1
|
Küster E, Addo GG, Aulhorn S, Kühnel D. Miniaturisation of the Daphnia magna immobilisation assay for the reliable testing of low volume samples. UCL OPEN. ENVIRONMENT 2025; 7:e3037. [PMID: 39925409 PMCID: PMC11804477 DOI: 10.14324/111.444/ucloe.3037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/29/2024] [Indexed: 02/11/2025]
Abstract
International standard test guidelines for the ecotoxicological characterisation of various substances use organisms such as algae, daphnids and fish embryos. These guidelines recommend or use relatively high volumes of water for the process of testing, for example, 200 mL for a complete dose-response relationship in a daphnia assay. However, for various samples such as concentrated extracts from environmental monitoring or leachates from microplastic ageing experiments, the amount of available sample volume is limited, that is, rather in the range of 10-50 mL/biotest. Using the exposure volumes as recommended in test guidelines would not allow to test a range of different concentrations or to repeat tests or use multiple different organismic bioassays. Lower media volumes would allow the testing of more samples (more concentrations per sample, more test repetitions for statistical robustness, etc.) but it may also decrease the possible number of organisms tested in the same volume. Here, we aimed at reducing the test volumes in the acute daphnia assay (using a maximum of 30 mL for a complete dose-response relationship) without impacting animals' sensitivity towards toxicants. A literature review on existing miniaturisation approaches was used as a starting point. Subsequently, assays employing conventional as well as reduced test volumes were compared for 16 selected test substances with a diverse spectrum of lipophilicity. Results showed that there are differences in EC50 between the two approaches, but that these differences were overall only within a range of a factor of two to three. Further, by retrieving EC50 values for the genus Daphnia and 16 test substances from the United States Environmental Protection Agency database, we demonstrated that our results are well in line with the general differences in sensitivities.
Collapse
Affiliation(s)
- Eberhard Küster
- Department Ecotoxicology (former Department Bioanalytical Ecotoxicology), Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - George Gyan Addo
- Department Ecotoxicology (former Department Bioanalytical Ecotoxicology), Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Silke Aulhorn
- Department Ecotoxicology (former Department Bioanalytical Ecotoxicology), Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dana Kühnel
- Department Ecotoxicology (former Department Bioanalytical Ecotoxicology), Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| |
Collapse
|
2
|
Bae E, Beil S, König M, Stolte S, Escher BI, Markiewicz M. The mode of toxic action of ionic liquids: Narrowing down possibilities using high-throughput, in vitro cell-based bioassays. ENVIRONMENT INTERNATIONAL 2024; 193:109089. [PMID: 39500119 DOI: 10.1016/j.envint.2024.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/25/2024]
Abstract
Growing concerns about the environmental impact of ionic liquids (ILs) have spurred research into their (eco)toxic effects, but studies on their mode of toxic action (MOA) still remain limited. However, understanding the MOA and identifying structural features responsible for enhanced toxicity is crucial for characterising the hazard and designing safer alternatives. Therefore, 45 ILs, with systematically varied chemical structures, were tested for cytotoxicity and two specific endpoints in reporter gene assays targeting the Nrf2-ARE mediated oxidative stress response (AREc32) and aryl hydrocarbon receptor activation (AhR-CALUX). While none of the ILs activated the reporter genes, cytotoxicity was high and markedly different between cell lines. Seven and 25 ILs proved more cytotoxic than predicted by baseline toxicity model in the AREc32 and the AhR-CALUX assays, respectively. The length of the side chain and headgroup structures of ILs altered the MOA of ILs. Cellular metabolism of the ILs, investigated by LC-MS/MS, showed side-chain oxidation of the long-chain quaternary ammonium compounds in AhR-CALUX cells and, to a lower extent, in AREc32 cells, however, this transformation could not explain the high cytotoxicity. Effect data for 72 ILs for ten endpoints retrieved from the Tox21 database identified the inhibition of aromatase activity and of mitochondrial membrane potential as potential MOAs. However, in vitro fluorimetric assays for these endpoints demonstrated that effects were activated in a non-specific manner, probably through cytotoxicity. Although many of the ILs tested induced cytotoxicity at concentrations lower than baseline toxicity, the specific MOAs responsible could not be identified. Alternatively, we suggest that the descriptors currently used may fail to define the affinity of ILs for cells. Testing of the affinity of ILs for a diverse range of biomolecules is needed to accurately describe their interactions with cells.
Collapse
Affiliation(s)
- Eunhye Bae
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, D-72076 Tübingen, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany.
| |
Collapse
|
3
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
4
|
Rigon CAG, Cutti L, Turra GM, Ferreira EZ, Menegaz C, Schaidhauer W, Dayan FE, Gaines TA, Merotto A. Recurrent Selection of Echinochloa crus-galli with a Herbicide Mixture Reduces Progeny Sensitivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6871-6881. [PMID: 37104538 DOI: 10.1021/acs.jafc.3c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Herbicide mixtures are used to increase the spectrum of weed control and to manage weeds with target-site resistance to some herbicides. However, the effect of mixtures on the evolution of herbicide resistance caused by enhanced metabolism is unknown. This study evaluated the effect of a fenoxaprop-p-ethyl and imazethapyr mixture on the evolution of herbicide resistance in Echinochloa crus-galli using recurrent selection at sublethal doses. The progeny from second generations selected with the mixture had lower control than parental plants or the unselected progeny. GR50 increased 1.6- and 2.6-fold after two selection cycles with the mixture in susceptible (POP1-S) and imazethapyr-resistant (POP2-IR) biotypes, respectively. There was evidence that recurrent selection with this sublethal mixture had the potential to evolve cross-resistance to diclofop, cyhalofop, sethoxydim, and quinclorac. Mixture selection did not cause increased relative expression for a set of analyzed genes (CYP71AK2, CYP72A122, CYP72A258, CYP81A12, CYP81A14, CYP81A21, CYP81A22, and GST1). Fenoxaprop, rather than imazethapyr, is the main contributor to the decreased control in the progenies after recurrent selection with the mixture in low doses. This is the first study reporting the effect of a herbicide mixture at low doses on herbicide resistance evolution. The lack of control using the mixture may result in decreased herbicide sensitivity of the weed progenies. Using mixtures may select important detoxifying genes that have the potential to metabolize herbicides in patterns that cannot currently be predicted. The use of fully recommended herbicide rates in herbicide mixtures is recommended to reduce the risk of this type of resistance evolution.
Collapse
Affiliation(s)
- Carlos A G Rigon
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Luan Cutti
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Guilherme M Turra
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Enrico Z Ferreira
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Christian Menegaz
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Walker Schaidhauer
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, 300 W. Pitkin St., Fort Collins, Colorado 80523, United States
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 300 W. Pitkin St., Fort Collins, Colorado 80523, United States
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| |
Collapse
|
5
|
Lee J, Huchthausen J, Schlichting R, Scholz S, Henneberger L, Escher BI. Validation of an SH-SY5Y Cell-Based Acetylcholinesterase Inhibition Assay for Water Quality Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3046-3057. [PMID: 36165561 DOI: 10.1002/etc.5490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The acetylcholinesterase (AChE) inhibition assay has been frequently applied for environmental monitoring to capture insecticides such as organothiophosphates (OTPs) and carbamates. However, natural organic matter such as dissolved organic carbon (DOC) co-extracted with solid-phase extraction from environmental samples can produce false-negative AChE inhibition in free enzyme-based AChE assays. We evaluated whether disturbance by DOC can be alleviated in a cell-based AChE assay using differentiated human neuroblastoma SH-SY5Y cells. The exposure duration was set at an optimum of 3 h considering the effects of OTPs and carbamates. Because loss to the airspace was expected for the more volatile OTPs (chlorpyrifos, diazinon, and parathion), the chemical loss in this bioassay setup was investigated using solid-phase microextraction followed by chemical analysis. The three OTPs were relatively well retained (loss <34%) during 3 h of exposure in the 384-well plate, but higher losses occurred on prolonged exposure, accompanied by slight cross-contamination of adjacent wells. Inhibition of AChE by paraoxon-ethyl was not altered in the presence of up to 68 mgc /L Aldrich humic acid used as surrogate for DOC. Binary mixtures of paraoxon-ethyl and water extracts showed concentration-additive effects. These experiments confirmed that the matrix in water extracts does not disturb the assay, unlike purified enzyme-based AChE assays. The cell-based AChE assay proved to be suitable for testing water samples with effect concentrations causing 50% inhibition of AChE at relative enrichments of 0.5-10 in river water samples, which were distinctly lower than corresponding cytotoxicity, confirming the high sensitivity of the cell-based AChE inhibition assay and its relevance for water quality monitoring. Environ Toxicol Chem 2022;41:3046-3057. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jungeun Lee
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Julia Huchthausen
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Luise Henneberger
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Environmental Toxicology and Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Carafa R, Gallé T, Massarin S, Huck V, Bayerle M, Pittois D, Braun C. Combining Polar Organic Chemical Integrative Samplers (POCIS) with Toxicity Testing on Microalgae to Evaluate the Impact of Herbicide Mixtures in Surface Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2667-2678. [PMID: 35959884 PMCID: PMC9826030 DOI: 10.1002/etc.5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Pesticide risk assessment within the European Union Water Framework Directive is largely deficient in the assessment of the actual exposure and chemical mixture effects. Pesticide contamination, in particular herbicidal loading, has been shown to exert pressure on surface waters. Such pollution can have direct impact on autotrophic species, as well as indirect impacts on freshwater communities through primary production degradation. The present study proposes a screening method combining polar organic chemical integrative samplers (POCIS) with mode of action-specific toxicity testing on microalgae exposed to POCIS extracts as a standard approach to effectively address the problem of herbicide mixture effects detection. This methodology has been tested using Luxembourgish rivers as a case study and has proven to be a fast and reliable information source that is complementary to chemical analysis, allowing assessment of missing target analytes. Pesticide pressure in the 24 analyzed streams was mainly exerted by flufenacet, terbuthylazine, nicosulfuron, and foramsulfuron, with occasional impacts by the nonagricultural biocide diuron. Algae tests were more sensitive to endpoints affecting photosystem II and reproduction than to growth and could be best predicted with the concentration addition model. In addition, analysis revealed that herbicide mixture toxicity is correlated with macrophyte disappearance in the field, relating mainly to emissions from maize cultures. Combining passive sampler extracts with standard toxicity tests offers promising perspectives for ecological risk assessment. The full implementation of the proposed approach, however, requires adaptation of the legislation to scientific progress. Environ Toxicol Chem 2022;41:2667-2678. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Tom Gallé
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Sandrine Massarin
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Viola Huck
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Michael Bayerle
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Denis Pittois
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - Christian Braun
- Luxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
7
|
Magina S, Barros-Timmons A, Ventura SPM, Evtuguin DV. Evaluating the hazardous impact of ionic liquids - Challenges and opportunities. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125215. [PMID: 33951860 DOI: 10.1016/j.jhazmat.2021.125215] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs), being related to the design of new environmentally friendly solvents, are widely considered for applications within the "green chemistry" concept. Due to their unique properties and wide diversity, ILs allow tailoring new separation procedures and producing new materials for advanced applications. However, despite the promising technical performance, environmental concerns highlighted in recent studies focused on the toxicity and biodegradability of ILs and their metabolites have revealed that ILs safety labels are not as benign as previously claimed. This review refers to the fundamentals about the properties and applications of ILs also in the context of their potential environmental effect. Toxicological issues and harmful effects related to the use of ILs are discussed, including the evaluation of their biodegradability and ecological impact on diverse organisms and ecosystems, also with respect to bacteria, fungi, and cell cultures. In addition, this review covers the tools used to assess the toxicity of ILs, including the predictive computational models and the results of studies involving cell membrane models and molecular simulations. Summing up the knowledge available so far, there are still no reliable criteria for unequivocal attribution of toxicity and environmental impact credentials for ILs, which is a challenging research task.
Collapse
Affiliation(s)
- Sandra Magina
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Ana Barros-Timmons
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Sónia P M Ventura
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Dmitry V Evtuguin
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal.
| |
Collapse
|
8
|
Weitere M, Altenburger R, Anlanger C, Baborowski M, Bärlund I, Beckers LM, Borchardt D, Brack W, Brase L, Busch W, Chatzinotas A, Deutschmann B, Eligehausen J, Frank K, Graeber D, Griebler C, Hagemann J, Herzsprung P, Hollert H, Inostroza PA, Jäger CG, Kallies R, Kamjunke N, Karrasch B, Kaschuba S, Kaus A, Klauer B, Knöller K, Koschorreck M, Krauss M, Kunz JV, Kurz MJ, Liess M, Mages M, Müller C, Muschket M, Musolff A, Norf H, Pöhlein F, Reiber L, Risse-Buhl U, Schramm KW, Schmitt-Jansen M, Schmitz M, Strachauer U, von Tümpling W, Weber N, Wild R, Wolf C, Brauns M. Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144324. [PMID: 33482551 DOI: 10.1016/j.scitotenv.2020.144324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Meeting ecological and water quality standards in lotic ecosystems is often failed due to multiple stressors. However, disentangling stressor effects and identifying relevant stressor-effect-relationships in complex environmental settings remain major challenges. By combining state-of-the-art methods from ecotoxicology and aquatic ecosystem analysis, we aimed here to disentangle the effects of multiple chemical and non-chemical stressors along a longitudinal land use gradient in a third-order river in Germany. We distinguished and evaluated four dominant stressor categories along this gradient: (1) Hydromorphological alterations: Flow diversity and substrate diversity correlated with the EU-Water Framework Directive based indicators for the quality element macroinvertebrates, which deteriorated at the transition from near-natural reference sites to urban sites. (2) Elevated nutrient levels and eutrophication: Low to moderate nutrient concentrations together with complete canopy cover at the reference sites correlated with low densities of benthic algae (biofilms). We found no more systematic relation of algal density with nutrient concentrations at the downstream sites, suggesting that limiting concentrations are exceeded already at moderate nutrient concentrations and reduced shading by riparian vegetation. (3) Elevated organic matter levels: Wastewater treatment plants (WWTP) and stormwater drainage systems were the primary sources of bioavailable dissolved organic carbon. Consequently, planktonic bacterial production and especially extracellular enzyme activity increased downstream of those effluents showing local peaks. (4) Micropollutants and toxicity-related stress: WWTPs were the predominant source of toxic stress, resulting in a rapid increase of the toxicity for invertebrates and algae with only one order of magnitude below the acute toxic levels. This toxicity correlates negatively with the contribution of invertebrate species being sensitive towards pesticides (SPEARpesticides index), probably contributing to the loss of biodiversity recorded in response to WWTP effluents. Our longitudinal approach highlights the potential of coordinated community efforts in supplementing established monitoring methods to tackle the complex phenomenon of multiple stress.
Collapse
Affiliation(s)
- Markus Weitere
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany.
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074 Aachen, Germany
| | - Christine Anlanger
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Martina Baborowski
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Ilona Bärlund
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Liza-Marie Beckers
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany, PAI
| | - Dietrich Borchardt
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany, PAI; RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074 Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Lisa Brase
- Helmholtz Centre Geesthacht - HZG, Department of Aquatic Nutrient Cycles, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Wibke Busch
- Helmholtz Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany; Leipzig University, Institute of Biology, Talstrasse 33, 04103 Leipzig, Germany
| | - Björn Deutschmann
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074 Aachen, Germany
| | - Jens Eligehausen
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany; University of Kassel, Department of Landscape Ecology, Gottschalkstr. 26A, 34127 Kassel, Germany
| | - Karin Frank
- Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany
| | - Daniel Graeber
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Christian Griebler
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; University of Vienna, Department for Functional and Evolutionary Ecology, Althanstrasse 14, 1090 Wien, Austria
| | - Jeske Hagemann
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Peter Herzsprung
- Helmholtz Centre for Environmental Research - UFZ, Department Lake Research, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074 Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Pedro A Inostroza
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany, PAI
| | - Christoph G Jäger
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany; Rosenheim Technical University of Applied Sciences, Centre for Research, Development and Technology Transfer, Hochschulstraße 1, 83024 Rosenheim, Germany
| | - René Kallies
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Norbert Kamjunke
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Bernhard Karrasch
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Sigrid Kaschuba
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Andrew Kaus
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Bernd Klauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Economics, Permoserstraße 15, 04318 Leipzig, Germany
| | - Kay Knöller
- Helmholtz Centre for Environmental Research - UFZ, Department Catchment Hydrology, Theodor-Lieser-Str. 4, 06120 Halle, Germany
| | - Matthias Koschorreck
- Helmholtz Centre for Environmental Research - UFZ, Department Lake Research, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany, PAI
| | - Julia V Kunz
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Marie J Kurz
- Helmholtz Centre for Environmental Research - UFZ, Department Hydrogeology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Matthias Liess
- Helmholtz Centre for Environmental Research -UFZ, Department of System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany
| | - Margarete Mages
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Christin Müller
- Helmholtz Centre for Environmental Research - UFZ, Department Catchment Hydrology, Theodor-Lieser-Str. 4, 06120 Halle, Germany
| | - Matthias Muschket
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany, PAI
| | - Andreas Musolff
- Helmholtz Centre for Environmental Research - UFZ, Department Hydrogeology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Helge Norf
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Florian Pöhlein
- Helmholtz Centre for Environmental Research - UFZ, Department Lake Research, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Lena Reiber
- Helmholtz Centre for Environmental Research -UFZ, Department of System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Aachen, Germany
| | - Ute Risse-Buhl
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Karl-Werner Schramm
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Molecular EXposomics, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Technische Universität München, Department für Biowissenschaftliche Grundlagen, Weihenstephaner Steig 23, 85350 Freising, Germany
| | - Mechthild Schmitt-Jansen
- Helmholtz Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Markus Schmitz
- RWTH Aachen University, Institute for Environmental Research, Worringer Weg 1, 52074 Aachen, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Ulrike Strachauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Aquatic Ecosystems Analysis, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Wolf von Tümpling
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Nina Weber
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Romy Wild
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| | - Christine Wolf
- Helmholtz Centre for Environmental Research - UFZ, Department of Economics, Permoserstraße 15, 04318 Leipzig, Germany
| | - Mario Brauns
- Helmholtz Centre for Environmental Research - UFZ, Department River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| |
Collapse
|
9
|
Elersek T, Notersberg T, Kovačič A, Heath E, Filipič M. The effects of bisphenol A, F and their mixture on algal and cyanobacterial growth: from additivity to antagonism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3445-3454. [PMID: 32918687 DOI: 10.1007/s11356-020-10329-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is, due to its widespread use including the production of plastic materials, an ubiquitous pollutant in the aquatic environment. Due to evidence of adverse BPA effects on the environment and human health, its use has been restricted and replaced by analogues such as bisphenol F (BPF). This study examined the toxicity of BPA, BPF and their mixture towards primary producers, the eukaryotic green alga Pseudokirchneriella subcapitata and the prokaryotic cyanobacterium Synechococcus leopoliensis. The results demonstrated that S. leopoliensis is more sensitive than P. subcapitata, whereas toxic potential of the two BPs is comparable and represents comparable hazard for phytoplankton. The toxicity of the binary mixture was predicted by different models (concentration addition, independent action, combination index and the isobologram method) and compared to experimental data. Additive effect was observed in P. subcapitata over the whole effect concentration range (EC5-EC90), whereas in S. leopoliensis, no pronounced combined effect was observed. The environmental risk characterisation based on the comparison of reported concentrations of BPA and BPF in surface waters to the predicted no-effect concentration values obtained in this study showed that at certain industrial areas, BPA represents environmental risk, whereas BPF does not. However, BPF concentrations in aquatic environment are expected to increase in the future. To enable environmental risk assessment of BP analogues, more data on the toxicity to aquatic species, including combined effect, as well as data on their occurrence in the aquatic environment are needed.Graphical abstract.
Collapse
Affiliation(s)
- Tina Elersek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Tilen Notersberg
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Ana Kovačič
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Jožef Stefan, International Postgraduate School, 1000, Ljubljana, Slovenia
| | - Ester Heath
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Jožef Stefan, International Postgraduate School, 1000, Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| |
Collapse
|
10
|
Zhang Y, Liu M, Peng B, Jia S, Koh D, Wang Y, Cheng HS, Tan NS, Warth B, Chen D, Fang M. Impact of Mixture Effects between Emerging Organic Contaminants on Cytotoxicity: A Systems Biological Understanding of Synergism between Tris(1,3-dichloro-2-propyl)phosphate and Triphenyl Phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10722-10734. [PMID: 32786581 DOI: 10.1021/acs.est.0c02188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Humans are exposed to many xenobiotics simultaneously, but little is known about the toxic effects based on chemical-chemical interactions. This study aims at evaluating the binary interactions between 13 common environmental organic compounds (resulting in 78 pairs) by observing their cytotoxicity on HepG2 cells. Among all of the tested pairs, the combination of flame-retardant triphenyl phosphate (TPP) and tris(1,3-dichloro-2-propyl)phosphate (TDCPP) exhibited one of the most significant synergistic effects. We further characterized the transcriptome and metabolome after combined exposure to TPP and TDCPP and individual exposure. The results suggested that the coexposure caused many more changes in gene expressions and cellular activities. The transcriptome data showed that the coexposure triggered significant pathway changes including "cholesterol biosynthesis" and "ATF6-Alpha activated chaperone genes", together with distinct gene ontology (GO) terms such as the "negative regulation of the ERK1 and ERK2 cascade". Additionally, coexposure enhanced the biological activity of liver X receptors and nuclear factor erythroid 2-related factor 2 (Nrf2). The metabolome data showed that coexposure significantly elevated oxidative stress and affected the purine and pyrimidine metabolism. Overall, this study showed that interactions, which may enhance or suppress the biological processes, are common among environmental chemicals, although their environmental relevance should be studied in the future.
Collapse
Affiliation(s)
- Yingdan Zhang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
| | - Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
| | - Bo Peng
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
| | - Shenglan Jia
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
| | - Danyu Koh
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
| | - Yujue Wang
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
| | - Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232
| | - Benedikt Warth
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | - Da Chen
- School of Environment, Jinan University, Guangzhou, Guangdong 51144, P. R. China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 63714
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232
| |
Collapse
|
11
|
Ukić Š, Sigurnjak M, Cvetnić M, Markić M, Stankov MN, Rogošić M, Rasulev B, Lončarić Božić A, Kušić H, Bolanča T. Toxicity of pharmaceuticals in binary mixtures: Assessment by additive and non-additive toxicity models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109696. [PMID: 31585393 DOI: 10.1016/j.ecoenv.2019.109696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Current risk assessment in many countries, including European Union, is still placing focus on single substances rather than their mixtures, although mixtures are commonly found in the environment. To overcome this problem and gain new insights, six pharmaceuticals, namely: azithromycin (AZM), erythromycin (ERM), carbamazepine (CBA), oxytetracycline (OTC), dexamethasone (DXM), and diclofenac (DCF), were selected in order to analyze their combined toxicity in binary mixtures. Overall, 45 binary mixtures were analyzed. Single component toxicities were determined as well, for modelling purpose. Two most common mathematical models for the description of mixture toxicities were applied: concentration addition (CA) and independent action (IA) model. Comparison of the predicted and experimentally obtained toxicities provided information about the modes of toxicity action in the mixtures. OTC-DCF binary mixture indicated synergism with respect to additive behavior (CA model). All other binary combinations containing OTC or DCF were acting very similarly: the synergism with respect to additive behavior was observed for OTC-CBA and DCF-CBA combinations, while OTC-AZM, OTC-ERM, DCF-AZM and DCF-ERM exhibited antagonistic behavior with respect to CA model. All the remaining binary mixtures indicated additive behavior. The applicability of IA model as a proof of independent toxic action of the components was confirmed in cases of DCF-AZM, DCF-ERM, and OTC-AZM mixtures.
Collapse
Affiliation(s)
- Š Ukić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000, Zagreb, Croatia.
| | - M Sigurnjak
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000, Zagreb, Croatia
| | - M Cvetnić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000, Zagreb, Croatia
| | - M Markić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000, Zagreb, Croatia
| | - M Novak Stankov
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000, Zagreb, Croatia
| | - M Rogošić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000, Zagreb, Croatia
| | - B Rasulev
- North Dakota State University, Department of Coatings and Polymeric Materials, Fargo, ND, 58102, USA
| | - A Lončarić Božić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000, Zagreb, Croatia
| | - H Kušić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000, Zagreb, Croatia
| | - T Bolanča
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000, Zagreb, Croatia
| |
Collapse
|
12
|
Dupraz V, Ménard D, Akcha F, Budzinski H, Stachowski-Haberkorn S. Toxicity of binary mixtures of pesticides to the marine microalgae Tisochrysis lutea and Skeletonema marinoi: Substance interactions and physiological impacts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:148-162. [PMID: 30981038 DOI: 10.1016/j.aquatox.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
This study screened binary mixtures of pesticides for potential synergistic interaction effects on growth of the marine microalgae Tisochrysis lutea and Skeletonema marinoi. It also examined the single and combined effects of three of the most toxic substances on microalgal physiology. Single substances were first tested on each microalgal species to determine their respective EC50 and concentration-response relationships. The toxicity of six and seven binary mixtures was then evaluated in microplate experiments on the growth of T. lutea and S. marinoi, respectively, using two mixture modelling approaches: isobolograms and the MIXTOX tool, based on Concentration Addition (CA) or Independent Action (IA) models. Significant cases of antagonism (for both species) and synergism (for S. marinoi) were observed for the mixtures of isoproturon and spiroxamine, and isoproturon and metazachlor, respectively. These two mixtures, together with that of isoproturon and diuron, for which additivity was observed, were further studied for their impacts on the physiology of each species. Exposures were thus made in culture flasks at three concentrations, or concentration combinations for mixtures, selected to cause 25%, 50% and 75% growth rate inhibition. The effects of the selected pesticides singly and in combination were evaluated at three perceived effect concentrations on esterase metabolic activity, relative lipid content, cytoplasmic membrane potential and reactive oxygen species (ROS) content by flow cytometry, and on photosynthetic quantum yield (ϕ'M) by PAM-fluorescence. Isoproturon and diuron singly and in mixtures induced 20-40% decreases in ϕ'M which was in turn responsible for a significant decrease in relative lipid content for both species. Spiroxamine and metazachlor were individually responsible for an increase in relative lipid content (up to nearly 300% for metazachlor on S. marinoi), as well as cell depolarization and increased ROS content. The mixture of isoproturon and metazachlor tested on S. marinoi caused a 28-34% decrease in ϕ'M that was significantly higher than levels induced by each of substances when tested alone. This strong decrease in ϕ'M could be due to a combined effect of these substances on the photosynthetic apparatus, which is likely the cause of the synergy found for this mixture.
Collapse
Affiliation(s)
- Valentin Dupraz
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311, Nantes cedex 03, France; Université de Nantes, UFR Sciences et Techniques, 2, rue de la Houssinière, BP 92208, 44322, Nantes Cedex 03, France.
| | - Dominique Ménard
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311, Nantes cedex 03, France
| | - Farida Akcha
- Ifremer, Laboratoire d'Écotoxicologie, rue de l'île d'Yeu, BP 21105, F-44311, Nantes cedex 03, France
| | - Hélène Budzinski
- Université de Bordeaux, UMR 5805, EPOC, Laboratoire de Physico Toxico Chimie de l'environnement, 351 Cours de la Libération, CS 10004, F-33405, Talence Cedex, France; CNRS, UMR 5805, EPOC, Laboratoire de Physico Toxico Chimie de l'environnement, 351 Cours de la Libération, CS 10004, F-33405, Talence Cedex, France
| | | |
Collapse
|
13
|
Müller ME, Vikstrom S, König M, Schlichting R, Zarfl C, Zwiener C, Escher BI. Mitochondrial Toxicity of Selected Micropollutants, Their Mixtures, and Surface Water Samples Measured by the Oxygen Consumption Rate in Cells. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1000-1011. [PMID: 30779373 DOI: 10.1002/etc.4396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Some environmental pollutants impair mitochondria, which are of vital importance as energy factories in eukaryotic cells. Mitochondrial toxicity was quantified by measuring the change of the oxygen consumption rate (OCR) of HepG2 cells with the Agilent Seahorse XFe 96 Analyzer. Various mechanisms of mitochondrial toxicity, including inhibition of the electron transport chain or adenosine triphosphate (ATP) synthase as well as uncoupling of oxidative phosphorylation, were differentiated by dosing the sample in parallel with reference compounds following the OCR over time. These time-OCR traces were used to derive effect concentrations for 10% inhibition of the electron transport chain or 10% of uncoupling. The low effect level of 10% was necessary because environmental mixtures contain thousands of chemicals; only few of them interfere with mitochondria, but the others cause cytotoxicity. The OCR bioassay was validated with environmental pollutants of known mechanism of mitochondrial toxicity. Binary mixtures of uncouplers or inhibitors acted according to the mixture model of concentration addition. Uncoupling and/or inhibitory effects were detected in extracts of river water samples without apparent cytotoxicity. Uncoupling effects could only be quantified in water samples if inhibitory effects occurred at lower concentrations because no uncoupling can be detected without an appreciable membrane potential built up. The OCR bioassay can thus complement chemical analysis and in vitro bioassays for monitoring micropollutants in water. Environ Toxicol Chem 2019;00:1-12. © 2019 SETAC.
Collapse
Affiliation(s)
- Maximilian E Müller
- Eberhard Karls University of Tübingen, Center for Applied Geoscience, Tübingen, Germany
| | | | - Maria König
- UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Rita Schlichting
- UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Christiane Zarfl
- Eberhard Karls University of Tübingen, Center for Applied Geoscience, Tübingen, Germany
| | - Christian Zwiener
- Eberhard Karls University of Tübingen, Center for Applied Geoscience, Tübingen, Germany
| | - Beate I Escher
- Eberhard Karls University of Tübingen, Center for Applied Geoscience, Tübingen, Germany
- UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
14
|
Li BX, Liu Y, Zhang P, Li XX, Pang XY, Zhao YH, Li H, Liu F, Lin J, Mu W. Selection of organosilicone surfactants for tank-mixed pesticides considering the balance between synergistic effects on pests and environmental risks. CHEMOSPHERE 2019; 217:591-598. [PMID: 30445404 DOI: 10.1016/j.chemosphere.2018.11.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
In this study, the bioactivities of binary mixtures of organosilicone surfactants and indoxacarb against two Lepidopteran pests were investigated along with their environmental risks. All of the tested organosilicone surfactants had obvious synergistic effects on the contact toxicity of indoxacarb against Spodoptera exigua and Agrotis ipsilon. However, all of the organosilicone surfactants exhibited certain antagonism for indoxacarb against S. exigua in terms of stomach & contact toxicity; both Silwet-408 and Silwet-806 exhibited additivity against A. ipsilon, whereas Silwet-618 and Silwet-DRS-60 exhibited synergism and slight antagonism, respectively. All of the tested chemicals were highly toxic to Daphnia magna, among which Silwet-DRS-60 had the lowest acute toxicity (EC50 of 94.91 μg/L). However, these chemicals were less toxic to Brachydanio rerio. Silwet-DRS-60 had a low toxicity to B. rerio, while Silwet-408, Silwet-806 and Silwet-618 were moderately toxic to B. rerio. For the joint toxicity evaluation of organosilicone surfactants and indoxacarb to D. magna and B. rerio, the additive index method, concentration addition method and toxicity unit method were robust in judging synergism or antagonism, whereas other methods were more conservative; the V-value method and equilibrium curve method exhibited high robustness and viability in evaluating the combined effects of binary mixtures. Overall, we should carefully select organosilicone surfactants for premixed or tank-mixed pesticides in agriculture to obtain a balance between synergistic effects on pests and environmental risks.
Collapse
Affiliation(s)
- Bei-Xing Li
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yang Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Peng Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiao-Xu Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiu-Yu Pang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yun-He Zhao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Hua Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China; Zaozhuang No. 1 High School of Shandong Province, Zaozhuang, 277300, China
| | - Feng Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Jin Lin
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Wei Mu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
15
|
Li BX, Pang XY, Zhang P, Lin J, Li XX, Liu Y, Li H, Liu F, Mu W. Alcohol ethoxylates significantly synergize pesticides than alkylphenol ethoxylates considering bioactivity against three pests and joint toxicity to Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1452-1459. [PMID: 30743857 DOI: 10.1016/j.scitotenv.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 06/09/2023]
Abstract
Seeking alternatives for alkylphenol ethoxylates (APEOs) have been a heavily researched topic in the surfactant industry and agricultural systems. In this study, the combined effects of different ethoxylates and pesticides on the bioactivity against three pests and toxicological risks to Daphnia magna were investigated. Results showed that alcohol ethoxylates (AEOs) had higher synergistic effects on the bioactivity of pesticides against Spodoptera exigua, Agrotis ipsilon and Aphis citricola than did APEOs. In terms of the joint toxicity of the ethoxylates and pesticides to D. magna, additive index method, toxicity unit method, V value method and isobologram method were used in the tests. All of these methods indicated that the joint effects of APEOs + acetamiprid and APEOs + indoxacarb upon D. magna turned from synergism to antagonism with the increasing EO (ethylene oxide) numbers. Those of AEOs exhibited similar trends. Overall, AEOs may be potential alternatives for APEOs in agriculture as they synergize pesticides against three pests significantly more than do APEOs. However, further research should investigate the compounds' environmental risks to aquatic organisms because the AEOs were highly toxic to D. magna.
Collapse
Affiliation(s)
- Bei-Xing Li
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiu-Yu Pang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Peng Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jin Lin
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiao-Xu Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yang Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hua Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Feng Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei Mu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
16
|
Escher BI, Aїt-Aїssa S, Behnisch PA, Brack W, Brion F, Brouwer A, Buchinger S, Crawford SE, Du Pasquier D, Hamers T, Hettwer K, Hilscherová K, Hollert H, Kase R, Kienle C, Tindall AJ, Tuerk J, van der Oost R, Vermeirssen E, Neale PA. Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:748-765. [PMID: 29454215 DOI: 10.1016/j.scitotenv.2018.01.340] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 05/18/2023]
Abstract
Effect-based methods including cell-based bioassays, reporter gene assays and whole-organism assays have been applied for decades in water quality monitoring and testing of enriched solid-phase extracts. There is no common EU-wide agreement on what level of bioassay response in water extracts is acceptable. At present, bioassay results are only benchmarked against each other but not against a consented measure of chemical water quality. The EU environmental quality standards (EQS) differentiate between acceptable and unacceptable surface water concentrations for individual chemicals but cannot capture the thousands of chemicals in water and their biological action as mixtures. We developed a method that reads across from existing EQS and includes additional mixture considerations with the goal that the derived effect-based trigger values (EBT) indicate acceptable risk for complex mixtures as they occur in surface water. Advantages and limitations of various approaches to read across from EQS are discussed and distilled to an algorithm that translates EQS into their corresponding bioanalytical equivalent concentrations (BEQ). The proposed EBT derivation method was applied to 48 in vitro bioassays with 32 of them having sufficient information to yield preliminary EBTs. To assess the practicability and robustness of the proposed approach, we compared the tentative EBTs with observed environmental effects. The proposed method only gives guidance on how to derive EBTs but does not propose final EBTs for implementation. The EBTs for some bioassays such as those for estrogenicity are already mature and could be implemented into regulation in the near future, while for others it will still take a few iterations until we can be confident of the power of the proposed EBTs to differentiate good from poor water quality with respect to chemical contamination.
Collapse
Affiliation(s)
- Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Centre for Applied Geosciences, 72074 Tübingen, Germany; Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Brisbane, QLD 4108, Australia.
| | - Selim Aїt-Aїssa
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | | | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | | | | | - Sarah E Crawford
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Timo Hamers
- Vrije Universiteit Amsterdam, Dept. Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | | | - Klára Hilscherová
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Robert Kase
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Cornelia Kienle
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Andrew J Tindall
- Laboratoire Watchfrog, 1 Rue Pierre Fontaine, 91 000 Evry, France
| | - Jochen Tuerk
- Institut für Energie- und Umwelttechnik e.V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, D-47229 Duisburg, Germany
| | - Ron van der Oost
- Waternet Institute for the Urban Water Cycle, Department of Technology, Research and Engineering, Amsterdam, The Netherlands
| | - Etienne Vermeirssen
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Brisbane, QLD 4108, Australia
| |
Collapse
|
17
|
do Amaral DF, Montalvão MF, de Oliveira Mendes B, da Silva Castro AL, Malafaia G. Behavioral and mutagenic biomarkers in tadpoles exposed to different abamectin concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12932-12946. [PMID: 29478167 DOI: 10.1007/s11356-018-1562-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
It is known that pesticides such as abamectin (ABA) present cytotoxic effects on target organisms; however, the effects from ABA on non-target organisms such as amphibians are poorly understood. The aim of the current study is to investigate whether the exposure of Lithobates catesbeianus tadpoles to different abamectin concentrations [12.5, 25, and 50% of the median lethal concentration (LC50)] leads to behavioral and morphological changes and/or generates possible cytotoxic effects. The aggregation test showed that tadpoles exposed to the highest ABA concentrations did not respond to the stimulus from non-familial and unrelated co-specific species. On the other hand, there was no difference in the total number of crossings in the central line of the herein adopted apparatus between groups; it suggests that ABA did not affect animal locomotion in the aforementioned test, although changes in the normal swimming pattern of tadpoles exposed to the pesticide were recorded in the swimming activity test. In addition, the herein exposed animals did not respond to the predatory stimulus in the antipredator response test; this result suggests defensive response deficit caused by the pesticide. With respect to their oral morphology, tadpoles exposed to ABA presented the lowest scores for mandibular pigmentation and structures, as well as for dentition condition. Finally, it was possible seeing that the exposure to ABA, even at the lowest concentration (12.5% of the LC50), resulted in nuclear changes in the erythrocytes of the animals; these changes became evident in the increased number of micronuclei and in other nuclear abnormalities. Thus, besides confirming the cytotoxic potential of ABA in amphibians, the current study corroborates the hypothesis that the exposure to the herein investigated pesticide leads to behavioral and morphological changes in tadpoles, fact that may negatively reflect on the survival, as well as on natural populations of these individuals.
Collapse
Affiliation(s)
- Diogo Ferreira do Amaral
- Post-graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Post-graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Bruna de Oliveira Mendes
- Post-graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - André Luis da Silva Castro
- Post-graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
- Biologigal Sciences Department, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Conservation of Cerrado Natural Resources - Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
- Biologigal Sciences Department, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Urutaí, GO, Brazil.
- Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, CEP: 75790-000, Brazil.
| |
Collapse
|
18
|
Li B, Li H, Pang X, Cui K, Lin J, Liu F, Mu W. Quaternary ammonium cationic surfactants increase bioactivity of indoxacarb on pests and toxicological risk to Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:190-196. [PMID: 29175345 DOI: 10.1016/j.ecoenv.2017.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Agricultural researchers have always been pursuing synergistic technique for pest control. To evaluate the combined effects of quaternary ammonium compounds (QACs) and indoxacarb, their independent and joint toxicities to two insects, Spodoptera exigua and Agrotis ipsilon, and the aquatic organism, Daphnia magna, were determined. Results showed that all of five tested QACs increased the toxicity of indoxacarb to S. exigua and A. ipsilon. Both of benzyldimethyltetradecylammonium chloride (TDBAC) and benzododecinium chloride (DDBAC) exhibited significantly increased toxicities to S. exigua with synergic ratios of 11.59 and 6.55, while that to A. ipsilon were 2.60 and 3.45, respectively. When exposed to binary mixtures of QACs and indoxacarb, there was synergism on D. magna when using additive index and concentration addition methods, but only TDBAC, STAC and ODDAC showed synergistic effect in the equivalent curve method. The results indicate that the surfactants can be used as the synergists of indoxacarb in the control of Lepidoptera pests. However, their environmental risks should not be neglected owing to the high toxicity of all mixtures of indoxacarb and five QACs to D. magna.
Collapse
Affiliation(s)
- Beixing Li
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hua Li
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiuyu Pang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Kaidi Cui
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jin Lin
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Feng Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei Mu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
19
|
Qiu X, Tanoue W, Kawaguchi A, Yanagawa T, Seki M, Shimasaki Y, Honjo T, Oshima Y. Interaction patterns and toxicities of binary and ternary pesticide mixtures to Daphnia magna estimated by an accelerated failure time model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:367-374. [PMID: 28697389 DOI: 10.1016/j.scitotenv.2017.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Organisms in natural environments are often exposed to a broad variety of chemicals, and the multi-chemical mixtures exposure may produce significant toxic effects, even though the individual chemicals are present at concentrations below their no-observed-effect concentrations. This study represents the first attempt that uses the accelerated failure time (AFT) model to quantify the interaction and toxicity of multi-chemical mixtures in environmental toxicology. We firstly conducted the acute immobilization tests with Daphnia magna exposed to mixtures of diazinon (DZN), fenitrothion (MEP); and thiobencarb (TB) in single, binary, and ternary formulations, and then fitted the results to the AFT model. The 48-h EC50 (concentration required to immobilize 50% of the daphnids at 48h) values for each pesticide obtained from the AFT model are within a factor of 2 of the corresponding values calculated from the single pesticide exposure tests, indicating the methodology is able to provide credible toxicity values. The AFT model revealed either significant synergistic (DZN and MEP; DZN and TB) or antagonistic (MEP and TB) interactions in binary mixtures, while the interaction pattern of ternary mixture depended on both the concentration levels and concentration ratios of pesticides. With a factor of 2, the AFT model accurately estimated the toxicities for 78% of binary mixture formulations that exhibited significant synergistic effects, and the toxicities for all the ternary formulations. Our results showed that the AFT model can provide a simple and efficient way to quantify the interactions between pesticides and to assess the toxicity of their mixtures. This ability may greatly facilitate the ecotoxicological risk assessment of exposure to multi-chemical mixtures.
Collapse
Affiliation(s)
- Xuchun Qiu
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Wataru Tanoue
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Atsushi Kawaguchi
- Clinical Research Center, School of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - Takashi Yanagawa
- Biostatistics Center, Kurume University, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Masanori Seki
- Chemicals Evaluation and Research Institute, 3-2-7, Miyanojin, Kurume-shi, Fukuoka 830-0023, Japan.
| | - Yohei Shimasaki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Tsuneo Honjo
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yuji Oshima
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
20
|
Białk-Bielińska A, Caban M, Pieczyńska A, Stepnowski P, Stolte S. Mixture toxicity of six sulfonamides and their two transformation products to green algae Scenedesmus vacuolatus and duckweed Lemna minor. CHEMOSPHERE 2017; 173:542-550. [PMID: 28135683 DOI: 10.1016/j.chemosphere.2017.01.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/22/2016] [Accepted: 01/05/2017] [Indexed: 05/03/2023]
Abstract
Since humans and ecosystems are continually exposed to a very complex and permanently changing mixture of chemicals, there is increasing concern in the general public about the potential adverse effects they may cause. Among all "emerging pollutants", pharmaceuticals in particular have raised great environmental concern. For these reasons the aim of our study was to evaluate the mixture toxicity of six antimicrobial sulfonamides (SAs) and their two most commonly identified degradation products - sulfanilic acid (SNA) and sulfanilamide (SN) - to limnic green algae Scenedesmus vacuolatus and duckweed Lemna minor. The ecotoxicological data for the single toxicity of SNA and SN towards selected organisms are presented. The concept of Concentration Addition (CA) was applied to estimate the effects, and less than additive effects were observed. In general terms, it seems sufficiently precautionary for the aquatic environment to consider the toxicity of a sulfonamide mixture as additive. The Concentration Addition model proves to be a reasonable worst-case estimation. Such a comparative study on the mixture toxicity of sulfonamides and their transformation products has been presented for the first time.
Collapse
Affiliation(s)
- Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; UFT - Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße, D-28359 Bremen, Germany.
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Aleksandra Pieczyńska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stefan Stolte
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; UFT - Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße, D-28359 Bremen, Germany.
| |
Collapse
|
21
|
Tanaka Y, Tada M. Generalized concentration addition approach for predicting mixture toxicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:265-275. [PMID: 27216969 DOI: 10.1002/etc.3503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/07/2015] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
A new mathematical model for analyzing data and predicting the effect of mixtures of toxic substances is presented as a generalized form of the concentration addition model. The proposed method, the generalized concentration addition (GCA) model, can be applied to mixtures with arbitrary strengths of interactions (synergistic or antagonistic). It requires mixture effect data for least 1 exposure concentration of the mixture in which fractions of all components and concentration-response functions for each component are known. The GCA model evaluates the interaction between components by introducing a novel response function, which is independent of the response functions for each individual components, to describe the effect of addition between different components. The GCA method was applied to published mixture toxicity data, and it was found to fit the mixture effect better than both the concentration addition model and the independent action model, the implication being that the proposed approach is widely applicable. Environ Toxicol Chem 2017;36:265-275. © 2016 SETAC.
Collapse
Affiliation(s)
- Yoshinari Tanaka
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- Sophia University, Graduate School of Global Environmental Studies, Chiyoda, Tokyo, Japan
| | - Mitsuru Tada
- Sophia University, Graduate School of Global Environmental Studies, Chiyoda, Tokyo, Japan
| |
Collapse
|
22
|
Borecka M, Białk-Bielińska A, Haliński ŁP, Pazdro K, Stepnowski P, Stolte S. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:179-186. [PMID: 26835894 DOI: 10.1016/j.jhazmat.2016.01.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
This paper presents the investigation of the influence of salinity variations on the toxicity of sulfapyridine, sulfamethoxazole, sulfadimethoxine and trimethoprim towards the green algae Chlorella vulgaris after exposure times of 48 and 72 h. In freshwater the EC50 values ranged from 0.98 to 123.22 mg L(-1) depending on the compound. The obtained results revealed that sulfamethoxazole and sulfapyridine were the most toxic, while trimethoprim was the least toxic pharmaceutical to the selected organism. Deviations between the nominal and real test concentrations were determined via instrumental analysis to support the interpretation of ecotoxicological data. The toxicity effects were also tested in saline water (3, 6 and 9 PSU). The tendency that the toxicity of selected pharmaceuticals decreases with increasing salinity was observed. Higher salinity implies an elevated concentration of inorganic monovalent cations that are capable of binding with countercharges available on algal surfaces (hydroxyl functional groups). Hence it can reduce the permeability of pharmaceuticals through the algal cell walls, which could be the probable reason for the observed effect. Moreover, for the classification of the mode of toxic action, the toxic ratio concept was applied, which indicated that the effects of the investigated drugs towards algae are caused by the specific mode of toxic action.
Collapse
Affiliation(s)
- Marta Borecka
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Łukasz P Haliński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ksenia Pazdro
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stefan Stolte
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; Center for Environmental Research and Sustainable Technology, University of Bremen, LeobenerStraße, D-28359 Bremen, Germany
| |
Collapse
|
23
|
Rose S, Altenburger R, Sturm A. Mixture toxicity effects of sea louse control agents in Daphnia magna. CHEMOSPHERE 2016; 144:599-606. [PMID: 26401637 DOI: 10.1016/j.chemosphere.2015.08.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
Caligid sea lice are ectoparasites causing major disease problems in industrial salmon farming. Sea louse control currently relies widely on parasiticides. Among non-target species, crustaceans are particularly susceptible to salmon delousing agents. Drug combinations have recently been suggested for sea louse control; however, no information is available on the non-target effects of such mixtures. To obtain first insights into combination effects of salmon parasiticides, acute toxicity tests with the crustacean model species Daphnia magna were conducted. Four compounds, including two organophosphates and two pyrethroids, were tested individually and in all pair-wise combinations at one fixed concentration ratio. For most combinations, observed toxicities were close to predictions assuming concentration additivity. However, deltamethrin and cypermethrin showed greater than predicted combination effects, while the inverse was observed for deltamethrin and malathion. The results demonstrate combination effects of anti-sea louse agents and suggest that predictions based on concentration additivity are in most cases protective.
Collapse
Affiliation(s)
- Stephanie Rose
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Rolf Altenburger
- Department Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany
| | - Armin Sturm
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| |
Collapse
|
24
|
Wagil M, Białk-Bielińska A, Puckowski A, Wychodnik K, Maszkowska J, Mulkiewicz E, Kumirska J, Stepnowski P, Stolte S. Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2566-73. [PMID: 25189803 PMCID: PMC4315879 DOI: 10.1007/s11356-014-3497-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 08/20/2014] [Indexed: 05/06/2023]
Abstract
Flubendazole (FLU) and fenbendazole (FEN) belong to benzimidazoles-pharmaceuticals widely used in veterinary and human medicine for the treatment of intestinal parasites as well as for the treatment of systemic worm infections. In recent years, usage of these drugs increased, which resulted in a larger contamination of the environment and possible negative effects on biota. Hence, in our research, we investigated an aquatic ecotoxicity of these pharmaceuticals towards: marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustacean (Daphnia magna). Ecotoxicity tests were combined with chemical analysis in order to investigate the actual exposure concentration of the compounds used in the experiment as well as to stability and adsorption studies. As a result, study evaluating sensitivity of different aquatic organisms to these compounds and new ecotoxicological data is presented. The strongest negative impact of FLU and FEN was observed to D. magna.
Collapse
Affiliation(s)
- Marta Wagil
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Alan Puckowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Wychodnik
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Maszkowska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jolanta Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stefan Stolte
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
- UFT Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße, D-28359 Bremen, Germany
| |
Collapse
|
25
|
Dalla Bona M, Di Leva V, De Liguoro M. The sensitivity of Daphnia magna and Daphnia curvirostris to 10 veterinary antibacterials and to some of their binary mixtures. CHEMOSPHERE 2014; 115:67-74. [PMID: 24630458 DOI: 10.1016/j.chemosphere.2014.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Abstract
Aim of this study was to evaluate the suitability of Daphnia curvirostris for the acute toxicity test usually performed on Daphnia magna, and to compare the sensitivity of the two species toward 10 antibacterials [enrofloxacin (EFX), ciprofloxacin(CPX), sulfaguanidine (SGD), sulfadiazine (SDZ), sulfamethazine (SMZ), sulfaquinoxaline (SQO), sulfaclozine (SCZ), sulfamerazine (SMA), sulfadimethoxine (SDM) and trimethoprim (TMP)] and some of their binary mixtures. Furthermore, a tentative prolonged-toxicity test (lasting 13d) was settled up in order to evidence toxic responses with drug concentrations that were uneffective in the classic 48h immobilization test. Results showed that D. curvirostris was more sensitive than D. magna to the majority of compounds (6 out of 10). Lowest 48h EC50s were obtained with EFX (4.3mgL(-1) in D. curvirostris) and SGD (6.2mgL(-1) in D. magna). The toxicity of paired compounds was always concentration-additive or less than concentration-additive. In the prolonged-toxicity test mortality and/or reproduction inhibition were constantly observed. It was concluded that: (1) D. curvirostris could be a suitable model for the evaluation of acute toxicity of antibacterials since its sensitivity was generally greater than that of D. magna; (2) the toxicity of EFX and SGD should be given special attention as the two compounds, in the prolonged test, showed to be active at concentrations of 0.9mgL(-1) and 2.5mgL(-1), respectively; (3) the concentration addition is usually a reasonable worst case estimation of the environmental impact of antibacterial mixtures.
Collapse
Affiliation(s)
- Mirco Dalla Bona
- Dep. of Comparative Biomedicine and Food Safety, University of Padua, Italy.
| | | | - Marco De Liguoro
- Dep. of Comparative Biomedicine and Food Safety, University of Padua, Italy
| |
Collapse
|
26
|
Pannier A, Soltmann U, Soltmann B, Altenburger R, Schmitt-Jansen M. Alginate/silica hybrid materials for immobilization of green microalgae Chlorella vulgaris for cell-based sensor arrays. J Mater Chem B 2014; 2:7896-7909. [DOI: 10.1039/c4tb00944d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Maszkowska J, Stolte S, Kumirska J, Łukaszewicz P, Mioduszewska K, Puckowski A, Caban M, Wagil M, Stepnowski P, Białk-Bielińska A. Beta-blockers in the environment: part II. Ecotoxicity study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:1122-6. [PMID: 24975494 DOI: 10.1016/j.scitotenv.2014.06.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The increasing consumption of beta-blockers (BB) has caused their presence in the environment to become more noticeable. Even though BB are safe for human and veterinary usage, ecosystems may be exposed to these substances. In this study, three selected BB: propranolol, metoprolol and nadolol were subjected to ecotoxicity study. Ecotoxicity evaluation was based on a flexible ecotoxicological test battery including organisms, representing different trophic levels and complexity: marine bacteria (Vibrio fischeri), soil/sediment bacteria (Arthrobacter globiformis), green algae (Scenedesmus vacuolatus) and duckweed (Lemna minor). All the ecotoxicological studies were supported by instrumental analysis to measure deviation between nominal and real test concentrations. Based on toxicological data from the green algae test (S. vacuolatus) propranolol and metoprolol can be considered to be harmful to aquatic organisms. However, sorption explicitly inhibits the hazardous effects of BB, therefore the risks posed by these compounds for the environment are of minor importance.
Collapse
Affiliation(s)
- Joanna Maszkowska
- Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stefan Stolte
- Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; UFT - Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße, D-28359 Bremen, Germany
| | - Jolanta Kumirska
- Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Paulina Łukaszewicz
- Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Mioduszewska
- Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Alan Puckowski
- Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Marta Wagil
- Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; UFT - Center for Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße, D-28359 Bremen, Germany
| |
Collapse
|
28
|
Neale PA, Escher BI. Does co-extracted dissolved organic carbon cause artefacts in cell-based bioassays? CHEMOSPHERE 2014; 108:281-288. [PMID: 24530165 DOI: 10.1016/j.chemosphere.2014.01.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/23/2014] [Accepted: 01/25/2014] [Indexed: 06/03/2023]
Abstract
Bioanalytical tools are increasingly being employed for water quality monitoring, with applications including samples that are rich in natural organic matter (or dissolved organic carbon, DOC), such as wastewater. While issues associated with co-extracted DOC have been identified for chemical analysis and for bioassays with isolated enzymes, little is known about its effect on cell-based bioassays. Using mixture experiments as diagnostic tools, this study aims to assess whether different molecular weight fractions of wastewater-derived DOC adversely affect cell-based bioassays, specifically the bioluminescence inhibition test with the bacteria Vibrio fischeri, the combined algae assay with Pseudokirchneriella subcapitata and the human cell line AREc32 assay for oxidative stress. DOC did not cause suppressive effects in mixtures with reference compounds. Binary mixtures further indicated that co-extracted DOC did not disturb cell-based bioassays, while slight deviations from toxicity predictions for low molecular weight fractions may be partially due to the availability of natural components to V. fischeri, in addition to organic micropollutants.
Collapse
Affiliation(s)
- Peta A Neale
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD 4108, Australia.
| | - Beate I Escher
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD 4108, Australia.
| |
Collapse
|
29
|
Ma D, Chen L, Zhu X, Li F, Liu C, Liu R. Assessment of combined antiandrogenic effects of binary parabens mixtures in a yeast-based reporter assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6482-6494. [PMID: 24469767 DOI: 10.1007/s11356-014-2497-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/26/2013] [Indexed: 06/03/2023]
Abstract
To date, toxicological studies of endocrine disrupting chemicals (EDCs) have typically focused on single chemical exposures and associated effects. However, exposure to EDCs mixtures in the environment is common. Antiandrogens represent a group of EDCs, which draw increasing attention due to their resultant demasculinization and sexual disruption of aquatic organisms. Although there are a number of in vivo and in vitro studies investigating the combined effects of antiandrogen mixtures, these studies are mainly on selected model compounds such as flutamide, procymidone, and vinclozolin. The aim of the present study is to investigate the combined antiandrogenic effects of parabens, which are widely used antiandrogens in industrial and domestic commodities. A yeast-based human androgen receptor (hAR) assay (YAS) was applied to assess the antiandrogenic activities of n-propylparaben (nPrP), iso-propylparaben (iPrP), methylparaben (MeP), and 4-n-pentylphenol (PeP), as well as the binary mixtures of nPrP with each of the other three antiandrogens. All of the four compounds could exhibit antiandrogenic activity via the hAR. A linear interaction model was applied to quantitatively analyze the interaction between nPrP and each of the other three antiandrogens. The isoboles method was modified to show the variation of combined effects as the concentrations of mixed antiandrogens were changed. Graphs were constructed to show isoeffective curves of three binary mixtures based on the fitted linear interaction model and to evaluate the interaction of the mixed antiandrogens (synergism or antagonism). The combined effect of equimolar combinations of the three mixtures was also considered with the nonlinear isoboles method. The main effect parameters and interaction effect parameters in the linear interaction models of the three mixtures were different from zero. The results showed that any two antiandrogens in their binary mixtures tended to exert equal antiandrogenic activity in the linear concentration ranges. The antiandrogenicity of the binary mixture and the concentration of nPrP were fitted to a sigmoidal model if the concentrations of the other antiandrogens (iPrP, MeP, and PeP) in the mixture were lower than the AR saturation concentrations. Some concave isoboles above the additivity line appeared in all the three mixtures. There were some synergistic effects of the binary mixture of nPrP and MeP at low concentrations in the linear concentration ranges. Interesting, when the antiandrogens concentrations approached the saturation, the interaction between chemicals were antagonistic for all the three mixtures tested. When the toxicity of the three mixtures was assessed using nonlinear isoboles, only antagonism was observed for equimolar combinations of nPrP and iPrP as the concentrations were increased from the no-observed-effect-concentration (NOEC) to effective concentration of 80%. In addition, the interactions were changed from synergistic to antagonistic as effective concentrations were increased in the equimolar combinations of nPrP and MeP, as well as nPrP and PeP. The combined effects of three binary antiandrogens mixtures in the linear ranges were successfully evaluated by curve fitting and isoboles. The combined effects of specific binary mixtures varied depending on the concentrations of the chemicals in the mixtures. At low concentrations in the linear concentration ranges, there was synergistic interaction existing in the binary mixture of nPrP and MeP. The interaction tended to be antagonistic as the antiandrogens approached saturation concentrations in mixtures of nPrP with each of the other three antiandrogens. The synergistic interaction was also found in the equimolar combinations of nPrP and MeP, as well as nPrP and PeP, at low concentrations with another method of nonlinear isoboles. The mixture activities of binary antiandrogens had a tendency towards antagonism at high concentrations and synergism at low concentrations.
Collapse
Affiliation(s)
- Dehua Ma
- School of Environment, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | |
Collapse
|
30
|
Stolte S, Steudte S, Schebb NH, Willenberg I, Stepnowski P. Ecotoxicity of artificial sweeteners and stevioside. ENVIRONMENT INTERNATIONAL 2013; 60:123-7. [PMID: 24036324 DOI: 10.1016/j.envint.2013.08.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 05/22/2023]
Abstract
Produced, consumed and globally released into the environment in considerable quantities, artificial sweeteners have been identified as emerging pollutants. Studies of environmental concentrations have confirmed the widespread distribution of acesulfame (ACE), cyclamate (CYC), saccharin (SAC) and sucralose (SUC) in the water cycle at levels that are among the highest known for anthropogenic trace pollutants. Their ecotoxicity, however, has yet to be investigated at a larger scale. The present study aimed to fill this knowledge gap by systematically assessing the influence of ACE, CYC and SAC and complementing the data on SUC. Therefore we examined their toxicity towards an activated sewage sludge community (30min) and applying tests with green algae Scenedesmus vacuolatus (24h), water fleas Daphnia magna (48h) and duckweed Lemna minor (7d). We also examined the effects caused by the natural sweetener stevioside. The high No Observed Effect Concentrations (NOECs) yielded by this initial evaluation indicated a low hazard and risk potential towards these aquatic organisms. For a complete risk assessment, however, several kinds of data are still lacking. In this context, obligatory ecotoxicity testing and stricter environmental regulations regarding food additives appear to be necessary.
Collapse
Affiliation(s)
- Stefan Stolte
- Department of Sustainable Chemistry, University of Bremen, Leobener Str., UFT, 28359 Bremen, Germany; Department of Environmental Analysis, University of Gdańsk, Wita Stwosza 56, 80-308 Gdańsk, Poland.
| | | | | | | | | |
Collapse
|
31
|
Kołodziejska M, Maszkowska J, Białk-Bielińska A, Steudte S, Kumirska J, Stepnowski P, Stolte S. Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry. CHEMOSPHERE 2013; 92:1253-9. [PMID: 23689096 DOI: 10.1016/j.chemosphere.2013.04.057] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 05/22/2023]
Abstract
Doramectin (DOR), metronidazole (MET), florfenicol (FLO), and oxytetracycline (OXT) are among the most widely used veterinary drugs in animal husbandry or in aquaculture. Contamination of the environment by these pharmaceuticals has given cause for concern in recent years. Even though their toxicity has been thoroughly analyzed, knowledge of their ecotoxicity is still limited. We investigated their aquatic toxicity using tests with marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustaceans (Daphnia magna). All the ecotoxicological tests were supported by chemical analyses to confirm the exposure concentrations of the pharmaceuticals used in the toxicity experiments, since deviations from the nominal concentration can result in underestimation of biological effects. It was found that OXT and FLO have a stronger adverse effect on duckweed (EC50=3.26 and 2.96mgL(-1) respectively) and green algae (EC50=40.4 and 18.0mgL(-1)) than on bacteria (EC50=108 and 29.4mgL(-1)) and crustaceans (EC50=114 and 337mgL(-1)), whereas MET did not exhibit any adverse effect in the tested concentration range. For DOR a very low EC50 of 6.37×10(-5)mgL(-1) towards D. magna was determined, which is five orders of magnitude lower than values known for the toxic reference compound K2Cr2O7. Our data show the strong influence of certain veterinary drugs on aquatic organisms and contribute to a sound assessment of the environmental hazards posed by commonly used pharmaceuticals.
Collapse
Affiliation(s)
- Marta Kołodziejska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Sobieskiego 18, 80-952 Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
32
|
Neale PA, Escher BI. Coextracted dissolved organic carbon has a suppressive effect on the acetylcholinesterase inhibition assay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1526-1534. [PMID: 23424099 DOI: 10.1002/etc.2196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/04/2013] [Accepted: 02/05/2013] [Indexed: 06/01/2023]
Abstract
The acetylcholinesterase (AChE) inhibition assay is frequently applied to detect organophosphates and carbamate pesticides in different water types, including dissolved organic carbon (DOC)-rich wastewater and surface water. The aim of the present study was to quantify the effect of coextracted DOC from different water samples on the commonly used enzyme-based AChE inhibition assay. Approximately 40% to 70% of DOC is typically recovered by solid-phase extraction, and this comprises not only organic micropollutants but also natural organic matter. The inhibition of the water extracts in the assay differed greatly from the expected mixture effects based on chemical analysis of organophosphates and carbamates. Binary mixture experiments with the known AChE inhibitor parathion and the water extracts showed reduced toxicity in comparison with predictions using the mixture models of concentration addition and independent action. In addition, the extracts and reference organic matter had a suppressive effect on a constant concentration of parathion. The present study thus indicated that concentrations of DOC as low as 2 mg carbon/L can impair the AChE inhibition assay and, consequently, that only samples with a final DOC concentration of less than 2 mgC /L are suitable for this assay. To check for potential suppression in environmental samples, standard addition experiments using an AChE-inhibiting reference compound are recommended.
Collapse
Affiliation(s)
- Peta A Neale
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, Queensland, Australia.
| | | |
Collapse
|
33
|
Li X, Zhou Q, Luo Y, Yang G, Zhou T. Joint action and lethal levels of toluene, ethylbenzene, and xylene on midge (Chironomus plumosus) larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:957-966. [PMID: 23354551 DOI: 10.1007/s11356-012-1264-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 10/16/2012] [Indexed: 06/01/2023]
Abstract
Aquatic ecosystems are vulnerable to the exposure with petrochemicals such as toluene, ethylbenzene, and xylene (o-, m-, and p-xylene) (TEX) and their adverse effects. Considering the widespread use, occurrence, and high toxicity of TEX, the aim of this work was to investigate the differential toxicity of TEX against midge (Chironomus plumosus) larvae and reveal the joint action of binary and ternary mixtures of TEX using the predictive concentration addition model. More importantly, this research can afford the basic toxicity data and scientific reference for the establishment of water quality criteria or benchmark, water pollution control, and aquatic risk assessment. Single and joint toxic effects of TEX on C. plumosus larvae were investigated using a semi-static bioassay, and the type of joint effects of TEX was ascertained. In the single toxicant experiments, the toxicity of the three pollutants could be sequenced as ethylbenzene > xylene > toluene. Specifically, LC(50s) of T, E, and X after a 48-h exposure were 64.9, 37.8, and 42.0 mg/L, respectively. In the binary mixture experiments, the interaction between toluene and ethylbenzene, ethylbenzene and xylene, and toluene and xylene was largely in conformity with partial additive or additive effect as determined by isobologram representation and toxic unit models. In the ternary mixture experiments, the interaction was basically dependent on the use of additive index and mixture toxicity index methods. However, the antagonistic and synergistic actions were not significant. Thus, the tertiary mixture interaction could be regarded as additive action. The concentration addition model could successfully predict the joint action of TEX mixtures on C. plumosus larvae. Particularly, the additive action of TEX on C. plumosus larvae can be further recommended to evaluate water quality criteria of TEX.
Collapse
Affiliation(s)
- Xuefeng Li
- Key Laboratory of Pollution Process and Environmental Criteria Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | | | | | | | | |
Collapse
|
34
|
Perrodin Y, Boillot C, Angerville R, Donguy G, Emmanuel E. Ecological risk assessment of urban and industrial systems: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:5162-5176. [PMID: 21944201 DOI: 10.1016/j.scitotenv.2011.08.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/23/2011] [Accepted: 08/14/2011] [Indexed: 05/31/2023]
Abstract
Numerous ecological risk assessment methodologies have been developed over the last twenty years around the world for evaluating urban and industrial systems and installations, by both the organisations responsible for implementing regulations and the scientific community. Although these methodologies share the general principle underlying their use, they differ widely with respect to the approaches chosen and the resources employed to apply them. Also, they may even have different objectives: prior assessment as part of an impact study before building a new installation, or retrospective assessment, for example, in view to explaining the reasons for an impact recorded or for forecasting additional expected impacts. This article provides a synthesis of the different approaches used around the world for carrying out each of the major steps common to all ecological risk assessment methodologies. The advantages and limitations of these different options are discussed in order to provide elements for formulating any new methodology adapted to a given scenario. To conclude, perspectives for improving the tools required for these methodologies are proposed, and the research works to which priority should be given are identified.
Collapse
Affiliation(s)
- Yves Perrodin
- Université de Lyon, ENTPE, CNRS, UMR 5023, 69518 Vaulx-en-Velin, France.
| | | | | | | | | |
Collapse
|
35
|
Białk-Bielińska A, Stolte S, Arning J, Uebers U, Böschen A, Stepnowski P, Matzke M. Ecotoxicity evaluation of selected sulfonamides. CHEMOSPHERE 2011; 85:928-33. [PMID: 21752420 DOI: 10.1016/j.chemosphere.2011.06.058] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 05/03/2023]
Abstract
Sulfonamides (SAs) are a group of antibiotic drugs widely used in veterinary medicine. The contamination of the environment by these pharmaceuticals has raised concern in recent years. However, knowledge of their (eco)toxicity is still very basic and is restricted to just a few of these substances. Even though their toxicological analysis has been thoroughly performed and ecotoxicological data are available in the literature, a systematic analysis of their ecotoxicological potential has yet to be carried out. To fill this gap, 12 different SAs were chosen for detailed analysis with the focus on different bacteria as well as non-target organisms (algae and plants). A flexible (eco)toxicological test battery was used, including enzymes (acetylcholinesterase and glutathione reductase), luminescent marine bacteria (Vibrio fischeri), soil bacteria (Arthrobacter globiformis), limnic unicellular green algae (Scenedesmus vacuolatus) and duckweed (Lemna minor), in order to take into account both the aquatic and terrestrial compartments of the environment, as well as different trophic levels. It was found that SAs are not only toxic towards green algae (EC₅₀=1.54-32.25 mg L⁻¹) but have even stronger adverse effect on duckweed (EC₅₀=0.02-4.89 mg L⁻¹) than atrazine - herbicide (EC₅₀=2.59 mg L⁻¹).
Collapse
Affiliation(s)
- Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland.
| | | | | | | | | | | | | |
Collapse
|
36
|
Lürling M. Metribuzin impairs the unicell-colony transformation in the green alga Scenedesmus obliquus. CHEMOSPHERE 2011; 82:411-417. [PMID: 20971494 DOI: 10.1016/j.chemosphere.2010.09.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/14/2010] [Accepted: 09/26/2010] [Indexed: 05/30/2023]
Abstract
Active growth is a prerequisite for the formation of grazing-protective, mostly eight-celled colonies by the ubiquitous green alga Scenedesmus in response to chemical cues from zooplankton. Colonies can also be evoked by chemically quite similar manmade anionic surfactants, such as FFD-6. In this study, it was hypothesized that growth-inhibiting concentrations of the herbicide metribuzin impair the ability of Scenedesmus obliquus to form colonies in response to the surfactant morphogen FFD-6. The results confirmed that the formation of colonies in S. obliquus was hampered by metribuzin. EC50 values of metribuzin for colony inhibition (approximately 11 μg L(-1)) were similar to those for growth and photosynthesis inhibition (12-25 μg metribuzinL(-1)). In the absence of the colony-inducing surfactant FFD-6, S. obliquus populations were comprised of 92% unicells, having on average 1.2 cells per colony at all tested metribuzin concentrations (0-100 μg L(-1)). In contrast, in the presence of FFD-6 and at low metribuzin concentrations (0 and 5 μg L(-1)), S. obliquus had more than five cells per colony with a high portion of eight-celled colonies. However, increasing concentrations of metribuzin decreased the number of colonies in the FFD-6-exposed populations and caused them to remain mostly unicellular at the highest concentrations (50 and 100 μg L(-1)). This study revealed that metribuzin impeded growth and by doing so, also obstructed the possibility for unicellular Scenedesmus to form colonies. Consequently, an increase in mortality of Scenedesmus from grazing is expected.
Collapse
Affiliation(s)
- M Lürling
- Department Environmental Sciences, Aquatic Ecology & Water Quality Management Group, Wageningen University, PO Box 8080, 6700 DD Wageningen, The Netherlands.
| |
Collapse
|
37
|
De Liguoro M, Di Leva V, Gallina G, Faccio E, Pinto G, Pollio A. Evaluation of the aquatic toxicity of two veterinary sulfonamides using five test organisms. CHEMOSPHERE 2010; 81:788-793. [PMID: 20673955 DOI: 10.1016/j.chemosphere.2010.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/29/2010] [Accepted: 07/07/2010] [Indexed: 05/29/2023]
Abstract
The aquatic toxicity of sulfaquinoxaline (SQO) and sulfaguanidine (SGD) was evaluated on the following test organisms: Daphnia magna (reproduction test), Pseudokirchneriella subcapitata, Scenedesmus dimorphus, Synecococcus leopoliensis (algal growth inhibition test) and Lemna gibba (duckweed growth inhibition test). Furthermore, the additivity of the two compounds was measured on D. magna (acute immobilisation test) and P. subcapitata (algal growth inhibition test) using the isobologram method. Results show that SQO and SGD are more toxic to green algae and daphnids, respectively, than other veterinary sulfonamides (SAs) and that their mixtures have a less then additive interaction. Taking into account the highest concentrations detected so far in surface waters for SQO (0.112 μg L(-1)) and for SGD (0.145 μg L(-1)) and the lowest NOECs obtained with the five test organisms, divided by an assessment factor of 10, the following PNECs and risk quotients (RQs) were calculated. SQO: PNEC 2 μg L(-1); RQ 0.056. SGD: PNEC 39.5 μg L(-1); RQ 0.004. Consequently, at the concentrations actually detected in the aquatic environment, the two SAs alone should not harm the freshwater organisms. However, it seems advisable, for veterinary mass treatments, the use of other SAs that have a lesser impact on the aquatic environment. Furthermore, considering the high probability of having complex mixtures of different SAs residues in water, each individual contamination should be evaluated by applying to the SAs mixtures the conservative criteria of additivity.
Collapse
Affiliation(s)
- Marco De Liguoro
- Dipartimento di Sanità Pubblica, Patologia Comparata e Igiene Veterinaria, Facoltà di Medicina Veterinaria, Università degli Studi di Padova, Agripolis, I-35020 Legnaro, PD, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Ferreira ALG, Serra P, Soares AMVM, Loureiro S. The influence of natural stressors on the toxicity of nickel to Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:1217-29. [PMID: 20174970 DOI: 10.1007/s11356-010-0298-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 01/20/2010] [Indexed: 05/07/2023]
Abstract
Global warming has become a source of awareness regarding the potential deleterious effects of extreme abiotic factors (e.g., temperature, dissolved oxygen (DO) levels) and also their influence on chemicals toxicity. In this work, we studied the combined effects of nickel and temperature (low and high levels) and nickel and low levels of DO to Daphnia magna, and concentration addition and independent action concepts as well as their deviations for synergism/antagonism, dose ratio and dose level dependency, were applied to survival and feeding rate data. Nickel single exposure showed an LC(50) value for 48 h of 7.36 mg l(-1) and an EC(50) value for feeding impairment at 2.41 mg l(-1). In the acute exposures to high and low temperatures, 50% of mortality was observed, respectively, at 30.7 degrees C and 4.2 degrees C whereas 50% reduction on the feeding activity was recorded at 22.6 degrees C and 16.0 degrees C. Relatively to low DO levels, a LC(50) value for 48 h of 0.5 mg l(-1) was obtained; feeding activity EC(50) value was 2 mg l(-1). On acute combined experiments, antagonism was observed for the combination of nickel and extreme temperatures, whereas a synergistic behaviour was observed in the combined exposure of nickel and low DO levels. At sublethal levels, nickel showed to be the main inducer of toxicity at high and low temperatures but not at low levels of dissolved oxygen. Toxicokinetics and toxicodynamics modelling studies should be made in the future to understand the toxicological pathways involved on complex combinations of stressors and to validate any conclusions.
Collapse
Affiliation(s)
- Abel L G Ferreira
- CESAM and Department of Biology, University of Aveiro, Campus Santiago, 3810-193, Aveiro, Portugal.
| | | | | | | |
Collapse
|
39
|
Bandow N, Altenburger R, Brack W. Application of nd-SPME to determine freely dissolved concentrations in the presence of green algae and algae-water partition coefficients. CHEMOSPHERE 2010; 79:1070-1076. [PMID: 20385402 DOI: 10.1016/j.chemosphere.2010.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 05/29/2023]
Abstract
Biological tests are essential for toxicity assessment of chemicals to aquatic organisms. Since awareness is increasing that freely dissolved concentrations in test media may change during exposure and deviate significantly from nominal concentrations there is a need for concentration monitoring in biotests. Biotests are increasingly miniaturized with effect amounts of toxicants that are close to or below quantification limits of conventional analytical methods. Thus, the suitability of pre-equilibrium non-depletive (nd) solid phase microextraction (SPME) as an analytical method for small test volumes in the presence of green algae Scenedesmus vacuolatus was investigated. The method was validated for several compounds with different physical-chemical properties and effect concentrations. Limits of quantification were at least about 10 times smaller than the EC(50) of the compounds determined in earlier studies in a cell multiplication inhibition tests with Scenedesmus vacuolatus. Fouling of the fibres due to attached algae cells could be excluded and the method was found to be well suited to measure free concentrations in the algae test. The nd-SPME-method was applied to determine partitioning coefficients between algae and the surrounding aqueous phase and can be used to determine real exposure concentrations in a cell multiplication inhibition test with green algae.
Collapse
Affiliation(s)
- Nicole Bandow
- UFZ-Helmholtz Centre for Environmental Research, Department of Effect Directed Analysis, Permoser Strasse 15, Leipzig, Germany
| | | | | |
Collapse
|
40
|
Schulze T, Weiss S, Schymanski E, von der Ohe PC, Schmitt-Jansen M, Altenburger R, Streck G, Brack W. Identification of a phytotoxic photo-transformation product of diclofenac using effect-directed analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1461-6. [PMID: 20092921 DOI: 10.1016/j.envpol.2009.12.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 05/25/2023]
Abstract
The pharmaceutical diclofenac (DCF) is released in considerably high amounts to the aquatic environment. Photo-transformation of DCF was reported as the main degradation pathway in surface waters and was found to produce metabolites with enhanced toxicity to the green algae Scenedesmus vacuolatus. We identified and subsequently confirmed 2-[2-(chlorophenyl)amino]benzaldehyde (CPAB) as a transformation product with enhanced toxicity using effect-directed analysis. The EC(50) of CPAB (4.8 mg/L) was a factor of 10 lower than that for DCF (48.1 mg/L), due to the higher hydrophobicity of CPAB (log K(ow) = 3.62) compared with DCF (log D(ow) = 2.04) at pH 7.0.
Collapse
Affiliation(s)
- Tobias Schulze
- UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Escher BI, Bramaz N, Lienert J, Neuwoehner J, Straub JO. Mixture toxicity of the antiviral drug Tamiflu((R)) (oseltamivir ethylester) and its active metabolite oseltamivir acid. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 96:194-202. [PMID: 19939473 DOI: 10.1016/j.aquatox.2009.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 05/28/2023]
Abstract
Tamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems. A previous environmental risk assessment has concluded that there is no bioaccumulation potential of either of the compounds. However, little was known about the ecotoxicity of the metabolite. Ester hydrolysis typically reduces the hydrophobicity and thus the toxicity of a compound. In this case, a zwitterionic, but overall neutral species is formed from the charged parent compound. If the speciation and predicted partitioning into biological membranes is considered, the metabolite may have a relevant contribution to the overall toxicity. These theoretical considerations triggered a study to investigate the toxicity of oseltamivir acid (OA), alone and in binary mixtures with its parent compound oseltamivir ethylester (OE). OE and OA were found to be baseline toxicants in the bioluminescence inhibition test with Vibrio fischeri. Their mixture effect lay between predictions for concentration addition and independent action for the mixture ratio excreted in urine and nine additional mixture ratios of OE and OA. In contrast, OE was an order of magnitude more toxic than OA towards algae, with a more pronounced effect when the direct inhibition of photosystem II was used as toxicity endpoint opposed to the 24h growth rate endpoint. The binary mixtures in this assay yielded experimental mixture effects that agreed with predictions for independent action. This is consistent with the finding that OE exhibits slightly enhanced toxicity, while OA acts as baseline toxicant. Therefore, with respect to mixture classification, the two compounds can be considered as acting according to different modes of toxic action, although there are indications that the difference is a toxicokinetic effect, not a true difference of mechanism of toxicity. The general mixture results illustrate the need to consider the role of metabolites in the risk assessment of pharmaceuticals. However, in the concentration ratio of parent to metabolite excreted by humans, the experimental results confirm that the active metabolite does not significantly contribute to the risk quotient of the mixture.
Collapse
Affiliation(s)
- Beate I Escher
- The University of Queensland, National Research Centre for Environmental Toxicology, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
42
|
Altenburger R, Krüger J, Eisenträger A. Proposing a pH stabilised nutrient medium for algal growth bioassays. CHEMOSPHERE 2010; 78:864-870. [PMID: 20074774 DOI: 10.1016/j.chemosphere.2009.11.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/17/2009] [Accepted: 11/30/2009] [Indexed: 05/28/2023]
Abstract
Ecotoxicological assessment of chemicals and contaminated sites relies on bioassays using apical endpoints such as detection of growth inhibition using suspension cultures of green algae. For valid effect assessment observable responses should be causally linked to chemical exposure and thus confounding factors should be minimised. In this study we report that concentration response relationships for substances in current standardised protocols for unicellular algal growth assays are prone to variation from ill-defined assay conditions. The currently used growth media are not optimised to provide a stable pH regime for an exposure period of 72h, resulting in undefined speciation for charged or ionising molecules. We therefore propose a modified pH-stabilised growth medium for algal bioassays and demonstrate that this can substantially reduce variation in effect determination for reference compounds.
Collapse
Affiliation(s)
- Rolf Altenburger
- UFZ Centre for Environmental Research Leipzig Halle, Department Bioanalytical Ecotoxicology, Germany.
| | | | | |
Collapse
|
43
|
Daus B, Weiss H, Altenburger R. Uptake and toxicity of hexafluoroarsenate in aquatic organisms. CHEMOSPHERE 2010; 78:307-312. [PMID: 19900693 DOI: 10.1016/j.chemosphere.2009.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/28/2009] [Accepted: 10/09/2009] [Indexed: 05/28/2023]
Abstract
The arsenic species hexafluoroarsenate has been described as a contaminant of surface waters of anthropogenic origin. Here, we undertake to identify the most sensitive biological receptor among several sentinel aquatic species used in eco-toxicological assessment and to understand toxicity in terms of internal dose. Therefore, a screening of short-term effects using different aquatic organisms (bacterium Vibrio fischeri, fish Danio rerio, crustacean Daphnia magna and green alga Desmodesmus subspicatus and Scenedesmus vacuolatus) was conducted. For most organisms tested, effects were not detectable even at very high hexafluoroarsenate concentrations (up to 9.6mM) and thus the ecotoxic potential was found to be low in comparison to other arsenic compounds. The only organisms showing a clear response were the unicellular green alga, e.g. S. vacuolatus with an EC(50) value of 1.12 mM (84 mg L(-1) As). A linear relationship between ambient and internal concentration was found for this organism with a slope of 1.63 x 10(-3). Therefore, the internal concentration which shows a significant effect, e.g. 20% of inhibition of reproduction, was found to occur at a relatively low internal dose of 0.98 microM. Moreover, no biotransformation products inside the algae could be detected using arsenic speciation analysis with HPLC-ICP-MS, thus biological effects must be attributed to the untransformed compound. We conclude that the very low uptake observed for hexafluoroarsenate may be interpreted as preventive against toxic effects for the organisms.
Collapse
Affiliation(s)
- Birgit Daus
- Department Groundwater Remediation, UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany.
| | | | | |
Collapse
|
44
|
Arning J, Matzke M, Stolte S, Nehen F, Bottin-Weber U, Böschen A, Abdulkarim S, Jastorff B, Ranke J. Analyzing Cytotoxic Effects of Selected Isothiazol-3-one Biocides Using the Toxic Ratio Concept and Structure−Activity Relationship Considerations. Chem Res Toxicol 2009; 22:1954-61. [DOI: 10.1021/tx900263m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jürgen Arning
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Marianne Matzke
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Stefan Stolte
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Frauke Nehen
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Ulrike Bottin-Weber
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Andrea Böschen
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Salha Abdulkarim
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Bernd Jastorff
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| | - Johannes Ranke
- Department 3: Sustainability in Chemistry and Department 10: Theoretical Ecology, UFT−Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany, and Faculty of Biology/Chemistry, Department of Analytical Chemistry, University of Bremen, Leobener Strasse, D-2835 Bremen, Germany
| |
Collapse
|
45
|
Rodil R, Moeder M, Altenburger R, Schmitt-Jansen M. Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water. Anal Bioanal Chem 2009; 395:1513-24. [PMID: 19768642 DOI: 10.1007/s00216-009-3113-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/11/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
Abstract
The study on the photostability of six UV filters in aqueous solution was combined with investigations on the phytotoxicity of the produced degradation mixtures. During the exposure to artificial sunlight over 72 h, the degradation of three of the UV filters evaluated was observed with half-lives between 20 and 59 h. The structural changes of iso-amylmethoxy-cinnamate (IAMC), ethylhexyl-methoxy-cinnamate (EHMC), and 4-methylbenzyliden camphor (4-MBC) occurred during irradiation were consistent with isomerisation and polymerization (IAMC and EHMC) whereas 2-ethylhexyl-4-(dimethylamino)benzoate (OD-PABA) was degraded. The analysis of the UV filters and their degradation products was performed by stir bar sorptive extraction (SBSE) followed by thermodesorption-gas chromatography-mass spectrometry (TD-GC-MS) or liquid desorption-liquid chromatography-mass spectrometry (LD-LC-MS). The phytotoxicological potential of the UV filters was examined in vitro by evaluating reproduction inhibition of the chlorophyte microalgae Scenedesmus vacuolatus. Excess toxicity was calculated by comparing experimental derived median efficiencies after log-logistic modeling to predict effects assuming narcotic mode of action. Benzophenone-3 (BP-3) showed 43-fold higher toxicity than theoretically predicted and a more specific mode of action was assumed. The other UV filters tested indicated toxicity in the range of modeled narcosis. For IAMC, EHMC, and OD-PABA the phytotoxicity of their photodegradation mixtures was followed over time. Phytotoxicity decreased directly with the reduction of the parent substance from the solution. Five of the tested UV filters do not represent a risk at least for algae. Octocrylen and 4-MBC were found to be photostable but few toxic to algae. EHMC, IAMC, and OD-PABA were fast degraded during UV radiation and the phytotoxicity of the corresponding degradation mixtures was low and decreased onward during exposure. Thus, for the UV filters studied, it could be confirmed that sunlight can account noticeably for decontamination and detoxification of contaminated water. However, due to its potential accumulation in combination with a specific mode of action, BP-3 may imply probable environmental risks at least to algae. This study emphasizes the need of a combined chemical and toxicological evaluation for a reliable risk assessment concerning degradation processes exemplified here for UV-protecting agents.
Collapse
Affiliation(s)
- Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Science, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
46
|
De Liguoro M, Fioretto B, Poltronieri C, Gallina G. The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim. CHEMOSPHERE 2009; 75:1519-1524. [PMID: 19269673 DOI: 10.1016/j.chemosphere.2009.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/28/2009] [Accepted: 02/02/2009] [Indexed: 05/27/2023]
Abstract
Sulfonamides (SAs), the oldest chemotherapeutic agents used for antimicrobial therapy, still play an important role in veterinary mass treatments. Consequently, traces of these compounds, alone or in combinations, have been repeatedly detected in the environment. Sulfamethazine (SMZ) deserves particular attention not only because it is the most used veterinary SA, but also due to its proven effects on fertility in mice and on thyroid hormone homeostasis in rats. In this study, after evaluating the acute toxicity to Daphnia magna of six veterinary SAs and trimethoprim (TMP), the additivity of SMZ to each other compound was tested using the isobologram method. Two reproduction tests on the same biological model were also performed in order to derive LOEC and NOEC of SMZ. The acute EC(50) was in the range 131-270 mgL(-1) for all the compounds tested with the exception of sulfaguanidine (EC(50)=3.86 mgL(-1)). In acute binary tests SMZ showed a complex interaction with sulfaquinoxaline (superadditivity, additivity or subadditivity) at the three different combination ratios tested, simple additivity to TMP and less than additive interaction when paired to the other SAs. LOEC and NOEC of SMZ obtained from reproduction tests were 3.125 and 1.563 mgL(-1), respectively. In conclusion, SMZ should not harm the crustacean population at environmentally realistic concentrations. Its toxicity is comparable to that of other systemic SAs, and their binary interactions are less than additive. The same can not be entirely said for enteric SAs, and considering that these compounds are administered at high doses and mostly excreted in unmetabolised form, further evaluation of their impact to the aquatic environment seems advisable.
Collapse
Affiliation(s)
- Marco De Liguoro
- Department of Public Health, Comparative Pathology and Veterinary Hygiene, Faculty of Veterinary Medicine, University of Padua, Agripolis, I-35020 Legnaro (PD), Italy.
| | | | | | | |
Collapse
|
47
|
Van den Brink PJ, Crum SJH, Gylstra R, Bransen F, Cuppen JGM, Brock TCM. Effects of a herbicide-insecticide mixture in freshwater microcosms: risk assessment and ecological effect chain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:237-49. [PMID: 18757125 DOI: 10.1016/j.envpol.2008.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 05/07/2023]
Abstract
Effects of chronic application of a mixture of the herbicide atrazine and the insecticide lindane were studied in indoor freshwater plankton-dominated microcosms. The macroinvertebrate community was seriously affected at all but the lowest treatment levels, the zooplankton community at the three highest treatment levels, with crustaceans, caddisflies and dipterans being the most sensitive groups. Increased abundance of the phytoplankton taxa Cyclotella sp. was found at the highest treatment level. Threshold levels for lindane, both at population and community level, corresponded well with those reported in the literature. Atrazine produced fewer effects than expected, probably due to decreased grazer stress on the algae as a result of the lindane application. The safety factors set by the Uniform Principles for individual compounds were also found to ensure protection against chronic exposure to a mixture of a herbicide and insecticide at community level, though not always at the population level.
Collapse
Affiliation(s)
- Paul J Van den Brink
- Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Neuwoehner J, Junghans M, Koller M, Escher BI. QSAR analysis and specific endpoints for classifying the physiological modes of action of biocides in synchronous green algae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 90:8-18. [PMID: 18789546 DOI: 10.1016/j.aquatox.2008.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 05/26/2023]
Abstract
We propose the use of additional physiological endpoints in the 24h growth inhibition test with synchronous cultures of Scenedesmus vacuolatus for the classification of physiological modes of toxic action of chemicals in green algae. The classification scheme is illustrated on the example of one baseline toxicant (3-nitroaniline) and five biocides (irgarol, diuron, Sea-Nine, tributyltin (TBT) and norflurazon). The well-established endpoint of inhibition of reproduction is used for an analysis of the degree of specificity of toxicity by comparing the experimental data with predictions from a quantitative structure-activity relationship (QSAR) for baseline toxicity (narcosis). For those compounds with a toxic ratio greater than 10, i.e. a 10 times higher effect in reproduction than predicted by baseline toxicity, additionally the physiological endpoints inhibition of photosynthesis, cell division and cell volume growth were experimentally assessed. Depending on the relative sensitivity of the different endpoints the chemicals were classified into five different classes of modes of toxic action using a flow chart that was developed in the present study. The advantage of the novel classification scheme is the simplicity of the experimental approach. For the determination of the inhibition of reproduction, the cell size and numbers are quantified with a particle analyzer. This information can be used to derive also the physiological endpoints of cell volume growth and inhibition of cell division. The only additional measurement is the inhibition of the photosynthesis efficiency, which can be easily performed using the non-invasive saturation pulse method and pulse-modulated chlorophyll fluorometry with the Tox-Y-PAM instrument. This mechanistic approach offers a great future potential in ecotoxicology for the physiological mode of action classification of chemicals in algae, which should be a crucial step considered in the risk assessment of chemicals.
Collapse
Affiliation(s)
- Judith Neuwoehner
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Ueberlandstr. 133, Dübendorf 8600, Switzerland
| | | | | | | |
Collapse
|
49
|
McClellan K, Altenburger R, Schmitt-Jansen M. Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. J Appl Ecol 2008. [DOI: 10.1111/j.1365-2664.2008.01525.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Vallotton N, Moser D, Eggen RIL, Junghans M, Chèvre N. S-metolachlor pulse exposure on the alga Scenedesmus vacuolatus: effects during exposure and the subsequent recovery. CHEMOSPHERE 2008; 73:395-400. [PMID: 18602658 DOI: 10.1016/j.chemosphere.2008.05.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 05/14/2008] [Accepted: 05/18/2008] [Indexed: 05/26/2023]
Abstract
In streams and creeks, the aquatic flora is exposed to fluctuating concentrations of herbicides during and following their application. Peak concentrations of herbicides, like the chloroacetanilide S-metolachlor, are usually detected following rain events. In this study, we assessed the effect of S-metolachlor pulse exposure on the algae Scenedesmus vacuolatus. We measured the time-dependency of effects during exposure on algae population and identified the algae development stage most sensitive to S-metolachlor. Furthermore, we assessed the time-to-recovery of the algae following exposure. A 6h pulse exposure at 598microgl(-1) was sufficient to inhibit cell reproduction by 50%. However, the exposure period had to coincide with the cell development stage specifically inhibited by S-metolachlor, which is the end of the cell growth phase. In algae populations composed of cells at all development stages, we initially observed an increase in the size of some algal cells, ultimately leading to an inhibition of the growth rate. In these experimental conditions, effects were observed after 18h of exposure and greatly increased with time. The recovery of algae following exposure to strongly inhibiting S-metolachlor concentrations was delayed and only occurred after 29h. These findings suggest that peak exposure to S-metolachlor may affect the growth of sensitive alga in surface waters, considering that the effects extend beyond the period of exposure.
Collapse
Affiliation(s)
- Nathalie Vallotton
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstr. 133, P.O. Box 611, 8600 Duebendorf, Switzerland
| | | | | | | | | |
Collapse
|