1
|
Shi C, Wu T, He Y, Zhang Y, Fu D. Recent advances in bone-targeted therapy. Pharmacol Ther 2020; 207:107473. [PMID: 31926198 DOI: 10.1016/j.pharmthera.2020.107473] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
The coordination between bone resorption and bone formation plays an essential role in keeping the mass and microstructure integrity of the bone in a steady state. However, this balance can be disturbed in many pathological conditions of the bone. Nowadays, the classical modalities for treating bone-related disorders are being challenged by severe obstacles owing to low tissue selectivity and considerable safety concerns. Moreover, as a highly mineralized tissue, the bone shows innate rigidity, low permeability, and reduced blood flow, features that further hinder the effective treatment of bone diseases. With the development of bone biology and precision medicine, one novel concept of bone-targeted therapy appears to be promising, with improved therapeutic efficacy and minimized systematic toxicity. Here we focus on the recent advances in bone-targeted treatment based on the unique biology of bone tissues. We summarize commonly used bone-targeting moieties, with an emphasis on bisphosphonates, tetracyclines, and biomimetic bone-targeting moieties. We also introduce potential bone-targeting strategies aimed at the bone matrix and major cell types in the bone. Based on these bone-targeting moieties and strategies, we discuss the potential applications of targeted therapy to treat bone diseases. We expect that this review will put together useful insights to help with the search for therapeutic efficacy in bone-related conditions.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Yu He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Dehao Fu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China.
| |
Collapse
|
2
|
Xiao L, Zhou Y, Friis T, Beagley K, Xiao Y. S1P-S1PR1 Signaling: the "Sphinx" in Osteoimmunology. Front Immunol 2019; 10:1409. [PMID: 31293578 PMCID: PMC6603153 DOI: 10.3389/fimmu.2019.01409] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
The fundamental interaction between the immune and skeletal systems, termed as osteoimmunology, has been demonstrated to play indispensable roles in the maintenance of balance between bone resorption and formation. The pleiotropic sphingolipid metabolite, sphingosine 1-phosphate (S1P), together with its cognate receptor, sphingosine-1-phosphate receptor-1 (S1PR1), are known as key players in osteoimmunology due to the regulation on both immune system and bone remodeling. The role of S1P-S1PR1 signaling in bone remodeling can be directly targeting both osteoclastogenesis and osteogenesis. Meanwhile, inflammatory cell function and polarization in both adaptive immune (T cell subsets) and innate immune cells (macrophages) are also regulated by this signaling axis, suggesting that S1P-S1PR1 signaling could aslo indirectly regulate bone remodeling via modulating the immune system. Therefore, it could be likely that S1P-S1PR1 signaling might take part in the maintenance of continuous bone turnover under physiological conditions, while lead to the pathogenesis of bone deformities during inflammation. In this review, we summarized the immunological regulation of S1P-S1PR1 signal axis during bone remodeling with an emphasis on how osteo-immune regulators are affected by inflammation, an issue with relevance to chronical bone disorders such as rheumatoid arthritis, spondyloarthritis and periodontitis.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Wang S, Xie L, Zhang Y, Xu P, Liu A. Expression of Prostaglandin E 2 Receptors in Acquired Middle Ear Cholesteatoma. Clin Exp Otorhinolaryngol 2017; 11:17-22. [PMID: 28838229 PMCID: PMC5831662 DOI: 10.21053/ceo.2017.00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/20/2017] [Accepted: 08/02/2017] [Indexed: 11/22/2022] Open
Abstract
Objectives To investigate the expression of prostaglandin E2 receptor subtypes, E-prostanoid (EP) 1–4 receptors, in acquired cholesteatoma and its possible role in the pathologic process of this disorder. Methods Specimens of human acquired cholesteatoma were obtained from 29 patients and 19 skin biopsies of normal external auditory canal were as controls. The mRNA and protein expression of EP receptors was assessed by quantitative real-time polymerase chain reaction, immunohistochemistry and Western blot. Results In acquired cholesteatoma, EP1–EP4 receptors were mainly expressed on squamous epithelium and subepithelial infiltrated inflammatory cells. In external auditory canal skin, EP1–EP4 receptors were mainly expressed on squamous epithelium and glandular epithelium. The expression of EP4 receptor on mRNA and protein levels were significant lower in acquired cholesteatoma compared with controls. EP1–EP3 receptors had no significant difference between the experimental and control group. Conclusion Low expression of EP4 may play a crucial role in the pathologic process of inflammation reaction and bone destruction in acquired cholesteatoma, but not EP1, EP2, or EP3 receptors.
Collapse
Affiliation(s)
- Sujie Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xie
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Xu
- Department of Pathology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiguo Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Hiyama A, Yokoyama K, Nukaga T, Sakai D, Mochida J. Response to tumor necrosis factor-α mediated inflammation involving activation of prostaglandin E2 and Wnt signaling in nucleus pulposus cells. J Orthop Res 2015; 33:1756-68. [PMID: 26123748 DOI: 10.1002/jor.22959] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/30/2015] [Indexed: 02/04/2023]
Abstract
The cyclooxygenase 2 (COX-2) product, prostaglandin E2 (PGE2 ), acts through a family of G protein-coupled receptors designated E-prostanoid (EP) receptors that mediate intracellular signaling by multiple pathways. However, it is not known whether crosstalk between tumor necrosis factor-α(TNF-α)-PGE2 -mediated signaling and Wnt signaling plays a role in the regulation of intervertebral disc (IVD) cells. In this study, we investigated the relationship between TNF-α-PGE2 signaling and Wnt signaling in IVD cells. TNF-α increased the expression of COX-2 in IVD cells. The EP receptors EP1, EP3, and EP4 were expressed in IVD cells, and TNF-α significantly increased PGE2 production. Stimulation with TNF-α also upregulated EP3 and EP4 mRNA and protein expression in IVD cells. The inductive effect of the EP3 and EP4 receptors on Topflash promoter activity was confirmed through gain- and loss-of-function studies using selective EP agonists and antagonists. PGE2 treatment activated Wnt-β-catenin signaling through activation of EP3. We conclude that TNF-α-induced COX-2 and PGE2 stimulate Wnt signaling and activate Wnt target genes. Suppression of the EP3 receptor via TNF-α-PGE2 signaling seems to suppress IVD degeneration by controlling the activation of Wnt signaling. These findings may help identify the underlying mechanism and role of Wnt signaling in IVD degeneration.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Katsuya Yokoyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tadashi Nukaga
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Joji Mochida
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
5
|
Hamazaki K, Kawaguchi Y, Nakano M, Yasuda T, Seki S, Hori T, Hamazaki T, Kimura T. Mead acid (20:3n-9) and n-3 polyunsaturated fatty acids are not associated with risk of posterior longitudinal ligament ossification: results of a case-control study. Prostaglandins Leukot Essent Fatty Acids 2015; 96:31-6. [PMID: 25669698 DOI: 10.1016/j.plefa.2015.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/26/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) involves the replacement of ligamentous tissue with ectopic bone. Although genetics and heritability appear to be involved in the development of OPLL, its pathogenesis remains to be elucidated. Given previous findings that 5,8,11-eicosatrienoic acid [20:3n-9, Mead acid (MA)] has depressive effects on osteoblastic activity and anti-angiogenic effects, and that n-3 polyunsaturated fatty acids (PUFAs) have a preventive effect on heterotopic ossification, we hypothesized that both fatty acids would be involved in OPLL development. To examine the biological significance of these and other fatty acids in OPLL, we conducted this case-control study involving 106 patients with cervical OPLL and 109 age matched controls. Fatty acid composition was determined from plasma samples by gas chromatography. Associations between fatty acid levels and incident OPLL were evaluated by logistic regression. Contrary to our expectations, we found no significant differences between patients and controls in the levels of MA or n-3 PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid). Logistic regression analysis did not reveal any associations with OPLL risk for MA or n-3 PUFAs. In conclusion, no potential role was found for MA or n-3 PUFAs in ectopic bone formation in the spinal canal.
Collapse
Affiliation(s)
- Kei Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan.
| | - Yoshiharu Kawaguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Masato Nakano
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Taketoshi Yasuda
- Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shoji Seki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takeshi Hori
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | - Tomoatsu Kimura
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
6
|
Nissimov JN, Das Chaudhuri AB. Hair curvature: a natural dialectic and review. Biol Rev Camb Philos Soc 2014; 89:723-66. [PMID: 24617997 DOI: 10.1111/brv.12081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/18/2013] [Accepted: 01/01/2014] [Indexed: 12/19/2022]
Abstract
Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways, and others, can explain many alternatives and specific variations of hair bending phenotypes. Mechanisms for hair papilla budding or its division by bisection or fission can explain MPC formation. Epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) transitions, acting in collaboration with epithelial-mesenchymal communications are also considered as mechanisms affecting hair growth and its bending and twisting. These may be treated as sub-mechanisms of an overall development from neural-crest stem cell (NCSC) lineages to differentiated hair follicle (HF) cell types, thus providing a unified framework for hair growth and development.
Collapse
|
7
|
Lin HN, O’Connor JP. Immunohistochemical localization of key arachidonic acid metabolism enzymes during fracture healing in mice. PLoS One 2014; 9:e88423. [PMID: 24516658 PMCID: PMC3917894 DOI: 10.1371/journal.pone.0088423] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 01/08/2014] [Indexed: 11/18/2022] Open
Abstract
This study investigated the localization of critical enzymes involved in arachidonic acid metabolism during the initial and regenerative phases of mouse femur fracture healing. Previous studies found that loss of cyclooxygenase-2 activity impairs fracture healing while loss of 5-lipoxygenase activity accelerates healing. These diametric results show that arachidonic acid metabolism has an essential function during fracture healing. To better understand the function of arachidonic acid metabolism during fracture healing, expression of cyclooxygenase-1 (COX-1), cyclooxygenase -2 (COX-2), 5-lipoxygenase (5-LO), and leukotriene A4 hydrolase (LTA4H) was localized by immunohistochemistry in time-staged fracture callus specimens. All four enzymes were detected in leukocytes present in the bone marrow and attending inflammatory response that accompanied the fracture. In the tissues surrounding the fracture site, the proportion of leukocytes expressing COX-1, COX-2, or LTA4H decreased while those expressing 5-LO remained high at 4 and 7 days after fracture. This may indicate an inflammation resolution function for 5-LO during fracture healing. Only COX-1 was consistently detected in fracture callus osteoblasts during the later stages of healing (day 14 after fracture). In contrast, callus chondrocytes expressed all four enzymes, though 5-LO appeared to be preferentially expressed in newly differentiated chondrocytes. Most interestingly, osteoclasts consistently and strongly expressed COX-2. In addition to bone surfaces and the growth plate, COX-2 expressing osteoclasts were localized at the chondro-osseous junction of the fracture callus. These observations suggest that arachidonic acid mediated signaling from callus chondrocytes or from callus osteoclasts at the chondro-osseous junction regulate fracture healing.
Collapse
Affiliation(s)
- Hsuan-Ni Lin
- Department of Biochemistry & Molecular Biology, Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - J. Patrick O’Connor
- Department of Biochemistry & Molecular Biology, Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
8
|
Al-Nouri D, Al-Khalifa A, Shahidi F. Long-term supplementation of dietary omega-6/omega-3 ratios alters bone marrow fatty acid and biomarkers of bone metabolism in growing rabbits. J Funct Foods 2012. [DOI: 10.1016/j.jff.2012.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
9
|
Local osteogenic expression of cyclooxygenase-2 and systemic response in porcine models of osteomyelitis. Prostaglandins Other Lipid Mediat 2012; 97:103-8. [PMID: 22266364 DOI: 10.1016/j.prostaglandins.2012.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/19/2011] [Accepted: 01/06/2012] [Indexed: 01/23/2023]
Abstract
It is suggested that cyclooxygenase 2 (COX-2) derived prostaglandins contributes to the progressive bone loss seen in osteomyelitis lesions. In the present study we examined the expression of COX-2 in bones from 23 pigs with experimental osteomyelitis. Osteomyelitis was induced with Staphylococcus aureus and groups of animals were euthanized following 6 h, 12 h, 24 h, 2 days, 5 days, 11 days and 15 days, respectively. Expression of COX-2 was evaluated immunohistochemically and combined with characterization of morphological changes in bone tissue. Furthermore, the serum concentrations of alkaline phosphatase and haptoglobin were measured. Extensive COX-2 expression by osteoblasts was present 2 days after inoculation together with many activated osteoclasts. Simultaneously, the serum concentration of alkaline phosphatase decreased whereas the haptoglobin concentration increased. This is the first in vivo study showing an early wave of COX-2 mediated bone resorption during osteomyelitis. Therefore, treatment aiming to reduce the break down of bone tissue directed by the COX-2 pathway might be suggested early in the course of the disease.
Collapse
|
10
|
Genetos DC, Yellowley CE, Loots GG. Prostaglandin E2 signals through PTGER2 to regulate sclerostin expression. PLoS One 2011; 6:e17772. [PMID: 21436889 PMCID: PMC3059227 DOI: 10.1371/journal.pone.0017772] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 02/14/2011] [Indexed: 11/19/2022] Open
Abstract
The Wnt signaling pathway is a robust regulator of skeletal homeostasis. Gain-of-function mutations promote high bone mass, whereas loss of Lrp5 or Lrp6 co-receptors decrease bone mass. Similarly, mutations in antagonists of Wnt signaling influence skeletal integrity, in an inverse relation to Lrp receptor mutations. Loss of the Wnt antagonist Sclerostin (Sost) produces the generalized skeletal hyperostotic condition of sclerosteosis, which is characterized by increased bone mass and density due to hyperactive osteoblast function. Here we demonstrate that prostaglandin E2 (PGE2), a paracrine factor with pleiotropic effects on osteoblasts and osteoclasts, decreases Sclerostin expression in osteoblastic UMR106.01 cells. Decreased Sost expression correlates with increased expression of Wnt/TCF target genes Axin2 and Tcf3. We also show that the suppressive effect of PGE2 is mediated through a cyclic AMP/PKA pathway. Furthermore, selective agonists for the PGE2 receptor EP2 mimic the effect of PGE2 upon Sost, and siRNA reduction in Ptger2 prevents PGE2-induced Sost repression. These results indicate a functional relationship between prostaglandins and the Wnt/β-catenin signaling pathway in bone.
Collapse
Affiliation(s)
- Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America.
| | | | | |
Collapse
|
11
|
In vivo prostaglandin E2 treatment alters the bone marrow microenvironment and preferentially expands short-term hematopoietic stem cells. Blood 2009; 114:4054-63. [PMID: 19726721 DOI: 10.1182/blood-2009-03-205823] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microenvironmental signals can determine hematopoietic stem cell (HSC) fate choices both directly and through stimulation of niche cells. In the bone marrow, prostaglandin E(2) (PGE(2)) is known to affect both osteoblasts and osteoclasts, whereas in vitro it expands HSCs and affects differentiation of hematopoietic progenitors. We hypothesized that in vivo PGE(2) treatment could expand HSCs through effects on both HSCs and their microenvironment. PGE(2)-treated mice had significantly decreased number of bone trabeculae, suggesting disruption of their microarchitecture. In addition, in vivo PGE(2) increased lineage(-) Sca-1(+) c-kit(+) bone marrow cells without inhibiting their differentiation. However, detailed immunophenotyping demonstrated a PGE(2)-dependent increase in short-term HSCs/multipotent progenitors (ST-HSCs/MPPs) only. Bone marrow cells transplanted from PGE(2) versus vehicle-treated donors had superior lymphomyeloid reconstitution, which ceased by 16 weeks, also suggesting that ST-HSCs were preferentially expanded. This was confirmed by serial transplantation studies. Thus in vivo PGE(2) treatment, probably through a combination of direct and microenvironmental actions, preferentially expands ST-HSCs in the absence of marrow injury, with no negative impact on hematopoietic progenitors or long-term HSCs. These novel effects of PGE(2) could be exploited clinically to increase donor ST-HSCs, which are highly proliferative and could accelerate hematopoietic recovery after stem cell transplantation.
Collapse
|
12
|
Li JKJ, Lin JCA, Liu HC, Chang WHS. Cytokine Release from Osteoblasts in Response to Different Intensities of Pulsed Electromagnetic Field Stimulation. Electromagn Biol Med 2009; 26:153-65. [PMID: 17886003 DOI: 10.1080/15368370701572837] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We use an in-vitro osteoblast cell culture model to investigate the effects of low-frequency (7.5 Hz) pulsed electromagnetic field (PEMF) stimulation on osteoblast population, cytokines (prostaglandin E(2) (PGE(2)), transforming growth factor beta1(TGFbeta1), and alkaline phosphatase (ALP) activity to find the optimal intensity of PEMF for osteoblast growth. The results demonstrate that PEMF can stimulate osteoblast growth, release of TGFbeta1, and, in addition, an increase of ALP activity. The synthesis and release of PGE(2) in the culture medium are reduced with increasing numbers of cells. Higher intensity does not necessarily mean increased osteoblast growth, and the most efficient intensity is about 2 mV/cm in this case. Although the lower intensities of the PEMF are yet to be determined, the results of this study can shed light on the mechanisms of PEMF stimulation on non union fracture therapy and osteoporosis prevention in the future.
Collapse
Affiliation(s)
- Jimmy Kuan-Jung Li
- Bone Tissue Engineering Research Lab, Center for Nano Bioengineering, Chung Yuan Christian University, Chung Li, Taiwan, Republic of China
| | | | | | | |
Collapse
|
13
|
Li J, Chang WH, Jan HW, Ruaan RC, Liu HC, Sun J. Optimum Parameters of Specific 7.5 Hz Single Pulsed Electromagnetic Field Stimulation on Osteoblast Growth. Electromagn Biol Med 2009. [DOI: 10.1081/jbc-120024619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Silva GA, Coutinho OP, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 2. Applications in bone. J Tissue Eng Regen Med 2008; 1:97-109. [PMID: 18038398 DOI: 10.1002/term.1] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Materials in particulate form have been the subjects of intensive research in view of their use as drug delivery systems. While within this application there are still issues to be addressed, these systems are now being regarded as having a great potential for tissue engineering applications. Bone repair is a very demanding task, due to the specific characteristics of skeletal tissues, and the design of scaffolds for bone tissue engineering presents several difficulties. Materials in particulate form are now seen as a means of achieving higher control over parameters such as porosity, pore size, surface area and the mechanical properties of the scaffold. These materials also have the potential to incorporate biologically active molecules for release and to serve as carriers for cells. It is believed that the combination of these features would create a more efficient approach towards regeneration. This review focuses on the application of materials in particulate form for bone tissue engineering. A brief overview of bone biology and the healing process is also provided in order to place the application in its broader context. An original compilation of molecules with a documented role in bone tissue biology is listed, as they have the potential to be used in bone tissue engineering strategies. To sum up this review, examples of works addressing the above aspects are presented.
Collapse
Affiliation(s)
- G A Silva
- 3Bs Research Group--Biomaterials, Biodegradables, Biomimetics-University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | |
Collapse
|
15
|
Milcan A, Colak M, Eskandari G. Misoprostol enhances early fracture healing: a preliminary biochemical study on rats. Bone 2007; 41:611-3. [PMID: 17681893 DOI: 10.1016/j.bone.2007.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/14/2007] [Accepted: 07/04/2007] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to demonstrate if misoprostol, a methyl derivative of prostaglandin E1, enhanced fracture healing in 54 male adult Sprague-Dawley rats. The base level of serum alkaline phosphatase (ALP) in 6 randomly selected rats was measured. Rats were then randomly separated into 3 groups and their tibias fractured. First and second groups received misoprostol for 4 weeks, 100 and 300 microg/kg/day respectively via oral route. The third group had no misoprostol. p<0.05 was considered significant. Elevation of ALP level in the 2nd week was significant in group 1, it was not in group 2 or 3; in the 4th week it was significant in all groups. In conclusion dosage dependent osteoinductive effect of misoprostol was shown in the early bone healing period. Biochemical findings in the latter period did not show any inhibitory effect of misoprostol on bone healing. Further studies, probably biomechanical, may be required for the final verdict.
Collapse
Affiliation(s)
- A Milcan
- University of Mersin, Faculty of Medicine, Department of Orthopaedics and Traumatology, Turkey.
| | | | | |
Collapse
|
16
|
Abstract
Many systemic and local hormones influence bone growth and remodelling. These include calcium regulating hormones, systemic growth regulators and local growth factors. Parathyroid hormone (PHT) is a potent stimulator of osteoclastic bone resorption and a direct inhibitor of osteoblastic collagen synthesis. However, intermittent low-dose PTH administration can increase bone formation in vivo. PTH may act indirectly via local factors. It has been shown to increase prostaglandin E2 (PGE2) and transforming growth factor beta (TGF-beta) release from bone. Both PGE2 and TGF-beta have complex effects on bone metabolism and are likely to be physiological regulators of bone remodelling. Oestradiol has been shown to inhibit bone resorption in vivo but not in vitro. While there is evidence for oestrogen receptors in cultured bone cells, the effect could still be indirect. Oestradiol can inhibit bone PGE2 release in an in vivo-in vitro model in the rat. Glucocorticoids are potent inhibitors of bone formation and inhibit PGE2 and interleukin 1 production both in vivo and in vitro. While many regulatory factors affect prostaglandin production in bone, the complex effects of PGE2 on bone metabolism make it difficult to predict the ultimate response. The major effects of PGE2 are stimulation of bone formation and resorption and an increase in bone turnover. However, opposite effects can occur at certain times and concentrations. Interactions among these factors could explain some physiological, pathological, and therapeutic responses in skeletal tissue.
Collapse
Affiliation(s)
- L G Raisz
- University of Connecticut Health Center, Farmington 06032
| |
Collapse
|
17
|
Xu Z, Choudhary S, Okada Y, Voznesensky O, Alander C, Raisz L, Pilbeam C. Cyclooxygenase-2 gene disruption promotes proliferation of murine calvarial osteoblasts in vitro. Bone 2007; 41:68-76. [PMID: 17467356 PMCID: PMC1993538 DOI: 10.1016/j.bone.2007.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 02/21/2007] [Accepted: 03/12/2007] [Indexed: 12/31/2022]
Abstract
Cyclooxygenase-2 (COX-2) is highly expressed in osteoblasts, and COX-2 produced prostaglandins (PGs) can increase osteoblastic differentiation in vitro. The goal of this study was to examine effects of COX-2 expression on calvarial osteoblastic proliferation and apoptosis. Primary osteoblasts (POBs) were cultured from calvariae of COX-2 wild-type (WT) and knockout (KO) mice. POB proliferation was evaluated by (3)H-thymidine incorporation and analysis of cell replication and cell cycle distribution by flow cytometry. POB apoptosis was evaluated by annexin and PI staining on flow cytometry. As expected, PGE(2) production and alkaline phosphatase (ALP) activity were increased in WT cultures compared to KO cultures. In contrast, cell numbers were decreased in WT compared to KO cells by day 4 of culture. Proliferation, measured on days 3-7 of culture, was 2-fold greater in KO than in WT POBs and associated with decreased Go/G1 and increased S cell cycle distribution. There was no significant effect of COX-2 genotype on apoptosis under basal culture conditions on day 5 of culture. Cell growth was decreased in KO POBs by the addition of PGE(2) or a protein kinase A agonist and increased in WT POBs by the addition of NS398, a selective COX-2 inhibitor. In contrast, differentiation and cell growth in marrow stromal cell (MSC) cultures, evaluated by ALP and crystal violet staining respectively, were increased in MSCs from WT mice compared to MSCs from KO mice, and exogenous PGE(2) increased cell growth in KO MSC cultures. We conclude that PGs secondary to COX-2 expression decrease osteoblastic proliferation in cultured calvarial cells but increase growth of osteoblastic precursors in MSC cultures.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Shilpa Choudhary
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Yosuke Okada
- First department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 Japan
| | - Olga Voznesensky
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Cynthia Alander
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Lawrence Raisz
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Carol Pilbeam
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
18
|
Wu X, Zeng LH, Taniguchi T, Xie QM. Activation of PKA and phosphorylation of sodium-dependent vitamin C transporter 2 by prostaglandin E2 promote osteoblast-like differentiation in MC3T3-E1 cells. Cell Death Differ 2007; 14:1792-801. [PMID: 17585336 DOI: 10.1038/sj.cdd.4402190] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Sodium-dependent vitamin C transporter (SVCT) 2-mediated L-ascorbic acid (AA) uptake is required in osteoblast-like differentiation of MC3T3-E1 cells, and prostaglandin E2 (PGE2) is among the most important local factors in bone formation, but the detailed mechanism by which PGE2 induces osteoblast differentiation remains obscure. We revealed that PGE2 induced AA uptake and osteoblast-like differential markers including alkaline phosphatase, collagen, osteocalcin expression, and mineralization in MC3T3-E1 cells. Inhibition of AA uptake by SVCT2 short isoform functioning as a dominant-negative mutant not only robustly attenuated PGE2-induced markers expression and mineralization, but also decreased their basal levels. However, upregulation of AA uptake resulted from PGE2-induced plasma membrane translocation of cytoplasm SVCT2, and this effect was abolished by pretreatment with EP4 receptor antagonist, AH-23848B or cAMP-dependent protein kinase A (PKA) inhibitor, H-89. Moreover, we showed SVCT2 physically interacted with PKA in immunoprecipitates, and PKA phosphorylated SVCT2 in vitro and in intact cells at Ser402 and Ser639 sites; however, mutation of Ser402 or/and Ser639 in SVCT2 severely diminished SVCT2 translocation in response to PGE2. Together, these results suggest that PGE2-induced SVCT2 plasma membrane translocation through EP4 receptor and subsequent phosphorylation of SVCT2 at Ser402 and Ser639 sites by PKA results in an increase of AA uptake and consequent promotion of osteoblast-like differentiation in MC3T3-E1 cells.
Collapse
Affiliation(s)
- X Wu
- Zhejiang Respiratory Drugs Research Laboratory of State Foods and Drugs Administration of China, Medical School of Zhejiang University, No. 388 Yuhangtang Road, Hangzhou 310058, China
| | | | | | | |
Collapse
|
19
|
Abstract
A major unmet need in the medical field today is the availability of suitable treatments for the ever-increasing incidence of osteoporosis and the treatment of bone deficit conditions. Although therapies exist which prevent bone loss, the options are extremely limited for patients once a substantial loss of skeletal bone mass has occurred. Patients who have reduced bone mass are predisposed to fractures and further morbidity. The FDA recently approved PTH (1-34) (Teriparatide) for the treatment of postmenopausal osteoporosis after both preclinical animal and clinical human studies indicated it induces bone formation. This is the only approved bone anabolic agent available but unfortunately it has limited use, it is relatively expensive and difficult to administer. Consequently, the discovery of low cost orally available bone anabolic agents is critical for the future treatment of bone loss conditions. The intricate process of bone formation is co-ordinated by the action of many different bone growth factors, some stored in bone matrix and others released into the bone microenvironment from surrounding cells. Although all these factors play important roles, the bone morphogenetic proteins (BMPs) clearly play a central role in both bone cartilage formation and repair. Recent research into the regulation of the BMP pathway has led to the discovery of a number of small molecular weight compounds as candidate bone anabolic agents. These agents may usher in a new wave of more innovative and versatile treatments for osteoporosis as well as orthopedic and dental indications.
Collapse
|
20
|
Shinoda Y, Yamaguchi M, Ogata N, Akune T, Kubota N, Yamauchi T, Terauchi Y, Kadowaki T, Takeuchi Y, Fukumoto S, Ikeda T, Hoshi K, Chung UI, Nakamura K, Kawaguchi H. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem 2006; 99:196-208. [PMID: 16598753 DOI: 10.1002/jcb.20890] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since interaction between bone and lipid metabolism has been suggested, this study investigated the regulation of bone metabolism by adiponectin, a representative adipokine, by analyzing deficient and overexpressing transgenic mice. We initially confirmed that adiponectin and its receptors were expressed in osteoblastic and osteoclastic cells, indicating that adiponectin can act on bone not only through an endocrine pathway as a hormone secreted from fat tissue, but also through an autocrine/paracrine pathway. There was no abnormality in bone mass or turnover of adiponectin-deficient (Ad-/-) mice, possibly due to an equivalent balance of the two pathways. In the culture of bone marrow cells from the Ad-/- mice, osteogenesis was decreased compared to the wild-type (WT) cell culture, indicating a positive effect of endogenous adiponectin through the autocrine/paracrine pathway. To examine the endocrine action of adiponectin, we analyzed transgenic mice overexpressing adiponectin in the liver, and found no abnormality in the bone. Addition of recombinant adiponectin in cultured osteoprogenitor cells suppressed osteogenesis, suggesting that the direct action of circulating adiponectin was negative for bone formation. In the presence of insulin, however, this suppression was blunted, and adiponectin enhanced the insulin-induced phosphorylations of the main downstream molecule insulin receptor substrate-1 and Akt. These lines of results suggest three distinct adiponectin actions on bone formation: a positive action through the autocrine/paracrine pathway by locally produced adiponectin, a negative action through the direct pathway by circulating adiponectin, and a positive action through the indirect pathway by circulating adiponectin via enhancement of the insulin signaling.
Collapse
Affiliation(s)
- Yusuke Shinoda
- Department of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Harten RD, Svach DJ, Schmeltzer R, Uhrich KE. Salicylic acid-derived poly(anhydride-esters) inhibit bone resorption and formationin vivo. J Biomed Mater Res A 2005; 72:354-62. [PMID: 15678485 DOI: 10.1002/jbm.a.30184] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The objective of this study was to investigate the effects of a novel polymer that biodegrades into salicylic acid (SA) on the healing of critical sized long bone defects. Microspheres of the homopolymer, or a copolymer containing 50% less of the SA, were packed into 5-mm mid-diaphyseal defects in rat femurs. Control animals received collagen sponge implants. After 4 and 8 weeks of implantation, bone healing was evaluated using microradiography and quantitative histomorphometry. Four weeks postsurgery, significantly less new bone was formed in both of the polymer groups (p<0.038). Reduced bone loss was also noted with the polymers at this time, although it was not statistically significant. However, at 8 weeks postsurgery, a statistically significant reduction in bone loss was observed in both of the polymer groups compared with controls (p<0.0072). Both polymers seemed to elicit identical tissue responses because there were no differences detected between the homopolymer and copolymer materials at either time point. These results indicate that locally released SA can significantly reduce both bone loss and bone formation in this animal model.
Collapse
Affiliation(s)
- Robert D Harten
- Department of Orthopaedics, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA.
| | | | | | | |
Collapse
|
22
|
Alesci S, De Martino MU, Ilias I, Gold PW, Chrousos GP. Glucocorticoid-induced osteoporosis: from basic mechanisms to clinical aspects. Neuroimmunomodulation 2005; 12:1-19. [PMID: 15756049 DOI: 10.1159/000082360] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 03/23/2004] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoid (GC)-induced osteoporosis (GCOP) is the most common cause of osteoporosis in adults aged 20-45 years as well as the most common cause of iatrogenic osteoporosis. GC excess, either endogenous or exogenous, induces bone loss in 30-50% of cases. Indeed, bone loss leading to fractures is perhaps the most incapacitating, sometimes partially irreversible, complication of GC therapy. Nevertheless, GCOP is often underdiagnosed and left untreated. The following article provides an update on the cellular and molecular mechanisms implicated in the pathophysiology of GC-induced bone loss, as well as some guidelines on diagnostic, preventive and therapeutic strategies for this medical condition, in an effort to promote a better knowledge and greater awareness of GCOP by both the patient and the physician.
Collapse
Affiliation(s)
- Salvatore Alesci
- Clinical Neuroendocrinology Branch, National Institute of Mental Health, Bethesda, MD 20892-1284, USA.
| | | | | | | | | |
Collapse
|
23
|
Kartsogiannis V, Ng KW. Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol 2004; 228:79-102. [PMID: 15541574 DOI: 10.1016/j.mce.2003.06.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 06/12/2003] [Indexed: 12/13/2022]
Abstract
Bone is a metabolically active and highly organized tissue consisting of a mineral phase of hydroxyapatite and amorphous calcium phosphate crystals deposited in an organic matrix. Bone has two main functions. It forms a rigid skeleton and has a central role in calcium and phosphate homeostasis. The major cell types of bone are osteoblasts, osteoclasts and chondrocytes. In the laboratory, primary cultures or cell lines established from each of these different cell types provide valuable information about the processes of skeletal development, bone formation and bone resorption, leading ultimately, to the formulation of new forms of treatment for common bone diseases such as osteoporosis.
Collapse
|
24
|
Naganawa T, Ishihara Y, Iwata T, Koide M, Ohguchi M, Ohguchi Y, Murase Y, Kamei H, Sato N, Mizuno M, Noguchi T. In Vitro Biocompatibility of a New Titanium-29Niobium-13Tantalum-4.6Zirconium Alloy With Osteoblast-Like MG63 Cells. J Periodontol 2004; 75:1701-7. [PMID: 15732874 DOI: 10.1902/jop.2004.75.12.1701] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Titanium-29niobium-13tantalum-4.6zirconium (TiNb) has recently been developed as a new implant material. TiNb is composed of non-toxic elements and has a lower modulus of elasticity than the other titanium alloys. However, its biocompatibility has not been adequately characterized. The aim of this study was to evaluate the biocompatibility of TiNb using an osteoblast-titanium co-culture system. METHODS MG63 cells were cultured on three kinds of titanium disks: TiNb, pure titanium (pTi), and titanium-6aluminum-4vanadium (TiAl), prepared with two different surfaces, a polished and acid-etched surface and a machined-grooved surface. The surface topography and roughness were evaluated by scanning electron microscopy (SEM). After 48 hours culture, the number of proliferating cells and prostaglandin E2 (PGE2) production in the culture supernatant were determined. RESULTS There was no significant difference in surface roughness among the three titanium disks with a polished and acid-etched surface. After 48 hours of culture, the number of cells was significantly reduced on pTi and TiAl compared to TiNb and the control. PGE2 production was significantly higher on pTi than on TiAl, TiNb, and the control. We further examined the effect of surface roughness on PGE2 production using machine-grooved titanium disks. While pTi and TiAl stimulated the production of PGE2 depending on surface roughness, roughened TiNb did not affect PGE2 production. CONCLUSIONS These results suggest that TiNb may exhibit favorable biocompatibility because it has an efficient surface topography for cell proliferation, and the level of PGE2 production does not depend on surface roughness. We conclude that TiNb may be useful as an implant material.
Collapse
Affiliation(s)
- T Naganawa
- Department of Periodontology, School of Dentistry, Aichi-Gakuin University, Nagoya-shi Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bächle M, Kohal RJ. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implants Res 2004; 15:683-92. [PMID: 15533129 DOI: 10.1111/j.1600-0501.2004.01054.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Titanium is the standard material for dental and orthopaedical implants. The good biocompatibility has been proven in many experimental and clinical investigations. Different titanium topographies were tested in vitro using different cell culture models. The aim of this systematic review was to evaluate and summarize the medical/dental literature to assess on which kind of titanium surface structure the osteoblast-like osteosarcoma cells MG63 show the best proliferation and differentiation rate, and the best protein synthesis. METHODS A systematic search was carried out using different on-line databases (PubMed, Web of Science, Cochrane Library, International Poster Journal), supplemented by handsearch in selected journals and by examination of the bibliographies of the identified articles. Inclusion and exclusion criterias were applied when considering relevant articles. Studies which met the inclusion criteria were included and data extraction was undertaken by one reviewer. RESULTS The search yielded 348 references. Nine articles referring to nine different studies were relevant to our question. Additionally 8 less relevant articles were identified. It was found that regularly textured surfaces of pure titanium with R(a) values (average roughness) of around 4 mum are well-accepted by MG63 cells. CONCLUSIONS The surfaces and culture conditions vary widely. Therefore it is still difficult to recommend one particular surface. It seems that there are no differences in cell proliferation and differentiation on surfaces treated by blasting and etching. Standardization in fabrication and size of the different test surfaces as well as homogeneity in culture times and plating densities should be aspects for future research.
Collapse
Affiliation(s)
- Maria Bächle
- Department of Prosthodontics, Albert Ludwigs University, Freiburg, Germany.
| | | |
Collapse
|
26
|
Marinelli A, Giacomini S, Bianchi G, Pellacani A, Bertoni F, Mercuri M. Osteoid osteoma simulating an osteocartilaginous exostosis. Skeletal Radiol 2004; 33:181-5. [PMID: 14740185 DOI: 10.1007/s00256-003-0731-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 11/11/2003] [Accepted: 11/12/2003] [Indexed: 02/02/2023]
Abstract
We describe a case of osteoid osteoma in the tibia of a 3-year-old patient who presented with a clinical and radiographic picture that suggested an exostosis. The formation of osteoid osteoma with a radiographic picture similar to that of osteophytes or exostosis has been previously documented only rarely. The authors hypothesize that the exostosis-like formation observed was actually the calcification of soft tissues that formed after the intense periosteal inflammatory reaction caused by the osteoid osteoma. As a result of its peculiar clinical and radiographic presentation, diagnosis of this lesion was delayed. Being located close to the medial growth plate of the tibia, it caused lengthening of the limb with a pronounced valgus deviation of the knee. An excisional biopsy provided histological evidence, clinical resolution and immediate pain relief, but incomplete resolution of the valgus deformity of the knee.
Collapse
Affiliation(s)
- A Marinelli
- Rizzoli Orthopedic Institute, University of Bologna, Via Pupilli 1, 40127 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Stimulation of Alkaline Phosphatase Activity by PGE2 through Induction of IGF-1 in Human Dental Pulp Cells. ACTA ACUST UNITED AC 2004. [DOI: 10.5466/ijoms.2.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Chen NX, Geist DJ, Genetos DC, Pavalko FM, Duncan RL. Fluid shear-induced NFkappaB translocation in osteoblasts is mediated by intracellular calcium release. Bone 2003; 33:399-410. [PMID: 13678782 DOI: 10.1016/s8756-3282(03)00159-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bone formation in response to exogenous mechanical loading is dependent on prostaglandin synthesis by the inducible isoform of cyclooxygenase, COX-2. While several transcription factors target the COX-2 gene, we examined the role of nuclear factor kappa B (NFkappaB) on COX-2 upregulation in osteoblasts in response to fluid shear due to its involvement in immune and inflammatory responses in other cell types. Application of 12 dyn/cm2 laminar flow to MC3T3-E1 osteoblast-like cells resulted in translocation of NFkappaB to the nucleus within 1 h of the onset of shear, with NFkappaB returning to the cytoplasm after 2 h of continuous flow. NFkappaB translocation in response to shear was inhibited by the protease inhibitor, Nalpha-p-tosyl-L-lysine chloromethylketone hydrochloride (TLCK), or a cell-permeant peptide that blocks the nuclear localization sequence (NLS) on NFkappaB. Block of NFkappaB translocation with these inhibitors blocked the shear-induced upregulation of COX-2. We found that disruption of the actin cytoskeleton with cytochalasin D or microtubules with nocodozol did not alter NFkappaB translocation in response to shear. However, addition of the intracellular Ca2+ chelator BAPTA completely blocked NFkappaB translocation. While block of Ca2+ entry with channel blockers failed to inhibit NFkappaB translocation, inhibition of phospholipase C (PLC)-induced intracellular Ca2+ release with the PLC inhibitor U73122 completely abrogated the NFkappaB response to shear. These data indicate that NFkappaB translocation to the nucleus is essential for the fluid shear-induced increase in COX-2. Further, these studies suggest that intracellular Ca2+ release, but not the cytoskeletal architecture, is important to NFkappaB translocation.
Collapse
Affiliation(s)
- Neal X Chen
- Department of Anatomy, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
29
|
Miyamoto KI, Suzuki H, Yamamoto S, Saitoh Y, Ochiai E, Moritani S, Yokogawa K, Waki Y, Kasugai S, Sawanishi H, Yamagami H. Prostaglandin E2-mediated anabolic effect of a novel inhibitor of phosphodiesterase 4, XT-611, in the in vitro bone marrow culture. J Bone Miner Res 2003; 18:1471-7. [PMID: 12929936 DOI: 10.1359/jbmr.2003.18.8.1471] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The mechanism of osteoblast formation by a novel PDE4 inhibitor, XT-611, was studied in the in vitro bone marrow culture system. The compound potentiated the osteoblast differentiation through accumulation of cyclic AMP after autocrine stimulation of EP4 receptor by PGE2 in pro-osteoblastic cells. INTRODUCTION We previously reported that inhibitors of phosphodiesterase (PDE)4 isoenzyme increase osteoblast formation in an in vitro bone marrow culture system and inhibit bone loss in animal osteoporosis models. Here we investigated the mechanism of the effect of a novel PDE4 inhibitor, 3,4-dipropyl-4,5,7,8-tetrahydro-3H-imidazo[1,2-i]-purin-5-one (XT-611), on osteoblast formation in the in vitro bone marrow culture system. MATERIALS AND METHODS Rodent bone marrow cells were cultured in the presence of 0.2 mM ascorbic acid phosphate ester, 1 mM beta-glycerophosphate, and 10 nM dexamethasone for 10 days. Drug treatments were done for 24 h on day 3 of culture. RESULTS PDE4 inhibitors, including XT-611, but not PDE3 and PDE5 inhibitors, increased mineralized nodule formation in rat and mouse bone marrow cell cultures. During culture of the bone marrow cells, prostaglandin E2 (PGE2) production increased with a peak on day 4, but the increase was completely inhibited by indomethacin, an unselective cyclo-oxygenase (COX) inhibitor. Spontaneous and XT-611-induced mineralized-nodule formation was also inhibited by indomethacin and COX-2 inhibitors, in a similar potential. Alkaline phosphatase-positive nodule formation in the absence or presence of XT-611 was inhibited by an antagonist of EP4 receptor, AH23848B, and synergistically potentiated by 11-deoxy-PGE1, but it was not influenced by other EP antagonists and agonists examined. The expression of PDE4 and EP4 mRNAs was observed in bone marrow cells. The effect of XT-611 was also confirmed to involve an increase of cyclic AMP and the cyclic AMP-dependent protein kinase pathway. CONCLUSION These results suggest that PGE2 stimulates differentiation of osteoblast progenitor cells through the EP4 receptor in an autocrine manner, and the PDE4 inhibitor potentiates the differentiation by inhibiting hydrolysis of cyclic AMP in the cells.
Collapse
Affiliation(s)
- Ken-ichi Miyamoto
- Department of Hospital Pharmacy, School of Medicine, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Harder AT, An YH. The mechanisms of the inhibitory effects of nonsteroidal anti-inflammatory drugs on bone healing: a concise review. J Clin Pharmacol 2003; 43:807-15. [PMID: 12953337 DOI: 10.1177/0091270003256061] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nonsteroidal anti-inflammatory drug (NSAID) use continues to expand at a remarkable rate due both to the broad spectrum of clinical applications for these medications and to the relatively recent introduction of the popular COX-2-selective inhibitors. The use of NSAIDs is particularly prevalent in patients with a variety of musculoskeletal conditions and injuries. Reports of impaired bone healing associated with NSAID use, therefore, are a particular cause for concern. Animal and in vitro studies have demonstrated impaired bone healing in the presence of traditional NSAIDs, as measured by a variety of different parameters. More recently, initial studies investigating the effects of COX-2-selective inhibitors on bone healing have yielded similar results. With mounting evidence that NSAIDs do in fact interfere with proper bone healing in various animal models, questions have arisen regarding the potential mechanism through which NSAIDs produce this outcome and whether these results can be translated to clinical settings. A likely pathway for these observed effects results from an understanding of the steps involved in bone healing itself. These steps include an inflammatory response, bone resorption, and new bone formation. Investigations over the past several decades have elucidated a role for prostaglandins (PGs) in each of these areas. Specifically, PGs have been shown to elicit and participate in inflammatory responses, increase osteoclast activity and subsequent bone resorption, and increase osteoblast activity and new bone formation. This apparent integral role for PGs in the process of bone healing, coupled with the knowledge that NSAIDs act by inhibiting the production of PGs, results in an understanding of the likely mechanism through which NSAIDs impart their deleterious effects on bone healing. By inhibiting the COX enzymes and the subsequent production of PGs, NSAIDs not only achieve their desired anti-inflammatory effects but also inhibit the increased production of PGs that is necessary for bone healing to occur. Despite this understanding of the potential mechanism through which NSAIDs inhibit bone healing in a laboratory setting, few studies exist that show whether these inhibitory effects are also evident clinically. Thus, further studies will need to decipher whether similar inhibitory effects occur in a clinical setting.
Collapse
Affiliation(s)
- Adam T Harder
- Orthopaedic Research Laboratories, Medical University of South Carolina, 96 Jonathan Lucas Street, CSB708, Charleston, SC 29425, USA
| | | |
Collapse
|
31
|
Mustafa K, Rubinstein J, Lopez BS, Arvidson K. Production of transforming growth factor beta1 and prostaglandin E2 by osteoblast-like cells cultured on titanium surfaces blasted with TiO2 particles. Clin Oral Implants Res 2003; 14:50-6. [PMID: 12562365 DOI: 10.1034/j.1600-0501.2003.140107.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The surface roughness of an implant to which osteoblasts attach may influence endogenous expression of growth factor and cytokines at the implant-tissue interface, modulating the healing process and affecting the quality of bone formation. The present study, using cells derived from human mandibular bone, investigated the effect of varying roughness of titanium surfaces on production of transforming growth factor beta1 (TGF-beta1) and prostaglandin E2 (PGE2). The titanium surfaces were turned (control) and then roughened by blasting with 63-90 micro m, 106-180 micro m or 180-300 micro m TiO2 particles. The cells were cultured onto the surfaces till confluence was achieved. Fresh media were added in the presence or absence of 1,25-dihydroxyvitamin D3[1,25-(OH)2D3], the stimulator of osteogenic differentiation, and aliquots of conditioned cell media were used for assay 24 h later. Cellular morphology was determined by scanning electron microscopy. Cellular production of TGF-beta1 and PGE2 on each surface was assessed by enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA), respectively, using commercially available kits. All blasted surfaces showed significantly higher production of TGF-beta1 than the turned surfaces (P < 0.05). In response to stimulation by 1,25-(OH)2D3 cellular production of TGF-beta1, was also significantly greater (P < 0.05) on the blasted surfaces than on the turned one. The total amount of PGE2 in the conditioned media was higher than on the turned surfaces in the presence or absence of 1,25-(OH)2D3. There were no significant differences among the three blasted surfaces with respect to production of the local factors. However, we could not show a synergistic effect of surface roughness and vitamin D on the production of both TGF-beta1 and PGE2 using primary cell culture model.
Collapse
Affiliation(s)
- Kamal Mustafa
- Department of Basic Oral Sciences, Faculty of Odontology, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | |
Collapse
|
32
|
Wang Y, Ohtsuka-Isoya M, Shao P, Sakamoto S, Shinoda H. Effects of methylprednisolone on bone formation and resorption in rats. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 90:236-46. [PMID: 12499578 DOI: 10.1254/jjp.90.236] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Excessive glucocorticoids induce osteoporosis. However, there is some controversy regarding the mechanism of action, and even the endpoint result. The present study was carried out to obtain further insight into the action of glucocorticoids on bone formation and resorption in rats. Growing rats were injected subcutaneously with methylprednisolone (mPSL) at doses of 0, 2.5, 5, 10 or 20 mg/kg per day for 4 weeks. Bone mineral density (BMD), enchondral and periosteal bone formation, collagen synthetic activities of osteoblasts, numbers of osteoblasts and osteoclasts, and serum markers to assess bone turnover were determined. Administration of mPSL dose-dependently increased the BMD in the tibial metaphysis, while it dose-dependently decreased the BMD in the diaphysis. Both enchondral and periosteal bone formation were decreased in a dose-dependent fashion. The incorporation and secretion of (3)H-proline by osteoblasts were both decreased in trabecular and cortical bones. The number of osteoclasts, together with the number of osteoblasts, in the tibial metaphysis was drastically decreased. Serum alkaline phosphatase and osteocalcin were decreased at higher doses. These results support the recent notion that glucocorticoids inhibit both bone formation and resorption. In addition, BMD as an endpoint result might differ from site to site in bone due to a different balance between bone formation and resorption.
Collapse
Affiliation(s)
- Yujiang Wang
- Division of Preventive Dentistry, Department of Lifelong Oral Health Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | | | |
Collapse
|
33
|
Li JGR, Chang WHS, Lin JCA, Sun JS. Optimum intensities of ultrasound for PGE(2) secretion and growth of osteoblasts. ULTRASOUND IN MEDICINE & BIOLOGY 2002; 28:683-690. [PMID: 12079705 DOI: 10.1016/s0301-5629(02)00485-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study compared the effects of different intensity ultrasound (US) on osteoblasts in the far-field model with effects of the near-field model from the literature, to understand the relations between prostaglandin E(2) (PGE(2)) and osteoblast growth. We used an in vitro model to investigate the effects of 1-MHz, pulsed 1:4, and five different spatial-average temporal-peak intensity (150, 300, 600, 1200 and 2400 mW/cm(2)) US stimulations in far-field exposure (240 mm) on osteoblasts for 15 min. Optimum intensity in this study was 600 mW/cm(2), and cell density and PGE(2) secretion could be significantly stimulated at this intensity. This research may indicate that the growth of osteoblasts by US stimulation was, at least partly, due to increases in the synthesis and secretion of PGE(2). This well-controlled model can lead to further research on the biologic mechanisms for US.
Collapse
Affiliation(s)
- Jimmy Guan-Rong Li
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan
| | | | | | | |
Collapse
|
34
|
Choi EM, Koo SJ. Effects of soybean ethanol extract on the prostaglandin E2 and interleukin-6 production in osteoblastic cells. Food Res Int 2002. [DOI: 10.1016/s0963-9969(02)00101-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Bottner F, Roedl R, Wortler K, Grethen C, Winkelmann W, Lindner N. Cyclooxygenase-2 inhibitor for pain management in osteoid osteoma. Clin Orthop Relat Res 2001:258-63. [PMID: 11764357 DOI: 10.1097/00003086-200112000-00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Thirteen patients with osteoid osteoma were enrolled in a prospective trial to test whether rofecoxib, a selective cyclooxygenase-2 inhibitor, is as effective for pain control as acetylsalicylic acid. Each patient documented the pain level using a visual analog scale, with 0 being no pain and 10 being unbearable pain, during 2 days of no pain medication, 4 days of 500 mg acetylsalicylic acid three times a day, and 10 days of 25 mg rofecoxib once a day. Oral administration of 500 mg acetylsalicylic acid three times a day led to a significant decrease in pain at night, pain at rest, and pain induced by exercise. Twenty-five milligrams rofecoxib given once a day at midday showed the same remarkable improvement in pain at night, pain at rest, and pain induced by exercise. Rofecoxib in comparison with acetylsalicylic acid showed a trend toward lower pain levels in all categories. Rofecoxib offered a significantly better reduction in pain at rest during the day than did acetylsalicylic acid. Results of the current study suggest that pain induction in osteoid osteoma is related to cyclooxygenase-2, an enzyme that is blocked by acetylsalicylic acid and rofecoxib. Conservative medical treatment with rofecoxib for osteoid osteoma is recommended when percutaneous intervention is associated with significant morbidity.
Collapse
Affiliation(s)
- F Bottner
- Department of Orthopaedic Surgery, Westfalische Wilheims-Universität Münster, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Davis J, Pither RJ. Biochemical responses in cultured cells following exposure to (89)SrCl(2): potential relevance to the mechanism of action in pain palliation. Eur J Cancer 2001; 37:2464-9. [PMID: 11720844 DOI: 10.1016/s0959-8049(01)00305-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
(89)SrCl(2) is currently used as a systemic radioactive palliative treatment for painful osseous metastases associated with an osteoblastic reaction in bone. However, the biological mechanism by which (89)SrCl(2) mediates pain palliation remains unclear. In this study, attempts were made to elucidate the mechanisms by which (89)SrCl(2) might influence pain at these sites. Both the direct radiotoxic effects of (89)SrCl(2) on cell viability and its influence on cellular biosynthetic activity were investigated. The direct radiotoxic effects of (89)SrCl(2) and X-rays were compared using the prostate carcinoma cell line, PC-3. Comparable effects upon PC-3 cell viability were seen in response to exposure to an equivalent dose given by (89)SrCl(2) and X-rays (2 Gy). Experiments to investigate the indirect action of (89)SrCl(2) exposure employed the MC3T3-E1 cell line and focused on their production of Prostaglandin E(2) (PGE(2)) and interleukin-6 (IL-6). Exposure of the MC3T3-E1 cell line to (89)SrCl(2) resulted in an increased production of PGE(2) in a concentration-dependent manner. No increased PGE(2) production was seen by the MC3T3-E1 cells in response to X-ray exposure either in the presence or absence of SrCl(2). IL-6 was produced by the MC3T3-E1 cells in response to (89)SrCl(2) exposure via a PGE(2)-mediated pathway. This study demonstrates the release of potent biochemical modifiers of bone turnover in response to the systemically applied radiotherapeutic (89)SrCl(2). This strongly suggests the mechanism of pain palliation by (89)SrCl(2) is likely to result from a complex interaction of direct and indirect radiation-induced effects.
Collapse
Affiliation(s)
- J Davis
- Amersham plc, Imaging Research and Development, Amersham Laboratories, White Lion Road, Amersham, Bucks HP7 9LL, UK
| | | |
Collapse
|
37
|
Still K, Scutt A. Stimulation of CFU-f formation by prostaglandin E2 is mediated in part by its degradation product, prostaglandin A2. Prostaglandins Other Lipid Mediat 2001; 65:21-31. [PMID: 11352224 DOI: 10.1016/s0090-6980(01)00117-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandins (PG) of the E series are known to rapidly undergo non-enzymatic dehydration in culture medium containing serum albumin to produce the cyclopentenone PGs of the A series. We investigated the actions of PGA1 and A2 in the in vitro calcifying fibroblastic-colony forming unit assay which can partially mimic the in vivo anabolic effects of PGE2. It was found that PGA1 and A2 both stimulated colony formation in a dose-dependent manner with a maximum at 10(-6) M and to a similar degree to PGE2. In contrast to PGE2, PGA1 and PGA2 both caused an inhibition of cAMP accumulation. Furthermore, the addition of protein kinase A inhibitors, H8 and H89, had no significant effect on the stimulation of colony number by PGE2. These data suggest that (a) the bone anabolic effects of PGE1 and E2 are, in part at least, mediated by their dehydration products PGA1 and A2 and (b) that they are mediated via pathways not necessarily involving the cAMP/protein kinase A cascade.
Collapse
Affiliation(s)
- K Still
- Institute of Child Health, Children's Hospital, Western Bank, Sheffield, UK
| | | |
Collapse
|
38
|
Boyan BD, Dean DD, Lohmann CH, Cochran DL, Sylvia VL, Schwartz Z. The Titanium-Bone Cell Interface In Vitro: The Role of the Surface in Promoting Osteointegration. ENGINEERING MATERIALS 2001. [DOI: 10.1007/978-3-642-56486-4_17] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
39
|
Watkins BA, Li Y, Allen KG, Hoffmann WE, Seifert MF. Dietary ratio of (n-6)/(n-3) polyunsaturated fatty acids alters the fatty acid composition of bone compartments and biomarkers of bone formation in rats. J Nutr 2000; 130:2274-84. [PMID: 10958824 DOI: 10.1093/jn/130.9.2274] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of dietary polyunsaturated fatty acids (PUFA) on ex vivo bone prostaglandin E(2) (PGE(2)) production and bone formation rate were evaluated in rats. Weanling male Sprague-Dawley rats were fed AIN-93G diet containing 70 g/kg of added fat for 42 d. The dietary lipid treatments were formulated with safflower oil and menhaden oil to provide the following ratios of (n-6)/(n-3) fatty acids: 23.8 (SMI), 9.8 (SMII), 2.6 (SMIII), and 1.2 (SMIV). Ex vivo PGE(2) production in liver homogenates and bone organ cultures (right femur and tibia) were significantly lower in rats fed diets with a lower dietary ratio of (n-6)/(n-3) fatty acids than in those fed diets with a higher dietary ratio. Regression analysis revealed a significant positive correlation between bone PGE(2) and the ratio of arachidonic acid (AA)/eicosapentaenoic acid (EPA), but significant negative correlations between bone formation rate and either the ratio of AA/EPA or PGE(2) in bone. Activities of serum alkaline phosphatase isoenzymes, including the bone-specific isoenzyme (BALP), were greater in rats fed a diet high in (n-3) or a low ratio of (n-6)/(n-3), further supporting the positive action of (n-3) fatty acids on bone formation. These results demonstrated that the dietary ratio of (n-6)/(n-3) modulates bone PGE(2) production and the activity of serum BALP in growing rats.
Collapse
Affiliation(s)
- B A Watkins
- Department of Food Science, Lipid Chemistry and Molecular Biology Laboratory, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
40
|
Lohmann CH, Schwartz Z, Liu Y, Guerkov H, Dean DD, Simon B, Boyan BD. Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J Orthop Res 2000; 18:637-46. [PMID: 11052501 DOI: 10.1002/jor.1100180417] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pulsed electromagnetic field stimulation has been used to promote the healing of chronic nonunions and fractures with delayed healing, but relatively little is known about its effects on osteogenic cells or the mechanisms involved. The purpose of this study was to examine the response of osteoblast-like cells to a pulsed electromagnetic field signal used clinically and to determine if the signal modulates the production of autocrine factors associated with differentiation. Confluent cultures of MG63 human osteoblast-like cells were placed between Helmholtz coils and exposed to a pulsed electromagnetic signal consisting of a burst of 20 pulses repeating at 15 Hz for 8 hours per day for 1, 2, or 4 days. Controls were cultured under identical conditions, but no signal was applied. Treated and control cultures were alternated between two comparable incubators and, therefore, between active coils; measurement of the temperature of the incubators and the culture medium indicated that application of the signal did not generate heat above the level found in the control incubator or culture medium. The pulsed electromagnetic signal caused a reduction in cell proliferation on the basis of cell number and [3H]thymidine incorporation. Cellular alkaline phosphatase-specific activity increased in the cultures exposed to the signal, with maximum effects at day 1. In contrast, enzyme activity in the cell-layer lysates, which included alkaline phosphatase-enriched extracellular matrix vesicles, continued to increase with the time of exposure to the signal. After 1 and 2 days of exposure, collagen synthesis and osteocalcin production were greater than in the control cultures. Prostaglandin E2 in the treated cultures was significantly reduced at 1 and 2 days, whereas transforming growth factor-beta1 was increased; at 4 days of treatment, however, the levels of both local factors were similar to those in the controls. The results indicate enhanced differentiation as the net effect of pulsed electromagnetic fields on osteoblasts, as evidenced by decreased proliferation and increased alkaline phosphatase-specific activity, osteocalcin synthesis, and collagen production. Pulsed electromagnetic field stimulation appears to promote the production of matrix vesicles on the basis of higher levels of alkaline phosphatase at 4 days in the cell layers than in the isolated cells, commensurate with osteogenic differentiation in response to transforming growth factor-beta1. The results indicate that osteoblasts are sensitive to pulsed electromagnetic field stimulation, which alters cell activity through changes in local factor production.
Collapse
Affiliation(s)
- C H Lohmann
- Department of Orthopaedics, The University of Texas Health Science Center at San Antonio, 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Opas EE, Gentile MA, Rossert JA, de Crombrugghe B, Rodan GA, Schmidt A. Parathyroid hormone and prostaglandin E2 preferentially increase luciferase levels in bone of mice harboring a luciferase transgene controlled by elements of the pro-alpha1(I) collagen promoter. Bone 2000; 26:27-32. [PMID: 10617154 DOI: 10.1016/s8756-3282(99)00235-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type I collagen is the major extracellular protein in bone, tendons, ligaments, and skin. DNA elements of the mouse pro-alpha1 (I) collagen promoter were shown to drive the bone-selective expression of a luciferase transgene. We examined whether this expression can be used to evaluate the effect of anabolic agents on bone formation in vivo. Treatment of either intact males, intact females, or ovariectomized (ovx) mice with 80 microg/kg/day of human parathyroid hormone (hPTH), for 5 to 11 days increased luciferase levels in tibiae by two- to threefold compared with vehicle-treated mice. The increases were tissue specific, as no changes in skin luciferase expression were observed. Treatment with prostaglandin E2, a potent bone anabolic agent, for 11 days also increased expression of the transgene in bone, but not in skin. Treatment with dihydrotestosterone (DHT) for 11 days increased luciferase activity in skin, but not in bone. Histomorphometric analysis revealed that 28-day treatment with PTH increased bone formation; 60-day treatment of OVX mice with DHT did not. These findings show a correlation between bone formation and the expression of a transgene driven by DNA elements of the mouse pro-alpha1 (I) collagen promoter, suggesting that this expression can be used as an indicator and provide a faster readout for the ability of agents to stimulate bone formation in this mouse strain.
Collapse
Affiliation(s)
- E E Opas
- Department of Bone Biology and Osteoporosis Research, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | | | |
Collapse
|
42
|
Fujieda M, Kiriu M, Mizuochi S, Hagiya KI, Kaneki H, Ide H. Formation of mineralized bone nodules by rat calvarial osteoblasts decreases with donor age due to a reduction in signaling through EP1 subtype of prostaglandin E2 receptor. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19991101)75:2<215::aid-jcb4>3.0.co;2-s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Ho ML, Chang JK, Chuang LY, Hsu HK, Wang GJ. Effects of nonsteroidal anti-inflammatory drugs and prostaglandins on osteoblastic functions. Biochem Pharmacol 1999; 58:983-90. [PMID: 10509750 DOI: 10.1016/s0006-2952(99)00186-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been reported that nonsteroidal anti-inflammatory drugs (NSAIDs) suppress bone repair and bone remodeling but only mildly inhibit bone mineralization at the earlier stage of the repair process. We proposed that the proliferation and/or the earlier stage of differentiation of osteoblasts may be affected by NSAIDs. This study was designed to investigate whether NSAIDs affect the proliferation and/or differentiation of osteoblasts and whether these effects are prostaglandin (PG) mediated. The effects of PGE1 and PGE2, indomethacin, and ketorolac on thymidine incorporation, cell count, intracellular alkaline phosphatase (ALP) activity, and Type I collagen content in osteoblast-enriched cultures derived from fetal calvaria were evaluated. The results showed that both PGs and NSAIDs inhibited DNA synthesis and cell mitosis in a time- and concentration-dependent manner. However, intracellular ALP activity and Type I collagen content were stimulated at an earlier stage of differentiation in osteoblasts. These results suggested that (i) the inhibitory effect of ketorolac on osteoblastic proliferation contributes to its suppressive effects on bone repair and remodeling in vivo; (ii) PGEs and NSAIDs may be involved in matrix maturation and biologic bone mineralization in the earlier stage of osteoblast differentiation; and (iii) the effects of ketorolac and indomethacin on cell proliferation and differentiation may not be through the inhibition of the synthesis of PGE1 or PGE2.
Collapse
Affiliation(s)
- M L Ho
- Department of Physiology, Kaohsiung Medical College, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
44
|
Li Y, Seifert MF, Ney DM, Grahn M, Grant AL, Allen KG, Watkins BA. Dietary conjugated linoleic acids alter serum IGF-I and IGF binding protein concentrations and reduce bone formation in rats fed (n-6) or (n-3) fatty acids. J Bone Miner Res 1999; 14:1153-62. [PMID: 10404015 DOI: 10.1359/jbmr.1999.14.7.1153] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A study was designed to examine the effects of dietary conjugated linoleic acid (CLA) on serum concentrations of insulin-like growth factor-I (IGF-I) and IGF binding proteins (IGFBP) and the relationship of these factors to bone metabolism. Weanling male rats were fed AIN-93G diet containing 70 g/kg of added fat for 42 days. Treatments included 0 g/kg or 10 g/kg of CLA and soybean oil (SBO) or menhaden oil + safflower oil (MSO) following a 2 x 2 factorial design. Serum IGFBP was influenced by dietary polyunsaturated fatty acid (PUFA) type ((n-6) and (n-3)) and CLA (p = 0.01 for 38-43 kDa bands corresponding to IGFBP-3). CLA increased IGFBP level in rats fed SBO (p = 0.05) but reduced it in those fed MSO (p = 0.01). Rats fed MSO had the highest serum IGFBP-3 level. Both (n-3) fatty acids and CLA lowered ex vivo prostaglandin E2 production in bone organ culture. In tibia, rats given CLA had reduced mineral apposition rate (3.69 vs. 2.79 microm/day) and bone formation rate (BFR) (0.96 vs. 0.65 microm3/microm2/day); however, the BFR tended to be higher with MSO. Dietary lipid treatments did not affect serum intact osteocalcin or bone mineral content. These results showed that dietary PUFA type and CLA modulate local factors that regulate bone metabolism.
Collapse
Affiliation(s)
- Y Li
- Department of Food Science, Lipid Chemistry and Molecular Biology Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Kaneki H, Takasugi I, Fujieda M, Kiriu M, Mizuochi S, Ide H. Prostaglandin E2 stimulates the formation of mineralized bone nodules by a cAMP-independent mechanism in the culture of adult rat calvarial osteoblasts. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990401)73:1<36::aid-jcb5>3.0.co;2-f] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Dean DD, Schwartz Z, Liu Y, Blanchard CR, Agrawal CM, Mabrey JD, Sylvia VL, Lohmann CH, Boyan BD. The effect of ultra-high molecular weight polyethylene wear debris on MG63 osteosarcoma cells in vitro. J Bone Joint Surg Am 1999; 81:452-61. [PMID: 10225790 DOI: 10.2106/00004623-199904000-00002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Focal osteolysis due to ultra-high molecular weight polyethylene wear debris involves effects on both bone resorption and bone formation. METHODS The response of MG63 osteoblast-like osteosarcoma cells to ultra-high molecular weight polyethylene wear debris isolated by enzymatic digestion of granulomatous tissue obtained from the sites of failed total hip arthroplasties was examined. Scanning electron microscopy, particle-size analysis, and Fourier transform infrared spectroscopy were used to characterize the number, morphology, size distribution, and chemical composition of the particles. Cell response was assessed by adding particles at varying dilutions to confluent cultures and measuring changes in cell proliferation (number of cells and [3H]-thymidine incorporation), osteoblast function (alkaline-phosphatase-specific activity and osteocalcin production), matrix production (collagen production and proteoglycan sulfation), and local cytokine production (prostaglandin-E2 production). RESULTS The mean size of the particles was 0.60 micrometer, and 95 percent of the particles had a size of less than 1.5 micrometers. The number of particles per gram of tissue ranged from 1.39 to 3.38x10(9). Three of the four batches of particles were endotoxin-free. Exposure of the cells to particles of wear debris significantly increased the number of cells (p<0.05) and the [3H]-thymidine incorporation (p<0.05) in a dose-dependent manner. In contrast, the addition of particles decreased alkaline-phosphatase-specific activity and osteocalcin production. Collagen production and proteoglycan sulfation were also decreased, while prostaglandin-E2 synthesis was increased by the addition of particles. CONCLUSIONS Ultra-high molecular weight polyethylene particles isolated from human tissue stimulated osteoblast proliferation and prostaglandin-E2 production and inhibited cell differentiation and matrix production. These results indicate that particles of wear debris inhibit cell functions associated with bone formation and that osteoblasts may produce factors in response to wear debris that influence neighboring cells, such as osteoclasts and macrophages. CLINICAL RELEVANCE Particles of wear debris, especially ultra-high molecular weight polyethylene, have been implicated in the loosening of implants and the development of osteolysis. The present study shows that particles of ultra-high molecular weight polyethylene isolated from human tissue inhibit osteoblast functions associated with bone formation. In addition, particles of wear debris induced osteoblasts to secrete factors capable of influencing neighboring cells, such as osteoclasts and macrophages. These results suggest that osteoblasts may play a role in the cascade of events leading to granuloma formation, osteolysis, and failure of orthopaedic implants.
Collapse
Affiliation(s)
- D D Dean
- Department of Orthopaedics, University of Texas Health Science Center at San Antonio, Texas 78284-7774, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dean DD, Schwartz Z, Blanchard CR, Liu Y, Agrawal CM, Lohmann CH, Sylvia VL, Boyan BD. Ultrahigh molecular weight polyethylene particles have direct effects on proliferation, differentiation, and local factor production of MG63 osteoblast-like cells. J Orthop Res 1999; 17:9-17. [PMID: 10073642 DOI: 10.1002/jor.1100170104] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Small particles of ultrahigh molecular weight polyethylene stimulate formation of foreign-body granulomas and bone resorption. Bone formation may also be affected by wear debris. To determine if wear debris directly affects osteoblasts, we characterized a commercial preparation of ultrahigh molecular weight polyethylene (GUR4150) particles and examined their effect on MG63 osteoblast-like cells. In aliquots of the culture medium containing ultrahigh molecular weight polyethylene, 79% of the particles were less than 1 microm in diameter, indicating that the cells were exposed to particles of less than 1 microm. MG63 cell response to the particles was measured by assaying cell number, [3H]thymidine incorporation, alkaline phosphatase specific activity, osteocalcin production, [35S]sulfate incorporation, and production of prostaglandin E2 and transforming growth factor-beta. Cell number and [3H]thymidine incorporation were increased in a dose-dependent manner. Alkaline phosphatase specific activity, a marker of cell differentiation for the cultures, was significantly decreased, but osteocalcin production was not affected. [35S]sulfate incorporation, a measure of extracellular matrix production, was reduced. Prostaglandin E2 release was increased, but transforming growth factor-beta production was decreased in a dose-dependent manner. This shows that ultrahigh molecular weight polyethylene particles affect MG63 proliferation, differentiation, extracellular matrix synthesis, and local factor production. These effects were direct and dose dependent. The findings suggest that ultrahigh molecular weight polyethylene wear debris particles with an average size of approximately 1 microm may inhibit bone formation by inhibiting cell differentiation and reducing transforming growth factor-beta production and matrix synthesis. In addition, increases in prostaglandin E2 production may not only affect osteoblasts by an autocrine pathway but may also stimulate the proliferation and activation of cells in the monocytic lineage. These changes favor decreased bone formation and increased bone resorption as occur in osteolysis.
Collapse
Affiliation(s)
- D D Dean
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78284-7774, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Li Y, Watkins BA. Conjugated linoleic acids alter bone fatty acid composition and reduce ex vivo prostaglandin E2 biosynthesis in rats fed n-6 or n-3 fatty acids. Lipids 1998; 33:417-25. [PMID: 9590630 DOI: 10.1007/s11745-998-0223-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study evaluated the effects of conjugated linoleic acids (CLA) on tissue fatty acid composition and ex vivo prostaglandin E2 (PGE2) production in rats given diets varying in n-6 and n-3 fatty acids. Four groups of rats were given a basal semipurified diet (AIN-93G) containing 70 g/kg of added fat for 42 d. The fat treatments were formulated to contain CLA (0 vs. 10 g/kg of diet) and n-6 (soybean oil having an n-6/n-3 ratio of 7.3) and n-3 fatty acids (menhaden oil + safflower oil having an n-6/n-3 ratio of 1.8) in different ratios in a 2 x 2 factorial design. Fatty acids in liver, serum, muscle, heart, brain, spleen, and bone (cortical, marrow, and periosteum) were analyzed by capillary gas-liquid chromatography. The various dietary lipid treatments did not affect growth; however, CLA improved feed efficiency. The CLA isomers were found in all rat tissues analyzed although their concentrations varied. Dietary CLA decreased the concentrations of 16:1n-7, 18:1, total monounsaturates and n-6 fatty acids, but increased the concentrations of n-3 fatty acids (22:5n-3 and 22:6n-3), and saturates in the tissues analyzed. Ex vivo PGE2 production in bone organ culture was decreased by n-3 fatty acids and CLA. We speculate that CLA reduced the concentration of 18:1 fatty acids by inhibiting liver delta9-desaturase activity. The fact that CLA lowered ex vivo PGE2 production in bone organ culture suggests that these conjugated fatty acids have the potential to influence bone formation and resorption.
Collapse
Affiliation(s)
- Y Li
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
49
|
Arai H, Nomura Y, Kinoshita M, Nishimura F, Takigawa M, Takahashi K, Washio N, Takashiba S, Murayama Y. The inhibition of DNA synthesis by prostaglandin E2 in human gingival fibroblasts is independent of the cyclic AMP-protein kinase A signal transduction pathway. J Periodontal Res 1998; 33:33-9. [PMID: 9524319 DOI: 10.1111/j.1600-0765.1998.tb02289.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study we attempted to clarify the mechanism of the inhibitory effects of PGE2 on DNA synthesis in Gin-1 (fibroblasts derived from healthy human gingiva) from the aspect of the cyclic AMP-dependent protein kinase signal transduction pathway. PGE2 upregulated intracellular cyclic AMP accumulation and inhibited DNA synthesis in Gin-1 in a dose-dependent manner. When the PGE2-induced intracellular cyclic AMP accumulation was further enhanced by treatment with the cyclic AMP-phosphodiesterase inhibitor, IBMX, the inhibitory effect of PGE2 on DNA synthesis was also enhanced. Furthermore, when we examined the effects of forskolin, an activator of cyclic AMP production, on intracellular cyclic AMP accumulation and DNA synthesis, similar results were obtained. However, inhibitors of cyclic AMP-dependent protein kinase (protein kinase A) such as HA1004 did not diminish the inhibitory effect of PGE2 on DNA synthesis in Gin-1. These results suggest that in Gin-1, PGE2-induced cyclic AMP accumulation may not lead to the activation of protein kinase A or protein kinase A activity may not relate directly to the growth inhibitory effect of PGE2, and that PGE2 does not inhibit DNA synthesis through the cyclic AMP-protein kinase A signal transduction pathway in Gin-1.
Collapse
Affiliation(s)
- H Arai
- Department of Periodontology and Endodontology, Okayama University Dental School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nakanishi H, Yamanouchi K, Gotoh Y, Nagayama M. The association of platelet-derived growth factor (PDGF) receptor tyrosine phosphorylation to mitogenic response of human osteoblastic cells in vitro. Oral Dis 1997; 3:236-42. [PMID: 9643219 DOI: 10.1111/j.1601-0825.1997.tb00048.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The purpose of this study was to make clear the relationship of human osteoblastic cell growth, induced by platelet-derived growth factor (PDGF), to PDGF receptor tyrosine phosphorylation. MATERIALS AND METHODS Osteoblastic cells derived from human maxilla were cultured with human PDGF. The cell growth was evaluated by cell number and DNA synthesis. PDGF receptor tyrosine phosphorylation was detected by immunoblot analysis using anti-PDGF receptor alpha, beta subunits and anti-phosphotyrosine antibodies. Genistein, a tyrosine kinase inhibitor, was added to the culture to investigate the effect on osteoblastic cell growth and PDGF receptor tyrosine phosphorylation induced by PDGF. RESULTS AND CONCLUSIONS PDGF stimulated the proliferation of human osteoblastic cells and this effect was synergetic with serum stimulation. DNA synthesis of osteoblastic cells was elevated by PDGF in a dose dependent manner at the minimum concentration of 1 ng ml-1. PDGF also induced PDGF receptor tyrosine phosphorylation within 1 min on osteoblastic cells, and tyrosine phosphorylation occurred on PDGF receptor subunits alpha and beta. Genistein inhibited cell growth and receptor tyrosine phosphorylation, which was induced by PDGF on these cells. In conclusion, human osteoblastic cell growth induced by PDGF is shown to relate to tyrosine kinase of PDGF receptors.
Collapse
Affiliation(s)
- H Nakanishi
- First Department of Oral and Maxillofacial Surgery, School of Dentistry, Tokushima University, Japan
| | | | | | | |
Collapse
|