three types of active sites. Chymotrypsin-like sites are the most important for protein breakdown and have long been considered the only suitable targets for antineoplastic drugs; however, our recent work demonstrated that inhibitors of caspase-like sites sensitize malignant cells to inhibitors of the chymotrypsin-like sites. Here, we describe the development of specific cell-permeable inhibitors and an activity-based probe of the trypsin-like sites. These compounds selectively sensitize multiple myeloma cells to inhibitors of the chymotrypsin-like sites, including antimyeloma agents bortezomib and carfilzomib. Thus, trypsin-like sites are cotargets for anticancers drugs. Together with inhibitors of chymotrypsin- and caspase-like sites developed earlier, we provide the scientific community with a complete set of tools to separately modulate proteasome active sites in living cells.
Collapse
Affiliation(s)
- Anne C. Mirabella
- Department of Pharmacology and Toxicology, Dartmouth College, Hanover NH USA
- Norris Cotton Cancer Center, Dartmouth Medical School, Dartmouth College, Hanover NH USA
- Department of Biology & Biochemistry, University of Bath, U.K
| | - Alexandre A. Pletnev
- Norris Cotton Cancer Center, Dartmouth Medical School, Dartmouth College, Hanover NH USA
- Department of Chemistry, Dartmouth College, Hanover NH USA
| | - Sondra L. Downey
- Department of Pharmacology and Toxicology, Dartmouth College, Hanover NH USA
- Norris Cotton Cancer Center, Dartmouth Medical School, Dartmouth College, Hanover NH USA
| | - Bogdan I. Florea
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden, the Netherlands
| | | | - Matthew Britton
- Department of Pharmacology and Toxicology, Dartmouth College, Hanover NH USA
- Norris Cotton Cancer Center, Dartmouth Medical School, Dartmouth College, Hanover NH USA
- Department of Biology & Biochemistry, University of Bath, U.K
| | - Martijn Verdoes
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden, the Netherlands
| | - Dmitri V. Filippov
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden, the Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden, the Netherlands
| | - Alexei F. Kisselev
- Department of Pharmacology and Toxicology, Dartmouth College, Hanover NH USA
- Norris Cotton Cancer Center, Dartmouth Medical School, Dartmouth College, Hanover NH USA
| |
Collapse
|
15
|
Kim NY, Ahn SJ, Lee AR, Seo JS, Kim MS, Kim JK, Chung JK, Lee HH. Cloning, expression analysis and enzymatic characterization of cathepsin S from olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2010; 157:238-47. [DOI: 10.1016/j.cbpb.2010.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
|
16
|
Screen M, Britton M, Downey SL, Verdoes M, Voges MJ, Blom AEM, Geurink PP, Risseeuw MDP, Florea BI, van der Linden WA, Pletnev AA, Overkleeft HS, Kisselev AF. Nature of pharmacophore influences active site specificity of proteasome inhibitors. J Biol Chem 2010; 285:40125-34. [PMID: 20937826 DOI: 10.1074/jbc.m110.160606] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasomes degrade most proteins in mammalian cells and are established targets of anti-cancer drugs. The majority of proteasome inhibitors are composed of short peptides with an electrophilic functionality (pharmacophore) at the C terminus. All eukaryotic proteasomes have three types of active sites as follows: chymotrypsin-like, trypsin-like, and caspase-like. It is widely believed that active site specificity of inhibitors is determined primarily by the peptide sequence and not the pharmacophore. Here, we report that active site specificity of inhibitors can also be tuned by the chemical nature of the pharmacophore. Specifically, replacement of the epoxyketone by vinyl sulfone moieties further improves the selectivity of β5-specific inhibitors NC-005, YU-101, and PR-171 (carfilzomib). This increase in specificity is likely the basis of the decreased cytotoxicity of vinyl sulfone-based inhibitors to HeLa cells as compared with that of epoxyketone-based inhibitors.
Collapse
Affiliation(s)
- Michael Screen
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Clark AK, Wodarski R, Guida F, Sasso O, Malcangio M. Cathepsin S release from primary cultured microglia is regulated by the P2X7 receptor. Glia 2010; 58:1710-26. [DOI: 10.1002/glia.21042] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Quinn DJ, Weldon S, Taggart CC. Antiproteases as therapeutics to target inflammation in cystic fibrosis. Open Respir Med J 2010; 4:20-31. [PMID: 20448835 PMCID: PMC2864511 DOI: 10.2174/1874306401004020020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 11/22/2022] Open
Abstract
Cystic Fibrosis (CF) is the most common fatal inherited disease of Caucasians, affecting about 1 in 3000 births. Patients with CF have a recessive mutation in the gene encoding the CF transmembrane conductance regulator (CFTR). CFTR is expressed in the epithelium of many organs throughout the exocrine system, however, inflammation and damage of the airways as a result of persistent progressive endobronchial infection is a central feature of CF. The inflammatory response to infection brings about a sustained recruitment of neutrophils to the site of infection. These neutrophils release various pro-inflammatory compounds including proteases, which when expressed at aberrant levels can overcome the endogenous antiprotease defence mechanisms of the lung. Unregulated, these proteases can exacerbate inflammation and result in the degradation of structural proteins and tissue damage leading to bronchiectasis and loss of respiratory function. Other host-derived and bacterial proteases may also contribute to the inflammation and lung destruction observed in the CF lung. Antiprotease strategies to dampen the excessive inflammatory response and concomitant damage to the airways remains an attractive therapeutic option for CF patients.
Collapse
Affiliation(s)
| | | | - Clifford C Taggart
- Centre for Infection and Immunity, Whitla Medical Building, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| |
Collapse
|
19
|
Clark AK, Yip PK, Malcangio M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J Neurosci 2009; 29:6945-54. [PMID: 19474321 PMCID: PMC2698289 DOI: 10.1523/jneurosci.0828-09.2009] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/24/2009] [Accepted: 04/28/2009] [Indexed: 12/30/2022] Open
Abstract
Understanding of the sequence and nature of the events that govern neuron-microglia communication is critical for the discovery of new mechanisms and targets for chronic pain treatment. The neuronal chemokine fractalkine (FKN) and its microglial receptor CX3CR1 may mediate such a function in the dorsal horn of the spinal cord after cleavage of the extracellular domain of this transmembrane chemokine by a protease. Here we report that in neuropathic rat dorsal horn, with dorsal root-attached preparations, soluble FKN (sFKN) contents are increased in the superfusates collected after noxious-like electrical stimulation of ipsilateral primary afferent fibers. The increase of sFKN is prevented by morpholinurea-leucine-homophenylalanine-vinyl sulfone-phenyl (LHVS), an irreversible inhibitor of cathepsin S (CatS) whose proteolytic activity is also increased in the superfusates. The source of CatS activity is microglial cells activated by the peripheral nerve injury and secreting the enzyme, as a result of primary afferent fiber stimulation. Indeed, the acute activation of dorsal horn microglia by lipopolysaccharide results in increased CatS activity in the superfusates, followed by increased sFKN contents. Consistent with these observations ex vivo, the levels of both sFKN and CatS activity in CSF samples increased significantly after peripheral nerve injury, associated with spinal microglial activation. Finally, because we found that both FKN immunoreactivity and mRNA are confined to dorsal horn neurons, we suggest that under neuropathic conditions, noxious stimulation of primary afferent fibers induces release of CatS from microglia, which liberates FKN from dorsal horn neurons, thereby contributing to the amplification and maintenance of chronic pain.
Collapse
Affiliation(s)
- Anna K Clark
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom.
| | | | | |
Collapse
|
20
|
Gupta S, Singh RK, Dastidar S, Ray A. Cysteine cathepsin S as an immunomodulatory target: present and future trends. Expert Opin Ther Targets 2008; 12:291-9. [PMID: 18269339 DOI: 10.1517/14728222.12.3.291] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Antigen presentation is the key to immune response. Cathepsin S plays a major role in the degradation of the invariant peptide chain associated with the major histocompatibility complex and thus affects antigen presentation. This review will focus on the recent developments made in field of cysteine cathepsins especially cathepsin S and their future prospects as a therapeutic target. METHODS Selective cathepsin inhibitors for targeting autoimmune disorders, atherosclerosis, osteoporosis, osteoarthritis and cancer are being pursued by many pharmaceutical companies. Recent publications in this field have been used as references to evaluate the current and future trends in cathepsin S inhibitors as an immunomodulatory target. CONCLUSIONS The temporal and spatial position occupied by cathepsin S in immune presentation, gives rise to the hope that an inhibitor would impart selectivity with a lesser propensity for side effects than other immunosuppressive agents.
Collapse
Affiliation(s)
- Suman Gupta
- Ranbaxy Research Laboratories, Department of Pharmacology, New Drug Discovery Research, Plot 20, Sector 18, Udyog Vihar Industrial Area, Gurgaon-1220015, Haryana, India.
| | | | | | | |
Collapse
|
21
|
Desmarais S, Black WC, Oballa R, Lamontagne S, Riendeau D, Tawa P, Duong LT, Pickarski M, Percival MD. Effect of cathepsin k inhibitor basicity on in vivo off-target activities. Mol Pharmacol 2008; 73:147-56. [PMID: 17940194 DOI: 10.1124/mol.107.039511] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Cathepsin K is a lysosomal cysteine protease that is a pharmacological target for the treatment of osteoporosis. Previous studies showed that basic, lipophilic cathepsin K inhibitors are lysosomotropic and have greater activities in cell-based assays against cathepsin K, as well as the physiologically important lysosomal cysteine cathepsins B, L, and S, than expected based on their potencies against these isolated enzymes. Long-term administration of the basic cathepsin K inhibitors N-(1-(((cyanomethyl)amino)carbonyl)cyclohexyl)-4-(2-(4-methyl-piperazin-1-yl)-1,3-thiazol-4-yl)benzamide (L-006235) and balicatib to rats at a supratherapeutic dose of 500 mg/kg/day for 4 weeks resulted in increased tissue protein levels of cathepsin B and L but had no effect on cathepsin B and L message. This is attributed to the inhibitor engagement of these off-target enzymes and their stabilization to proteolytic degradation. No such increase in these tissue cathepsins was detected at the same dose of N-(cyanomethyl)-N(2)-{(1S)-2,2,2-trifluoro-1-[4'-methylsulfonyl)biphenyl-4-yl]ethyl}-l-leucinamide (L-873724), a potent nonbasic cathepsin K inhibitor with a similar off-target profile, although all three inhibitors provided similar plasma exposures. Using an activity-based probe, (125)I-BIL-DMK, in vivo inhibition of cathepsins B, L, and S was detected in tissues of mice given a single oral dose of L-006235 and balicatib, but not in mice given L-873724. In each case, similar tissue levels were achieved by all three compounds, thereby demonstrating the in vivo cathepsin selectivity of L-873724. In conclusion, basic cathepsin K inhibitors demonstrate increased off-target cysteine cathepsin activities than their nonbasic analogs and potentially have a greater risk of adverse effects associated with inhibition of these cathepsins.
Collapse
Affiliation(s)
- Sylvie Desmarais
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe-Claire-Dorval, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Like macrophages and neutrophils, dendritic cells (DCs) are considered professional phagocytes. Even if the three cell types phagocytose parasites, bacteria, cell debris, or even intact cells very efficiently, the functional outcomes of the phagocytic event are quite different. Macrophages and neutrophils scavenge and destroy phagocytosed particles, a critical step in innate immunity. DCs, in contrast, have developed means to 'preserve' useful information from the ingested particles that serve to initiate adaptive immune responses. Thus, both phagosomal degradation and acidification are much lower in DCs than in macrophages or neutrophils. Reduced degradation results in the conservation of antigenic peptides and in their increased presentation on major histocompatibility complex class I and II molecules. In this article, we review the mechanisms that control this delicate equilibrium between phagosomal degradation/cytotoxicity and antigen presentation in the different families of phagocytes.
Collapse
Affiliation(s)
- Ariel Savina
- Institut Curie, INSERM U653, Immunité et Cancer, Paris, France
| | | |
Collapse
|
23
|
Hie M, Shimono M, Fujii K, Tsukamoto I. Increased cathepsin K and tartrate-resistant acid phosphatase expression in bone of streptozotocin-induced diabetic rats. Bone 2007; 41:1045-50. [PMID: 17916452 DOI: 10.1016/j.bone.2007.08.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 08/10/2007] [Accepted: 08/15/2007] [Indexed: 01/27/2023]
Abstract
The effect of insulin-dependent diabetes mellitus (IDDM) on bone metabolism was evaluated using the streptozotocin (STZ)-induced diabetic rat 1 week after the induction of diabetes. The urinary excretion of cross-linked N-telopeptides of type I collagen (NTx) and deoxypyridinoline (Dpd) in diabetic rats increased to 3.6-fold and 1.2-fold the control level, respectively. The amount of hydroxyproline and calcium in the distal femur of diabetic rats significantly decreased to 76% and 90% of the control, respectively. The levels of serum osteocalcin and alkaline phosphatase (ALP) activity in the distal femur of the diabetic rats were significantly reduced to about 40% and 70% of the control levels, respectively. The decrease in the expression osteocalcin was observed in distal femur of the diabetic rats, although the level of ALP mRNA was unchanged. The activity and the mRNA level of tartrate-resistant acid phosphatase (TRAP) increased to 1.5- and 2.3-fold the control level, respectively, in distal femur of the diabetic rats. The activity, protein, and mRNA levels of cathepsin K of diabetic rats also elevated to about 2-, 2.3-, and 2-fold the control levels, respectively. These results suggest that IDDM contributes to bone loss through changes in gene expression of TRAP and cathepsin K in osteoclasts as well as osteocalcin in osteoblasts resulting in increased bone resorptive activity and decreased bone formation.
Collapse
Affiliation(s)
- Mamiko Hie
- Department of Food Science and Nutrition, Nara Women's University, Nara 630, Japan
| | | | | | | |
Collapse
|
24
|
Barclay J, Clark AK, Ganju P, Gentry C, Patel S, Wotherspoon G, Buxton F, Song C, Ullah J, Winter J, Fox A, Bevan S, Malcangio M. Role of the cysteine protease cathepsin S in neuropathic hyperalgesia. Pain 2007; 130:225-234. [PMID: 17250968 DOI: 10.1016/j.pain.2006.11.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 10/11/2006] [Accepted: 11/29/2006] [Indexed: 11/29/2022]
Abstract
Using a gene expression analysis approach we found that the mRNA encoding the lysosomal cysteine protease cathepsin S (CatS) was up-regulated in rat dorsal root ganglia (DRG) following peripheral nerve injury. CatS protein was expressed in infiltrating macrophages in DRG and near the site of injury. At both sites CatS expression progressively increased from day 3 to day 14 after injury. In naïve rats, intraplantar injection of activated rat recombinant (rr) CatS (0.3, 1 microg/rat) induced a mechanical hyperalgesia that developed within half-an-hour, diminished by 3h and was absent after 24h. Activated rrCathepsin B (CatB) and non-activated rrCatS injected intraplantarly at the same or higher doses than activated rrCatS had no effect on rat nociceptive thresholds. In nerve-injured rats, mechanical hyperalgesia, but not allodynia, was significantly reversed for up to 3h by systemic administration of a non-brain penetrant, irreversible CatS inhibitor (LHVS, 3-30 mg/kg s.c.). Depletion of peripheral macrophages by intravenous injection of liposome encapsulate clodronate (1ml, 5 mg/ml) partially reduced established mechanical hyperalgesia but not allodynia, and abolished the anti-hyperalgesic effect of LHVS. Our results demonstrate a pro-nociceptive effect of CatS and indicate that endogenous CatS released by peripheral macrophages contributes to the maintenance of neuropathic hyperalgesia following nerve injury.
Collapse
Affiliation(s)
- Jane Barclay
- Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, UK Department of Functional Genomics, Novartis Institutes for Biomedical Research, 100 Technology Square, Cambridge, MA 02139, USA Wolfson CARD, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, Dehvari M, Wotherspoon G, Winter J, Ullah J, Bevan S, Malcangio M. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A 2007; 104:10655-60. [PMID: 17551020 PMCID: PMC1965568 DOI: 10.1073/pnas.0610811104] [Citation(s) in RCA: 364] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Indexed: 02/06/2023] Open
Abstract
A recent major conceptual advance has been the recognition of the importance of immune system-neuronal interactions in the modulation of brain function, one example of which is spinal pain processing in neuropathic states. Here, we report that in peripheral nerve-injured rats, the lysosomal cysteine protease cathepsin S (CatS) is critical for the maintenance of neuropathic pain and spinal microglia activation. After injury, CatS was exclusively expressed by activated microglia in the ipsilateral dorsal horn, where expression peaked at day 7, remaining high on day 14. Intrathecal delivery of an irreversible CatS inhibitor, morpholinurea-leucine-homophenylalanine-vinyl phenyl sulfone (LHVS), was antihyperalgesic and antiallodynic in neuropathic rats and attenuated spinal microglia activation. Consistent with a pronociceptive role of endogenous CatS, spinal intrathecal delivery of rat recombinant CatS (rrCatS) induced hyperalgesia and allodynia in naïve rats and activated p38 mitogen-activated protein kinase (MAPK) in spinal cord microglia. A bioinformatics approach revealed that the transmembrane chemokine fractalkine (FKN) is a potential substrate for CatS cleavage. We show that rrCatS incubation reduced the levels of cell-associated FKN in cultured sensory neurons and that a neutralizing antibody against FKN prevented both FKN- and CatS-induced allodynia, hyperalgesia, and p38 MAPK activation. Furthermore, rrCatS induced allodynia in wild-type but not CX3CR1-knockout mice. We suggest that under conditions of increased nociception, microglial CatS is responsible for the liberation of neuronal FKN, which stimulates p38 MAPK phosphorylation in microglia, thereby activating neurons via the release of pronociceptive mediators.
Collapse
Affiliation(s)
- Anna K. Clark
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Ping K. Yip
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - John Grist
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Clive Gentry
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
| | - Amelia A. Staniland
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Fabien Marchand
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Maliheh Dehvari
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| | - Glen Wotherspoon
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
| | - Janet Winter
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
| | - Jakir Ullah
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
| | - Stuart Bevan
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
| | - Marzia Malcangio
- *Novartis Institutes for Biomedical Research, 5 Gower Place, London WC1E 6BS, United Kingdom; and
- Wolfson Centre for Age Related Diseases, King's College London, Guy's Campus, London SE1 1UL, United Kingdom
| |
Collapse
|
26
|
Creasy BM, Hartmann CB, White FKH, McCoy KL. New assay using fluorogenic substrates and immunofluorescence staining to measure cysteine cathepsin activity in live cell subpopulations. Cytometry A 2007; 71:114-23. [PMID: 17200959 DOI: 10.1002/cyto.a.20365] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cathepsins are endosomal/lysosomal proteases that play important roles in regulating cell physiological processes in cardiovascular, neurological, musculoskeletal, and immunological systems. Pathophysiological processes are often associated with a change in cathepsin expression and activity, leading to the possibility of using cathepsins as disease markers for diagnosis and prognosis. METHODS We describe a new assay utilizing an argon laser flow cytometer to measure activities of cysteine cathepsins B, L, and S in live cells using cell permeable fluorogenic cresyl violet-conjugated peptides as selective substrates. Substrate concentration dependency and time kinetics studies were performed. The activity assay was combined with immunofluorescence staining to detect cell lineage-specific molecules and assess cathepsin activities in a heterogeneous cell population. RESULTS Substrate concentrations utilized were not limiting, because MFI significantly increased in a macrophage cell line stimulated with bacterial lipopolysaccharide. Selective cathepsin inhibitors demonstrated the selectivity of substrate cleavage. Cells fixed and stored before analysis had no loss of fluorescence product. Activities of cathepsins B, L and S in splenic B cells, T cells and macrophages identified by immunofluorescence staining were analyzed. CONCLUSION This novel technique determines cathepsin activities on a per cell basis without requiring purification of different cell types from a heterogeneous cell population.
Collapse
Affiliation(s)
- Blaine M Creasy
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298-0678, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Degradation of elastin, the main amorphous component of elastic fibers, by elastases belonging to the serine, metallo, or cysteine families leads to the generation of elastin fragments, designated as elastokines in keeping with their cytokine-like properties. Generation of elastokines from one of the longest lived protein in human might represent a strong tissue repair signal. Indeed, they (1) exhibit potent chemotactic activity for leukocytes, (2) stimulate fibroblast and smooth muscle cell proliferation, and (3) display proangiogenic activity as potent as VEGF. However, continuous exposure of cells to these matrikines, through increased elastase(s) expression with age, can contribute to the formation of a chronic inflammatory state, that is, inflamm-aging. Importantly, binding of elastokines to S-Gal, their cognate receptor, proved to stimulate matrix metalloproteinase expression in normal and cancer cells. Besides, these elastin fragments can polarize lymphocytes toward a Th-1 response or induce an osteogenic response in smooth muscle cells, and arterial wall calcification. In this chapter, emphasis will be made on the contribution of elastokines on the genesis of age-related arterial wall diseases, particularly abdominal aortic aneurysms (AAAs). An elastokine theory of AAAs progression will be proposed. Age is one main risk factor of cancer incidence and development. The myriad of biological effects exerted by elastokines on stromal and inflammatory cells led us to hypothesize that they might be main actors in elaborating a favorable cancerization field in melanoma; for instance these peptides could catalyze the vertical growth phase transition in melanoma through increased expression of gelatinase A and membrane-type 1 matrix metalloproteinase.
Collapse
Affiliation(s)
- Frank Antonicelli
- Faculty of Medicine Extracellular Matrix and Cell Signaling--Reims University, UMR 6198 CNRS 51095 Reims Cedex, France
| | | | | | | |
Collapse
|
28
|
Sugano E, Tomita H, Ishiguro SI, Isago H, Tamai M. Nitric oxide-induced accumulation of lipofuscin-like materials is caused by inhibition of cathepsin S. Curr Eye Res 2006; 31:607-16. [PMID: 16877269 DOI: 10.1080/02713680600744851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To determine whether nitric oxide (NO) is involved in accumulation of lipofuscin-like material (LFM) in retinal pigment epithelial (RPE) cells and if this formation is related to NO-mediated modification of cathepsin S (cat S). RPE cell cultures were fed once every day with porcine photoreceptor outer segments (POS) in the presence of NO-donor [S-nitroso-N-acetylpenicillamine (SNAP) or NOC18] for 2 weeks. LFM autofluorescence within the cells was measured by fluorophotometric flow cytometry (FACS). The activity of purified cat S was measured in the presence of NO-donor with or without dithiothreitol (DTT). The following results were observed. SNAP and NOC18 caused LFM accumulation in RPE cells in a dose-dependent manner, and this accumulation was reversed by the addition of NO-scavengers (hydroxycobalamin, carboxy-PTIO). Purified cat S activities were inhibited by NO-donors without DTT, but in the presence of DTT, NO-donors exhibited no inhibitory effect on its activity. Phagocytic challenge of RPE cells increased cat S activity, which was reduced by the addition of NO donors. These results indicated that cat S activity was inhibited by NO-donors and resulted in LFM accumulation in RPE cells. We conclude that NO-mediated inhibition of cat S was caused through protein modification of cat S and resulted in LFM accumulation.
Collapse
Affiliation(s)
- Eriko Sugano
- Division of Biofunctional Science, Tohoku University Biomedical Engineering Research Organization, Sendai, Japan
| | | | | | | | | |
Collapse
|
29
|
Ohshita T, Hiroi Y. Cathepsin L plays an important role in the lysosomal degradation of L-lactate dehydrogenase. Biosci Biotechnol Biochem 2006; 70:2254-61. [PMID: 16960372 DOI: 10.1271/bbb.60197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A cystatin alpha-sensitive cysteine proteinase that plays an important role in the lysosomal inactivation and degradation of L-lactate dehydrogenase (LDH) was purified by column chromatography from an ammonium sulfate precipitate of lysosome extract prepared from rat livers. It was eluted with marked delay from cathepsins B and H in a Sephacryl S-200 column by its specific interaction with the gel, and then effectively separated from cathepsins B and H and other proteins. It was eluted with 0.5 M NaCl after washing with 0.2 M NaCl in a CM-Sephadex column, indicating that it showed the same elution behavior as cathepsin L from the CM-Sephadex column. It had activity to hydrolyze z-Phe-Arg-NH-Mec, a synthetic substrate for cysteine proteinases, including cathepsins B and L. The N-terminal sequences of the final preparation of LDH-inactivating enzyme were identical with those of rat cathepsin L. Inactivation and degradation of LDH by the final preparation were observed and effectively inhibited by a low level of cystatin alpha as well as a general cysteine proteinase inhibitor, leupeptin or (L-3-trans-carboxyoxirane-2-carbonyl)-L-leucine (3-methylbutyl)amide (E-64-c). From these results, it is concluded that cathepsin L plays a critical role in the lysosomal degradation of native LDH.
Collapse
Affiliation(s)
- Takeyuki Ohshita
- Department of Human Health and Nutrition, Faculty of Comprehensive Human Sciences, Shokei Gakuin College, Natorisi, Miyagi, Japan.
| | | |
Collapse
|
30
|
Rodgers KJ, Watkins DJ, Miller AL, Chan PY, Karanam S, Brissette WH, Long CJ, Jackson CL. Destabilizing role of cathepsin S in murine atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2006; 26:851-6. [PMID: 16410454 DOI: 10.1161/01.atv.0000203526.75772.4b] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Lysosomal proteinases have been implicated in a number of pathologies associated with extracellular matrix breakdown. Therefore, we investigated the possibility that the lysosomal proteinase cathepsin S may be involved in atherosclerotic plaque destabilization. METHODS AND RESULTS Atherosclerotic plaques in the brachiocephalic arteries of fat-fed apolipoprotein E/cathepsin S double knockout mice had 73% fewer acute plaque ruptures (P=0.026) and were 46% smaller (P=0.025) than those in age-, strain-, and sex-matched apolipoprotein E single knockout controls. When the incidence of acute plaque rupture was normalized for plaque size, the reduction in the double knockouts was 72% (P=0.039). The number of buried fibrous layers, indicative of an unstable plaque phenotype, was reduced by 67% in the double knockouts (P=0.008). The cysteine proteinase inhibitor, egg white cystatin, was biotinylated and used as an active-site-directed probe for cathepsins. Biotinylated cystatin selectively detected cathepsin S in extracts of human carotid atherosclerotic plaque. Active cathepsin S was detectable in extracts of human atherosclerotic plaque but not in nondiseased carotid arteries. Active cathepsins were especially prominent in macrophages in the shoulder regions of plaques, areas considered to be vulnerable to rupture. Cathepsin S protein colocalized with regions of elastin degradation in human coronary plaques. CONCLUSIONS These data provide direct evidence that an endogenous proteinase, cathepsin S, plays an important role in atherosclerotic plaque destabilization and rupture.
Collapse
|
31
|
Rose CM, Qian L, Hakim L, Wang Y, Jerdeva GY, Marchelletta R, Nakamura T, Hamm-Alvarez SF, Mircheff AK. Accumulation of catalytically active proteases in lacrimal gland acinar cell endosomes during chronic ex vivo muscarinic receptor stimulation. Scand J Immunol 2005; 61:36-50. [PMID: 15644121 DOI: 10.1111/j.0300-9475.2005.01527.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic muscarinic stimulation induces functional quiescence (Scand J Immunol 2003;58:550-65) and alters the traffic of immature cathepsin B (Exp Eye Res 2004;79:665-75) in lacrimal acinar cells. To test whether active proteases aberrantly accumulate in the endosomes, cell samples were cultured 20 h with and without 10-microm carbachol (CCh), incubated with [125I]-bovine serum albumin and then lysed and analysed by subcellular fractionation. CCh decreased total cysteine protease and cathepsin S activities in the isolated lysosome, redistributing them to early endocytic and biosynthetic compartments. CCh decreased [125I] accumulation in all compartments of cells loaded in the absence of protease inhibitors; the cysteine protease inhibitor, leupeptin, prevented the endosomal decrease but not the lysosomal decrease. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and autoradiography demonstrated [125I]-labelled proteolytic products in endomembrane compartments of both control and CCh-stimulated cells, even in the presence of leupeptin, but analysis indicated that CCh increased the amount in endosomes. Two-dimensional fractionation analyses suggest that the CCh-induced redistributions result from blocks in traffic to the late endosome from both the early endosome and the trans-Golgi network. Therefore, we conjecture that chronic muscarinic acetylcholine receptor stimulation leads to aberrant proteolytic processing of autoantigens in endosomes, from whence previously cryptic epitopes may be secreted to the underlying interstitial space.
Collapse
Affiliation(s)
- C M Rose
- Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gatti E, Pierre P. Understanding the cell biology of antigen presentation: the dendritic cell contribution. Curr Opin Cell Biol 2003; 15:468-73. [PMID: 12892788 DOI: 10.1016/s0955-0674(03)00069-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The study of the cell biology of antigen processing and presentation has greatly contributed to our understanding of the immune response. The work of many immunologically inclined cell biologists has also permitted us to gain new insights on cellular mechanisms shared by many cell types. Dendritic cells are master regulators of the immune system and consequently have received a lot of attention in recent years. With the aim of controlling antigen processing and presentation, the solutions used by dendritic cells to respond to environmental changes are numerous and surprising. In the presence of pathogens, dendritic cells regulate strongly their endocytic pathway by interfering with uptake, proteolysis, membrane dynamics and transport in and out of the lysosome to become the most potent antigen-presenting cells known.
Collapse
Affiliation(s)
- Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy, CNRS-INSERM-Université de la Méditerranée, Campus de Luminy, Case 906, 13288, Cedex 09, Marseille, France.
| | | |
Collapse
|
33
|
Sugano E, Tomita H, Abe T, Yamashita A, Tamai M. Comparative study of cathepsins D and S in rat IPE and RPE cells. Exp Eye Res 2003; 77:203-9. [PMID: 12873451 DOI: 10.1016/s0014-4835(03)00115-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To investigate differences between activities related to phagocytosis in iris pigment epithelial (IPE) and retinal pigment epithelial (RPE) cells, an aspartic protease, cathepsin D (cat D), and a cysteine protease, cathepsin S (cat S), of IPE and RPE were studied. IPE and RPE cells were isolated from Long Evans rat eyes. The origin of the isolated cells was determined by pigmentation and cytokeratin labelling. The mRNA expressions of cat D and cat S in cultured IPE or RPE cells were investigated by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Enzyme activities of cat D and cat S in IPE or RPE cells were measured by using specific fluorogenic substrates, MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys-(Dnp)D-Arg-NH2 and Z-Val-Val-Arg-MCA, respectively. Western blot analysis of both proteins was also performed. The cultured cells, both of IPE and RPE cells were pigmented and showed positive labelling with an anti-cytokeratin monoclonal antibody. The cat D activity in RPE cells was 37 times that in IPE cells. The cat S activity in RPE cells was four times that in IPE cells. On the other hand, mRNA expression levels of cat D in RPE cells were at the same level with IPE cells, cat S mRNA expression in RPE cells were 10 times that in IPE cells. These results were also correlated with the Western blot analysis. In this study, we measured the characteristic expressions of cat D and S in IPE and RPE cells for the first time to compare their lysosomal activities. IPE cells have the lysosomal activities like RPE cells, however, the function of lysosomal activity in IPE cells is beneath RPE's. These results indicated that the ability of ROS digestion in IPE cells was not same as RPE cells.
Collapse
Affiliation(s)
- Eriko Sugano
- Department of Ophthalmology, Tohoku University, School of Medicine, 1-1 Seiryo-machi, Sendai 980-8574, Japan
| | | | | | | | | |
Collapse
|
34
|
Dickinson DP. Cysteine peptidases of mammals: their biological roles and potential effects in the oral cavity and other tissues in health and disease. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 13:238-75. [PMID: 12090464 DOI: 10.1177/154411130201300304] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cysteine peptidases (CPs) are phylogenetically ubiquitous enzymes that can be classified into clans of evolutionarily independent proteins based on the structural organization of the active site. In mammals, two of the major clans represented in the genome are: the CA clan, whose members share a structure and evolutionary history with papain; and the CD clan, which includes the legumains and caspases. This review focuses on the properties of these enzymes, with an emphasis on their potential roles in the oral cavity. The human genome encodes at least (but possibly no more than) 11 distinct enzymes, called cathepsins, that are members of the papain family C1A. Ten of these are present in rodents, which also carry additional genes encoding other cathepsins and cathepsin-like proteins. Human cathepsins are best known from the ubiquitously expressed lysosomal cathepsins B, H, and L, and dipeptidyl peptidase I (DPP I), which until recently were considered to mediate primarily "housekeeping" functions in the cell. However, mutations in DPP I have now been shown to underlie Papillon-Lefevre syndrome and pre-pubertal periodontitis. Other cathepsins are involved in tissue-specific functions such as bone remodeling, but relatively little is known about the functions of several recently discovered enzymes. Collectively, CPs participate in multiple host systems that are active in health and in disease. They are involved in tissue remodeling and turnover of the extracellular matrix, immune system function, and modulation and alteration of cell function. Intracellularly, CPs function in diverse processes including normal protein turnover, antigen and proprotein processing, and apoptosis. Extracellularly, they can contribute directly to the degradation of foreign proteins and the extracellular matrix. However, CPs can also participate in proteolytic cascades that amplify the degradative capacity, potentially leading to pathological damage, and facilitating the penetration of tissues by cancer cells. We know relatively little regarding the role of human CPs in the oral cavity in health or disease. Most studies to date have focused on the potential use of the lysosomal enzymes as markers for periodontal disease activity. Human saliva contains high levels of cystatins, which are potent CP inhibitors. Although these proteins are presumed to serve a protective function, their in vivo targets are unknown, and it remains to be discovered whether they serve to control any human CP activity.
Collapse
Affiliation(s)
- D P Dickinson
- Medical College of Georgia, School of Dentistry, Department of Oral Biology, and Maxillofacial Pathology, Augusta 30912, USA.
| |
Collapse
|
35
|
Rinne R, Saukko P, Järvinen M, Lehesjoki AE. Reduced cystatin B activity correlates with enhanced cathepsin activity in progressive myoclonus epilepsy. Ann Med 2002; 34:380-5. [PMID: 12452481 DOI: 10.1080/078538902320772124] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Loss-of-function mutations in the gene encoding cystatin B (CSTB) underlie an inherited neurodegenerative disorder, progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1). CSTB is an inhibitor of several papain-family cysteine proteases, the lysosomal cathepsins. Its physiological function and the molecular pathways leading to the clinical EPM1 phenotype are unknown. AIM To elucidate the role of CSTB and different cathepsins in pathogenesis of EPM1. METHOD We determined the total papain inhibitory (cystatin) and papain-like (cathepsin) activity as well as specific activities of cathepsins B, H, L and S in lymphoblastoid cells of EPM1 patients, carriers and controls. RESULTS In EPM1 patients, who express reduced levels of CSTB mRNA, the papain inhibitory activity was significantly decreased or absent. This reduction was correlated with significant increase in general cathepsin activity. The increase in cathepsin B, L and S activities was highly significant, whereas the increase in cathepsin H activity was not. CONCLUSIONS This is the first demonstration of cysteine protease activity being regulated by CSTB activity in a biological context. The effects of decreased CSTB activity in EPM1 pathogenesis may, at least in part, be mediated by cathepsins through increased activity of cathepsins S and L.
Collapse
Affiliation(s)
- Riitta Rinne
- Department of Forensic Medicine, University of Turku, Finland
| | | | | | | |
Collapse
|
36
|
Lopez-Ordoñez T, Rodriguez MH, Hernández-Hernández FD. Characterization of a cDNA encoding a cathepsin L-like protein of Rhodnius prolixus. INSECT MOLECULAR BIOLOGY 2001; 10:505-511. [PMID: 11881815 DOI: 10.1046/j.0962-1075.2001.00290.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The interaction of Rhodnius prolixus digestive enzymes with Trypanosoma cruzi could be important for parasite survival. We report herein the complete sequence of the messenger of a cathepsin L-like molecule (RpCat). The cDNA has 5'- and 3'- end UTRs and a methionine codon that corresponds likely to a translation initiation codon. In the deduced amino acid sequence, a region corresponding to an ERFININ domain, diagnostic of L-cathepsins, and a possible pro-peptide cleavage site were observed. At the C-terminus, a nine-amino acid sequence, almost identical to a secretion signal of human cathepsin L was found. RpCat messenger was expressed in intestines of R. prolixus adults, and from 1st to 4th but not in 5th instar nymph stages. In a similarity analysis, RpCat was grouped with L cathepsins forming a clear group separate of the B cathepsins.
Collapse
Affiliation(s)
- T Lopez-Ordoñez
- Experimental Pathology Department, Centro de Investigacíon y Estudios Avanzados del IPN, México DF, México
| | | | | |
Collapse
|
37
|
Taggart CC, Lowe GJ, Greene CM, Mulgrew AT, O'Neill SJ, Levine RL, McElvaney NG. Cathepsin B, L, and S cleave and inactivate secretory leucoprotease inhibitor. J Biol Chem 2001; 276:33345-52. [PMID: 11435427 DOI: 10.1074/jbc.m103220200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A number of serine proteases, matrix metalloproteases, and cysteine proteases were evaluated for their ability to cleave and inactivate the antiprotease, secretory leucoprotease inhibitor (SLPI). None of the serine proteases or the matrix metalloproteases examined cleaved the SLPI protein. However, incubation with cathepsins B, L, and S resulted in the cleavage and inactivation of SLPI. All three cathepsins initially cleaved SLPI between residues Thr(67) and Tyr(68). The proteolytic cleavage of SLPI by all three cathepsins resulted in the loss of the active site of SLPI and the inactivation of SLPI anti-neutrophil elastase capacity. Cleavage and inactivation were catalytic with respect to the cathepsins, so that the majority of a 400-fold excess of SLPI was inactivated within 15 min by cathepsins L and S. Analysis of epithelial lining fluid samples from individuals with emphysema indicated the presence of cleaved SLPI in these samples whereas only intact SLPI was observed in control epithelial lining fluid samples. Active cathepsin L was shown to be present in emphysema epithelial lining fluid and inhibition of this protease prevented the cleavage of recombinant SLPI added to emphysema epithelial lining fluid. Taken together with previous data that demonstrates that cathepsin L inactivates alpha(1)-antitrypsin, these findings indicate the involvement of cathepsins in the diminution of the lung antiprotease screen possibly leading to lung destruction in emphysema.
Collapse
Affiliation(s)
- C C Taggart
- Pulmonary Research Division, Department of Medicine, The Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | |
Collapse
|
38
|
Brix K, Linke M, Tepel C, Herzog V. Cysteine proteinases mediate extracellular prohormone processing in the thyroid. Biol Chem 2001; 382:717-25. [PMID: 11517924 DOI: 10.1515/bc.2001.087] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thyroglobulin, the precursor of thyroid hormones, is extracellularly stored in a highly condensed and covalently cross-linked form. Solublization of thyroglobulin is facilitated by cysteine proteinases like cathepsins B and K which are proteolytically active at the surface of thyroid epithelial cells. The cysteine proteinases mediate the processing of thyroglobulin by limited extracellular proteolysis at the apical plasma membrane, thereby rapidly liberating thyroxine. The trafficking of cysteine proteinases in thyroid epithelial cells includes their targeting to lysosomes where they become maturated before being transported to the apical plasma membrane and, thus, into the extracellular follicle lumen. We propose that thyroid stimulating hormone regulates extracellular proteolysis of thyroglobulin in that it enhances the rate of exocytosis of lysosomal proteins at the apical plasma membrane. Later, thyroid stimulating hormone upregulates thyroglobulin synthesis and its secretion into the follicle lumen for subsequent compaction by covalent cross-linking. Hence, cycles of thyroglobulin proteolysis and thyroglobulin deposition might result in the regulation of the size of the luminal content of thyroid follicles. We conclude that the biological significance of extracellularly acting cysteine proteinases of the thyroid is the rapid utilization of thyroglobulin for the maintenance of constant thyroid hormone levels in vertebrate organisms.
Collapse
Affiliation(s)
- K Brix
- Institut für Zellbiologie and Bonner Forum Biomedizin, Universität Bonn, Germany
| | | | | | | |
Collapse
|
39
|
Falgueyret JP, Oballa RM, Okamoto O, Wesolowski G, Aubin Y, Rydzewski RM, Prasit P, Riendeau D, Rodan SB, Percival MD. Novel, nonpeptidic cyanamides as potent and reversible inhibitors of human cathepsins K and L. J Med Chem 2001; 44:94-104. [PMID: 11141092 DOI: 10.1021/jm0003440] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compounds containing a 1-cyanopyrrolidinyl ring were identified as potent and reversible inhibitors of cathepsins K and L. The original lead compound 1 inhibits cathepsins K and L with IC(50) values of 0. 37 and 0.45 M, respectively. Modification of compound 1 by replacement of the quinoline moiety led to the synthesis of N-(1-cyano-3-pyrrolidinyl)benzenesulfonamide (2). Compound 2 was found to be a potent inhibitor of cathepsins K and L with a K(i) value of 50 nM for cathepsin K. Replacement of the 1-cyanopyrrolidine of compound 2 by a 1-cyanoazetidine increased the potency of the inhibitor by 10-fold. This increase in potency is probably due to an enhanced chemical reactivity of the compound toward the thiolate of the active site of the enzyme. This is demonstrated when the assay is performed in the presence of glutathione at pH 7.0 which favors the formation of a GSH thiolate anion. Under these assay conditions, there is a loss of potency in the 1-cyanoazetidine series due to the formation of an inactive complex between the GSH thiolate and the 1-cyanoazetidine inhibitors. 1-Cyanopyrrolidinyl inhibitors exhibited time-dependent inhibition which allowed us to determine the association and dissociation rate constants with human cathepsin K. The kinetic data obtained showed that the increase of potency observed between different 1-cyanopyrrolidinyl inhibitors is due to an increase of k(on) values and that the association of the compound with the enzyme fits an apparent one-step mechanism. (13)C NMR experiments performed with the enzyme papain showed that compound 2 forms a covalent isothiourea ester adduct with the enzyme. As predicted by the kinetic analysis, the addition of the irreversible inhibitor E64 to the enzyme-cyanopyrrolidinyl complex totally abolished the signal of the isothiourea bond as observed by (13)C NMR, thereby demonstrating that the formation of the covalent bond with the active site cysteine residue is reversible. Finally, compound 2 inhibits bone resorption in an in vitro assay involving rabbit osteoclasts and bovine bone with an IC(50) value of 0.7 M. 1-Cyanopyrrolidine represents a new class of nonpeptidic compounds that inhibit cathepsin K and L activity and proteolysis of bone collagen.
Collapse
Affiliation(s)
- J P Falgueyret
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Quebec H9H 3L1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tepel C, Brömme D, Herzog V, Brix K. Cathepsin K in thyroid epithelial cells: sequence, localization and possible function in extracellular proteolysis of thyroglobulin. J Cell Sci 2000; 113 Pt 24:4487-98. [PMID: 11082042 DOI: 10.1242/jcs.113.24.4487] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular proteolysis of thyroglobulin at the apical surface of thyroid epithelial cells results in liberation of thyroxine, and is mediated by lysosomal cysteine proteases such as cathepsins B and L. Here, we report on the expression of the cysteine protease cathepsin K in thyroid epithelial cells. The cDNA for porcine thyroid cathepsin K showed homologies ranging from 71% to 94% to the cDNA of cathepsin K from various species and cell types. The deduced amino acid sequence of porcine thyroid cathepsin K predicted a 37 kDa preproenzyme, with the active site residues Cys-140, His-277 and Asn-297, and one potential N-glycosylation site. The localization of cathepsin K was not restricted to lysosomes. Rather, secreted cathepsin K was predominantly found within the follicular lumen and in association with the apical plasma membrane of thyroid epithelial cells. Enzyme cytochemistry showed that cell-surface associated cathepsin K was proteolytically active at neutral pH. In vitro, recombinant cathepsin K liberated thyroxine from thyroglobulin by limited proteolysis at neutral pH. We postulate that its localization enables cathepsin K to contribute to the extracellular proteolysis of thyroglobulin, i.e. thyroid hormone liberation, at the apical surface of thyroid epithelial cells in situ.
Collapse
Affiliation(s)
- C Tepel
- Institut für Zellbiologie and Bonner Forum Biomedizin, Rheinische Friedrich-Wilhelms Universität, Ulrich-Haberland-Strasse 61a, D-53121 Bonn, Germany
| | | | | | | |
Collapse
|
41
|
Yamamoto A, Asaga E, Nagao E, Igarashi T, Goto N. Characterization of the cathepsin B-like proteinases of Trichomonas tenax ATCC 30207. ORAL MICROBIOLOGY AND IMMUNOLOGY 2000; 15:360-4. [PMID: 11154432 DOI: 10.1034/j.1399-302x.2000.150604.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An oral parasite Trichomonas tenax ATCC 30207 synthesizes and secretes various proteinases. By gelatin-SDS-PAGE, we found five proteinases bands (30, 37, 46, 51 and 60 kDa) in cell lysate and four bands (37, 45, 52 and 60 kDa) in culture filtrate. The proteinases hydrolyzed acid soluble type I collagen as well as gelatin. The enzymes were suggested to possess typical characteristics of cysteine proteinases based on the patterns of inhibition and activation by various factors. Based on relative efficiencies of synthetic substrates, most of them were most likely cathepsin B-like enzymes.
Collapse
Affiliation(s)
- A Yamamoto
- Department of Oral Microbiology, Showa University, School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | |
Collapse
|
42
|
Abstract
Major histocompatibility complex (MHC) class II molecules are cell surface proteins that present peptides to CD4(+) T cells. In addition to these wellcharacterized molecules, two other class II-like proteins are produced from the class II region of the MHC, HLA-DM (DM) and HLA-DO (DO) (called H2-M, or H2-DM and H2-O in the mouse). The function of DM is well established; it promotes peptide loading of class II molecules in the endosomal/lysosomal system by catalyzing the release of CLIP peptides (derived from the class II-associated invariant chain) in exchange for more stably binding peptides. While DM is present in all class II- expressing antigen presenting cells, DO is expressed mainly in B cells. In this cell type the majority of DM molecules are not present as free heterodimers but are instead associated with DO in tight heterotetrameric complexes. The association with DM is essential for the intracellular transport of DO, and the two molecules remain associated in the endosomal system. DO can clearly modify the peptide exchange activity of DM both in vitro and in vivo, but the physiological relevance of this interaction is still only partly understood.
Collapse
Affiliation(s)
- C Alfonso
- The R.W. Johnson Pharmaceutical Research Institute, San Diego, California 92121, USA
| | | |
Collapse
|
43
|
Guo YL, Kurz U, Schultz JE, Lim CC, Wiederanders B, Schilling K. The alpha1/2 helical backbone of the prodomains defines the intrinsic inhibitory specificity in the cathepsin L-like cysteine protease subfamily. FEBS Lett 2000; 469:203-7. [PMID: 10713271 DOI: 10.1016/s0014-5793(00)01281-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proregions of papain-like cysteine proteases are potent and often highly selective inhibitors of their parental enzymes. The molecular basis of their selectivity is poorly understood. For two closely related members of the cathepsin L-like subfamily we established strong selectivity differences. The propeptide of cathepsin S was observed to inhibit cathepsin L with a K(i) of 0.08 nM, yet cathepsin L propeptide inhibited cathepsin S only poorly. To identify the respective structural correlates we engineered chimeric propeptides and compared their inhibitory specificity with the wild-types. Specificity resided in the N-terminal part, strongly suggesting that the backbone of the prodomain was the underlying structure.
Collapse
Affiliation(s)
- Y L Guo
- Fakultät für Chemie und Pharmazie, Universität Tübingen, Morgenstelle 8, D-72076, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Shoemaker K, Holloway JL, Whitmore TE, Maurer M, Feldhaus AL. Molecular cloning, chromosome mapping and characterization of a testis-specific cystatin-like cDNA, cystatin T. Gene 2000; 245:103-8. [PMID: 10713450 DOI: 10.1016/s0378-1119(00)00030-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The cystatin superfamily of cysteine proteinase inhibitors consists of three major families. In the present study, we report the cloning of the cDNA for mouse cystatin T, which is related to family 2 cystatins. The deduced amino acid sequence of cystatin T contains regions of significant sequence homology including the four highly conserved cysteine residues in exact alignment with all cystatin family 2 members. However, cystatin T lacks some of the conserved motifs believed to be important for inhibition of cysteine proteinase activity. These characteristics are seen in two other recently cloned genes, CRES and Testatin. Thus, cystatin T appears to be the third member of the CRES/Testatin subgroup of family 2 cystatins. The mouse cystatin T gene was mapped on a region of chromosome 2 that contains a cluster of cystatin genes, including cystatin C and CRES. Northern blot analysis demonstrated that expression of mouse cystatin T is highly restricted to the mouse testis. Thus, a shared characteristic of the cystatin family 2 subgroup members is an expression pattern limited primarily to the male reproductive tract.
Collapse
Affiliation(s)
- K Shoemaker
- Department of Genetics, ZymoGenetics Inc., Seattle, WA, USA
| | | | | | | | | |
Collapse
|
45
|
Inflammatory Mediators Regulate Cathepsin S in Macrophages and Microglia: A Role in Attenuating Heparan Sulfate Interactions. Mol Med 1999. [DOI: 10.1007/bf03402068] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
46
|
Neurotrophic Factors Regulate Cathepsin S in Macrophages and Microglia: A Role in the Degradation of Myelin Basic Protein and Amyloid β Peptide. Mol Med 1999. [DOI: 10.1007/bf03402069] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Stoka V, Lenarcic B, Cazzulo JJ, Turk V. Cathepsin S and cruzipain are inhibited by equistatin from Actinia equina. Biol Chem 1999; 380:589-92. [PMID: 10384966 DOI: 10.1515/bc.1999.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cathepsin S has been isolated for the first time from human tissue. It has a molecular mass of 24 kDa and an isoelectric point in the range of 8.2 to 8.6. The enzyme is inhibited by equistatin, which belongs to the thyropins, a new family of protein inhibitors, with an inhibition constant of Ki = 0.40 +/- 0.07 nM. Cruzipain, a cathepsin L-like enzyme sharing a 130 amino acid long C-terminal extension, is also strongly inhibited by equistatin (Ki = 0.028 +/- 0.006 nM). Together with previously reported data, these results further indicate that a functional heterogeneity exists among thyropin inhibitors, as demonstrated by their interaction with cathepsin S and cruzipain.
Collapse
Affiliation(s)
- V Stoka
- Department of Biochemistry and Molecular Biology, J. Stefan Institute, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
48
|
Bühling F, Gerber A, Häckel C, Krüger S, Köhnlein T, Brömme D, Reinhold D, Ansorge S, Welte T. Expression of cathepsin K in lung epithelial cells. Am J Respir Cell Mol Biol 1999; 20:612-9. [PMID: 10100992 DOI: 10.1165/ajrcmb.20.4.3405] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alveolar and bronchial epithelial cells have been shown to have regulatory functions in the maintenance of lung structure and function. Recent evidence supports the premise that these cells can synthesize a variety of extracellular matrix components in vitro, suggesting an active participation in connective tissue remodeling. Their possible role in extracellular matrix degradation, however, is less clear. This study addresses the question of whether alveolar and bronchial epithelial cells express the highly collagenolytic and elastinolytic cysteine proteinase cathepsin K, which has recently been newly described. We provide evidence that the epithelial cell lines A549 and BEAS-2B are capable of expressing cathepsin K messenger RNA. Furthermore, we show that cathepsin K is expressed in normal bronchial epithelial cells. Western blot analyses of human lung-tissue lysates revealed specific immunoreactivity at molecular weights of 46 and 27 kD, corresponding to the procathepsin and the mature cathepsin K. Immunohistochemical analyses showed a pronounced staining of bronchial epithelial cells and in single alveolar epithelial cells. Using a specific fluorogenic cytochemical assay, the intracellular activity of the enzyme was localized. These findings demonstrate that bronchial and alveolar epithelial cells are capable of expressing cathepsin K, which could be of considerable importance for remodeling processes of the extracellular matrix in the lung.
Collapse
Affiliation(s)
- F Bühling
- Institute of Immunology, Institute of Pathology, Department of Pneumology and Critical Care, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
LaLonde JM, Zhao B, Smith WW, Janson CA, DesJarlais RL, Tomaszek TA, Carr TJ, Thompson SK, Oh HJ, Yamashita DS, Veber DF, Abdel-Meguid SS. Use of papain as a model for the structure-based design of cathepsin K inhibitors: crystal structures of two papain-inhibitor complexes demonstrate binding to S'-subsites. J Med Chem 1998; 41:4567-76. [PMID: 9804696 DOI: 10.1021/jm980249f] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Papain has been used as a surrogate enzyme in a drug design effort to obtain potent and selective inhibitors of cathepsin K, a new member of the papain superfamily of cysteine proteases that is selectively and highly expressed in osteoclasts and is implicated in bone resorption. Here we report the crystal structures of two papain-inhibitor complexes and the rational design of novel cathepsin K inhibitors. Unlike previously known crystal structures of papain-inhibitor complexes, our papain structures show ligand binding extending deep within the S'-subsites. The two inhibitor complexes, carbobenzyloxyleucinyl-leucinyl-leucinal and carbobenzyloxy-L-leucinyl-L-leucinyl methoxymethyl ketone, were refined to 2.2- and 2.5-A resolution with R-factors of 0.190 and 0. 217, respectively. The S'-subsite interactions with the inhibitors are dominated by an aromatic-aromatic stacking and an oxygen-aromatic ring edge interaction. The knowledge of S'-subsite interactions led to a design strategy for an inhibitor spanning both subsites and yielded a novel, symmetric inhibitor selective for cathepsin K. Simultaneous exploitation of both S- and S'-sites provides a general strategy for the design of cysteine protease inhibitors having high specificity to their target enzymes.
Collapse
Affiliation(s)
- J M LaLonde
- Departments of Structural Biology, Protein Biochemistry, Physical and Structural Chemistry, Molecular Recognition, and Medicinal Chemistry, SmithKline Beecham Pharmaceuticals, Prussia, Pennsylvania 19406, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stebbins JW, Jaffe H, Möller JR. Characterization of myelin-associated glycoprotein (MAG) proteolysis in the human central nervous system. Neurochem Res 1998; 23:1005-10. [PMID: 9690744 DOI: 10.1023/a:1021092624046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purified human central nervous system myelin contains an endogenous cysteine protease which degrades the 100-kDa myelin-associated glycoprotein into a slightly smaller 90-kDa derivative called dMAG, and which has been implicated in demyelinating diseases. The native proteolytic site in human MAG was determined in order to characterize this cysteine protease in humans further. This was accomplished by identifying the carboxy-terminus of purified dMAG. The results of these experiments, in conjunction with peptidolysis assays of myelin, demonstrated that the enzyme which proteolyses MAG is extracellular and has cathepsin L-like specificity. Furthermore, it was shown that this cathepsin L-like activity potentially was regulated by the endogenous extracellular inhibitor cystatin C.
Collapse
Affiliation(s)
- J W Stebbins
- Demyelinating Disorders Unit, LMCN, NINDS, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|