1
|
Hairless regulates heterochromatin maintenance and muscle stem cell function as a histone demethylase antagonist. Proc Natl Acad Sci U S A 2021; 118:2025281118. [PMID: 34493660 DOI: 10.1073/pnas.2025281118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle possesses remarkable regenerative ability because of the resident muscle stem cells (MuSCs). A prominent feature of quiescent MuSCs is a high content of heterochromatin. However, little is known about the mechanisms by which heterochromatin is maintained in MuSCs. By comparing gene-expression profiles from quiescent and activated MuSCs, we found that the mammalian Hairless (Hr) gene is expressed in quiescent MuSCs and rapidly down-regulated upon MuSC activation. Using a mouse model in which Hr can be specifically ablated in MuSCs, we demonstrate that Hr expression is critical for MuSC function and muscle regeneration. In MuSCs, loss of Hr results in reduced trimethylated Histone 3 Lysine 9 (H3K9me3) levels, reduced heterochromatin, increased susceptibility to genotoxic stress, and the accumulation of DNA damage. Deletion of Hr leads to an acceleration of the age-related decline in MuSC numbers. We have also demonstrated that despite the fact that Hr is homologous to a family of histone demethylases and binds to di- and trimethylated H3K9, the expression of Hr does not lead to H3K9 demethylation. In contrast, we show that the expression of Hr leads to the inhibition of the H3K9 demethylase Jmjd1a and an increase in H3K9 methylation. Taking these data together, our study has established that Hr is a H3K9 demethylase antagonist specifically expressed in quiescent MuSCs.
Collapse
|
2
|
Murine allele and transgene symbols: ensuring unique, concise, and informative nomenclature. Mamm Genome 2021; 33:108-119. [PMID: 34389871 PMCID: PMC8913455 DOI: 10.1007/s00335-021-09902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022]
Abstract
In addition to naturally occurring sequence variation and spontaneous mutations, a wide array of technologies exist for modifying the mouse genome. Standardized nomenclature, including allele, transgene, and other mutation nomenclature, as well as persistent unique identifiers (PUID) are critical for effective scientific communication, comparison of results, and integration of data into knowledgebases such as Mouse Genome Informatics (MGI), Alliance for Genome Resources, and International Mouse Strain Resource (IMSR). As well as being the authoritative source for mouse gene, allele, and strain nomenclature, MGI integrates published and unpublished genomic, phenotypic, and expression data while linking to other online resources for a complete view of the mouse as a valuable model organism. The International Committee on Standardized Genetic Nomenclature for Mice has developed allele nomenclature rules and guidelines that take into account the number of genes impacted, the method of allele generation, and the nature of the sequence alteration. To capture details that cannot be included in allele symbols, MGI has further developed allele to gene relationships using sequence ontology (SO) definitions for mutations that provide links between alleles and the genes affected. MGI is also using (HGVS) variant nomenclature for variants associated with alleles that will enhance searching for mutations and will improve cross-species comparison. With the ability to assign unique and informative symbols as well as to link alleles with more than one gene, allele and transgene nomenclature rules and guidelines provide an unambiguous way to represent alterations in the mouse genome and facilitate data integration among multiple resources such the Alliance of Genome Resources and International Mouse Strain Resource.
Collapse
|
3
|
Trager MH, Sah B, Chen Z, Liu L. Control of Breast Cancer Pathogenesis by Histone Methylation and the Hairless Histone Demethylase. Endocrinology 2021; 162:6259332. [PMID: 33928351 PMCID: PMC8237996 DOI: 10.1210/endocr/bqab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is a highly heterogeneous disease, encompassing many subtypes that have distinct origins, behaviors, and prognoses. Although traditionally seen as a genetic disease, breast cancer is now also known to involve epigenetic abnormalities. Epigenetic regulators, such as DNA methyltransferases and histone-modifying enzymes, play essential roles in gene regulation and cancer development. Dysregulation of epigenetic regulator activity has been causally linked with breast cancer pathogenesis. Hairless (HR) encodes a 130-kDa transcription factor that is essential for development and tissue homeostasis. Its role in transcription regulation is partly mediated by its interaction with multiple nuclear receptors, including thyroid hormone receptor, retinoic acid receptor-related orphan receptors, and vitamin D receptor. HR has been studied primarily in epidermal development and homeostasis. Hr-mutant mice are highly susceptible to ultraviolet- or carcinogen-induced skin tumors. Besides its putative tumor suppressor function in skin, loss of HR function has also been implicated in increased leukemia susceptibility and promotes the growth of melanoma and brain cancer cells. HR has also been demonstrated to function as a histone H3 lysine 9 demethylase. Recent genomics studies have identified HR mutations in a variety of human cancers, including breast cancer. The anticancer function and mechanism of action by HR in mammary tissue remains to be investigated. Here, we review the emerging role of HR, its histone demethylase activity and histone methylation in breast cancer development, and potential for epigenetic therapy.
Collapse
Affiliation(s)
- Megan H Trager
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Bindeshwar Sah
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Zhongming Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
- Correspondence: Liang Liu, PhD, The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
4
|
Integration in oncogenes plays only a minor role in determining the in vivo distribution of HIV integration sites before or during suppressive antiretroviral therapy. PLoS Pathog 2021; 17:e1009141. [PMID: 33826675 PMCID: PMC8055010 DOI: 10.1371/journal.ppat.1009141] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/19/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
HIV persists during antiretroviral therapy (ART) as integrated proviruses in cells descended from a small fraction of the CD4+ T cells infected prior to the initiation of ART. To better understand what controls HIV persistence and the distribution of integration sites (IS), we compared about 15,000 and 54,000 IS from individuals pre-ART and on ART, respectively, with approximately 395,000 IS from PBMC infected in vitro. The distribution of IS in vivo is quite similar to the distribution in PBMC, but modified by selection against proviruses in expressed genes, by selection for proviruses integrated into one of 7 specific genes, and by clonal expansion. Clones in which a provirus integrated in an oncogene contributed to cell survival comprised only a small fraction of the clones persisting in on ART. Mechanisms that do not involve the provirus, or its location in the host genome, are more important in determining which clones expand and persist. In HIV-infected individuals, a small fraction of the infected cells persist and divide. This reservoir persists during fully suppressive ART and can rekindle the infection if ART is discontinued. Because the number of possible sites of HIV DNA integration is very large, each infected cell, and all of its descendants, can be identified by the site where the provirus is integrated (IS). To understand the selective forces that determine the fates of infected cells in vivo, we compared the distribution of HIV IS in freshly-infected cells to cells from HIV-infected donors sampled both before and during ART. We found that, as previously reported, integration favors highly-expressed genes. However, over time, the fraction of cells with proviruses integrated in highly-expressed genes decreases, implying that they grow less well. There are exceptions to this broad negative selection. When a provirus is integrated in a specific region in one of seven genes, the proviruses affect the expression of the target gene, promoting growth and/or survival of the cell. Although this effect is striking, it is only a minor component of the forces that promote the growth and survival of the population of infected cells during ART.
Collapse
|
5
|
Bertozzi TM, Takahashi N, Hanin G, Kazachenka A, Ferguson-Smith AC. A spontaneous genetically induced epiallele at a retrotransposon shapes host genome function. eLife 2021; 10:e65233. [PMID: 33755012 PMCID: PMC8084528 DOI: 10.7554/elife.65233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Intracisternal A-particles (IAPs) are endogenous retroviruses (ERVs) responsible for most insertional mutations in the mouse. Full-length IAPs harbour genes flanked by long terminal repeats (LTRs). Here, we identify a solo LTR IAP variant (Iap5-1solo) recently formed in the inbred C57BL/6J mouse strain. In contrast to the C57BL/6J full-length IAP at this locus (Iap5-1full), Iap5-1solo lacks DNA methylation and H3K9 trimethylation. The distinct DNA methylation levels between the two alleles are established during preimplantation development, likely due to loss of KRAB zinc finger protein binding at the Iap5-1solo variant. Iap5-1solo methylation increases and becomes more variable in a hybrid genetic background yet is unresponsive to maternal dietary methyl supplementation. Differential epigenetic modification of the two variants is associated with metabolic differences and tissue-specific changes in adjacent gene expression. Our characterisation of Iap5-1 as a genetically induced epiallele with functional consequences establishes a new model to study transposable element repression and host-element co-evolution.
Collapse
Affiliation(s)
- Tessa M Bertozzi
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Nozomi Takahashi
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Geula Hanin
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | | | | |
Collapse
|
6
|
Buckley RM, Gandolfi B, Creighton EK, Pyne CA, Bouhan DM, LeRoy ML, Senter DA, Gobble JR, Abitbol M, Lyons LA. Werewolf, There Wolf: Variants in Hairless Associated with Hypotrichia and Roaning in the Lykoi Cat Breed. Genes (Basel) 2020; 11:E682. [PMID: 32580512 PMCID: PMC7348984 DOI: 10.3390/genes11060682] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022] Open
Abstract
A variety of cat breeds have been developed via novelty selection on aesthetic, dermatological traits, such as coat colors and fur types. A recently developed breed, the lykoi (a.k.a. werewolf cat), was bred from cats with a sparse hair coat with roaning, implying full color and all white hairs. The lykoi phenotype is a form of hypotrichia, presenting as a significant reduction in the average numbers of follicles per hair follicle group as compared to domestic shorthair cats, a mild to severe perifollicular to mural lymphocytic infiltration in 77% of observed hair follicle groups, and the follicles are often miniaturized, dilated, and dysplastic. Whole genome sequencing was conducted on a single lykoi cat that was a cross between two independently ascertained lineages. Comparison to the 99 Lives dataset of 194 non-lykoi cats suggested two variants in the cat homolog for Hairless (HR) (HR lysine demethylase and nuclear receptor corepressor) as candidate causal gene variants. The lykoi cat was a compound heterozygote for two loss of function variants in HR, an exon 3 c.1255_1256dupGT (chrB1:36040783), which should produce a stop codon at amino acid 420 (p.Gln420Serfs*100) and, an exon 18 c.3389insGACA (chrB1:36051555), which should produce a stop codon at amino acid position 1130 (p.Ser1130Argfs*29). Ascertainment of 14 additional cats from founder lineages from Canada, France and different areas of the USA identified four additional loss of function HR variants likely causing the highly similar phenotypic hair coat across the diverse cats. The novel variants in HR for cat hypotrichia can now be established between minor differences in the phenotypic presentations.
Collapse
Affiliation(s)
- Reuben M. Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Barbara Gandolfi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Erica K. Creighton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Connor A. Pyne
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Delia M. Bouhan
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | - Michelle L. LeRoy
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
- Veterinary Allergy and Dermatology Clinic, LLC., Overland Park, KS 66210, USA
| | - David A. Senter
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
- Veterinary Allergy and Dermatology Clinic, LLC., Overland Park, KS 66210, USA
| | | | - Marie Abitbol
- NeuroMyoGène Institute, CNRS UMR 5310, INSERM U1217, Faculty of Medicine, Rockefeller, Claude Bernard Lyon I University, 69008 Lyon, France;
- VetAgro Sup, University of Lyon, Marcy-l’Etoile, 69280 Lyon, France
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (R.M.B.); (B.G.); (E.K.C.); (C.A.P.); (D.M.B.); (M.L.L.); (D.A.S.)
| | | |
Collapse
|
7
|
Retroviral Insertional Mutagenesis in Humans: Evidence for Four Genetic Mechanisms Promoting Expansion of Cell Clones. Mol Ther 2020; 28:352-356. [PMID: 31951833 DOI: 10.1016/j.ymthe.2019.12.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/12/2023] Open
Abstract
Integration of new DNA into a cellular chromosome can alter the activity of nearby genes, sometimes affecting subsequent cell growth. A potent form of insertional mutagenesis involves integration of retroviral DNA produced by reverse transcription, a required step in the replication of retroviruses. In recent years retroviral replication has been adapted to allow new gene addition by retroviral vectors. Early in the history of retrovirus research, analysis of insertional mutagenesis in laboratory animals was found at times to result in transformation, leading to the discovery of cellular proto-oncogenes. In-depth analysis of the genetic consequences showed that integration of retroviral DNA could alter the gene activity in a variety of ways. Mechanisms of retroviral insertional mutagenesis in humans are much less well documented. However, recent work from the gene therapy and HIV fields now specify four genetic mechanisms of retroviral insertional mutagenesis in humans: (1) gene activation by integration of an enhancer sequence encoded in a retroviral vector (enhancer insertion), (2) gene activation by promoter insertion, (3) gene inactivation by insertional disruption, and (4) gene activation by mRNA 3' end substitution. In each example, integration in patients was associated with clonal expansion or frank transformation.
Collapse
|
8
|
Li C, Jiang Y, Li S. LEMON: a method to construct the local strains at horizontal gene transfer sites in gut metagenomics. BMC Bioinformatics 2019; 20:702. [PMID: 31881904 PMCID: PMC6933643 DOI: 10.1186/s12859-019-3301-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Horizontal Gene Transfer (HGT) refers to the transfer of genetic materials between organisms through mechanisms other than parent-offspring inheritance. HGTs may affect human health through a large number of microorganisms, especially the gut microbiomes which the human body harbors. The transferred segments may lead to complicated local genome structural variations. Details of the local genome structure can elucidate the effects of the HGTs. RESULTS In this work, we propose a graph-based method to reconstruct the local strains from the gut metagenomics data at the HGT sites. The method is implemented in a package named LEMON. The simulated results indicate that the method can identify transferred segments accurately on reference sequences of the microbiome. Simulation results illustrate that LEMON could recover local strains with complicated structure variation. Furthermore, the gene fusion points detected in real data near HGT breakpoints validate the accuracy of LEMON. Some strains reconstructed by LEMON have a replication time profile with lower standard error, which demonstrates HGT events recovered by LEMON is reliable. CONCLUSIONS Through LEMON we could reconstruct the sequence structure of bacteria, which harbors HGT events. This helps us to study gene flow among different microbial species.
Collapse
Affiliation(s)
- Chen Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, HongKong, China
| | - Yiqi Jiang
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, HongKong, China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, HongKong, China
| |
Collapse
|
9
|
Gagnier L, Belancio VP, Mager DL. Mouse germ line mutations due to retrotransposon insertions. Mob DNA 2019; 10:15. [PMID: 31011371 PMCID: PMC6466679 DOI: 10.1186/s13100-019-0157-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
Transposable element (TE) insertions are responsible for a significant fraction of spontaneous germ line mutations reported in inbred mouse strains. This major contribution of TEs to the mutational landscape in mouse contrasts with the situation in human, where their relative contribution as germ line insertional mutagens is much lower. In this focussed review, we provide comprehensive lists of TE-induced mouse mutations, discuss the different TE types involved in these insertional mutations and elaborate on particularly interesting cases. We also discuss differences and similarities between the mutational role of TEs in mice and humans.
Collapse
Affiliation(s)
- Liane Gagnier
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dixie L. Mager
- Terry Fox Laboratory, BC Cancer and Department of Medical Genetics, University of British Columbia, V5Z1L3, Vancouver, BC Canada
| |
Collapse
|
10
|
Schiavo G, Bertolini F, Utzeri VJ, Ribani A, Geraci C, Santoro L, Óvilo C, Fernández AI, Gallo M, Fontanesi L. Taking advantage from phenotype variability in a local animal genetic resource: identification of genomic regions associated with the hairless phenotype in Casertana pigs. Anim Genet 2018; 49:321-325. [DOI: 10.1111/age.12665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 01/06/2023]
Affiliation(s)
- G. Schiavo
- Division of Animal Sciences; Department of Agricultural and Food Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - F. Bertolini
- Division of Animal Sciences; Department of Agricultural and Food Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
- Department of Animal Science; Iowa State University; 2255 Kildee Hall 50011 Ames IA USA
- Department of Bio and Health Informatics; Technical University of Denmark; Kemitorvet; Building 208 Room 007, 2800 Kgs. Lyngby Denmark
| | - V. J. Utzeri
- Division of Animal Sciences; Department of Agricultural and Food Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - A. Ribani
- Division of Animal Sciences; Department of Agricultural and Food Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - C. Geraci
- Division of Animal Sciences; Department of Agricultural and Food Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| | - L. Santoro
- ConSDABI - National Focal Point Italiano FAO; Contrada Piano Cappelle 82100 Benevento Italy
| | - C. Óvilo
- Departamento de Mejora Genética Animal; Instituto Nacional de Tecnología Agraria y Alimentaria (INIA); Ctra. de la Coruña km. 7.5 28040 Madrid Spain
| | - A. I. Fernández
- Departamento de Mejora Genética Animal; Instituto Nacional de Tecnología Agraria y Alimentaria (INIA); Ctra. de la Coruña km. 7.5 28040 Madrid Spain
| | - M. Gallo
- Associazione Nazionale Allevatori Suini; Via Nizza 53 00198 Roma Italy
| | - L. Fontanesi
- Division of Animal Sciences; Department of Agricultural and Food Sciences; University of Bologna; Viale Fanin 46 40127 Bologna Italy
| |
Collapse
|
11
|
Bamunusinghe D, Liu Q, Plishka R, Dolan MA, Skorski M, Oler AJ, Yedavalli VRK, Buckler-White A, Hartley JW, Kozak CA. Recombinant Origins of Pathogenic and Nonpathogenic Mouse Gammaretroviruses with Polytropic Host Range. J Virol 2017; 91:e00855-17. [PMID: 28794032 PMCID: PMC5640873 DOI: 10.1128/jvi.00855-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Ecotropic, xenotropic, and polytropic mouse leukemia viruses (E-, X-, and P-MLVs) exist in mice as infectious viruses and endogenous retroviruses (ERVs) inserted into mouse chromosomes. All three MLV subgroups are linked to leukemogenesis, which involves generation of recombinants with polytropic host range. Although P-MLVs are deemed to be the proximal agents of disease induction, few biologically characterized infectious P-MLVs have been sequenced for comparative analysis. We analyzed the complete genomes of 16 naturally occurring infectious P-MLVs, 12 of which were typed for pathogenic potential. We sought to identify ERV progenitors, recombinational hot spots, and segments that are always replaced, never replaced, or linked to pathogenesis or host range. Each P-MLV has an E-MLV backbone with P- or X-ERV replacements that together cover 100% of the recombinant genomes, with different substitution patterns for X- and P-ERVs. Two segments are always replaced, both coding for envelope (Env) protein segments: the N terminus of the surface subunit and the cytoplasmic tail R peptide. Viral gag gene replacements are influenced by host restriction genes Fv1 and Apobec3 Pathogenic potential maps to the env transmembrane subunit segment encoding the N-heptad repeat (HR1). Molecular dynamics simulations identified three novel interdomain salt bridges in the lymphomagenic virus HR1 that could affect structural stability, entry or sensitivity to host immune responses. The long terminal repeats of lymphomagenic P-MLVs are differentially altered by recombinations, duplications, or mutations. This analysis of the naturally occurring, sometimes pathogenic P-MLV recombinants defines the limits and extent of intersubgroup recombination and identifies specific sequence changes linked to pathogenesis and host interactions.IMPORTANCE During virus-induced leukemogenesis, ecotropic mouse leukemia viruses (MLVs) recombine with nonecotropic endogenous retroviruses (ERVs) to produce polytropic MLVs (P-MLVs). Analysis of 16 P-MLV genomes identified two segments consistently replaced: one at the envelope N terminus that alters receptor choice and one in the R peptide at the envelope C terminus, which is removed during virus assembly. Genome-wide analysis shows that nonecotropic replacements in the progenitor ecotropic MLV genome are more extensive than previously appreciated, covering 100% of the genome; contributions from xenotropic and polytropic ERVs differentially alter the regions responsible for receptor determination or subject to APOBEC3 and Fv1 restriction. All pathogenic viruses had modifications in the regulatory elements in their long terminal repeats and differed in a helical segment of envelope involved in entry and targeted by the host immune system. Virus-induced leukemogenesis thus involves generation of complex recombinants, and specific replacements are linked to pathogenesis and host restrictions.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Ronald Plishka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Janet W Hartley
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Abstract
Advances in technology have made it possible to analyze integration sites in cells from HIV-infected patients. A significant fraction of infected cells in patients on long-term therapy are clonally expanded; in some cases the integrated viral DNA contributes to the clonal expansion of the infected cells. Although the large majority (>95%) of the HIV proviruses in treated patients are defective, expanded clones can carry replication-competent proviruses, and cells from these clones can release infectious virus. As discussed in this Perspective, it is likely that cells that produce virus are strongly selected against in vivo, and cells with replication competent proviruses expand and survive because only a small fraction of the cells produce virus. These findings have implications for strategies that are intended to eliminate the reservoir of infected cells that has made it almost impossible to cure HIV-infected patients.
Collapse
Affiliation(s)
- Stephen H Hughes
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
13
|
Konger RL, Derr-Yellin E, Hojati D, Lutz C, Sundberg JP. Comparison of the acute ultraviolet photoresponse in congenic albino hairless C57BL/6J mice relative to outbred SKH1 hairless mice. Exp Dermatol 2016; 25:688-93. [PMID: 27095432 DOI: 10.1111/exd.13034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2016] [Indexed: 12/25/2022]
Abstract
Hairless albino Crl:SKH1-Hr(hr) mice are commonly utilized for studies in which hair or pigmentation would introduce an impediment to observational studies. Being an outbred strain, the SKH1 model suffers from key limitations that are not seen with congenic mouse strains. Inbred and congenic C57BL/6J mice are commonly utilized for modified genetic mouse models. We compare the acute UV-induced photoresponse between outbred SKH1 mice and an immune competent, hairless, albino C57BL/6J congenic mouse line [B6.Cg-Tyr(c-2J) Hr(hr) /J]. Histologically, B6.Cg-Tyr(c-2J) Hr(hr) /J skin is indistinguishable from that of SKH1 mice. The skin of both SKH1 and B6.Cg-Tyr(c-2J) Hr(hr) /J mice exhibited a reduction in hypodermal adipose tissue, the presence of utricles and dermal cystic structures, the presence of dermal granulomas and epidermal thickening. In response to a single 1500 J/m(2) ultraviolet B dose, the oedema and apoptotic responses were equivalent in both mouse strains. However, B6.Cg-Tyr(c-2J) Hr(hr) /J mice exhibited a more robust delayed sunburn reaction, with an increase in epidermal erosion, scab formation and myeloperoxidase activity relative to SKH1 mice. Compared with SKH1 mice, B6.Cg-Tyr(c-2J) Hr(hr) /J also exhibited an aberrant proliferative response to this single UV exposure. Epidermal Ki67 immunopositivity was significantly suppressed in B6.Cg-Tyr(c-2J) Hr(hr) /J mice at 24 h post-UV. A smaller non-significant reduction in Ki67 labelling was observed in SKH1 mice. Finally, at 72 h post-UV, SKH1 mice, but not B6.Cg-Tyr(c-2J) Hr(hr) /J mice, exhibited a significant increase in Ki67 immunolabelling relative to non-irradiated controls. Thus, B6.Cg-Tyr(c-2J) Hr(hr) /J mice are suitable for photobiology experiments.
Collapse
Affiliation(s)
- Raymond L Konger
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Delaram Hojati
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cathleen Lutz
- Rare and Orphan Disease Center, Department of Genetic Resources Sciences, The Jackson Laboratory, Bar Harbor, ME, USA
| | - John P Sundberg
- Research and Development, The Jackson Laboratory, Bar Harbor, ME, USA
| |
Collapse
|
14
|
Abstract
Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.
Collapse
Affiliation(s)
- Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467;
| |
Collapse
|
15
|
Luke CT, Casta A, Kim H, Christiano AM. Hairless and the polyamine putrescine form a negative regulatory loop in the epidermis. Exp Dermatol 2014; 22:644-9. [PMID: 24079733 DOI: 10.1111/exd.12228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 11/30/2022]
Abstract
Hairless (HR) is a nuclear protein with corepressor activity that is highly expressed in the skin and hair follicle. Mutations in Hairless lead to hair loss accompanied by the appearance of papules (atrichia with papular lesions), and similar phenotypes appear when the key polyamine enzymes ornithine decarboxylase (ODC) and spermidine/spermine N(1) -acetyltransferase (SSAT) are overexpressed. Both ODC and SSAT transgenic mice have elevated epidermal levels of putrescine, leading us to investigate the mechanistic link between putrescine and HR. We show here that HR and putrescine form a negative regulatory network, as epidermal ODC expression is elevated when HR is decreased and vice versa. We also show that the regulation of ODC by HR is dependent on the MYC superfamily of proteins, in particular MYC, MXI1 and MXD3. Furthermore, we found that elevated levels of putrescine lead to decreased HR expression, but that the SSAT-TG phenotype is distinct from that found when HR is mutated. Transcriptional microarray analysis of putrescine-treated primary human keratinocytes demonstrated differential regulation of genes involved in protein-protein interactions, nucleotide binding and transcription factor activity, suggesting that the putrescine-HR negative regulatory loop may have a large impact on epidermal homeostasis and hair follicle cycling.
Collapse
Affiliation(s)
- Courtney T Luke
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY, USA
| | | | | | | |
Collapse
|
16
|
Kassiotis G. Endogenous retroviruses and the development of cancer. THE JOURNAL OF IMMUNOLOGY 2014; 192:1343-9. [PMID: 24511094 DOI: 10.4049/jimmunol.1302972] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian genomes include a considerable number of endogenous retroviruses (ERVs), relics of ancestral infectious retroviruses, whose proviruses have invaded the germ-line. The documented ability of infectious retroviruses to cause cancer has greatly contributed to the discovery of ERVs. It also reinforced the concept that ERVs are causative agents of many cancers, a notion that historically has not always stood up to experimental scrutiny. The recent greater appreciation of the complexity of ERV biology and the identification of dedicated host mechanisms controlling ERV activity have revealed novel interactions between ERVs and their hosts, with the potential to cause or contribute to disease. In this review, the involvement of ERVs in cancer initiation and progression is discussed, as well as their contribution to our understanding of the process of transformation and to the invention of innovative preventive and therapeutic cancer treatments.
Collapse
Affiliation(s)
- George Kassiotis
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
17
|
Suzuki O, Koura M, Noguchi Y, Uchio-Yamada K, Matsuda J. Zygosity determination in hairless mice by PCR based on Hr(hr) gene analysis. Exp Anim 2014; 62:267-73. [PMID: 23903062 PMCID: PMC4160947 DOI: 10.1538/expanim.62.267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We analyzed the Hr gene of a hairless mouse strain of unknown origin (HR
strain, http://animal.nibio.go.jp/e_hr.html) to determine whether the strain shares a
mutation with other hairless strains, such as HRS/J and Skh:HR-1, both of which have an
Hrhr allele. Using PCR with multiple pairs of primers
designed to amplify multiple overlapping regions covering the entire Hr
gene, we found an insertion mutation in intron 6 of mutant Hr genes in HR
mice. The DNA sequence flanking the mutation indicated that the mutation in HR mice was
the same as that of Hrhr in the HRS/J strain. Based on the
sequence, we developed a genotyping method using PCR to determine zygosities. Three
primers were designed: S776 (GGTCTCGCTGGTCCTTGA), S607 (TCTGGAACCAGAGTGACAGACAGCTA), and
R850 (TGGGCCACCATGGCCAGATTTAACACA). The S776 and R850 primers detected the
Hrhr allele (275-bp amplicon), and S607 and R850
identified the wild-type Hr allele (244-bp amplicon). Applying PCR using
these three primers, we confirmed that it is possible to differentiate among homozygous
Hrhr (longer amplicons only), homozygous wild-type
Hr(shorter amplicons only), and heterozygous (both amplicons) in HR and
Hos:HR-1 mice. Our genomic analysis indicated that the HR, HRS/J, and Hos:HR-1 strains,
and possibly Skh:HR-1 (an ancestor of Hos:HR-1) strain share the same
Hrhr gene mutation. Our genotyping method will facilitate
further research using hairless mice, and especially immature mice, because pups can be
genotyped before their phenotype (hair coat loss) appears at about 2 weeks of age.
Collapse
Affiliation(s)
- Osamu Suzuki
- Laboratory of Animal Models for Human Diseases, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | | | | | | | | |
Collapse
|
18
|
Devos M, De Groote P, Gilbert B, Bruggeman I, Leurs K, Lippens S, Vandenabeele P, Declercq W. Caspase-14 overexpression in hairless mice is not involved in utricle formation. Exp Dermatol 2013; 22:484-6. [DOI: 10.1111/exd.12165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Michael Devos
- Molecular Signaling and Cell Death Unit; Department for Molecular Biomedical Research; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Philippe De Groote
- Molecular Signaling and Cell Death Unit; Department for Molecular Biomedical Research; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Barbara Gilbert
- Molecular Signaling and Cell Death Unit; Department for Molecular Biomedical Research; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Inge Bruggeman
- Molecular Signaling and Cell Death Unit; Department for Molecular Biomedical Research; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Kirsten Leurs
- Molecular Signaling and Cell Death Unit; Department for Molecular Biomedical Research; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Saskia Lippens
- Molecular Signaling and Cell Death Unit; Department for Molecular Biomedical Research; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit; Department for Molecular Biomedical Research; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit; Department for Molecular Biomedical Research; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| |
Collapse
|
19
|
Diehl WE, Johnson WE, Hunter E. Elevated rate of fixation of endogenous retroviral elements in Haplorhini TRIM5 and TRIM22 genomic sequences: impact on transcriptional regulation. PLoS One 2013; 8:e58532. [PMID: 23516500 PMCID: PMC3597737 DOI: 10.1371/journal.pone.0058532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
All genes in the TRIM6/TRIM34/TRIM5/TRIM22 locus are type I interferon inducible, with TRIM5 and TRIM22 possessing antiviral properties. Evolutionary studies involving the TRIM6/34/5/22 locus have predominantly focused on the coding sequence of the genes, finding that TRIM5 and TRIM22 have undergone high rates of both non-synonymous nucleotide replacements and in-frame insertions and deletions. We sought to understand if divergent evolutionary pressures on TRIM6/34/5/22 coding regions have selected for modifications in the non-coding regions of these genes and explore whether such non-coding changes may influence the biological function of these genes. The transcribed genomic regions, including the introns, of TRIM6, TRIM34, TRIM5, and TRIM22 from ten Haplorhini primates and one prosimian species were analyzed for transposable element content. In Haplorhini species, TRIM5 displayed an exaggerated interspecies variability, predominantly resulting from changes in the composition of transposable elements in the large first and fourth introns. Multiple lineage-specific endogenous retroviral long terminal repeats (LTRs) were identified in the first intron of TRIM5 and TRIM22. In the prosimian genome, we identified a duplication of TRIM5 with a concomitant loss of TRIM22. The transposable element content of the prosimian TRIM5 genes appears to largely represent the shared Haplorhini/prosimian ancestral state for this gene. Furthermore, we demonstrated that one such differentially fixed LTR provides for species-specific transcriptional regulation of TRIM22 in response to p53 activation. Our results identify a previously unrecognized source of species-specific variation in the antiviral TRIM genes, which can lead to alterations in their transcriptional regulation. These observations suggest that there has existed long-term pressure for exaptation of retroviral LTRs in the non-coding regions of these genes. This likely resulted from serial viral challenges and provided a mechanism for rapid alteration of transcriptional regulation. To our knowledge, this represents the first report of persistent evolutionary pressure for the capture of retroviral LTR insertions.
Collapse
Affiliation(s)
- William E. Diehl
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology, Emory University, Atlanta, Georgia, United States of America
| | - Welkin E. Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Wang Z, Qu L, Yao J, Yang X, Li G, Zhang Y, Li J, Wang X, Bai J, Xu G, Deng X, Yang N, Wu C. An EAV-HP insertion in 5' Flanking region of SLCO1B3 causes blue eggshell in the chicken. PLoS Genet 2013; 9:e1003183. [PMID: 23359636 PMCID: PMC3554524 DOI: 10.1371/journal.pgen.1003183] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/28/2012] [Indexed: 12/04/2022] Open
Abstract
The genetic determination of eggshell coloration has not been determined in birds. Here we report that the blue eggshell is caused by an EAV-HP insertion that promotes the expression of SLCO1B3 gene in the uterus (shell gland) of the oviduct in chicken. In this study, the genetic map location of the blue eggshell gene was refined by linkage analysis in an F2 chicken population, and four candidate genes within the refined interval were subsequently tested for their expression levels in the shell gland of the uterus from blue-shelled and non-blue-shelled hens. SLCO1B3 gene was found to be the only one expressed in the uterus of blue-shelled hens but not in that of non-blue-shelled hens. Results from a pyrosequencing analysis showed that only the allele of SLCO1B3 from blue-shelled chickens was expressed in the uterus of heterozygous hens (O*LC/O*N). SLCO1B3 gene belongs to the organic anion transporting polypeptide (OATP) family; and the OATPs, functioning as membrane transporters, have been reported for the transportation of amphipathic organic compounds, including bile salt in mammals. We subsequently resequenced the whole genomic region of SLCO1B3 and discovered an EAV-HP insertion in the 5′ flanking region of SLCO1B3. The EAV-HP insertion was found closely associated with blue eggshell phenotype following complete Mendelian segregation. In situ hybridization also demonstrated that the blue eggshell is associated with ectopic expression of SLCO1B3 in shell glands of uterus. Our finding strongly suggests that the EAV-HP insertion is the causative mutation for the blue eggshell phenotype. The insertion was also found in another Chinese blue-shelled breed and an American blue-shelled breed. In addition, we found that the insertion site in the blue-shelled chickens from Araucana is different from that in Chinese breeds, which implied independent integration events in the blue-shelled chickens from the two continents, providing a parallel evolutionary example at the molecular level. The eggshell color of birds is of wide interest, but the molecular basis remained unknown until our discovery, reported here. The blue eggshell is found not only in wild birds but also in domestic fowls. In this study, we identified that blue eggshell in chickens from different geographical regions is caused by a ∼4.2 kb EAV-HP insertion in the 5′ flanking region of SLCO1B3. The EAV-HP insertion in chicken is a derived mutation in domestic chickens. The genetic determination of blue eggshell in other birds requires further investigation. We also found that the EAV-HP insertions in the chickens from China and America were separate integration events, which presents us with a parallel molecular evolution example driven by artificial selection.
Collapse
Affiliation(s)
- Zhepeng Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Junfeng Yao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Xiaolin Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Guangqi Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Yuanyuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Xiaotong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Jirong Bai
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Xuemei Deng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
- * E-mail: (XD); (NY)
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
- * E-mail: (XD); (NY)
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Tharmarajah G, Faas L, Reiss K, Saftig P, Young A, Van Raamsdonk CD. Adam10 haploinsufficiency causes freckle-like macules in Hairless mice. Pigment Cell Melanoma Res 2012; 25:555-65. [DOI: 10.1111/j.1755-148x.2012.01032.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Kim H, Casta A, Tang X, Luke CT, Kim AL, Bickers DR, Athar M, Christiano AM. Loss of hairless confers susceptibility to UVB-induced tumorigenesis via disruption of NF-kappaB signaling. PLoS One 2012; 7:e39691. [PMID: 22761871 PMCID: PMC3382590 DOI: 10.1371/journal.pone.0039691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/29/2012] [Indexed: 12/27/2022] Open
Abstract
In order to model squamous cell carcinoma development in vivo, researchers have long preferred hairless mouse models such as SKH-1 mice that have traditionally been classified as ‘wild-type’ mice irrespective of the genetic factors underlying their hairless phenotype. The work presented here shows that mutations in the Hairless (Hr) gene not only result in the hairless phenotype of the SKH-1 and Hr−/− mouse lines but also cause aberrant activation of NFκB and its downstream effectors. We show that in the epidermis, Hr is an early UVB response gene that regulates NFκB activation and thereby controls cellular responses to irradiation. Therefore, when Hr expression is decreased in Hr mutant animals there is a corresponding increase in NFκB activity that is augmented by UVB irradiation. This constitutive activation of NFκB in the Hr mutant epidermis leads to the stimulation a large variety of downstream effectors including the cell cycle regulators cyclin D1 and cyclin E, the anti-apoptosis protein Bcl-2, and the pro-inflammatory protein Cox-2. Therefore, Hr loss results in a state of uncontrolled epidermal proliferation that promotes tumor development, and Hr mutant mice should no longer be considered merely hairless 'wild-type' mice. Instead, Hr is a crucial UVB response gene and its loss creates a permissive environment that potentiates increased tumorigenesis.
Collapse
Affiliation(s)
- Hyunmi Kim
- Department of Genetics & Development, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Alexandre Casta
- Institute of Human Nutrition, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Xiuwei Tang
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Courtney T. Luke
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Arianna L. Kim
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - David R. Bickers
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Mohammad Athar
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Angela M. Christiano
- Department of Genetics & Development, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Nellåker C, Keane TM, Yalcin B, Wong K, Agam A, Belgard TG, Flint J, Adams DJ, Frankel WN, Ponting CP. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol 2012; 13:R45. [PMID: 22703977 PMCID: PMC3446317 DOI: 10.1186/gb-2012-13-6-r45] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/25/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022] Open
Abstract
Background Transposable element (TE)-derived sequence dominates the landscape of mammalian genomes and can modulate gene function by dysregulating transcription and translation. Our current knowledge of TEs in laboratory mouse strains is limited primarily to those present in the C57BL/6J reference genome, with most mouse TEs being drawn from three distinct classes, namely short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs) and the endogenous retrovirus (ERV) superfamily. Despite their high prevalence, the different genomic and gene properties controlling whether TEs are preferentially purged from, or are retained by, genetic drift or positive selection in mammalian genomes remain poorly defined. Results Using whole genome sequencing data from 13 classical laboratory and 4 wild-derived mouse inbred strains, we developed a comprehensive catalogue of 103,798 polymorphic TE variants. We employ this extensive data set to characterize TE variants across the Mus lineage, and to infer neutral and selective processes that have acted over 2 million years. Our results indicate that the majority of TE variants are introduced though the male germline and that only a minority of TE variants exert detectable changes in gene expression. However, among genes with differential expression across the strains there are twice as many TE variants identified as being putative causal variants as expected. Conclusions Most TE variants that cause gene expression changes appear to be purged rapidly by purifying selection. Our findings demonstrate that past TE insertions have often been highly deleterious, and help to prioritize TE variants according to their likely contribution to gene expression or phenotype variation.
Collapse
Affiliation(s)
- Christoffer Nellåker
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li J, Akagi K, Hu Y, Trivett AL, Hlynialuk CJ, Swing DA, Volfovsky N, Morgan TC, Golubeva Y, Stephens RM, Smith DE, Symer DE. Mouse endogenous retroviruses can trigger premature transcriptional termination at a distance. Genome Res 2012; 22:870-84. [PMID: 22367191 PMCID: PMC3337433 DOI: 10.1101/gr.130740.111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 02/09/2012] [Indexed: 01/15/2023]
Abstract
Endogenous retrotransposons have caused extensive genomic variation within mammalian species, but the functional implications of such mobilization are mostly unknown. We mapped thousands of endogenous retrovirus (ERV) germline integrants in highly divergent, previously unsequenced mouse lineages, facilitating a comparison of gene expression in the presence or absence of local insertions. Polymorphic ERVs occur relatively infrequently in gene introns and are particularly depleted from genes involved in embryogenesis or that are highly expressed in embryonic stem cells. Their genomic distribution implies ongoing negative selection due to deleterious effects on gene expression and function. A polymorphic, intronic ERV at Slc15a2 triggers up to 49-fold increases in premature transcriptional termination and up to 39-fold reductions in full-length transcripts in adult mouse tissues, thereby disrupting protein expression and functional activity. Prematurely truncated transcripts also occur at Polr1a, Spon1, and up to ∼5% of other genes when intronic ERV polymorphisms are present. Analysis of expression quantitative trait loci (eQTLs) in recombinant BxD mouse strains demonstrated very strong genetic associations between the polymorphic ERV in cis and disrupted transcript levels. Premature polyadenylation is triggered at genomic distances up to >12.5 kb upstream of the ERV, both in cis and between alleles. The parent of origin of the ERV is associated with variable expression of nonterminated transcripts and differential DNA methylation at its 5'-long terminal repeat. This study defines an unexpectedly strong functional impact of ERVs in disrupting gene transcription at a distance and demonstrates that ongoing retrotransposition can contribute significantly to natural phenotypic diversity.
Collapse
Affiliation(s)
- Jingfeng Li
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Keiko Akagi
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Christopher J.W. Hlynialuk
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Deborah A. Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Natalia Volfovsky
- Advanced Biomedical Computing Center, Information Systems Program and
| | - Tamara C. Morgan
- Histotechnology Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702, USA
| | - Yelena Golubeva
- Histotechnology Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702, USA
| | | | - David E. Smith
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David E. Symer
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
- Department of Internal Medicine and Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| |
Collapse
|
25
|
Kim JK, Kim BK, Park JK, Choi JH, KimYoon SJ. The Hairless Gene: A Putative Navigator of Hair Follicle Development. Genomics Inform 2011. [DOI: 10.5808/gi.2011.9.3.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Mosconi T, Gruber T. Immunohistochemical comparison of whisker pad cutaneous innervation in Swiss Webster and hairless mice. Somatosens Mot Res 2010; 27:149-73. [PMID: 20961209 DOI: 10.3109/08990220.2010.513597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To establish the mouse mutant, hairless (Hr), as a useful model for future analyses of target-ending interactions, we assessed the cutaneous innervation in the whisker pad after loss of primary hair targets. Postnatal (P) development of fur in Hr begins similarly to that of "normal" Swiss Webster (SW) mice. Around P10, hairs are shed and the follicles rendered permanently incompetent. Hair loss progresses rostrocaudally until the entire skin is denuded. Substantial alterations in the distribution and density of sensory and autonomic endings in the mystacial pad vibrissal and intervibrissal fur innervation were discovered. Pilo-neural complexes innervating fur hairs were dismantled in Hr. Epidermal innervation in SW was rich; only a few endings expressed growth-associated protein-43 kdal (GAP), suggesting limited changes in axonal elongation. Innervation in Hr formed a dense layer passing upward through the thickened epidermis, with substantial increases among all types of endings. Vibrissal follicle-sinus complexes were also hyperinnervated. Endings in Hr vibrissae and fur were strongly GAP-positive, suggesting reorganization of innervation. Dermal and vascular autonomic innervation in both strains co-localized tyrosine hydroxylase and neuropeptide Y, but only in Hr did neuropeptide Y co-localize calcitonin gene-related peptide (CGRP) and express GAP immunolabeling. Stereological quantitation of trigeminal ganglia revealed no differences in neuron number between Hr and SW, although there were small increases in cell volume in Hr trigeminal ganglion cells. These results suggested that a form of collateral sprouting was active in Hr mystacial pads, not in response to local injury, but as a result of loss of primary target tissues.
Collapse
Affiliation(s)
- Tony Mosconi
- Department of Physical Therapy Education, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
27
|
Schaffer BS, Grayson MH, Wortham JM, Kubicek CB, McCleish AT, Prajapati SI, Nelon LD, Brady MM, Jung I, Hosoyama T, Sarro LM, Hanes MA, Rubin BP, Michalek JE, Clifford CB, Infante AJ, Keller C. Immune competency of a hairless mouse strain for improved preclinical studies in genetically engineered mice. Mol Cancer Ther 2010; 9:2354-64. [PMID: 20663932 DOI: 10.1158/1535-7163.mct-10-0207] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genetically engineered mouse models (GEMM) of cancer are of increasing value to preclinical therapeutics. Optical imaging is a cost-effective method of assessing deep-seated tumor growth in GEMMs whose tumors can be encoded to express luminescent or fluorescent reporters, although reporter signal attenuation would be improved if animals were fur-free. In this study, we sought to determine whether hereditable furlessness resulting from a hypomorphic mutation in the Hairless gene would or would not also affect immune competence. By assessing humoral and cellular immunity of the SKH1 mouse line bearing the hypomorphic Hairless mutation, we determined that blood counts, immunoglobulin levels, and CD4+ and CD8+ T cells were comparable between SKH1 and the C57Bl/6 strain. On examination of T-cell subsets, statistically significant differences in naïve T cells (1.7 versus 3.4 x 10(5) cells/spleen in SKH1 versus C57Bl/6, P = 0.008) and memory T cells (1.4 versus 0.13 x 10(6) cells/spleen in SKH1 versus C57Bl/6, P = 0.008) were detected. However, the numerical differences did not result in altered T-cell functional response to antigen rechallenge (keyhole limpet hemocyanin) in a lymph node cell in vitro proliferative assay. Furthermore, interbreeding the SKH1 mouse line to a rhabdomyosarcoma GEMM showed preserved antitumor responses of CD56+ natural killer cells and CD163+ macrophages, without any differences in tumor pathology. The fur-free GEMM was also especially amenable to multiplex optical imaging. Thus, SKH1 represents an immune competent, fur-free mouse strain that may be of use for interbreeding to other genetically engineered mouse models of cancer for improved preclinical studies.
Collapse
Affiliation(s)
- Beverly S Schaffer
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Epidermolysis bullosa (EB) is a class of intractable, rare, genetic disorders characterized by fragile skin and blister formation as a result of dermal-epidermal mechanical instability. EB presents with considerable clinical and molecular heterogeneity. Viable animal models of junctional EB (JEB), that both mimic the human disease and survive beyond the neonatal period, are needed. We identified a spontaneous, autosomal recessive mutation (Lamc2(jeb)) due to a murine leukemia virus long terminal repeat insertion in Lamc2 (laminin gamma2 gene) that results in a hypomorphic allele with reduced levels of LAMC2 protein. These mutant mice develop a progressive blistering disease validated at the gross and microscopic levels to closely resemble generalized non-Herlitz JEB. The Lamc2(jeb) mice display additional extracutaneous features such as loss of bone mineralization and abnormal teeth, as well as a respiratory phenotype that is recognized but not as well characterized in humans. This model faithfully recapitulates human JEB and provides an important preclinical tool to test therapeutic approaches.
Collapse
|
29
|
Overview of Retrovirology. RETROVIRUSES AND INSIGHTS INTO CANCER 2010. [PMCID: PMC7122640 DOI: 10.1007/978-0-387-09581-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the 100 years since their discovery, retroviruses have played a special role in virology and in molecular biology. These agents have been at the center of cancer research and shaped our understanding of cell growth, differentiation and survival in ways that stretch far beyond investigations using these viruses. The discovery of retroviral oncogenes established the central paradigm that altered cellular genes can provide a dominant signal initiating cancer development. Their unique replication mechanism and their integration into cellular DNA allow these viruses to alter the properties of their hosts beyond the life span of the infected individual and contribute to the evolution of species. This same property has made retroviral vectors an important tool for gene therapy. Indeed, the impact of retrovirus research has been far-reaching and despite the amazing progress that has been made, retroviruses continue to reveal new insights into the host – pathogen interaction.
Collapse
|
30
|
Thompson CC. Hairless is a nuclear receptor corepressor essential for skin function. NUCLEAR RECEPTOR SIGNALING 2009; 7:e010. [PMID: 20087431 PMCID: PMC2807636 DOI: 10.1621/nrs.07010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/11/2009] [Indexed: 12/25/2022]
Abstract
The activity of nuclear receptors is modulated by numerous coregulatory factors. Corepressors can either mediate the ability of nuclear receptors to repress transcription, or can inhibit transactivation by nuclear receptors. As we learn more about the mechanisms of transcriptional repression, the importance of repression by nuclear receptors in development and disease has become clear. The protein encoded by the mammalian Hairless (Hr) gene was shown to be a corepressor by virtue of its functional similarity to the well-established corepressors N-CoR and SMRT. Mutation of the Hr gene results in congenital hair loss in both mice and men. Investigation of Hairless function both in vitro and in mouse models in vivo has revealed a critical role in maintaining skin and hair by regulating the differentiation of epithelial stem cells, as well as a putative role in regulating gene expression via chromatin remodeling.
Collapse
|
31
|
Abstract
Thyroid hormone (TH) plays a key role in mammalian brain development. The developing brain is sensitive to both TH deficiency and excess. Brain development in the absence of TH results in motor skill deficiencies and reduced intellectual development. These functional abnormalities can be attributed to maldevelopment of specific cell types and regions of the brain including the cerebellum. TH functions at the molecular level by regulating gene transcription. Therefore, understanding how TH regulates cerebellar development requires identification of TH-regulated gene targets and the cells expressing these genes. Additionally, the process of TH-dependent regulation of gene expression is tightly controlled by mechanisms including regulation of TH transport, TH metabolism, toxicologic inhibition of TH signaling, and control of the nuclear TH response apparatus. This review will describe the functional, cellular, and molecular effects of TH deficit in the developing cerebellum and emphasize the most recent findings regarding TH action in this important brain region.
Collapse
Affiliation(s)
- Grant W Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, Minnesota 55812, USA.
| |
Collapse
|
32
|
Abstract
Hair is a primary characteristic of mammals, and exerts a wide range of functions including thermoregulation, physical protection, sensory activity, and social interactions. The hair shaft consists of terminally differentiated keratinocytes that are produced by the hair follicle. Hair follicle development takes place during fetal skin development and relies on tightly regulated ectodermal-mesodermal interactions. After birth, mature and actively growing hair follicles eventually become anchored in the subcutis, and periodically regenerate by spontaneously undergoing repetitive cycles of growth (anagen), apoptosis-driven regression (catagen), and relative quiescence (telogen). Our molecular understanding of hair follicle biology relies heavily on mouse mutants with abnormalities in hair structure, growth, and/or pigmentation. These mice have allowed novel insights into important general molecular and cellular processes beyond skin and hair biology, ranging from organ induction, morphogenesis and regeneration, to pigment and stem cell biology, cell proliferation, migration and apoptosis. In this review, we present basic concepts of hair follicle biology and summarize important recent advances in the field.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.
| | | | | |
Collapse
|
33
|
Prajapati SI, Martinez CO, Bahadur AN, Wu IQ, Zheng W, Lechleiter JD, McManus LM, Chisholm GB, Michalek JE, Shireman PK, Keller C. Near-Infrared Imaging of Injured Tissue in Living Subjects Using IR-820. Mol Imaging 2009. [DOI: 10.2310/7290.2009.00005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Benavides F, Oberyszyn TM, VanBuskirk AM, Reeve VE, Kusewitt DF. The hairless mouse in skin research. J Dermatol Sci 2008; 53:10-8. [PMID: 18938063 DOI: 10.1016/j.jdermsci.2008.08.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/21/2008] [Accepted: 08/19/2008] [Indexed: 01/07/2023]
Abstract
The hairless (Hr) gene encodes a transcriptional co-repressor highly expressed in the mammalian skin. In the mouse, several null and hypomorphic Hr alleles have been identified resulting in hairlessness in homozygous animals, characterized by alopecia developing after a single cycle of relatively normal hair growth. Mutations in the human ortholog have also been associated with congenital alopecia. Although a variety of hairless strains have been developed, outbred SKH1 mice are the most widely used in dermatologic research. These unpigmented and immunocompetent mice allow for ready manipulation of the skin, application of topical agents, and exposure to UVR, as well as easy visualization of the cutaneous response. Wound healing, acute photobiologic responses, and skin carcinogenesis have been extensively studied in SKH1 mice and are well characterized. In addition, tumors induced in these mice resemble, both at the morphologic and molecular levels, UVR-induced skin malignancies in man. Two limitations of the SKH1 mouse in dermatologic research are the relatively uncharacterized genetic background and its outbred status, which precludes inter-individual transplantation studies.
Collapse
Affiliation(s)
- Fernando Benavides
- Department of Carcinogenesis, Science Park Research Division, University of Texas, MD Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Mutations in the hairless gene underlie APL in three families of Pakistani origin. J Dermatol Sci 2008; 50:25-30. [PMID: 18164595 DOI: 10.1016/j.jdermsci.2007.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/25/2007] [Accepted: 10/29/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND Atrichia with papular lesions (APL) (OMIM#209500) is a rare autosomal recessively inherited form of irreversible alopecia characterized by papular lesions of keratin-filled cysts on various regions of the body. Males and females are equally affected and present with a distinct pattern of total hair loss on scalp, axilla and body. It begins shortly after birth with the development of hair loss, and patients are normally devoid of eyelashes and eyebrows. Mutations in the hairless (HR) gene have been previously shown to be responsible for APL. OBJECTIVE In this study, we studied the molecular basis of APL in three unrelated families of Pakistani origin. METHOD Molecular analysis of the HR genes was performed on genomic DNA from probands and family members. RESULTS DNA sequencing of the HR gene in family A revealed a novel homozygous 2bp deletion in exon 6 leading to a frameshift and a downstream premature termination codon in exon 8 (1782-83delAG). In family B, we identified a novel homozygous deletion of a G nucleotide at the exon 15-intron 15 boundary, termed 3097delG. Family C carries a previously reported missense mutation consisting of an A-to-G transition at nucleotide 276 resulting in the mutation N970S in exon 14. CONCLUSION Two mutations identified in this study are novel mutations in the HR gene and extend the body of evidence implicating the hairless gene family in the pathogenesis of human skin disorders. The one previously reported mutation suggests it may represent a recurrent mutation, or alternatively, an allele that is widely dispersed around the world.
Collapse
|
37
|
Katzourakis A, Pereira V, Tristem M. Effects of recombination rate on human endogenous retrovirus fixation and persistence. J Virol 2007; 81:10712-7. [PMID: 17634225 PMCID: PMC2045447 DOI: 10.1128/jvi.00410-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 07/10/2007] [Indexed: 02/07/2023] Open
Abstract
Endogenous retroviruses (ERVs) result from germ line infections by exogenous retroviruses. They can proliferate within the genome of their host species until they are either inactivated by mutation or removed by recombinational deletion. ERVs belong to a diverse group of mobile genetic elements collectively termed transposable elements (TEs). Numerous studies have attempted to elucidate the factors determining the genomic distribution and persistence of TEs. Here we show that, within humans, gene density and not recombination rate correlates with fixation of endogenous retroviruses, whereas the local recombination rate determines their persistence in a full-length state. Recombination does not appear to influence fixation either via the ectopic exchange model or by indirect models based on the efficacy of selection. We propose a model linking rates of meiotic recombination to the probability of recombinational deletion to explain the effect of recombination rate on persistence. Chromosomes 19 and Y are exceptions, possessing more elements than other regions, and we suggest this is due to low gene density and elevated rates of human ERV integration in males for chromosome Y and segmental duplication for chromosome 19.
Collapse
|
38
|
Belshaw R, Watson J, Katzourakis A, Howe A, Woolven-Allen J, Burt A, Tristem M. Rate of recombinational deletion among human endogenous retroviruses. J Virol 2007; 81:9437-42. [PMID: 17581995 PMCID: PMC1951428 DOI: 10.1128/jvi.02216-06] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 06/12/2007] [Indexed: 11/20/2022] Open
Abstract
The fate of most human endogenous retroviruses (HERVs) has been to undergo recombinational deletion. This process involves homologous recombination between the flanking long terminal repeats (LTRs) of a full-length element, leaving a relic structure in the genome termed a solo LTR. We examined loci in one family, HERV-K(HML2), and found that the deletion rate decreased markedly with age: the rate among recently integrated loci was almost 200-fold higher than that among loci whose insertion predated the divergence of humans and chimpanzees (8 x 10(-5) and 4 x 10(-7) recombinational deletion events per locus per generation, respectively). One hypothesis for this finding is that increasing mutational divergence between the flanking LTRs reduces the probability of homologous recombination and thus the rate of solo LTR formation. Consistent with this idea, we were able to replicate the observed rates by a simulation in which the probability of recombinational deletion was reduced 10-fold by a single mutation and 100-fold by any additional mutations. We also discuss the evidence for other factors that may influence the relationship between locus age and the rate of deletion, for example, host recombination rates and selection, and highlight the consequences of recombinational deletion for dating recent HERV integrations.
Collapse
Affiliation(s)
- Robert Belshaw
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
39
|
Pirinen E, Kuulasmaa T, Pietilä M, Heikkinen S, Tusa M, Itkonen P, Boman S, Skommer J, Virkamäki A, Hohtola E, Kettunen M, Fatrai S, Kansanen E, Koota S, Niiranen K, Parkkinen J, Levonen AL, Ylä-Herttuala S, Hiltunen JK, Alhonen L, Smith U, Jänne J, Laakso M. Enhanced polyamine catabolism alters homeostatic control of white adipose tissue mass, energy expenditure, and glucose metabolism. Mol Cell Biol 2007; 27:4953-67. [PMID: 17485446 PMCID: PMC1951486 DOI: 10.1128/mcb.02034-06] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) is an attractive candidate gene for type 2 diabetes, as genes of the oxidative phosphorylation (OXPHOS) pathway are coordinatively downregulated by reduced expression of PGC-1 alpha in skeletal muscle and adipose tissue of patients with type 2 diabetes. Here we demonstrate that transgenic mice with activated polyamine catabolism due to overexpression of spermidine/spermine N(1)-acetyltransferase (SSAT) had reduced white adipose tissue (WAT) mass, high basal metabolic rate, improved glucose tolerance, high insulin sensitivity, and enhanced expression of the OXPHOS genes, coordinated by increased levels of PGC-1 alpha and 5'-AMP-activated protein kinase (AMPK) in WAT. As accelerated polyamine flux caused by SSAT overexpression depleted the ATP pool in adipocytes of SSAT mice and N(1),N(11)-diethylnorspermine-treated wild-type fetal fibroblasts, we propose that low ATP levels lead to the induction of AMPK, which in turn activates PGC-1 alpha in WAT of SSAT mice. Our hypothesis is supported by the finding that the phenotype of SSAT mice was reversed when the accelerated polyamine flux was reduced by the inhibition of polyamine biosynthesis in WAT. The involvement of polyamine catabolism in the regulation of energy and glucose metabolism may offer a novel target for drug development for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Eija Pirinen
- Department of Medicine, University of Kuopio, P.O. Box 1777, FI-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Howard TM, Sheng Z, Wang M, Wu Y, Rasheed S. Molecular and phylogenetic analyses of a new amphotropic murine leukemia virus (MuLV-1313). Virol J 2006; 3:101. [PMID: 17147829 PMCID: PMC1769482 DOI: 10.1186/1743-422x-3-101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Accepted: 12/05/2006] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The amphotropic murine leukemia viruses (MuLV-A's) are naturally occurring, exogenously acquired gammaretroviruses that are indigenous to the Southern California wild mice. These viruses replicate in a wide range of cell types including human cells in vitro and they can cause both hematological and neurological disorders in feral as well as in the inbred laboratory mice. Since MuLV-A's also exhibit discrete interference and neutralization properties, the envelope proteins of these viruses have been extremely useful for studying virus-host cell interactions and as vehicles for transfer of foreign genes into a variety of hosts including human cells. However, the genomic structure of any of the several known MuLV-A's has not been established and the evolutionary relationship of amphotropic retroviruses to the numerous exogenous or endogenous MuLV strains remains elusive. Herein we present a complete genetic structure of a novel amphotropic virus designated MuLV-1313 and demonstrate that this retrovirus together with other MuLV-A's belongs to a distinct molecular, biological and phylogenetic class among the MuLV strains isolated from a large number of the laboratory inbred or feral mice. RESULTS The host range of MuLV-1313 is similar to the previously isolated MuLV-A's except that this virus replicates efficiently in mammalian as well as in chicken cells. Compared to ENV proteins of other MuLV-A's (4070A, 1504A and 10A-1), the gp70 protein of MuLV-1313 exhibits differences in its signal peptides and the proline-rich hinge regions. However, the MuLV-1313 envelope protein is totally unrelated to those present in a broad range of murine retroviruses that have been isolated from various inbred and feral mice globally. Genetic analysis of the entire MuLV-1313 genome by dot plot analyses, which compares each nucleotide of one genome with the corresponding nucleotide of another, revealed that the genome of this virus, with the exception of the env gene, is more closely related to the biologically distinct wild mouse ecotropic retrovirus (Cas-Br-E) isolated from another region of the Southern California, than to any of the 15 MuLV strains whose full-length sequences are present in the GenBank. This finding was corroborated by phylogenetic analyses and hierarchical clustering of the entire genomic sequence of MuLV-1313, which also placed all MULV-A's in a genetically distinct category among the large family of retroviruses isolated from numerous mouse strains globally. Likewise, construction of separate dendrograms for each of the Gag, Pol and Env proteins of MuLV-1313 demonstrated that the amphotropic retroviruses belong to a phylogenetically exclusive group of gammaretroviruses compared to all known MuLV strains. CONCLUSION The molecular, biological and phylogenetic properties of amphotropic retroviruses including MuLV-1313 are distinct compared to a large family of exogenously- or endogenously-transmitted ecotropic, polytropic and xenotropic MuLV strains of the laboratory and feral mice. Further, both the naturally occurring amphotropic and a biologically discrete ecotropic retrovirus of the Southern California wild mice are more closely related to each other on the evolutionary tree than any other mammalian gammaretrovirus indicating a common origin of these viruses. This is the first report of a complete genomic analysis of a unique group of phylogenetically distinct amphotropic virus.
Collapse
MESH Headings
- Animals
- Cell Line
- Chick Embryo
- DNA, Viral/analysis
- Evolution, Molecular
- Gammaretrovirus/classification
- Gammaretrovirus/genetics
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, pol/chemistry
- Gene Products, pol/genetics
- Genome, Viral/genetics
- Leukemia Virus, Murine/classification
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Mice
- Molecular Sequence Data
- Phylogeny
- Rats
- Sequence Alignment
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Thomas M Howard
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
| | - Zhijuan Sheng
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
- County of Los Angeles Department of Health Services Public Health Programs, HIV-Epidemiology Program 600 S Commonwealth Ave., Suite 805 Los Angeles, CA 90005-4001, USA
| | - Mingwu Wang
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
- Department of Ophthalmology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
| | - Yongchun Wu
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
| | - Suraiya Rasheed
- Laboratory of Viral Oncology & Proteomics Research, Department of Pathology Keck School of Medicine University of Southern California Los Angeles, CA 90032-3626, USA
| |
Collapse
|
41
|
Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL. Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet 2006; 2:e2. [PMID: 16440055 PMCID: PMC1331978 DOI: 10.1371/journal.pgen.0020002] [Citation(s) in RCA: 271] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The inbred mouse is an invaluable model for human biology and disease. Nevertheless, when considering genetic mechanisms of variation and disease, it is important to appreciate the significant differences in the spectra of spontaneous mutations that distinguish these species. While insertions of transposable elements are responsible for only approximately 0.1% of de novo mutations in humans, the figure is 100-fold higher in the laboratory mouse. This striking difference is largely due to the ongoing activity of mouse endogenous retroviral elements. Here we briefly review mouse endogenous retroviruses (ERVs) and their influence on gene expression, analyze mechanisms of interaction between ERVs and the host cell, and summarize the variety of mutations caused by ERV insertions. The prevalence of mouse ERV activity indicates that the genome of the laboratory mouse is presently behind in the "arms race" against invasion.
Collapse
Affiliation(s)
| | | | | | | | | | - Dixie L Mager
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Abstract
The hairless gene in mammals encodes a nuclear factor that is highly expressed in skin and appears to control hair follicle integrity and cycling. In the absence of a normal and functional Hairless (Hr) protein, the hair bulb undergoes premature apoptosis during the first catagen stage of the hair cycle. The most striking effects of the mutation are loss of hair follicles and formation of epidermal utricles and dermal cysts. The hairless gene expression appears to be widespread and temporally regulated. The gene is strongly expressed in different compartments of the brain. Hairless mRNAs were detected in cartilage, gonads, thymus and colon. In addition to alopecia, hairless mice strains show subtle defects in the development and differentiation of various tissues and organs. The Hr protein is localised in cell nuclei and functions as a transcriptional regulator. Although its role has not been resolved in molecular terms, it was demonstrated that Hr is able to interact with multiple nuclear hormone receptors. Hr seems to be a part of a large multiprotein complex capable to repress transcription by its association to chromatin remodelling factors such as histone deacetylases. Recent experimental data suggest that Hr might be involved in Hox gene regulation, cell adhesion modulation and progenitor cells identity. At least in the skin, but probably in other organs, the Hr repressor seems to be responsible for the timing of epithelial cells differentiation.
Collapse
Affiliation(s)
- Stefan Nonchev
- Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation, Inserm U309, Institut Albert Bonniot, Domaine de la Merci, 38706 La Troche, France.
| | | | | | | | | |
Collapse
|
43
|
Nam Y, Kim JK, Cha DS, Cho JW, Cho KH, Yoon S, Yoon JB, Oh YS, Suh JG, Han SS, Song CW, Yoon SK. A novel missense mutation in the mouse hairless gene causes irreversible hair loss: genetic and molecular analyses of Hr m1Enu. Genomics 2006; 87:520-6. [PMID: 16455232 DOI: 10.1016/j.ygeno.2005.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2005] [Revised: 12/09/2005] [Accepted: 12/12/2005] [Indexed: 11/23/2022]
Abstract
A novel autosomal recessive mutant was produced using N-ethyl-N-nitrosourea mutagenesis. The characteristics of the mutant mice included progressive irreversible hair loss within a month of birth, wrinkled skin, and long curved nails. Linkage analysis revealed that the causative gene is linked to D14Mit193 on chromosome 14. Sequence analysis of the complete cDNA of the candidate gene, hairless (Hr), identified a homozygous G-to-T transition at nucleotide 3572, leading to the substitution of glycine by tryptophan, designated Gly960Trp. This missense mutation occurs in the vicinity of repression domain 3 of the hairless protein (HR). This allele was named Hr(m1Enu). The relative amounts of Hr mRNA and HR protein determined by real-time PCR and Western blot analyses, respectively, were slightly elevated in the mutant mice. Quantitative real-time PCR analysis revealed the increased expression of Kc1 and Vdr in the mutant mice, whereas the expression of Nrs1 and Krtap16-6 was decreased. These results suggest that the Gly960Trp substitution in HR protein in Hr(m1Enu) mice may alter the function of HR as a transcriptional corepressor.
Collapse
MESH Headings
- Alleles
- Alopecia/genetics
- Amino Acid Sequence
- Animals
- Blotting, Western
- Chromosome Mapping
- Chromosomes, Mammalian
- Conserved Sequence
- Crosses, Genetic
- DNA Mutational Analysis
- DNA, Complementary/genetics
- Ethylnitrosourea/pharmacology
- Genes, Recessive
- Genetic Linkage
- Haplotypes
- Homozygote
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Molecular Sequence Data
- Mutagens/pharmacology
- Mutation, Missense
- Protein Structure, Tertiary
- RNA, Messenger/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
- Tryptophan/metabolism
- Zinc Fingers
Collapse
Affiliation(s)
- YoonYi Nam
- Laboratory of Toxicogenomics, Korea Institute of Toxicology, Taejon 305-600, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chang CM, Coville JL, Coquerelle G, Gourichon D, Oulmouden A, Tixier-Boichard M. Complete association between a retroviral insertion in the tyrosinase gene and the recessive white mutation in chickens. BMC Genomics 2006; 7:19. [PMID: 16457736 PMCID: PMC1373650 DOI: 10.1186/1471-2164-7-19] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 02/05/2006] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In chickens, three mutant alleles have been reported at the C locus, including the albino mutation, and the recessive white mutation, which is characterized by white plumage and pigmented eyes. The albino mutation was found to be a 6 bp deletion in the tyrosinase (TYR) gene. The present work describes an approach to identify the structural rearrangement in the TYR gene associated with the recessive white mutation. RESULTS Molecular analysis of the chicken TYR gene has revealed a major structural difference (Restriction Fragment Length Polymorphism, RFLP) in the genomic DNA of the recessive white chicken. A major size difference of 7.7 kb was found in intron 4 of the TYR gene by long-range PCR. Molecular cloning and sequencing results showed the insertion of a complete avian retroviral sequence of the Avian Leukosis Virus (ALV) family. Several aberrant transcripts of the tyrosinase gene were found in 10 week old recessive white chickens but not in the homozygous wild type colored chicken. We established a rapid genotyping diagnostic test based on the discovery of this retroviral insertion. It shows that all homozygous carriers of this insertion had a white plumage in various chicken strains. Furthermore, it was possible to distinguish heterozygous carriers from homozygous normal chickens in a segregating line. CONCLUSION In this study, we conclude that the insertion of a complete avian retroviral sequence in intron 4 of the tyrosinase gene is diagnostic of the recessive white mutation in chickens. This insertion causes aberrant transcripts lacking exon 5, and we propose that this insertion is the causal mutation for the recessive white allele in the chicken.
Collapse
Affiliation(s)
- Chung-Ming Chang
- UMR Génétique et Diversité Animales, INRA/INA P-G, Centre de Recherches de Jouy, 78352 Jouy-en-Josas, France
| | - Jean-Luc Coville
- UMR Génétique et Diversité Animales, INRA/INA P-G, Centre de Recherches de Jouy, 78352 Jouy-en-Josas, France
| | - Gérard Coquerelle
- UMR Génétique et Diversité Animales, INRA/INA P-G, Centre de Recherches de Jouy, 78352 Jouy-en-Josas, France
| | - David Gourichon
- Unité Expérimentale de Génétique Factorielle Avicole, INRA, Centre de Recherches de Tours, 37380 Nouzilly, France
| | - Ahmad Oulmouden
- UMR Génétique Moléculaire Animale, INRA/Université de Limoges, 87061 Limoges, France
| | - Michèle Tixier-Boichard
- UMR Génétique et Diversité Animales, INRA/INA P-G, Centre de Recherches de Jouy, 78352 Jouy-en-Josas, France
| |
Collapse
|
45
|
Xie Z, Chang S, Oda Y, Bikle DD. Hairless suppresses vitamin D receptor transactivation in human keratinocytes. Endocrinology 2006; 147:314-23. [PMID: 16269453 DOI: 10.1210/en.2005-1111] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The vitamin D receptor (VDR) and its ligand 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] are required for normal keratinocyte differentiation. Both the epidermis and the hair follicle are disrupted in VDR-null mice. Hairless (Hr), a presumptive transcription factor with no known ligand, when mutated, disrupts hair follicle cycling similar to the effects of VDR mutations. Hr, like VDR, is found in the nuclei of keratinocytes in both epidermis and hair follicle. To investigate the potential interaction between Hr and VDR on keratinocyte differentiation, we examined the effect of Hr expression on vitamin D-responsive genes in normal human keratinocytes. Inhibition of Hr expression in keratinocytes potentiated the induction of vitamin D-responsive genes, including involucrin, transglutaminase, phospholipase C-gamma1, and 25-hydroxyvitamin D-24-hydroxylase (24-hydroxylase) by 1,25(OH)2D3. Overexpression of Hr in human keratinocytes suppressed the induction of these vitamin D-responsive genes by 1,25(OH)2D3. Coimmunoprecipitation, DNA mobility shift assays, and chromatin immunoprecipitation revealed that Hr binds to VDR in human keratinocytes. Hr binding to the VDR was eliminated by 1,25(OH)2D3, which recruited the coactivator vitamin D receptor-interacting protein 205 (DRIP205) to the VDR/vitamin D response element complex. These data indicate that Hr functions as a corepressor of VDR to block 1,25(OH)2D3 action on keratinocytes.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| | | | | | | |
Collapse
|
46
|
Zarach JM, Beaudoin GMJ, Coulombe PA, Thompson CC. The co-repressor hairless has a role in epithelial cell differentiation in the skin. Development 2004; 131:4189-200. [PMID: 15280217 DOI: 10.1242/dev.01303] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although mutations in the mammalian hairless (Hr) gene result in congenital hair loss disorders in both mice and humans, the precise role of Hr in skin biology remains unknown. We have shown that the protein encoded by Hr (HR) functions as a nuclear receptor co-repressor. To address the role of HR in vivo, we generated a loss-of-function (Hr-/-) mouse model. The Hr-/- phenotype includes both hair loss and severe wrinkling of the skin. Wrinkling is correlated with increased cell proliferation in the epidermis and the presence of dermal cysts. In addition,a normally undifferentiated region, the infundibulum, is transformed into a morphologically distinct structure (utricle) that maintains epidermal function. Analysis of gene expression revealed upregulation of keratinocyte terminal differentiation markers and a novel caspase in Hr-/- skin, substantiating HR action as a co-repressor in vivo. Differences in gene expression occur prior to morphological changes in vivo, as well as in cultured keratinocytes, indicating that aberrant transcriptional regulation contributes to the Hr-/-phenotype. The properties of the cell types present in Hr-/- skin suggest that the normal balance of cell proliferation and differentiation is disrupted, supporting a model in which HR regulates the timing of epithelial cell differentiation in both the epidermis and hair follicle.
Collapse
Affiliation(s)
- Joanna M Zarach
- Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
47
|
Jahoda CAB, Kljuic A, O'Shaughnessy R, Crossley N, Whitehouse CJ, Robinson M, Reynolds AJ, Demarchez M, Porter RM, Shapiro L, Christiano AM. The lanceolate hair rat phenotype results from a missense mutation in a calcium coordinating site of the desmoglein 4 gene. Genomics 2004; 83:747-56. [PMID: 15081105 DOI: 10.1016/j.ygeno.2003.11.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 11/21/2003] [Indexed: 11/29/2022]
Abstract
Desmosomal cadherins are essential cell adhesion molecules present throughout the epidermis and other organs, whose major function is to provide mechanical integrity and stability to epithelial cells in a wide variety of tissues. We recently identified a novel desmoglein family member, Desmoglein 4 (Dsg4), using a positional cloning approach in two families with localized autosomal recessive hypotrichosis (LAH) and in the lanceolate hair (lah) mouse. In this study, we report cloning and identification of the rat Dsg4 gene, in which we discovered a missense mutation in a naturally occurring lanceolate hair (lah) rat mutant. Phenotypic analysis of lah/lah mutant rats revealed a striking hair shaft defect with the appearance of a lance head within defective hair shafts. The mutation disrupts a critical calcium binding site bridging the second and third extracellular domains of Dsg4, likely disrupting extracellular interactions of the protein.
Collapse
Affiliation(s)
- Colin A B Jahoda
- School of Biomedical and Biological Sciences, University of Durham, Durham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Thyroid hormones play important roles in brain development. The physiologic function of thyroid hormones in the developing brain is to provide a timing signal that leads to the induction of differentiation and maturation programs during precise stages of development. Inappropriate initiation of these timing events leads to asynchrony in developmental processes and a deleterious outcome. The developing brain is protected from premature thyroid hormone signaling through a variety of measures. Firstly, local brain levels of both thyroxine and triiodothyronine are controlled by ontogenically regulated patterns of production and metabolism. Secondly, developmentally regulated expression of nuclear proteins involved with the nuclear TH response apparatus control the temporal response of brain genes to thyroid hormone. Finally, developmental regulation of TH action modulating transcription factor expression also controls TH action in the developing brain. Together these molecular mechanisms cooperatively act to temporally control TH action during brain development. A description of these controlling mechanisms is the subject of this review.
Collapse
Affiliation(s)
- Grant W Anderson
- College of Pharmacy, Duluth, University of Minnesota, Duluth, Minnesota 55812-3095, USA.
| | | | | |
Collapse
|
49
|
Hsieh JC, Sisk JM, Jurutka PW, Haussler CA, Slater SA, Haussler MR, Thompson CC. Physical and functional interaction between the vitamin D receptor and hairless corepressor, two proteins required for hair cycling. J Biol Chem 2003; 278:38665-74. [PMID: 12847098 DOI: 10.1074/jbc.m304886200] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both the vitamin D receptor (VDR) and hairless (hr) genes play a role in the mammalian hair cycle, as inactivating mutations in either result in total alopecia. VDR is a nuclear receptor that functions as a ligand-activated transcription factor, whereas the hairless gene product (Hr) acts as a corepressor of both the thyroid hormone receptor (TR) and the orphan nuclear receptor, RORalpha. In the present study, we show that VDR-mediated transactivation is strikingly inhibited by coexpression of rat Hr. The repressive effect of Hr is observed on both synthetic and naturally occurring VDR-responsive promoters and also when VDR-mediated transactivation is augmented by overexpression of its heterodimeric partner, retinoid X receptor. Utilizing in vitro pull down methods, we find that Hr binds directly to VDR but insignificantly to nuclear receptors that are not functionally repressed by Hr. Coimmunoprecipitation data demonstrate that Hr and VDR associate in a cellular milieu, suggesting in vivo interaction. The Hr contact site in human VDR is localized to the central portion of the ligand binding domain, a known corepressor docking region in other nuclear receptors separate from the activation function-2 domain. Coimmunoprecipitation and functional studies of Hr deletants reveal that VDR contacts a C-terminal region of Hr that includes motifs required for TR and RORalpha binding. Finally, in situ hybridization analysis of hr and VDR mRNAs in mouse skin demonstrates colocalization in cells of the hair follicle, consistent with a hypothesized intracellular interaction between these proteins to repress VDR target gene expression, in vivo.
Collapse
MESH Headings
- Animals
- COS Cells
- Cell Nucleus/metabolism
- Cloning, Molecular
- Glutathione Transferase/metabolism
- Humans
- In Situ Hybridization
- Ligands
- Mice
- Mutation
- Nuclear Receptor Subfamily 1, Group F, Member 1
- Phenotype
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/metabolism
- RNA, Complementary/metabolism
- Rats
- Receptors, Calcitriol/chemistry
- Receptors, Calcitriol/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Thyroid Hormone/metabolism
- Recombinant Fusion Proteins/metabolism
- Trans-Activators/metabolism
- Transcription Factors
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Jui-Cheng Hsieh
- Department of Biochemistry and Molecular Biophysics, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Floyd JA, Gold DA, Concepcion D, Poon TH, Wang X, Keithley E, Chen D, Ward EJ, Chinn SB, Friedman RA, Yu HT, Moriwaki K, Shiroishi T, Hamilton BA. A natural allele of Nxf1 suppresses retrovirus insertional mutations. Nat Genet 2003; 35:221-8. [PMID: 14517553 PMCID: PMC2756099 DOI: 10.1038/ng1247] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 09/10/2003] [Indexed: 11/08/2022]
Abstract
Endogenous retroviruses have shaped the evolution of mammalian genomes. Host genes that control the effects of retrovirus insertions are therefore of great interest. The modifier-of-vibrator-1 locus (Mvb1) controls levels of correctly processed mRNA from genes mutated by endogenous retrovirus insertions into introns, including the Pitpn(vb) tremor mutation and the Eya1(BOR) model of human branchiootorenal syndrome. Positional complementation cloning identifies Mvb1 as the nuclear export factor Nxf1, providing an unexpected link between the mRNA export receptor and pre-mRNA processing. Population structure of the suppressive allele in wild Mus musculus castaneus suggests selective advantage. A congenic Mvb1(CAST) allele is a useful tool for modifying gene expression from existing mutations and could be used to manipulate engineered mutations containing retroviral elements.
Collapse
Affiliation(s)
- Jennifer A Floyd
- Biomedical Sciences Graduate Program, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0644, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|