1
|
Tan L, Xie XS, Lomvardas S. Genomic snowflakes: how the uniqueness of DNA folding allows us to smell the chemical universe. Curr Opin Genet Dev 2025; 92:102329. [PMID: 40107115 PMCID: PMC12068986 DOI: 10.1016/j.gde.2025.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Olfactory receptor (OR) gene choice, the stable expression of one out of >2000 OR alleles by olfactory sensory neurons, constitutes a gene regulatory process that is driven by three-dimensional nuclear architecture. Moreover, the differentiation-dependent process that culminates in monogenic and monoallelic OR transcription represents a powerful demonstration of the rich mechanistic insight that single-cell genomics and multiomics can provide toward the understanding of a biological process. At this review, we describe the latest advances in the understanding of OR gene regulation and highlight important standing questions regarding the emerging specificity of ultra-long-range genomic interaction and the contribution of transcription and noncoding RNAs.
Collapse
Affiliation(s)
- Longzhi Tan
- Department of Neurobiology, Stanford University, Stanford, CA, USA. https://twitter.com/@tanlongzhi
| | - X Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA. https://twitter.com/@XieSunney
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
2
|
Kuwazoe H, Sakatani H, Kono M, Saika S, Inoue N, Hotomi M. Complement Component 3 Promotes Regeneration of Olfactory Receptor Neurons. J Transl Med 2025; 105:102200. [PMID: 39581348 DOI: 10.1016/j.labinv.2024.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
Olfactory receptor neurons (ORNs) in the olfactory epithelium are characterized by high regenerative capacity even after birth, but the molecular mechanisms involved in ORN regeneration remain unclear. Complement component 3 (C3) has been shown to promote tissue regeneration, so we hypothesized that C3 activates innate immunity and also promotes the regeneration of ORNs. In this study, we investigate the role of C3 in ORN regeneration. We used C3 knockout (KO) and wild-type C57BL/6J mice in this study to examine the olfactory regeneration process for 42 days after methimazole-induced olfactory disorder. To compare the regeneration process after ORN damage between C3 KO and wild-type mice, we conducted olfactory behavioral tests and immunohistologic analysis and examined growth factors and inflammatory cell induction. C3 KO mice showed delayed olfactory recovery with lower olfactory epithelial thickness. In C3 KO mice, ORN maturation was delayed in association with increased accumulation of immature ORNs. In the normal ORN regeneration process, undesirable immature ORNs are produced and eliminated by apoptosis. C3 deficiency reduced neutrophils induced during ORN regeneration, suggesting the involvement of C3 in ORN regeneration through neutrophil-dependent elimination of undesired ORNs. C3 is therefore suggested to have promoted ORN regeneration by preventing the accumulation of immature ORNs. In addition, C3 may assist ORN maturation by participating in ORN axon selection such as synaptic pruning. Our results indicate that C3, which is activated during pathogen infection, also promotes recovery from ORN damage. These findings may lead to new therapeutic strategies for olfactory disorder.
Collapse
Affiliation(s)
- Hiroki Kuwazoe
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
3
|
Martinez Q, Amson E, Ruf I, Smith TD, Pirot N, Broyon M, Lebrun R, Captier G, Gascó Martín C, Ferreira G, Fabre PH. Turbinal bones are still one of the last frontiers of the tetrapod skull: hypotheses, challenges and perspectives. Biol Rev Camb Philos Soc 2024; 99:2304-2337. [PMID: 39092480 DOI: 10.1111/brv.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Turbinals are bony or cartilaginous structures that are present in the nasal cavity of most tetrapods. They are involved in key functions such as olfaction, heat, and moisture conservation, as well as protection of the respiratory tract. Despite recent studies that challenged long-standing hypotheses about their physiological and genomic correlation, turbinals remain largely unexplored, particularly for non-mammalian species. Herein, we review and synthesise the current knowledge of turbinals using an integrative approach that includes comparative anatomy, physiology, histology and genomics. In addition, we provide synonyms and correspondences of tetrapod turbinals from about 80 publications. This work represents a first step towards drawing hypotheses of homology for the whole clade, and provides a strong basis to develop new research avenues.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, 60325, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, 60438, Germany
- Research Center of Paleontology and Stratigraphy, Jilin University, Changchun, 130026, China
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Nelly Pirot
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Morgane Broyon
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Renaud Lebrun
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
| | - Guillaume Captier
- Laboratoire d'anatomie, UFR médecine, Université Montpellier, Montpellier, 34060, France
- Département chirurgie pédiatrique, CHU Montpellier, université Montpellier, Montpellier, 34295, France
| | | | - Gabriel Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
- Department of Geosciences, Faculty of Sciences, Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London, SW7 5DB, UK
- Institut Universitaire de France (IUF), Paris, 75231, France
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, Central Park West, 79th St, New York, NY, 10024-5192, USA
| |
Collapse
|
4
|
Ryu SE, Bae J, Shim T, Kim WC, Kim K, Moon C. Conserved pattern-based classification of human odorant receptor multigene family. Sci Rep 2024; 14:27271. [PMID: 39516664 PMCID: PMC11549229 DOI: 10.1038/s41598-024-79183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Conserved protein-coding sequences are critical for maintaining protein function across species. Odorant receptors (ORs), a large poorly understood multigene family responsible for odor detection, lack comprehensive classification methods that reflect their functional diversity. In this study, we propose a new approach called conserved motif-based classification (CMC) for classifying ORs based on amino acid sequence similarities within conserved motifs. Specifically, we focused on three well-conserved motifs: MAYDRYVAIC in TM3, KAFSTCASH in TM6, and PMLNPFIY in TM7. Using an unsupervised clustering technique, we classified human ORs (hORs) into two main clusters with six sub-clusters. CMC partly reflects previously identified subfamilies, revealing altered residue positions among the sub-clusters. These altered positions interacted with specific residues within or adjacent to the transmembrane domain, suggesting functional implications. Furthermore, we found that the CMC correlated with both ligand responses and ectopic expression patterns, highlighting its relevance to OR function. This conserved motif-based classification will help in understanding the functions and features that are not understood by classification based solely on entire amino acid sequence similarity.
Collapse
Affiliation(s)
- Sang Eun Ryu
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Korea Brain Research Institute (KBRI), 61 Choemdan-Ro, Dong-Gu, Daegu, 41062, Republic of Korea
| | - Jisub Bae
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-Ro, Yuseong-Gu, Daejeon, 34126, Republic of Korea
| | - Tammy Shim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Won-Cheol Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kwangsu Kim
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Cheil Moon
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
5
|
Howe JR, Chan CL, Lee D, Blanquart M, Lee JH, Romero HK, Zadina AN, Lemieux ME, Mills F, Desplats PA, Tye KM, Root CM. Control of innate olfactory valence by segregated cortical amygdala circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600895. [PMID: 38979308 PMCID: PMC11230396 DOI: 10.1101/2024.06.26.600895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Animals exhibit innate behaviors that are stereotyped responses to specific evolutionarily relevant stimuli in the absence of prior learning or experience. These behaviors can be reduced to an axis of valence, whereby specific odors evoke approach or avoidance responses. The posterolateral cortical amygdala (plCoA) mediates innate attraction and aversion to odor. However, little is known about how this brain area gives rise to behaviors of opposing motivational valence. Here, we sought to define the circuit features of plCoA that give rise to innate attraction and aversion to odor. We characterized the physiology, gene expression, and projections of this structure, identifying a divergent, topographic organization that selectively controls innate attraction and avoidance to odor. First, we examined odor-evoked responses in these areas and found sparse encoding of odor identity, but not valence. We next considered a topographic organization and found that optogenetic stimulation of the anterior and posterior domains of plCoA elicits attraction and avoidance, respectively, suggesting a functional axis for valence. Using single cell and spatial RNA sequencing, we identified the molecular cell types in plCoA, revealing an anteroposterior gradient in cell types, whereby anterior glutamatergic neurons preferentially express VGluT2 and posterior neurons express VGluT1. Activation of these respective cell types recapitulates appetitive and aversive behaviors, and chemogenetic inhibition reveals partial necessity for responses to innate appetitive or aversive odors. Finally, we identified topographically organized circuits defined by projections, whereby anterior neurons preferentially project to medial amygdala, and posterior neurons preferentially project to nucleus accumbens, which are respectively sufficient and necessary for innate attraction and aversion. Together, these data advance our understanding of how the olfactory system generates stereotypic, hardwired attraction and avoidance, and supports a model whereby distinct, topographically distributed plCoA populations direct innate olfactory responses by signaling to divergent valence-specific targets, linking upstream olfactory identity to downstream valence behaviors, through a population code. This suggests a novel amygdala circuit motif in which valence encoding is represented not by the firing properties of individual neurons, but by population level identity encoding that is routed through divergent targets to mediate distinct behaviors of opposing appetitive and aversive responses.
Collapse
Affiliation(s)
- James R. Howe
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Chung-Lung Chan
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Donghyung Lee
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marlon Blanquart
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - James H. Lee
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haylie K. Romero
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Abigail N. Zadina
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | | | - Fergil Mills
- Salk Institute for Biological Sciences, La Jolla, CA 92037, USA
| | - Paula A. Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kay M. Tye
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- Salk Institute for Biological Sciences, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Cory M. Root
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Wang P, Li S, Li A. Odor representation and coding by the mitral/tufted cells in the olfactory bulb. J Zhejiang Univ Sci B 2024; 25:824-840. [PMID: 39420520 PMCID: PMC11494158 DOI: 10.1631/jzus.b2400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 10/19/2024]
Abstract
The olfactory bulb (OB) is the first relay station in the olfactory system and functions as a crucial hub. It can represent odor information precisely and accurately in an ever-changing environment. As the only output neurons in the OB, mitral/tufted cells encode information such as odor identity and concentration. Recently, the neural strategies and mechanisms underlying odor representation and encoding in the OB have been investigated extensively. Here we review the main progress on this topic. We first review the neurons and circuits involved in odor representation, including the different cell types in the OB and the neural circuits within and beyond the OB. We will then discuss how two different coding strategies-spatial coding and temporal coding-work in the rodent OB. Finally, we discuss potential future directions for this research topic. Overall, this review provides a comprehensive description of our current understanding of how odor information is represented and encoded by mitral/tufted cells in the OB.
Collapse
Affiliation(s)
- Panke Wang
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221002, China
| | - An'an Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
7
|
Takeuchi H. Olfactory cilia, regulation and control of olfaction. Physiol Rep 2024; 12:e70057. [PMID: 39358841 PMCID: PMC11446836 DOI: 10.14814/phy2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
The sense of smell is still considered a fuzzy sensation. Softly wafting aromas can stimulate the appetite and trigger memories; however, there are many unexplored aspects of its underlying mechanisms, and not all of these have been elucidated. Although the final sense of smell takes place in the brain, it is greatly affected during the preliminary stage, when odorants are converted into electrical signals. After signal conversion through ion channels in olfactory cilia, action potentials are generated through other types of ion channels located in the cell body. Spike trains through axons transmit this information as digital signals to the brain, however, before odorants are converted into digital electric signals, such as an action potential, modification of the transduction signal has already occurred. This review focuses on the early stages of olfactory signaling. Modification of signal transduction mechanisms and their effect on the human sense of smell through three characteristics (signal amplification, olfactory adaptation, and olfactory masking) produced by olfactory cilia, which is the site of signal transduction are being addressed in this review.
Collapse
Affiliation(s)
- Hiroko Takeuchi
- Graduated School of Frontier BiosciencesOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
8
|
Kikuta S, Nagayama S, Hasegawa-Ishii S. Structures and functions of the normal and injured human olfactory epithelium. Front Neural Circuits 2024; 18:1406218. [PMID: 38903957 PMCID: PMC11188711 DOI: 10.3389/fncir.2024.1406218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
The olfactory epithelium (OE) is directly exposed to environmental agents entering the nasal cavity, leaving OSNs prone to injury and degeneration. The causes of olfactory dysfunction are diverse and include head trauma, neurodegenerative diseases, and aging, but the main causes are chronic rhinosinusitis (CRS) and viral infections. In CRS and viral infections, reduced airflow due to local inflammation, inflammatory cytokine production, release of degranulated proteins from eosinophils, and cell injury lead to decreased olfactory function. It is well known that injury-induced loss of mature OSNs in the adult OE causes massive regeneration of new OSNs within a few months through the proliferation and differentiation of progenitor basal cells that are subsequently incorporated into olfactory neural circuits. Although normal olfactory function returns after injury in most cases, prolonged olfactory impairment and lack of improvement in olfactory function in some cases poses a major clinical problem. Persistent inflammation or severe injury in the OE results in morphological changes in the OE and respiratory epithelium and decreases the number of mature OSNs, resulting in irreversible loss of olfactory function. In this review, we discuss the histological structure and distribution of the human OE, and the pathogenesis of olfactory dysfunction associated with CRS and viral infection.
Collapse
Affiliation(s)
- Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Nihon University, Tokyo, Japan
| | - Shin Nagayama
- Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | |
Collapse
|
9
|
Rufenacht KE, Asson AJ, Hossain K, Santoro SW. The influence of olfactory experience on the birthrates of olfactory sensory neurons with specific odorant receptor identities. Genesis 2024; 62:e23611. [PMID: 38888221 PMCID: PMC11189617 DOI: 10.1002/dvg.23611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Olfactory sensory neurons (OSNs) are one of a few neuron types that are generated continuously throughout life in mammals. The persistence of olfactory sensory neurogenesis beyond early development has long been thought to function simply to replace neurons that are lost or damaged through exposure to environmental insults. The possibility that olfactory sensory neurogenesis may also serve an adaptive function has received relatively little consideration, largely due to the assumption that the generation of new OSNs is stochastic with respect to OSN subtype, as defined by the single odorant receptor gene that each neural precursor stochastically chooses for expression out of hundreds of possibilities. Accordingly, the relative birthrates of different OSN subtypes are predicted to be constant and impervious to olfactory experience. This assumption has been called into question, however, by evidence that the birthrates of specific OSN subtypes can be selectively altered by manipulating olfactory experience through olfactory deprivation, enrichment, and conditioning paradigms. Moreover, studies of recovery of the OSN population following injury provide further evidence that olfactory sensory neurogenesis may not be strictly stochastic with respect to subtype. Here we review this evidence and consider mechanistic and functional implications of the prospect that specific olfactory experiences can regulate olfactory sensory neurogenesis rates in a subtype-selective manner.
Collapse
Affiliation(s)
- Karlin E Rufenacht
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexa J Asson
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kawsar Hossain
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Stephen W Santoro
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
10
|
Wu H, Zhang J, Jian F, Chen JP, Zheng Y, Tan L, Sunney Xie X. Simultaneous single-cell three-dimensional genome and gene expression profiling uncovers dynamic enhancer connectivity underlying olfactory receptor choice. Nat Methods 2024; 21:974-982. [PMID: 38622459 PMCID: PMC11166570 DOI: 10.1038/s41592-024-02239-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
The simultaneous measurement of three-dimensional (3D) genome structure and gene expression of individual cells is critical for understanding a genome's structure-function relationship, yet this is challenging for existing methods. Here we present 'Linking mRNA to Chromatin Architecture (LiMCA)', which jointly profiles the 3D genome and transcriptome with exceptional sensitivity and from low-input materials. Combining LiMCA and our high-resolution scATAC-seq assay, METATAC, we successfully characterized chromatin accessibility, as well as paired 3D genome structures and gene expression information, of individual developing olfactory sensory neurons. We expanded the repertoire of known olfactory receptor (OR) enhancers and discovered unexpected rules of their dynamics: OR genes and their enhancers are most accessible during early differentiation. Furthermore, we revealed the dynamic spatial relationship between ORs and enhancers behind stepwise OR expression. These findings offer valuable insights into how 3D connectivity of ORs and enhancers dynamically orchestrate the 'one neuron-one receptor' selection process.
Collapse
Affiliation(s)
- Honggui Wu
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Jiankun Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jinxin Phaedo Chen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Yinghui Zheng
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
| | - Longzhi Tan
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
| | - X Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
11
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
12
|
Ordway AJ, Helt RN, Johnston RJ. Transcriptional priming and chromatin regulation during stochastic cell fate specification. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230046. [PMID: 38432315 PMCID: PMC10909510 DOI: 10.1098/rstb.2023.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
Stochastic cell fate specification, in which a cell chooses between two or more fates with a set probability, diversifies cell subtypes in development. Although this is a vital process across species, a common mechanism for these cell fate decisions remains elusive. This review examines two well-characterized stochastic cell fate decisions to identify commonalities between their developmental programmes. In the fly eye, two subtypes of R7 photoreceptors are specified by the stochastic ON/OFF expression of a transcription factor, spineless. In the mouse olfactory system, olfactory sensory neurons (OSNs) randomly select to express one copy of an olfactory receptor (OR) gene out of a pool of 2800 alleles. Despite the differences in these sensory systems, both stochastic fate choices rely on the dynamic interplay between transcriptional priming, chromatin regulation and terminal gene expression. The coupling of transcription and chromatin modifications primes gene loci in undifferentiated neurons, enabling later expression during terminal differentiation. Here, we compare these mechanisms, examine broader implications for gene regulation during development and posit key challenges moving forward. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Alison J. Ordway
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Rina N. Helt
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Robert J. Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Yusuf N, Monahan K. Epigenetic programming of stochastic olfactory receptor choice. Genesis 2024; 62:e23593. [PMID: 38562011 PMCID: PMC11003729 DOI: 10.1002/dvg.23593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
The mammalian sense of smell relies upon a vast array of receptor proteins to detect odorant compounds present in the environment. The proper deployment of these receptor proteins in olfactory sensory neurons is orchestrated by a suite of epigenetic processes that remodel the olfactory genes in differentiating neuronal progenitors. The goal of this review is to elucidate the central role of gene regulatory processes acting in neuronal progenitors of olfactory sensory neurons that lead to a singular expression of an odorant receptor in mature olfactory sensory neurons. We begin by describing the principal features of odorant receptor gene expression in mature olfactory sensory neurons. Next, we delineate our current understanding of how these features emerge from multiple gene regulatory mechanisms acting in neuronal progenitors. Finally, we close by discussing the key gaps in our understanding of how these regulatory mechanisms work and how they interact with each other over the course of differentiation.
Collapse
Affiliation(s)
- Nusrath Yusuf
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| | - Kevin Monahan
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| |
Collapse
|
14
|
Hirota J. Molecular mechanisms of differentiation and class choice of olfactory sensory neurons. Genesis 2024; 62:e23587. [PMID: 38454646 DOI: 10.1002/dvg.23587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
The sense of smell is intricately linked to essential animal behaviors necessary for individual survival and species preservation. During vertebrate evolution, odorant receptors (ORs), responsible for detecting odor molecules, have evolved to adapt to changing environments, transitioning from aquatic to terrestrial habitats and accommodating increasing complex chemical environments. These evolutionary pressures have given rise to the largest gene family in vertebrate genomes. Vertebrate ORs are phylogenetically divided into two major classes; class I and class II. Class I OR genes, initially identified in fish and frog, have persisted across vertebrate species. On the other hand, class II OR genes are unique to terrestrial animals, accounting for ~90% of mammalian OR genes. In mice, each olfactory sensory neuron (OSN) expresses a single functional allele of a single OR gene from either the class I or class II OR repertoire. This one neuron-one receptor rule is established through two sequential steps: specification of OR class and subsequent exclusive OR expression from the corresponding OR class. Consequently, OSNs acquire diverse neuronal identities during the process of OSN differentiation, enabling animals to detect a wide array of odor molecules. This review provides an overview of the OSN differentiation process through which OSN diversity is achieved, primarily using the mouse as a model animal.
Collapse
Affiliation(s)
- Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Center for Integrative Biosciences, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
15
|
Hirose A, Nakamura G, Nikaido M, Fujise Y, Kato H, Kishida T. Localized Expression of Olfactory Receptor Genes in the Olfactory Organ of Common Minke Whales. Int J Mol Sci 2024; 25:3855. [PMID: 38612665 PMCID: PMC11012115 DOI: 10.3390/ijms25073855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Baleen whales (Mysticeti) possess the necessary anatomical structures and genetic elements for olfaction. Nevertheless, the olfactory receptor gene (OR) repertoire has undergone substantial degeneration in the cetacean lineage following the divergence of the Artiodactyla and Cetacea. The functionality of highly degenerated mysticete ORs within their olfactory epithelium remains unknown. In this study, we extracted total RNA from the nasal mucosae of common minke whales (Balaenoptera acutorostrata) to investigate ORs' localized expression. All three sections of the mucosae examined in the nasal chamber displayed comparable histological structure. However, the posterior portion of the frontoturbinal region exhibited notably high OR expression. Neither the olfactory bulb nor the external skin exhibited the expression of these genes. Although this species possesses four intact non-class-2 ORs, all the ORs expressed in the nasal mucosae belong to class-2, implying the loss of aversion to specific odorants. These anatomical and genomic analyses suggest that ORs are still responsible for olfaction within the nasal region of baleen whales, enabling them to detect desirable scents such as prey and potential mating partners.
Collapse
Affiliation(s)
- Ayumi Hirose
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan;
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Gen Nakamura
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan;
| | | | - Hidehiro Kato
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
- The Institute of Cetacean Research, Tokyo 104-0055, Japan
| | - Takushi Kishida
- Museum of Natural and Environmental History, Shizuoka 422-8017, Japan;
- College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Japan
| |
Collapse
|
16
|
Bashkirova EV, Klimpert N, Monahan K, Campbell CE, Osinski J, Tan L, Schieren I, Pourmorady A, Stecky B, Barnea G, Xie XS, Abdus-Saboor I, Shykind BM, Marlin BJ, Gronostajski RM, Fleischmann A, Lomvardas S. Opposing, spatially-determined epigenetic forces impose restrictions on stochastic olfactory receptor choice. eLife 2023; 12:RP87445. [PMID: 38108811 PMCID: PMC10727497 DOI: 10.7554/elife.87445] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in the mouse genome in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this 'privileged' repertoire. Our experiments identify early transcription as a potential 'epigenetic' contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.
Collapse
Affiliation(s)
- Elizaveta V Bashkirova
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia UniversityNew YorkUnited States
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Kevin Monahan
- Department of Biochemistry and Molecular Biology, Rutgers UniversityNewarkUnited States
| | - Christine E Campbell
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Jason Osinski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Longzhi Tan
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Ira Schieren
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Ariel Pourmorady
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia UniversityNew YorkUnited States
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Beka Stecky
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Xiaoliang Sunney Xie
- Beijing Innovation Center for Genomics, Peking UniversityBeijingChina
- Biomedical Pioneering Innovation Center, Peking UniversityBeijingChina
| | - Ishmail Abdus-Saboor
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Benjamin M Shykind
- Prevail Therapeutics- a wholly-owned subsidiary of Eli Lilly and CompanyNew YorkUnited States
| | - Bianca J Marlin
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Richard M Gronostajski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life SciencesBuffaloUnited States
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Stavros Lomvardas
- Zuckerman Mind, Brain, and Behavior Institute, Columbia UniversityNew YorkUnited States
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia UniversityNew YorkUnited States
| |
Collapse
|
17
|
Park C, Owusu-Boaitey KE, Valdes GM, Reddien PW. Fate specification is spatially intermingled across planarian stem cells. Nat Commun 2023; 14:7422. [PMID: 37973979 PMCID: PMC10654723 DOI: 10.1038/s41467-023-43267-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Regeneration requires mechanisms for producing a wide array of cell types. Neoblasts are stem cells in the planarian Schmidtea mediterranea that undergo fate specification to produce over 125 adult cell types. Fate specification in neoblasts can be regulated through expression of fate-specific transcription factors. We utilize multiplexed error-robust fluorescence in situ hybridization (MERFISH) and whole-mount FISH to characterize fate choice distribution of stem cells within planarians. Fate choices are often made distant from target tissues and in a highly intermingled manner, with neighboring neoblasts frequently making divergent fate choices for tissues of different location and function. We propose that pattern formation is driven primarily by the migratory assortment of progenitors from mixed and spatially distributed fate-specified stem cells and that fate choice involves stem-cell intrinsic processes.
Collapse
Affiliation(s)
- Chanyoung Park
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwadwo E Owusu-Boaitey
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Giselle M Valdes
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
18
|
Bashkirova EV, Klimpert N, Monahan K, Campbell CE, Osinski JM, Tan L, Schieren I, Pourmorady A, Stecky B, Barnea G, Xie XS, Abdus-Saboor I, Shykind B, Jones-Marlin B, Gronostajski RM, Fleischmann A, Lomvardas S. Opposing, spatially-determined epigenetic forces impose restrictions on stochastic olfactory receptor choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532726. [PMID: 36993168 PMCID: PMC10055043 DOI: 10.1101/2023.03.15.532726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this "privileged" repertoire. Our experiments identify early transcription as a potential "epigenetic" contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.
Collapse
Affiliation(s)
- Elizaveta V Bashkirova
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Kevin Monahan
- Department of Biochemistry and Molecular Biology, Rutgers University, NJ, USA
| | - Christine E Campbell
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Jason M Osinski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Longzhi Tan
- Department of Bioengineering, Stanford University, CA, USA
| | - Ira Schieren
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Ariel Pourmorady
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Beka Stecky
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - X Sunnie Xie
- Beijing Innovation Center for Genomics, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Ishmail Abdus-Saboor
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Benjamin Shykind
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Bianca Jones-Marlin
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Richard M Gronostajski
- Department of Biochemistry, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
- Genetics, Genomics, and Bioinformatics Graduate Program, University at Buffalo and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine and Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Stavros Lomvardas
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
19
|
Stasenko SV, Mikhaylov AN, Kazantsev VB. Model of Neuromorphic Odorant-Recognition Network. Biomimetics (Basel) 2023; 8:277. [PMID: 37504165 PMCID: PMC10377415 DOI: 10.3390/biomimetics8030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
We propose a new model for a neuromorphic olfactory analyzer based on memristive synapses. The model comprises a layer of receptive neurons that perceive various odors and a layer of "decoder" neurons that recognize these odors. It is demonstrated that connecting these layers with memristive synapses enables the training of the "decoder" layer to recognize two types of odorants of varying concentrations. In the absence of such synapses, the layer of "decoder" neurons does not exhibit specificity in recognizing odorants. The recognition of the 'odorant' occurs through the neural activity of a group of decoder neurons that have acquired specificity for the odorant in the learning process. The proposed phenomenological model showcases the potential use of a memristive synapse in practical odorant recognition applications.
Collapse
Affiliation(s)
- Sergey V Stasenko
- Laboratory of Neurobiomorphic Technologies, Moscow Institute of Physics and Technology, 117303 Moscow, Russia
- Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alexey N Mikhaylov
- Laboratory of Memristor Nanoelectronics, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Victor B Kazantsev
- Laboratory of Neurobiomorphic Technologies, Moscow Institute of Physics and Technology, 117303 Moscow, Russia
- Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
20
|
Wu Z, Jiang J, Lischka FW, McGrane SJ, Porat-Mesenco Y, Zhao K. Domestic cat nose functions as a highly efficient coiled parallel gas chromatograph. PLoS Comput Biol 2023; 19:e1011119. [PMID: 37384594 PMCID: PMC10309622 DOI: 10.1371/journal.pcbi.1011119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/20/2023] [Indexed: 07/01/2023] Open
Abstract
The peripheral structures of mammalian sensory organs often serve to support their functionality, such as alignment of hair cells to the mechanical properties of the inner ear. Here, we examined the structure-function relationship for mammalian olfaction by creating an anatomically accurate computational nasal model for the domestic cat (Felis catus) based on high resolution microCT and sequential histological sections. Our results showed a distinct separation of respiratory and olfactory flow regimes, featuring a high-speed dorsal medial stream that increases odor delivery speed and efficiency to the ethmoid olfactory region without compromising the filtration and conditioning purpose of the nose. These results corroborated previous findings in other mammalian species, which implicates a common theme to deal with the physical size limitation of the head that confines the nasal airway from increasing in length infinitely as a straight tube. We thus hypothesized that these ethmoid olfactory channels function as parallel coiled chromatograph channels, and further showed that the theoretical plate number, a widely-used indicator of gas chromatograph efficiency, is more than 100 times higher in the cat nose than an "amphibian-like" straight channel fitting the similar skull space, at restful breathing state. The parallel feature also reduces airflow speed within each coil, which is critical to achieve the high plate number, while feeding collectively from the high-speed dorsal medial stream so that total odor sampling speed is not sacrificed. The occurrence of ethmoid turbinates is an important step in the evolution of mammalian species that correlates to their expansive olfactory function and brain development. Our findings reveal novel mechanisms on how such structure may facilitate better olfactory performance, furthering our understanding of the successful adaptation of mammalian species, including F. catus, a popular pet, to diverse environments.
Collapse
Affiliation(s)
- Zhenxing Wu
- Department of Otolaryngology—Head & Neck Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Jianbo Jiang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Fritz W. Lischka
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Scott J. McGrane
- Waltham Petcare Science Institute, Freeby Lane, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, United Kingdom
| | - Yael Porat-Mesenco
- MJ Ryan Veterinary Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kai Zhao
- Department of Otolaryngology—Head & Neck Surgery, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
21
|
Hummel T, Power Guerra N, Gunder N, Hähner A, Menzel S. Olfactory Function and Olfactory Disorders. Laryngorhinootologie 2023; 102:S67-S92. [PMID: 37130532 PMCID: PMC10184680 DOI: 10.1055/a-1957-3267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The sense of smell is important. This became especially clear to patients with infection-related olfactory loss during the SARS-CoV-2 pandemic. We react, for example, to the body odors of other humans. The sense of smell warns us of danger, and it allows us to perceive flavors when eating and drinking. In essence, this means quality of life. Therefore, anosmia must be taken seriously. Although olfactory receptor neurons are characterized by regenerative capacity, anosmia is relatively common with about 5 % of anosmic people in the general population. Olfactory disorders are classified according to their causes (e. g., infections of the upper respiratory tract, traumatic brain injury, chronic rhinosinusitis, age) with the resulting different therapeutic options and prognoses. Thorough history taking is therefore important. A wide variety of tools are available for diagnosis, ranging from short screening tests and detailed multidimensional test procedures to electrophysiological and imaging methods. Thus, quantitative olfactory disorders are easily assessable and traceable. For qualitative olfactory disorders such as parosmia, however, no objectifying diagnostic procedures are currently available. Therapeutic options for olfactory disorders are limited. Nevertheless, there are effective options consisting of olfactory training as well as various additive drug therapies. The consultation and the competent discussion with the patients are of major importance.
Collapse
Affiliation(s)
- T Hummel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - N Power Guerra
- Rudolf-Zenker-Institut für Experimentelle Chirurgie, Medizinische Universität Rostock, Rostock
| | - N Gunder
- Universitäts-HNO Klinik Dresden, Dresden
| | - A Hähner
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| | - S Menzel
- Interdisziplinäres Zentrum Riechen und Schmecken, HNO Klinik, TU Dresden
| |
Collapse
|
22
|
Sakatani H, Kono M, Shiga T, Kuwazoe H, Nanushaj D, Matsuzaki I, Murata SI, Miyajima M, Okada Y, Saika S, Hotomi M. The Roles of Transient Receptor Potential Vanilloid 1 and 4 in Olfactory Regeneration. J Transl Med 2023; 103:100051. [PMID: 36870285 DOI: 10.1016/j.labinv.2022.100051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/06/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023] Open
Abstract
Olfactory disorders, which are closely related to cognitive deterioration, can be caused by several factors, including infections, such as COVID-19; aging; and environmental chemicals. Injured olfactory receptor neurons (ORNs) regenerate after birth, but it is unclear which receptors and sensors are involved in ORN regeneration. Recently, there has been great focus on the involvement of transient receptor potential vanilloid (TRPV) channels, which are nociceptors expressed on sensory nerves during the healing of damaged tissues. The localization of TRPV in the olfactory nervous system has been reported in the past, but its function there are unclear. Here, we investigated how TRPV1 and TRPV4 channels are involved in ORN regeneration. TRPV1 knockout (KO), TRPV4 KO, and wild-type (WT) mice were used to model methimazole-induced olfactory dysfunction. The regeneration of ORNs was evaluated using olfactory behavior, histologic examination, and measurement of growth factors. Both TRPV1 and TRPV4 were found to be expressed in the olfactory epithelium (OE). TRPV1, in particular, existed near ORN axons. TRPV4 was marginally expressed in the basal layer of the OE. The proliferation of ORN progenitor cells was reduced in TRPV1 KO mice, which delayed ORN regeneration and the improvement of olfactory behavior. Postinjury OE thickness improved faster in TRPV4 KO mice than WT mice but without acceleration of ORN maturation. The nerve growth factor and transforming growth factor ß levels in TRPV1 KO mice were similar to those in WT mice, and the transforming growth factor ß level was higher than TRPV4 KO mice. TRPV1 was involved in stimulating the proliferation of progenitor cells. TRPV4 modulated their proliferation and maturation. ORN regeneration was regulated by the interaction between TRPV1 and TRPV4. However, in this study, TRPV4 involvement was limited compared with TRPV1. To our knowledge, this is the first study to demonstrate the involvement of TRPV1 and TRPV4 in OE regeneration.
Collapse
Affiliation(s)
- Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Tatsuya Shiga
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Kuwazoe
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Denisa Nanushaj
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Ibu Matsuzaki
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Shin-Ichi Murata
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
23
|
Paronett EM, Bryan CA, Maynard TM, LaMantia AS. Identity, lineage and fates of a temporally distinct progenitor population in the embryonic olfactory epithelium. Dev Biol 2023; 495:76-91. [PMID: 36627077 PMCID: PMC9926479 DOI: 10.1016/j.ydbio.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
We defined a temporally and transcriptionally divergent precursor cohort in the medial olfactory epithelium (OE) shortly after it differentiates as a distinct tissue at mid-gestation in the mouse. This temporally distinct population of Ascl1+ cells in the dorsomedial OE is segregated from Meis1+/Pax7+ progenitors in the lateral OE, and does not appear to be generated by Pax7+ lateral OE precursors. The medial Ascl1+ precursors do not yield a substantial number of early-generated ORNs. Instead, they first generate additional proliferative precursors as well as a distinct population of frontonasal mesenchymal cells associated with the migratory mass that surrounds the nascent olfactory nerve. Parallel to these in vivo distinctions, isolated medial versus lateral OE precursors in vitro retain distinct proliferative capacities and modes of division that reflect their in vivo identities. At later fetal stages, these early dorsomedial Ascl1+ precursors cells generate spatially restricted subsets of ORNs as well as other non-neuronal cell classes. Accordingly, the initial compliment of ORNs and other OE cell types is derived from at least two distinct early precursor populations: lateral Meis1/Pax7+ precursors that generate primarily early ORNs, and a temporally, spatially, and transcriptionally distinct subset of medial Ascl1+ precursors that initially generate additional OE progenitors and apparent migratory mass cells before yielding a subset of ORNs and likely supporting cell classes.
Collapse
Affiliation(s)
- Elizabeth M Paronett
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC, 20037, USA
| | - Corey A Bryan
- Laboratory of Developmental Disorders and Genetics, The Fralin Biomedical Research Institute, Virginia Tech-Carilion School of Medicine, Roanoke, VA, USA
| | - Thomas M Maynard
- Center for Neurobiology Research, The Fralin Biomedical Research Institute, Virginia Tech-Carilion School of Medicine, Roanoke, VA, USA
| | - Anthony-S LaMantia
- Center for Neurobiology Research, The Fralin Biomedical Research Institute, Virginia Tech-Carilion School of Medicine, Roanoke, VA, USA; Department of Biological Sciences Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
24
|
Zhu KW, Matsunami H. Target-Captured mRNA from Murine Olfactory Bulb. Methods Mol Biol 2023; 2710:149-170. [PMID: 37688731 DOI: 10.1007/978-1-0716-3425-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
The external world is perceived via sensory receptors arranged in highly organized systems according to functional strategies, which in turn reflect features of critical importance to both the sense and the animal. Thus describing the receptor organization and functional strategies of olfaction, the sense of smell, is crucial for a concrete understanding of the fundamental principles of the system's architecture. Sensory processing in olfactory systems is organized across olfactory bulb (OB) glomeruli, wherein axons of peripheral sensory neurons expressing the same olfactory receptor (OR) co-terminate to transmit receptor-specific activity to mitral/tufted cells, projection neurons in the olfactory bulb. Understanding how receptors map to glomeruli is therefore critical to understanding olfaction.Here we describe a method to enrich low-abundant OR mRNAs from the mouse OB for spatial transcriptomics to generate high-throughput mapping of receptors to glomeruli [2]. Our method combines sequential sectioning along the anteroposterior, dorsoventral, and mediolateral axes with target capture enrichment sequencing to overcome low-abundance target expression. This strategy spatially mapped 86% of olfactory receptors across the olfactory bulb and uncovered a relationship between olfactory receptor sequence and glomerular position.
Collapse
Affiliation(s)
- Kevin W Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology, Duke Institute for Brain Sciences, Durham, NC, USA
| |
Collapse
|
25
|
Moussa EA, Makhlouf M, Mathew LS, Saraiva LR. Genome-Wide RNA Tomography in the Mouse Whole Olfactory Mucosa. Methods Mol Biol 2023; 2710:19-30. [PMID: 37688721 DOI: 10.1007/978-1-0716-3425-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Spatial transcriptomics allows for the genome-wide profiling of topographic gene expression patterns within a tissue of interest. Here, we describe our methodology to generate high-quality RNA-seq libraries from cryosections from fresh frozen mouse whole olfactory mucosae. This methodology can be extended to virtually any vertebrate organ or tissue sample.
Collapse
Affiliation(s)
| | | | | | - Luis R Saraiva
- Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Monell Chemical Senses Center, Philadelphia, PA, USA
| |
Collapse
|
26
|
Dang P, Barnes DT, Cheng RP, Xu A, Moon YJ, Kodukula SS, Raper JA. Netrins and Netrin Receptors are Essential for Normal Targeting of Sensory Axons in the Zebrafish Olfactory Bulb. Neuroscience 2023; 508:19-29. [PMID: 35940453 PMCID: PMC9839495 DOI: 10.1016/j.neuroscience.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/17/2023]
Abstract
Olfactory sensory neurons that express related odorant receptors specifically target large identifiable neuropils called protoglomeruli when they first reach the olfactory bulb in the zebrafish. This crude odorant receptor-related mapping is further refined as odorant receptor-specific glomeruli segregate from protoglomeruli later in development. Netrins are a prominent class of axon guidance molecules whose contribution to olfactory circuit formation is poorly studied. Morpholino knock down experiments have suggested that Netrin/Dcc signaling is involved in normal protoglomerular targeting. Here we extend these findings with more detailed characterization and modeling of netrin expression, and by examining protoglomerular targeting in mutant lines fornetrin1a (ntn1a), netrin1b (ntn1b), and their receptorsunc5b,dcc, andneo1a. We confirm thatntn1a,ntn1b, anddccare required for normal protoglomerular guidance of a subset of olfactory sensory neurons that are labeled with the Tg(or111-7:IRES:Gal4) transgene. We also observe errors in the targeting of these axons inunc5bmutants, but not inneo1a mutants. Our findings are consistent with ntn1a andntn1bacting primarily as attractants for olfactory sensory neurons targeting the central zone protoglomerulus.
Collapse
Affiliation(s)
- Puneet Dang
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel T Barnes
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan P Cheng
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Alison Xu
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Yoon Ji Moon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Sai Sripad Kodukula
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Verma AK, Zheng J, Meyerholz DK, Perlman S. SARS-CoV-2 infection of sustentacular cells disrupts olfactory signaling pathways. JCI Insight 2022; 7:e160277. [PMID: 36378534 PMCID: PMC9869979 DOI: 10.1172/jci.insight.160277] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Loss of olfactory function has been commonly reported in SARS-CoV-2 infections. Recovery from anosmia is not well understood. Previous studies showed that sustentacular cells, and occasionally olfactory sensory neurons (OSNs) in the olfactory epithelium (OE), are infected in SARS-CoV-2-infected patients and experimental animals. Here, we show that SARS-CoV-2 infection of sustentacular cells induces inflammation characterized by infiltration of myeloid cells to the olfactory epithelium and variably increased expression of proinflammatory cytokines. We observed widespread damage to, and loss of cilia on, OSNs, accompanied by downregulation of olfactory receptors and signal transduction molecules involved in olfaction. A consequence of OSN dysfunction was a reduction in the number of neurons in the olfactory bulb expressing tyrosine hydroxylase, consistent with reduced synaptic input. Resolution of the infection, inflammation, and olfactory dysfunction occurred over 3-4 weeks following infection in most but not all animals. We also observed similar patterns of OE infection and anosmia/hyposmia in mice infected with other human coronaviruses such as SARS-CoV and MERS-CoV. Together, these results define the downstream effects of sustentacular cell infection and provide insight into olfactory dysfunction in COVID-19-associated anosmia.
Collapse
Affiliation(s)
| | - Jian Zheng
- Department of Microbiology and Immunology and
| | | | | |
Collapse
|
28
|
A multivesicular body-like organelle mediates stimulus-regulated trafficking of olfactory ciliary transduction proteins. Nat Commun 2022; 13:6889. [PMID: 36371422 PMCID: PMC9653401 DOI: 10.1038/s41467-022-34604-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Stimulus transduction in cilia of olfactory sensory neurons is mediated by odorant receptors, Gαolf, adenylate cyclase-3, cyclic nucleotide-gated and chloride ion channels. Mechanisms regulating trafficking and localization of these proteins in the dendrite are unknown. By lectin/immunofluorescence staining and in vivo correlative light-electron microscopy (CLEM), we identify a retinitis pigmentosa-2 (RP2), ESCRT-0 and synaptophysin-containing multivesicular organelle that is not part of generic recycling/degradative/exosome pathways. The organelle's intraluminal vesicles contain the olfactory transduction proteins except for Golf subunits Gγ13 and Gβ1. Instead, Gβ1 colocalizes with RP2 on the organelle's outer membrane. The organelle accumulates in response to stimulus deprivation, while odor stimuli or adenylate cyclase activation cause outer membrane disintegration, release of intraluminal vesicles, and RP2/Gβ1 translocation to the base of olfactory cilia. Together, these findings reveal the existence of a dendritic organelle that mediates both stimulus-regulated storage of olfactory ciliary transduction proteins and membrane-delimited sorting important for G protein heterotrimerization.
Collapse
|
29
|
Kyani-Rogers T, Philbrook A, McLachlan IG, Flavell SW, O’Donnell MP, Sengupta P. Developmental history modulates adult olfactory behavioral preferences via regulation of chemoreceptor expression in Caenorhabditiselegans. Genetics 2022; 222:iyac143. [PMID: 36094348 PMCID: PMC9630977 DOI: 10.1093/genetics/iyac143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/02/2022] [Indexed: 11/14/2022] Open
Abstract
Developmental experiences play critical roles in shaping adult physiology and behavior. We and others previously showed that adult Caenorhabditiselegans which transiently experienced dauer arrest during development (postdauer) exhibit distinct gene expression profiles as compared to control adults which bypassed the dauer stage. In particular, the expression patterns of subsets of chemoreceptor genes are markedly altered in postdauer adults. Whether altered chemoreceptor levels drive behavioral plasticity in postdauer adults is unknown. Here, we show that postdauer adults exhibit enhanced attraction to a panel of food-related attractive volatile odorants including the bacterially produced chemical diacetyl. Diacetyl-evoked responses in the AWA olfactory neuron pair are increased in both dauer larvae and postdauer adults, and we find that these increased responses are correlated with upregulation of the diacetyl receptor ODR-10 in AWA likely via both transcriptional and posttranscriptional mechanisms. We show that transcriptional upregulation of odr-10 expression in dauer larvae is in part mediated by the DAF-16 FOXO transcription factor. Via transcriptional profiling of sorted populations of AWA neurons from control and postdauer animals, we further show that the expression of a subset of additional chemoreceptor genes in AWA is regulated similarly to odr-10 in postdauer animals. Our results suggest that developmental experiences may be encoded at the level of olfactory receptor regulation, and provide a simple mechanism by which C. elegans is able to precisely modulate its behavioral preferences as a function of its current and past experiences.
Collapse
Affiliation(s)
| | - Alison Philbrook
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Ian G McLachlan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
30
|
Yang Z, Cheng J, Shang P, Sun JP, Yu X. Emerging roles of olfactory receptors in glucose metabolism. Trends Cell Biol 2022; 33:463-476. [PMID: 36229334 DOI: 10.1016/j.tcb.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Olfactory receptors (ORs) are widely expressed in extra-nasal tissues, where they participate in the regulation of divergent physiological processes. An increasing body of evidence over the past decade has revealed important regulatory roles for extra-nasal ORs in glucose metabolism. Recently, nonodorant endogenous ligands of ORs with metabolic significance have been identified, implying the therapeutic potential of ORs in the treatment of metabolic diseases, such as diabetes and obesity. In this review, we summarize current understanding of the expression patterns and functions of ORs in key tissues involved in glucose metabolism modulation, describe odorant and endogenous OR ligands, explain the biased signaling downstream of ORs, and outline OR therapeutic potential.
Collapse
|
31
|
Kurihara S, Tei M, Hata J, Mori E, Fujioka M, Matsuwaki Y, Otori N, Kojima H, Okano HJ. MRI tractography reveals the human olfactory nerve map connecting the olfactory epithelium and olfactory bulb. Commun Biol 2022; 5:843. [PMID: 36068329 PMCID: PMC9448749 DOI: 10.1038/s42003-022-03794-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The olfactory nerve map describes the topographical neural connections between the olfactory epithelium in the nasal cavity and the olfactory bulb. Previous studies have constructed the olfactory nerve maps of rodents using histological analyses or transgenic animal models to investigate olfactory nerve pathways. However, the human olfactory nerve map remains unknown. Here, we demonstrate that high-field magnetic resonance imaging and diffusion tensor tractography can be used to visualize olfactory sensory neurons while maintaining their three-dimensional structures. This technique allowed us to evaluate the olfactory sensory neuron projections from the nasal cavities to the olfactory bulbs and visualize the olfactory nerve maps of humans, marmosets and mice. The olfactory nerve maps revealed that the dorsal-ventral and medial-lateral axes were preserved between the olfactory epithelium and olfactory bulb in all three species. Further development of this technique might allow it to be used clinically to facilitate the diagnosis of olfactory dysfunction. Combined high-field MRI and DTI analyses in post-mortem mouse, marmoset, and human samples provide insight into the neural connections between nasal cavities and olfactory bulbs.
Collapse
Affiliation(s)
- Sho Kurihara
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan.
| | - Masayoshi Tei
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan.,Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu Arakawa-ku, Tokyo, 116-8551, Japan
| | - Eri Mori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Masato Fujioka
- Department of Molecular Genetics, Kitasato University School of Medicine, 1-15-1 Kitasato Minami-ku Sagamihara-shi, Kanagawa, 252-0373, Japan.,Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshinori Matsuwaki
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Nobuyoshi Otori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Hiromi Kojima
- Department of Otorhinolaryngology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo, 105-8471, Japan.
| |
Collapse
|
32
|
Zhu KW, Burton SD, Nagai MH, Silverman JD, de March CA, Wachowiak M, Matsunami H. Decoding the olfactory map through targeted transcriptomics links murine olfactory receptors to glomeruli. Nat Commun 2022; 13:5137. [PMID: 36050313 PMCID: PMC9437035 DOI: 10.1038/s41467-022-32267-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022] Open
Abstract
Sensory processing in olfactory systems is organized across olfactory bulb glomeruli, wherein axons of peripheral sensory neurons expressing the same olfactory receptor co-terminate to transmit receptor-specific activity to central neurons. Understanding how receptors map to glomeruli is therefore critical to understanding olfaction. High-throughput spatial transcriptomics is a rapidly advancing field, but low-abundance olfactory receptor expression within glomeruli has previously precluded high-throughput mapping of receptors to glomeruli in the mouse. Here we combined sequential sectioning along the anteroposterior, dorsoventral, and mediolateral axes with target capture enrichment sequencing to overcome low-abundance target expression. This strategy allowed us to spatially map 86% of olfactory receptors across the olfactory bulb and uncover a relationship between OR sequence and glomerular position.
Collapse
Affiliation(s)
- Kevin W Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shawn D Burton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Maira H Nagai
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Justin D Silverman
- College of Information Science and Technology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Statistics, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
- Institute for Computational and Data Science, Pennsylvania State University, University Park, PA, 16802, USA
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
33
|
Kowatschew D, Bozorg Nia S, Hassan S, Ustinova J, Weth F, Korsching SI. Spatial organization of olfactory receptor gene choice in the complete V1R-related ORA family of zebrafish. Sci Rep 2022; 12:14816. [PMID: 36045218 PMCID: PMC9433392 DOI: 10.1038/s41598-022-17900-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
The vertebrate sense of smell employs four main receptor families for detection of odors, among them the V1R/ORA family, which is unusually small and highly conserved in teleost fish. Zebrafish possess just seven ORA receptors, enabling a comprehensive analysis of the expression patterns of the entire family. The olfactory organ of zebrafish is representative for teleosts, cup-shaped, with lamella covered with sensory epithelium protruding into the cup from a median raphe. We have performed quantitative in situ hybridization on complete series of horizontal cryostat sections of adult zebrafish olfactory organ, and have analysed the location of ora-expressing cells in three dimensions, radial diameter, laminar height, and height-within-the-organ. We report broadly overlapping, but distinctly different distributions for all ora genes, even for ora3a and ora3b, the most recent gene duplication. Preferred positions in different dimensions are independent of each other. This spatial logic is very similar to previous reports for the much larger families of odorant receptor (or) and V2R-related olfC genes in zebrafish. Preferred positions for ora genes tend to be more central and more apical than those we observed for these other two families, consistent with expression in non-canonical sensory neuron types.
Collapse
Affiliation(s)
- Daniel Kowatschew
- Institute of Genetics, Mathematical-Natural Sciences Faculty of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Shahrzad Bozorg Nia
- Institute of Genetics, Mathematical-Natural Sciences Faculty of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Shahzaib Hassan
- Institute of Genetics, Mathematical-Natural Sciences Faculty of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Jana Ustinova
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Franco Weth
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Mathematical-Natural Sciences Faculty of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.
| |
Collapse
|
34
|
Kim C, Lee KK, Kang MS, Shin DM, Oh JW, Lee CS, Han DW. Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive review. Biomater Res 2022; 26:40. [PMID: 35986395 PMCID: PMC9392354 DOI: 10.1186/s40824-022-00287-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
Artificial olfactory sensors that recognize patterns transmitted by olfactory receptors are emerging as a technology for monitoring volatile organic compounds. Advances in statistical processing methods and data processing technology have made it possible to classify patterns in sensor arrays. Moreover, biomimetic olfactory recognition sensors in the form of pattern recognition have been developed. Deep learning and artificial intelligence technologies have enabled the classification of pattern data from more sensor arrays, and improved artificial olfactory sensor technology is being developed with the introduction of artificial neural networks. An example of an artificial olfactory sensor is the electronic nose. It is an array of various types of sensors, such as metal oxides, electrochemical sensors, surface acoustic waves, quartz crystal microbalances, organic dyes, colorimetric sensors, conductive polymers, and mass spectrometers. It can be tailored depending on the operating environment and the performance requirements of the artificial olfactory sensor. This review compiles artificial olfactory sensor technology based on olfactory mechanisms. We introduce the mechanisms of artificial olfactory sensors and examples used in food quality and stability assessment, environmental monitoring, and diagnostics. Although current artificial olfactory sensor technology has several limitations and there is limited commercialization owing to reliability and standardization issues, there is considerable potential for developing this technology. Artificial olfactory sensors are expected to be widely used in advanced pattern recognition and learning technologies, along with advanced sensor technology in the future.
Collapse
|
35
|
Voortman L, Anderson C, Urban E, Yuan L, Tran S, Neuhaus-Follini A, Derrick J, Gregor T, Johnston RJ. Temporally dynamic antagonism between transcription and chromatin compaction controls stochastic photoreceptor specification in flies. Dev Cell 2022; 57:1817-1832.e5. [PMID: 35835116 PMCID: PMC9378680 DOI: 10.1016/j.devcel.2022.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023]
Abstract
Stochastic mechanisms diversify cell fates during development. How cells randomly choose between two or more fates remains poorly understood. In the Drosophila eye, the random mosaic of two R7 photoreceptor subtypes is determined by expression of the transcription factor Spineless (Ss). We investigated how cis-regulatory elements and trans factors regulate nascent transcriptional activity and chromatin compaction at the ss gene locus during R7 development. The ss locus is in a compact state in undifferentiated cells. An early enhancer drives transcription in all R7 precursors, and the locus opens. In differentiating cells, transcription ceases and the ss locus stochastically remains open or compacts. In SsON R7s, ss is open and competent for activation by a late enhancer, whereas in SsOFF R7s, ss is compact, and repression prevents expression. Our results suggest that a temporally dynamic antagonism, in which transcription drives large-scale decompaction and then compaction represses transcription, controls stochastic fate specification.
Collapse
Affiliation(s)
- Lukas Voortman
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth Urban
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Luorongxin Yuan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sang Tran
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Josh Derrick
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Thomas Gregor
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Joseph Henry Laboratories of Physics, the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Developmental and Stem Cell Biology, UMR3738, Institut Pasteur, 75015 Paris, France
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
36
|
Zak JD. Longitudinal imaging of individual olfactory sensory neurons in situ. Front Cell Neurosci 2022; 16:946816. [PMID: 35936493 PMCID: PMC9354957 DOI: 10.3389/fncel.2022.946816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Olfactory sensory neurons are found deep within the nasal cavity at a spatially restricted sheet of sensory epithelium. Due to their location behind the nasal turbinates, accessing these cells for physiological measurements in living animals is challenging, and until recently, not possible. As a further complication, damage to the overlying bone on the dorsal surface of the snout disrupts the negative pressure distribution throughout the nasal cavities, which fundamentally alters how odorants are delivered to the sensory epithelium and the inherent mechanosensory properties of olfactory sensory neurons in live animals. The approach described here circumvents these limitations and allows for optical access to olfactory sensory neurons in mice across time scales ranging from days to months.
Collapse
|
37
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
38
|
Raj R, Dahlen D, Duyck K, Yu CR. Maximal Dependence Capturing as a Principle of Sensory Processing. Front Comput Neurosci 2022; 16:857653. [PMID: 35399919 PMCID: PMC8989953 DOI: 10.3389/fncom.2022.857653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Sensory inputs conveying information about the environment are often noisy and incomplete, yet the brain can achieve remarkable consistency in recognizing objects. Presumably, transforming the varying input patterns into invariant object representations is pivotal for this cognitive robustness. In the classic hierarchical representation framework, early stages of sensory processing utilize independent components of environmental stimuli to ensure efficient information transmission. Representations in subsequent stages are based on increasingly complex receptive fields along a hierarchical network. This framework accurately captures the input structures; however, it is challenging to achieve invariance in representing different appearances of objects. Here we assess theoretical and experimental inconsistencies of the current framework. In its place, we propose that individual neurons encode objects by following the principle of maximal dependence capturing (MDC), which compels each neuron to capture the structural components that contain maximal information about specific objects. We implement the proposition in a computational framework incorporating dimension expansion and sparse coding, which achieves consistent representations of object identities under occlusion, corruption, or high noise conditions. The framework neither requires learning the corrupted forms nor comprises deep network layers. Moreover, it explains various receptive field properties of neurons. Thus, MDC provides a unifying principle for sensory processing.
Collapse
Affiliation(s)
- Rishabh Raj
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Dar Dahlen
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Kyle Duyck
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - C. Ron Yu
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
39
|
Ruiz Tejada Segura ML, Abou Moussa E, Garabello E, Nakahara TS, Makhlouf M, Mathew LS, Wang L, Valle F, Huang SSY, Mainland JD, Caselle M, Osella M, Lorenz S, Reisert J, Logan DW, Malnic B, Scialdone A, Saraiva LR. A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical logic of smell. Cell Rep 2022; 38:110547. [PMID: 35320714 PMCID: PMC8995392 DOI: 10.1016/j.celrep.2022.110547] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
The sense of smell helps us navigate the environment, but its molecular architecture and underlying logic remain understudied. The spatial location of odorant receptor genes (Olfrs) in the nose is thought to be independent of the structural diversity of the odorants they detect. Using spatial transcriptomics, we create a genome-wide 3D atlas of the mouse olfactory mucosa (OM). Topographic maps of genes differentially expressed in space reveal that both Olfrs and non-Olfrs are distributed in a continuous and overlapping fashion over at least five broad zones in the OM. The spatial locations of Olfrs correlate with the mucus solubility of the odorants they recognize, providing direct evidence for the chromatographic theory of olfaction. This resource resolves the molecular architecture of the mouse OM and will inform future studies on mechanisms underlying Olfr gene choice, axonal pathfinding, patterning of the nervous system, and basic logic for the peripheral representation of smell.
Collapse
Affiliation(s)
- Mayra L Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | | | - Elisa Garabello
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy; Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Thiago S Nakahara
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Li Wang
- Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Filippo Valle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | | | - Joel D Mainland
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele Caselle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Matteo Osella
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Stephan Lorenz
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Luis R Saraiva
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
40
|
Coppola DM. The sorption/chromatography hypothesis of olfactory discrimination: The rise, fall, and rebirth of a Phoenix. Bioessays 2022; 44:e2100263. [PMID: 34984707 DOI: 10.1002/bies.202100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022]
Abstract
Herein, I discuss the enduring mystery of the receptor layout in the vertebrate olfactory system. Since the awarding of the 2004 Nobel Prize to Axel and Buck for their discovery of the gene family that encodes olfactory receptors, our field has enjoyed a golden era. Despite this Renaissance, an answer to one of the most fundamental questions for any sensory system-what is the anatomical logic of its receptor array?-eludes us, still, for olfaction! Indeed, the only widely debated hypothesis, finding its origins in the musing of another Nobel laureate Sir Edgar Adrian, has it that the vertebrate nose organizes its receptors according to the "sorptive" properties of their ligands. This idea, known as the "sorption" or "chromatography" hypothesis, enjoys considerable support despite being controversial. Here, I review the history of the hypothesis-its rises and falls-and discuss the latest data and future prospects for this perennial idea whose history I liken to the mythical Phoenix.
Collapse
Affiliation(s)
- David M Coppola
- Department of Biology, Randolph-Macon College, Ashland, Virginia, 23005, USA
| |
Collapse
|
41
|
Cheng RP, Dang P, Taku AA, Moon YJ, Pham V, Sun X, Zhao E, Raper JA. Loss of Neuropilin2a/b or Sema3fa alters olfactory sensory axon dynamics and protoglomerular targeting. Neural Dev 2022; 17:1. [PMID: 34980234 PMCID: PMC8725463 DOI: 10.1186/s13064-021-00157-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Olfactory Sensory Neuron (OSN) axons project from the zebrafish olfactory epithelium to reproducible intermediate target locations in the olfactory bulb called protoglomeruli at early stages in development. Two classes of OSNs expressing either OMP or TRPC2 exclusively target distinct, complementary protoglomeruli. Using RNAseq, we identified axon guidance receptors nrp2a and nrp2b, and their ligand sema3fa, as potential guidance factors that are differentially expressed between these two classes of OSNs. METHODS To investigate their role in OSN axon guidance, we assessed the protoglomerular targeting fidelity of OSNs labeled by OMP:RFP and TRPC2:Venus transgenes in nrp2a, nrp2b, or sema3fa mutants. We used double mutant and genetic interaction experiments to interrogate the relationship between the three genes. We used live time-lapse imaging to compare the dynamic behaviors of OSN growth cones during protoglomerular targeting in heterozygous and mutant larvae. RESULTS The fidelity of protoglomerular targeting of TRPC2-class OSNs is degraded in nrp2a, nrp2b, or sema3fa mutants, as axons misproject into OMP-specific protoglomeruli and other ectopic locations in the bulb. These misprojections are further enhanced in nrp2a;nrp2b double mutants suggesting that nrp2s work at least partially in parallel in the same guidance process. Results from genetic interaction experiments are consistent with sema3fa acting in the same biological pathway as both nrp2a and nrp2b. Live time-lapse imaging was used to examine the dynamic behavior of TRPC2-class growth cones in nrp2a mutants compared to heterozygous siblings. Some TRPC2-class growth cones ectopically enter the dorsal-medial region of the bulb in both groups, but in fully mutant embryos, they are less likely to correct the error through retraction. The same result was observed when TRPC2-class growth cone behavior was compared between sema3fa heterozygous and sema3fa mutant larvae. CONCLUSIONS Our results suggest that nrp2a and nrp2b expressed in TRPC2-class OSNs help prevent their mixing with axon projections in OMP-specific protoglomeruli, and further, that sema3fa helps to exclude TRPC2-class axons by repulsion from the dorsal-medial bulb.
Collapse
Affiliation(s)
- Ryan P Cheng
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Puneet Dang
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Alemji A Taku
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Yoon Ji Moon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Vi Pham
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Xiaohe Sun
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Ethan Zhao
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
42
|
Voortman L, Johnston RJ. Transcriptional repression in stochastic gene expression, patterning, and cell fate specification. Dev Biol 2022; 481:129-138. [PMID: 34688689 PMCID: PMC8665150 DOI: 10.1016/j.ydbio.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 01/03/2023]
Abstract
Development is often driven by signaling and lineage-specific cues, yielding highly uniform and reproducible outcomes. Development also involves mechanisms that generate noise in gene expression and random patterns across tissues. Cells sometimes randomly choose between two or more cell fates in a mechanism called stochastic cell fate specification. This process diversifies cell types in otherwise homogenous tissues. Stochastic mechanisms have been extensively studied in prokaryotes where noisy gene activation plays a pivotal role in controlling cell fates. In eukaryotes, transcriptional repression stochastically limits gene expression to generate random patterns and specify cell fates. Here, we review our current understanding of repressive mechanisms that produce random patterns of gene expression and cell fates in flies, plants, mice, and humans.
Collapse
Affiliation(s)
- Lukas Voortman
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
43
|
Abstract
Taste information is encoded in the gustatory nervous system much as in other sensory systems, with notable exceptions. The concept of adequate stimulus is common to all sensory modalities, from somatosensory to auditory, visual, and so forth. That is, sensory cells normally respond only to one particular form of stimulation, the adequate stimulus, such as photons (photoreceptors in the visual system), odors (olfactory sensory neurons in the olfactory system), noxious heat (nociceptors in the somatosensory system), etc. Peripheral sensory receptors transduce the stimulus into membrane potential changes transmitted to the brain in the form of trains of action potentials. How information concerning different aspects of the stimulus such as quality, intensity, and duration are encoded in the trains of action potentials is hotly debated in the field of taste. At one extreme is the notion of labeled line/spatial coding - information for each different taste quality (sweet, salty, sour, etc.) is transmitted along a parallel but separate series of neurons (a "line") that project to focal clusters ("spaces") of neurons in the gustatory cortex. These clusters are distinct for each taste quality. Opposing this are concepts of population/combinatorial coding and temporal coding, where taste information is encrypted by groups of neurons (circuits) and patterns of impulses within these neuronal circuits. Key to population/combinatorial and temporal coding is that impulse activity in an individual neuron does not provide unambiguous information about the taste stimulus. Only populations of neurons and their impulse firing pattern yield that information.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
44
|
Wang PY, Sun Y, Axel R, Abbott LF, Yang GR. Evolving the olfactory system with machine learning. Neuron 2021; 109:3879-3892.e5. [PMID: 34619093 DOI: 10.1016/j.neuron.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 11/27/2022]
Abstract
The convergent evolution of the fly and mouse olfactory system led us to ask whether the anatomic connectivity and functional logic of olfactory circuits would evolve in artificial neural networks trained to perform olfactory tasks. Artificial networks trained to classify odor identity recapitulate the connectivity inherent in the olfactory system. Input units are driven by a single receptor type, and units driven by the same receptor converge to form a glomerulus. Glomeruli exhibit sparse, unstructured connectivity onto a larger expansion layer of Kenyon cells. When trained to both classify odor identity and to impart innate valence onto odors, the network develops independent pathways for identity and valence classification. Thus, the defining features of fly and mouse olfactory systems also evolved in artificial neural networks trained to perform olfactory tasks. This implies that convergent evolution reflects an underlying logic rather than shared developmental principles.
Collapse
Affiliation(s)
- Peter Y Wang
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Yi Sun
- Department of Mathematics, Columbia University, New York, NY 10027, USA
| | - Richard Axel
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - L F Abbott
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Guangyu Robert Yang
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
45
|
Xiao W, Sun Z, Yan X, Gao X, Lv Q, Wei Y. Differences in olfactory habituation between orthonasal and retronasal pathways. J Physiol Sci 2021; 71:36. [PMID: 34837939 PMCID: PMC10716942 DOI: 10.1186/s12576-021-00822-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022]
Abstract
The odorant arrives at nasal olfactory epithelium ortho- and retronasally. This experiment aimed to study the potential different olfactory habituation in orthonasal and retronasal pathways. 68 subjects were stimulated by constant airflow with an odor (50% phenethyl alcohol, PEA or 5% n-butyl acetate, BA) presented ortho- or retronasally. Participants rated the perceived odor intensity (0-10 points) per minute until the odor sensation disappeared. We also investigated the cross-habituation: when the subjects achieved full habituation, continue to rate odor intensity in a different pathway after instantly switching the odor stimulation pathway. The olfactory habituation curve was drawn. The differences of ratings between the orthonasal and retronasal olfaction at different time points and between male and female subjects were analyzed. The two odor intensity ratings decreased as the time extended, share the same "fast followed by slow" type. The ratings of orthonasal olfaction decreased faster than that of retronasal. The intensity rating of PEA of male retronasal approach was lower than that of female at the 5th min (p = 0.018). When orthonasal full habituation achieved, there was significant difference between the intensity ratings and the initial ratings of the retronasal stimulation pathway (p < 0.0001), and vice versa. We found obvious habituation as well as cross-habituation in both orthonasal and retronasal olfaction. The habituation of orthonasal olfaction was faster than that of retronasal olfaction. These different habituations were related to the gender.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Otolaryngology Head & Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhifu Sun
- Department of Otolaryngology Head & Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Yan
- Smell and Taste Clinic, TU Dresden, Dresden, Germany
| | - Xing Gao
- Department of Otolaryngology Head & Neck Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Qianwen Lv
- Department of Otolaryngology Head & Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- Department of Otolaryngology Head & Neck Surgery, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
46
|
How JJ, Navlakha S, Chalasani SH. Neural network features distinguish chemosensory stimuli in Caenorhabditis elegans. PLoS Comput Biol 2021; 17:e1009591. [PMID: 34752447 PMCID: PMC8604368 DOI: 10.1371/journal.pcbi.1009591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 11/19/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022] Open
Abstract
Nervous systems extract and process information from the environment to alter animal behavior and physiology. Despite progress in understanding how different stimuli are represented by changes in neuronal activity, less is known about how they affect broader neural network properties. We developed a framework for using graph-theoretic features of neural network activity to predict ecologically relevant stimulus properties, in particular stimulus identity. We used the transparent nematode, Caenorhabditis elegans, with its small nervous system to define neural network features associated with various chemosensory stimuli. We first immobilized animals using a microfluidic device and exposed their noses to chemical stimuli while monitoring changes in neural activity of more than 50 neurons in the head region. We found that graph-theoretic features, which capture patterns of interactions between neurons, are modulated by stimulus identity. Further, we show that a simple machine learning classifier trained using graph-theoretic features alone, or in combination with neural activity features, can accurately predict salt stimulus. Moreover, by focusing on putative causal interactions between neurons, the graph-theoretic features were almost twice as predictive as the neural activity features. These results reveal that stimulus identity modulates the broad, network-level organization of the nervous system, and that graph theory can be used to characterize these changes. Animals use their nervous systems to detect and respond to changes in their external environment. A central challenge in computational neuroscience is to determine how specific properties of these stimuli affect interactions between neurons. While most studies have focused on the neurons in the sensory periphery, recent advances allow us to probe how the rest of the nervous system responds to sensory stimulation. We recorded activity of neurons within the C. elegans head region while the animal was exposed to various chemosensory stimuli. We then used computational methods to identify various stimuli by analyzing neural activity. Specifically, we used a combination of population-level activity statistics (e.g., average, standard deviation, frequency-based measures) and graph-theoretic features of functional network structure (e.g., transitivity, which is the existence of strongly connected triplets of neurons) to accurately predict salt stimulus. Our method is general and can be used across species, particularly in instances where the identities of individual neurons are unknown. These results also suggest that neural activity downstream of the sensory periphery contains a signature of changes in the environment.
Collapse
Affiliation(s)
- Javier J. How
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, United States of America
| | - Saket Navlakha
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, United States of America
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * E-mail: (SN); (SHC)
| | - Sreekanth H. Chalasani
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, United States of America
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, San Diego, La Jolla, California, United States of America
- * E-mail: (SN); (SHC)
| |
Collapse
|
47
|
Aoki M, Gamayun I, Wyatt A, Grünewald R, Simon-Thomas M, Philipp SE, Hummel O, Wagenpfeil S, Kattler K, Gasparoni G, Walter J, Qiao S, Grattan DR, Boehm U. Prolactin-sensitive olfactory sensory neurons regulate male preference in female mice by modulating responses to chemosensory cues. SCIENCE ADVANCES 2021; 7:eabg4074. [PMID: 34623921 PMCID: PMC8500514 DOI: 10.1126/sciadv.abg4074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/19/2021] [Indexed: 06/10/2023]
Abstract
Chemosensory cues detected in the nose need to be integrated with the hormonal status to trigger appropriate behaviors, but the neural circuits linking the olfactory and the endocrine system are insufficiently understood. Here, we characterize olfactory sensory neurons in the murine nose that respond to the pituitary hormone prolactin. Deletion of prolactin receptor in these cells results in impaired detection of social odors and blunts male preference in females. The prolactin-responsive olfactory sensory neurons exhibit a distinctive projection pattern to the brain that is similar across different individuals and express a limited subset of chemosensory receptors. Prolactin modulates the responses within these neurons to discrete chemosensory cues contained in male urine, providing a mechanism by which the hormonal status can be directly linked with distinct olfactory cues to generate appropriate behavioral responses.
Collapse
Affiliation(s)
- Mari Aoki
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Igor Gamayun
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Amanda Wyatt
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Ramona Grünewald
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Martin Simon-Thomas
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Stephan E. Philipp
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Oliver Hummel
- Faculty of Computer Science, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Stefan Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University School of Medicine, Homburg, Germany
| | - Kathrin Kattler
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - David R. Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ulrich Boehm
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
48
|
Olfactory Stimulation Regulates the Birth of Neurons That Express Specific Odorant Receptors. Cell Rep 2021; 33:108210. [PMID: 33027656 PMCID: PMC7569022 DOI: 10.1016/j.celrep.2020.108210] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 07/03/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
In mammals, olfactory sensory neurons (OSNs) are born throughout life, ostensibly solely to replace damaged OSNs. During differentiation, each OSN precursor “chooses,” out of hundreds of possibilities, a single odorant receptor (OR) gene, which defines the identity of the mature OSN. The relative neurogenesis rates of the hundreds of distinct OSN “subtypes” are thought to be constant, as they are determined by a stochastic process in which each OR is chosen with a fixed probability. Here, using histological, single-cell, and targeted affinity purification approaches, we show that closing one nostril in mice selectively reduces the number of newly generated OSNs of specific subtypes. Moreover, these reductions depend on an animal’s age and/or environment. Stimulation-dependent changes in the number of new OSNs are not attributable to altered rates of cell survival but rather production. Our findings indicate that the relative birth rates of distinct OSN subtypes depend on olfactory experience. In mammals, the odorant receptor identities of newly generated olfactory sensory neurons are thought to be determined by each progenitor cell’s random choice of a single receptor. Here, van der Linden et al. show that, in mice, the birth rates of neurons expressing a subset of receptors depend on olfactory stimulation.
Collapse
|
49
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
50
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|