1
|
Zhang H, Zhang G, Fu J. Exploring the L-shaped relationship between Atherogenic Index of Plasma and depression: Results from NHANES 2005-2018. J Affect Disord 2024; 359:133-139. [PMID: 38768824 DOI: 10.1016/j.jad.2024.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The Atherogenic Index of Plasma (AIP) is a novel metric linked to several diseases. However, there is inadequate evidence to investigate the relationship between AIP and depression. Therefore, we aim to elucidate the non-linear association between AIP and depression. METHODS 12,453 participants from the National Health and Nutrition Examination Survey (NHANES) 2005-2018 were included. The AIP was calculated as log10 (triglycerides/high-density lipoprotein cholesterol). The Patient Health Questionnaire (PHQ-9) was used to identify depression (PHQ-9 ≥ 10). Weighted multivariate logistic regression, restricted cubic splines (RCS) models, subgroup analysis, and interaction tests were employed to reveal the relationship between AIP and depression. RESULTS AIP was found to be significantly correlated with depression. In the fully adjusted model, elevated AIP levels were associated with higher odds of depression (odds ratio [OR] = 1.50; 95 % CI: 1.06-2.12). The RCS analysis indicated an L-shaped pattern in the relationship between depression and AIP, with inflection points at -0.289. Beyond this inflection point, individuals with elevated AIP levels were associated with higher odds of depression (OR = 2.25; 95 % CI: 1.49-3.39). Notably, the association was particularly pronounced among individuals with diabetes. LIMITATION This cross-sectional study is unable to establish causal relationships. CONCLUSION There was an L-shaped association between AIP and depression among US adults. AIP has the potential value as a biological marker for depression, and maintaining AIP values below a certain threshold may help in managing depression.
Collapse
Affiliation(s)
- Haokun Zhang
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, PR China
| | - Genshan Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jie Fu
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
2
|
Hu X, Zhao HL, Kurban N, Qin Y, Chen X, Cui SY, Zhang YH. Reduction of BDNF Levels and Biphasic Changes in Glutamate Release in the Prefrontal Cortex Correlate with Susceptibility to Chronic Stress-Induced Anhedonia. eNeuro 2023; 10:ENEURO.0406-23.2023. [PMID: 37989582 PMCID: PMC10668226 DOI: 10.1523/eneuro.0406-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
Chronic stress has been considered to induce depressive symptoms, such as anhedonia, particularly in susceptible individuals. Synaptic plasticity in the prefrontal cortex (PFC) is closely associated with susceptibility or resilience to chronic stress-induced anhedonia. However, effects of chronic stress with different durations on the neurobiological mechanisms that underlie susceptibility to anhedonia remain unclear. The present study investigated effects of chronic mild stress (CMS) for 14, 21, and 35 d on anhedonia-like behavior and glutamate synapses in the PFC. We found that brain-derived neurotrophic factor (BDNF) levels in the PFC significantly decreased only in anhedonia-susceptible rats that were exposed to CMS for 14, 21, and 35 d. Additionally, 14 d of CMS increased prefrontal glutamate release, and 35 d of CMS decreased glutamate release, in addition to reducing synaptic proteins and spine density in the PFC. Moreover, we found that anhedonia-like behavior in a subset of rats spontaneously decreased, accompanied by the restoration of BDNF levels and glutamate release, on day 21 of CMS. Ketamine treatment restored the reduction of BDNF levels and biphasic changes in glutamate release that were induced by CMS. Our findings revealed a progressive reduction of synaptic plasticity and biphasic changes in glutamate release in the PFC during CMS. Reductions of BDNF levels may be key neurobiological markers of susceptibility to stress-induced anhedonia.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Hui-Ling Zhao
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Nurhumar Kurban
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Yu Qin
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Xi Chen
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Su-Ying Cui
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Yong-He Zhang
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Oyovwi MO, Ben-Azu B, Edesiri TP, Victor E, Rotu RA, Ozegbe QEB, Nwangwa EK, Atuadu V, Adebayo OG. Kolaviron abates busulfan-induced episodic memory deficit and testicular dysfunction in rats: The implications for neuroendopathobiological changes during chemotherapy. Biomed Pharmacother 2021; 142:112022. [PMID: 34411912 DOI: 10.1016/j.biopha.2021.112022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 12/22/2022] Open
Abstract
Busulfan is a popular antileukemia chemotherapeutic alkylating agent widely known to induce variety of serious adverse effects including chemobrain-related cognitive impairments and dysfunction in male reproductive system. Whether kolaviron, a neuro- and repro-active compound obtained from Garcinia kola, with neuroprotective and reproductive-promoting activities, mitigates busulfan-induced cognitive and male reproductive impairments remain unknown. Hence, we investigated the reversal effects of kolaviron on busulfan-induced episodic memory deficit and testicular dysfunction, and its underlying mechanisms in male rats. In the treatment-protocol, rats in groups 1 and 2 received saline (10 mL/kg/p.o./day) and DMSO (10 mL/kg/p.o./day) respectively, group 3 was given kolaviron (200 mg/kg/p.o./day), group 4 received busulfan (50 mg/kg/p.o./day) and group 5 was pretreated with busulfan (50 mg/kg/p.o./day) consecutively for 56 days prior to kolaviron treatment (200 mg/kg/p.o./day) from days 29-56. Episodic memory deficit was assessed using passive avoidance task (PAT). Following euthanization, blood samples, epididymal sperm, testes and brain were harvested and hormonal and neurochemical contents and their metabolizing enzymes were assayed. Kolaviron reversed busulfan-induced episodic cognitive deficit in the PAT. The reduced serotonin, dopamine, noradrenaline concentrations, elevated glutamate levels, acetylcholinesterase, monoamine oxidase-A and B activities were normalized by kolaviron. Kolaviron also reversed the busulfan-induced decreased testicular/body weights and spermatogenesis. Kolaviron abated busulfan-induced changes in androgenic hormones (testosterone, FSH, LH), dehydrogenase enzymes (3ß-HSD and 17ß-HSD), altered sperm-chromatin, sperm-membrane integrity and sperm-acrosomal reaction and capacitation impairments. Our findings suggest that kolaviron could mitigate busulfan-induced episodic memory deficit and dysfunction in male reproductive system via neurochemical modulations and increase testicular androgenic hormones/enzymes in rats.
Collapse
Affiliation(s)
- Mega O Oyovwi
- Department of Hunan Physiology, Achievers University, Owo, Ondo, Nigeria; Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta, Nigeria.
| | - Tesi P Edesiri
- Department of Science Laboratory Technology, Delta State Polytechnic, Ogwash-Uku, Delta, Nigeria
| | - Emojevwe Victor
- Department of Physiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Rume A Rotu
- Department of Physiology, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Queen E B Ozegbe
- Department of Hunan Physiology, Achievers University, Owo, Ondo, Nigeria
| | - Eze K Nwangwa
- Department of Human Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta, Nigeria
| | - Vivian Atuadu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Enugu State University of Science and Technology (ESUT), Enugu, Enugu, Nigeria
| | - Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences PAMO University of Medical Sciences, Port Harcourt, Nigeria
| |
Collapse
|
4
|
Siegel-Ramsay JE, Romaniuk L, Whalley HC, Roberts N, Branigan H, Stanfield AC, Lawrie SM, Dauvermann MR. Glutamate and functional connectivity - support for the excitatory-inhibitory imbalance hypothesis in autism spectrum disorders. Psychiatry Res Neuroimaging 2021; 313:111302. [PMID: 34030047 DOI: 10.1016/j.pscychresns.2021.111302] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Abstract
It has been proposed that the Glutamate (Glu) system is implicated in autism spectrum disorders (ASD) via an imbalance between excitatory and inhibitory brain circuits, which impacts on brain function. Here, we investigated the excitatory-inhibitory imbalance theory by measuring Glu-concentrations and the relationship with resting-state function. Nineteen adult males with ASD and 19 age and sex-matched healthy controls (HC) (23 - 58 years) underwent Proton Magnetic Resonance Spectroscopy of the dorsal anterior cingulate cortex (dACC) and resting-state functional Magnetic Resonance Imaging (fMRI). Glu and Glx concentrations were compared between groups. Seed-based functional connectivity was analyzed with a priori seeds of the right and left dACC. Finally, metabolite concentrations were related to functional connectivity coefficients and compared between both groups. Individuals with ASD showed significantly negative associations between increased Glx concentrations and reduced functional connectivity between the dACC and insular, limbic and parietal regions. In contrast, HC displayed a positive relationship between the same metabolite and connectivity measures. We provided new evidence to support the excitatory-inhibitory imbalance theory, where excitatory Glx concentrations were related to functional dysconnectivity in ASD. Future research is needed to investigate large-scale functional networks in association with both excitatory and inhibitory metabolites in subpopulations of ASD.
Collapse
Affiliation(s)
- Jennifer E Siegel-Ramsay
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Department of Psychiatry and Behavioral Science, University of Texas, Austin, United States
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil Roberts
- Centre for Reproductive Health (CRH), School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Holly Branigan
- School of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew C Stanfield
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria R Dauvermann
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
5
|
Phillips MB, Nigam A, Johnson JW. Interplay between Gating and Block of Ligand-Gated Ion Channels. Brain Sci 2020; 10:brainsci10120928. [PMID: 33271923 PMCID: PMC7760600 DOI: 10.3390/brainsci10120928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 02/03/2023] Open
Abstract
Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function.
Collapse
Affiliation(s)
- Matthew B. Phillips
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.P.); (A.N.)
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aparna Nigam
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.P.); (A.N.)
| | - Jon W. Johnson
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.P.); (A.N.)
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-(412)-624-4295
| |
Collapse
|
6
|
Yue Y, Luo Z, Liao Z, Zhang L, Liu S, Wang M, Zhao F, Cao C, Ding Y, Yue S. Excessive activation of NMDA receptor inhibits the protective effect of endogenous bone marrow mesenchymal stem cells on promoting alveolarization in bronchopulmonary dysplasia. Am J Physiol Cell Physiol 2019; 316:C815-C827. [PMID: 30917030 DOI: 10.1152/ajpcell.00392.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We studied the role of bone marrow mesenchymal stem cells (MSCs) in our established model of bronchopulmonary dysplasia (BPD) induced by intrauterine hypoxia in the rat. First, we found that intrauterine hypoxia can reduce the number of MSCs in lungs and bone marrow of rat neonates, whereas the administration of granulocyte colony-stimulating factor or busulfan to either motivate or inhibit bone marrow MSCs to lungs altered lung development. Next, in vivo experiments, we confirmed that intrauterine hypoxia also impaired bone marrow MSC proliferation and decreased cell cycling activity. In vitro, by using the cultured bone marrow MSCs, the proliferation and the cell cycling activity of MSCs were also reduced when N-methyl-d-aspartic acid (NMDA) was used as an NMDA receptor (NMDAR) agonist. When MK-801 or memantine as NMDAR antagonists in vitro or in vivo was used, the reduction of cell cycling activity and proliferation were partially reversed. Furthermore, we found that intrauterine hypoxia could enhance the concentration of glutamate, an amino acid that can activate NMDAR, in the bone marrow of neonates. Finally, we confirmed that the increased concentration of TNF-ɑ in the bone marrow of neonatal rats after intrauterine hypoxia induced the release of glutamate and reduced the cell cycling activity of MSCs, and the latter could be partially reversed by MK-801. In summary, intrauterine hypoxia could decrease the number of bone marrow MSCs that could affect lung development and lung function through excessive activation of NMDAR that is partially caused by TNF-ɑ.
Collapse
Affiliation(s)
- Yinyan Yue
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha , China
| | - Ziqiang Luo
- Department of Physiology, School of Basic Medicine, Central South University , Changsha , China
| | - Zhengchang Liao
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha , China
| | - Liming Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Shuai Liu
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University , Changsha , China
| | - Mingjie Wang
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha , China
| | - Feiyan Zhao
- Department of Physiology, School of Basic Medicine, Central South University , Changsha , China
| | - Chuanding Cao
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha , China
| | - Ying Ding
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha , China
| | - Shaojie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha , China
| |
Collapse
|
7
|
Li X, Li C, Tang Y, Huang Y, Cheng Q, Huang X, Zhao F, Hao C, Feng D, Xu J, Han J, Tang S, Liu W, Yue S, Luo Z. NMDA receptor activation inhibits the antifibrotic effect of BM-MSCs on bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L404-L421. [PMID: 29722562 PMCID: PMC6172623 DOI: 10.1152/ajplung.00002.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endogenous glutamate (Glu) release and N-methyl-d-aspartate (NMDA) receptor (NMDAR) activation are associated with lung injury in different animal models. However, the underlying mechanism is unclear. Bone marrow-derived mesenchymal stem cells (BM-MSCs), which show potential use for immunomodulation and tissue protection, play a protective role in pulmonary fibrosis (PF) process. Here, we found the increased Glu release from the BM cells of bleomycin (BLM)-induced PF mice in vivo. BLM stimulation also increased the extracellular Glu in BM-MSCs via the antiporter system xc− in vitro. The gene expression of each subunit of NMDAR was detected in BM-MSCs. NMDAR activation inhibited the proliferation, migration, and paracrine function of BM-MSCs in vitro. BM-MSCs were derived from male C57BL/6 mice, transfected with lentiviral vectors carrying the enhanced green fluorescence protein gene, pretreated with NMDA, and transplanted into the female recipient mice that were intratracheally injected with BLM to induce PF. Transplantation of NMDA-pretreated BM-MSCs significantly aggravated PF as compared with that in the normal BM-MSCs transplantation group. The sex determination gene Y chromosome and green fluorescence protein genes of BM-MSCs were detected to observe BM-MSCs homing in the fibrotic lungs. Moreover, NMDAR activation inhibited BM-MSC migration by downregulating the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 signaling axis. NMDAR activation aggravated the transforming growth factor-β1-induced extracellular matrix production in alveolar epithelial cells and fibroblasts through the paracrine effects of BM-MSCs. In summary, these findings suggested that NMDAR activation-mediated Glu excitotoxicity induced by BLM in BM-MSCs abolished the therapeutic effects of normal BM-MSCs transplantation on BLM-induced PF.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan , China
| | - Chen Li
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi , China
| | - Yiting Tang
- Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan , China
| | - Yanhong Huang
- Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan , China
| | - Qingmei Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan , China
| | - Xiaoting Huang
- Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan , China
| | - Feiyan Zhao
- Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan , China
| | - Caixia Hao
- Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan , China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan , China
| | - Jianping Xu
- Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan , China
| | - Jianzhong Han
- Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan , China
| | - Siyuan Tang
- Xiangya Nursing School, Central South University , Changsha, Hunan , China
| | - Wei Liu
- Xiangya Nursing School, Central South University , Changsha, Hunan , China
| | - Shaojie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University , Changsha, Hunan , China
| |
Collapse
|
8
|
The excitotoxity of NMDA receptor NR2D subtype mediates human fetal lung fibroblasts proliferation and collagen production. Toxicol In Vitro 2017; 46:47-57. [PMID: 28987794 DOI: 10.1016/j.tiv.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/18/2017] [Accepted: 10/04/2017] [Indexed: 11/21/2022]
Abstract
Studies have suggested that endogenous glutamate and N-methyl-d-aspartate (NMDA) receptor have an excitotoxity role during acute lung injury. Fibroblasts play a critical role in lung development and chronic lung disease after acute lung injury. This study aims to explore the immediate role of NMDAR activation in human lung fibroblasts. The expression of NMDAR 1 subtype (NR1) and four individual NMDAR 2 (NR2) subtypes (NR 2 A to D) was measured in human fetal lung fibroblasts (HFL-1 and MRC-5). Five NMDARs expression were all detectable in two cell lines. Although the expressions of NMDARs were different between MRC-5 and HFL-1, 1mM NMDA elicited the same trend in the downregulation of NR2A expression, the upregulation of NR2D, and the increase of cells proliferation and collagen production. Glutamate stimulation after 24-h of NMDA exposure resulted in weaker and more delayed but more prolonged iCa2+ elevation in HFL-1 than no NMDA exposed cells. NMDA increased the level of pERK1/2, cells proliferation and collagen production, whereas nonspecific NMDAR antagonist MK-801, NR2D-preferring receptor antagonist UBP141 and ERK1/2 phosphorylation inhibitor U0126 suppressed it, respectively. In conclusion, we found that NMDAR activation, NR2D in particular, is involved in human fetal lung fibroblast proliferation and collagen production through a potential ERK1/2-mediated mechanism.
Collapse
|
9
|
Wang Y, Yue S, Luo Z, Cao C, Yu X, Liao Z, Wang M. N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats. Respir Res 2016; 17:136. [PMID: 27769245 PMCID: PMC5075180 DOI: 10.1186/s12931-016-0453-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
Background Previous studies have suggested that endogenous glutamate and its N-methyl-D-aspartate receptors (NMDARs) play important roles in hyperoxia-induced acute lung injury in newborn rats. We hypothesized that NMDAR activation also participates in the development of chronic lung injury after withdrawal of hyperoxic conditions. Methods In order to rule out the anti-inflammatory effects of NMDAR inhibitor on acute lung injury, the efficacy of MK-801 was evaluated in vivo using newborn Sprague-Dawley rats treated starting 4 days after cessation of hyperoxia exposure (on postnatal day 8). The role of NMDAR activation in hyperoxia-induced lung fibroblast proliferation and differentiation was examined in vitro using primary cells derived from the lungs of 8-day-old Sprague-Dawley rats exposed to hyperoxic conditions. Results Hyperoxia for 3 days induced acute lung injury in newborn rats. The acute injury almost completely disappeared 4 days after cessation of hyperoxia exposure. However, pulmonary fibrosis, impaired alveolarization, and decreased pulmonary compliance were observed on postnatal days 15 and 22. MK-801 treatment during the recovery period was found to alleviate the chronic damage induced by hyperoxia. Four NMDAR 2 s were found to be upregulated in the lung fibroblasts of newborn rats exposed to hyperoxia. In addition, the proliferation and upregulation of alpha-smooth muscle actin and (pro) collagen I in lung fibroblasts were detected in hyperoxia-exposed rats. MK-801 inhibited these changes. Conclusions NMDAR activation mediated lung fibroblast proliferation and differentiation and played a role in the development of hyperoxia-induced chronic lung damage in newborn rats.
Collapse
Affiliation(s)
- YanRui Wang
- Department of Neonatology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.,Department of Neonatology, Heze Municipal Hospital, Heze, 274000, China
| | - ShaoJie Yue
- Department of Neonatology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - ZiQiang Luo
- Department of Physiology, Xiangya Medical College, Central South University, Changsha, 410008, China
| | - ChuanDing Cao
- Department of Neonatology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - XiaoHe Yu
- Department of Neonatology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - ZhengChang Liao
- Department of Neonatology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China
| | - MingJie Wang
- Department of Neonatology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008, China.
| |
Collapse
|
10
|
Sivaraman D, Panneersel P, Muralidhar P. Memory and Brain Neurotransmitter Restoring Potential of Hydroalcoholic Extract of Ipomoea aquatica Forsk on Amyloid Beta Aβ (25-35) Induced Cognitive Deficits in Alzheimer’s Mice. INT J PHARMACOL 2016; 12:52-65. [DOI: 10.3923/ijp.2016.52.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
S-Nitrosylation of proline-rich tyrosine kinase 2 involves its activation induced by oxygen–glucose deprivation. Neurosci Lett 2015; 597:90-6. [DOI: 10.1016/j.neulet.2015.04.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/22/2022]
|
12
|
Hu SQ, Ye JS, Zong YY, Sun CC, Liu DH, Wu YP, Song T, Zhang GY. S-nitrosylation of mixed lineage kinase 3 contributes to its activation after cerebral ischemia. J Biol Chem 2012; 287:2364-77. [PMID: 22123824 PMCID: PMC3268398 DOI: 10.1074/jbc.m111.227124] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 10/13/2011] [Indexed: 11/06/2022] Open
Abstract
Previous studies in our laboratory have shown that mixed lineage kinase 3 (MLK3) can be activated following global ischemia. In addition, other laboratories have reported that the activation of MLK3 may be linked to the accumulation of free radicals. However, the mechanism of MLK3 activation remains incompletely understood. We report here that MLK3, overexpressed in HEK293 cells, is S-nitrosylated (forming SNO-MLK3) via a reaction with S-nitrosoglutathione, an exogenous nitric oxide (NO) donor, at one critical cysteine residue (Cys-688). We further show that the S-nitrosylation of MLK3 contributes to its dimerization and activation. We also investigated whether the activation of MLK3 is associated with S-nitrosylation following rat brain ischemia/reperfusion. Our results show that the administration of 7-nitroindazole, an inhibitor of neuronal NO synthase (nNOS), or nNOS antisense oligodeoxynucleotides diminished the S-nitrosylation of MLK3 and inhibited its activation induced by cerebral ischemia/reperfusion. In contrast, 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (an inhibitor of inducible NO synthase) or nNOS missense oligodeoxynucleotides did not affect the S-nitrosylation of MLK3. In addition, treatment with sodium nitroprusside (an exogenous NO donor) and S-nitrosoglutathione or MK801, an antagonist of the N-methyl-D-aspartate receptor, also diminished the S-nitrosylation and activation of MLK3 induced by cerebral ischemia/reperfusion. The activation of MLK3 facilitated its downstream protein kinase kinase 4/7 (MKK4/7)-JNK signaling module and both nuclear and non-nuclear apoptosis pathways. These data suggest that the activation of MLK3 during the early stages of ischemia/reperfusion is modulated by S-nitrosylation and provides a potential new approach for stroke therapy whereby the post-translational modification machinery is targeted.
Collapse
Affiliation(s)
- Shu-Qun Hu
- From the Jiangsu Key Laboratory of Brain Disease Bioinformation and Research Center for Biochemistry and Molecular Biology and
| | - Jun-Song Ye
- From the Jiangsu Key Laboratory of Brain Disease Bioinformation and Research Center for Biochemistry and Molecular Biology and
| | - Yan-Yan Zong
- From the Jiangsu Key Laboratory of Brain Disease Bioinformation and Research Center for Biochemistry and Molecular Biology and
| | - Chang-Cheng Sun
- From the Jiangsu Key Laboratory of Brain Disease Bioinformation and Research Center for Biochemistry and Molecular Biology and
| | - Dong-Hai Liu
- From the Jiangsu Key Laboratory of Brain Disease Bioinformation and Research Center for Biochemistry and Molecular Biology and
| | - Yong-Ping Wu
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu 221002 and
| | - Tao Song
- the Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Guang-Yi Zhang
- From the Jiangsu Key Laboratory of Brain Disease Bioinformation and Research Center for Biochemistry and Molecular Biology and
| |
Collapse
|
13
|
Zorumski CF, Izumi Y. NMDA receptors and metaplasticity: mechanisms and possible roles in neuropsychiatric disorders. Neurosci Biobehav Rev 2012; 36:989-1000. [PMID: 22230702 DOI: 10.1016/j.neubiorev.2011.12.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/14/2011] [Accepted: 12/22/2011] [Indexed: 02/08/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are key components of neural signaling, playing roles in synaptic transmission and in the synaptic plasticity thought to underlie learning and memory. NMDAR activation can also have neurotoxic consequences contributing to several forms of neurodegeneration. Additionally, NMDARs can modulate neuronal function and regulate the ability of synapses to undergo synaptic plasticity. Evidence gathered over the past 20 years strongly supports the idea that untimely activation of NMDARs impairs the induction of long-term potentiation (LTP) by a form of metaplasticity. This metaplasticity can be triggered by multiple stimuli including physiological receptor activation, and metabolic and behavioral stressors. These latter findings raise the possibility that NMDARs contribute to cognitive dysfunction associated with neuropsychiatric disorders. This paper examines NMDAR metaplasticity and its potential role in cognition. Recent studies using NMDAR antagonists for therapeutic purposes also raise the possibility that metaplasticity may contribute to clinical effects of certain drugs.
Collapse
Affiliation(s)
- Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
14
|
Hogins J, Crawford DC, Zorumski CF, Mennerick S. Excitotoxicity triggered by Neurobasal culture medium. PLoS One 2011; 6:e25633. [PMID: 21980512 PMCID: PMC3182245 DOI: 10.1371/journal.pone.0025633] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/08/2011] [Indexed: 01/13/2023] Open
Abstract
Neurobasal defined culture medium has been optimized for survival of rat embryonic hippocampal neurons and is now widely used for many types of primary neuronal cell culture. Therefore, we were surprised that routine medium exchange with serum- and supplement-free Neurobasal killed as many as 50% of postnatal hippocampal neurons after a 4 h exposure at day in vitro 12–15. Minimal Essential Medium (MEM), in contrast, produced no significant toxicity. Detectable Neurobasal-induced neuronal death occurred with as little as 5 min exposure, measured 24 h later. D-2-Amino-5-phosphonovalerate (D-APV) completely prevented Neurobasal toxicity, implicating direct or indirect N-methyl-D-aspartate (NMDA) receptor-mediated neuronal excitotoxicity. Whole-cell recordings revealed that Neurobasal but not MEM directly activated D-APV-sensitive currents similar in amplitude to those gated by 1 µM glutamate. We hypothesized that L-cysteine likely mediates the excitotoxic effects of Neurobasal incubation. Although the original published formulation of Neurobasal contained only 10 µM L-cysteine, commercial recipes contain 260 µM, a concentration in the range reported to activate NMDA receptors. Consistent with our hypothesis, 260 µM L-cysteine in bicarbonate-buffered saline gated NMDA receptor currents and produced toxicity equivalent to Neurobasal. Although NMDA receptor-mediated depolarization and Ca2+ influx may support survival of young neurons, NMDA receptor agonist effects on development and survival should be considered when employing Neurobasal culture medium.
Collapse
Affiliation(s)
- Joshua Hogins
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Devon C. Crawford
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Charles F. Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Steven Mennerick
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hogins J, Crawford DC, Jiang X, Mennerick S. Presynaptic silencing is an endogenous neuroprotectant during excitotoxic insults. Neurobiol Dis 2011; 43:516-25. [PMID: 21605675 DOI: 10.1016/j.nbd.2011.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/26/2011] [Accepted: 05/07/2011] [Indexed: 12/20/2022] Open
Abstract
Glutamate release is a root cause of acute and delayed neuronal damage in response to hypoxic/ischemic insults. Nevertheless, therapeutics that target the postsynaptic compartment have been disappointing clinically. Here we explored whether presynaptic silencing (muting) of glutamatergic terminals is sufficient to reduce excitotoxic damage resulting from hypoxia and oxygen/glucose deprivation. Our evidence suggests that strong depolarization, previously shown to mute glutamate synapses, protects neurons by a presynaptic mechanism that is sensitive to inhibition of the proteasome. Postsynaptic Ca2+ rises in response to glutamate application and toxicity in response to exogenous glutamate treatment were unaffected by depolarization preconditioning. These features strongly suggest that reduced glutamate release explains preconditioning protection. We addressed whether hypoxic depolarization itself induces presynaptic silencing, thereby participating in the damage threshold for hypoxic insult. Indeed, we found that the hypoxic insult increased the percentage of mute glutamate synapses in a proteasome-dependent manner. Furthermore, proteasome inhibition exacerbated neuronal loss to mild hypoxia and prevented hypoxia-induced muting. In total our results suggest that presynaptic silencing is an endogenous neuroprotective mechanism that could be exploited to reduce damage from insults involving excess synaptic glutamate release.
Collapse
Affiliation(s)
- Joshua Hogins
- Dept of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
16
|
Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 2011; 52:1156-63. [PMID: 21357409 DOI: 10.1167/iovs.10-6293] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The most striking features of diabetic retinopathy are the vascular abnormalities that are apparent by fundus examination. There is also strong evidence that diabetes causes apoptosis of neural and vascular cells in the retina. Thus, there is good reason to define diabetic retinopathy as a form of chronic neurovascular degeneration. In keeping with the gradual onset of retinopathy in humans, the rate of cell loss in the animal models is insidious, even in uncontrolled diabetes. This is not surprising given that a sustained high rate of cell loss without regeneration would soon lead to catastrophic tissue destruction. The consequences of ongoing cell death are difficult to detect, and even the quantification of cumulative cell loss requires painstaking histology and microscopy. This subtle cell loss raises the issue of the relevance of the phenomenon to the progression of diabetic retinopathy and the ultimate loss of vision. Neuronal function may be compromised in advance of apoptosis, contributing to an early deterioration of vision. Here we review some of the evidence supporting apoptotic cell death as a contributing mechanism of diabetic retinopathy, explore some of the potential causes, and discuss the potential links between apoptosis and loss of visual function in diabetic retinopathy.
Collapse
Affiliation(s)
- Alistair J Barber
- Department of Ophthalmology, Penn State Hershey Eye Center, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
17
|
Sherin A, Peeyush KT, Naijil G, Chinthu R, Paulose CS. Hypoglycemia induced behavioural deficit and decreased GABA receptor, CREB expression in the cerebellum of streptozoticin induced diabetic rats. Brain Res Bull 2010; 83:360-6. [PMID: 20851745 DOI: 10.1016/j.brainresbull.2010.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/12/2010] [Accepted: 09/02/2010] [Indexed: 11/25/2022]
Abstract
Intensive glycemic control during diabetes is associated with an increased incidence of hypoglycemia, which is the major barrier in blood glucose homeostasis during diabetes therapy. The CNS neurotransmitters play an important role in the regulation of glucose homeostasis. In the present study, we showed the effects of hypoglycemia in diabetic and non- diabetic rats on motor functions and alterations of GABA receptor and CREB expression in the cerebellum. Cerebellar dysfunction is associated with seizure generation, motor deficits and memory impairment. Scatchard analysis of [(3)H]GABA binding in the cerebellum of diabetic hypoglycemic and control hypoglycemic rats showed significant (P<0.01) decrease in B(max) and K(d) compared to diabetic and control rats. Real-time PCR amplification of GABA receptor subunit GABA(Aα1) and GAD showed significant (P<0.001) down-regulation in the cerebellum of hypoglycemic rats compared to diabetic and control rats. Confocal imaging study confirmed the decreased GABA receptors in hypoglycemic rats. CREB mRNA expression was down-regulated during recurrent hypoglycemia. Both diabetic and non-diabetic hypoglycemic rats showed impaired performance in grid walk test compared to diabetic and control. Impaired GABA receptor and CREB expression along with motor function deficit were more prominent in hypoglycemic rats than hyperglycemic which showed that hypoglycemia is causing more neuronal damage at molecular level. These molecular changes observed during hypo/hyperglycemia contribute to motor and learning deficits which has clinical significance in diabetes treatment.
Collapse
Affiliation(s)
- A Sherin
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin 682 022, Kerala, India
| | | | | | | | | |
Collapse
|
18
|
Pietrancosta N, Kessler A, Favre-Besse FC, Triballeau N, Quentin T, Giros B, El Mestikawy S, Acher FC. Rose Bengal analogs and vesicular glutamate transporters (VGLUTs). Bioorg Med Chem 2010; 18:6922-33. [PMID: 20708942 DOI: 10.1016/j.bmc.2010.06.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) allow the loading of presynaptic glutamate vesicles and thus play a critical role in glutamatergic synaptic transmission. Rose Bengal (RB) is the most potent known VGLUT inhibitor (Ki 25 nM); therefore we designed, synthesized and tested in brain preparations, a series of analogs based on this scaffold. We showed that among the two tautomers of RB, the carboxylic and not the lactonic form is active against VGLUTs and generated a pharmacophore model to determine the minimal structure requirements. We also tested RB specificity in other neurotransmitter uptake systems. RB proved to potently inhibit VMAT (Ki 64 nM) but weakly VACHT (Ki>9.7 microM) and may be a useful tool in glutamate/acetylcholine co-transmission studies.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601 CNRS, Université Paris Descartes, 45 rue des Saints-Pères, 75270 Paris 06, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang M, Luo Z, Liu S, Li L, Deng X, Huang F, Shang L, Jian C, Yue S. Glutamate Mediates Hyperoxia-Induced Newborn Rat Lung Injury through N-Methyl-D-Aspartate Receptors. Am J Respir Cell Mol Biol 2009; 40:260-7. [DOI: 10.1165/rcmb.2008-0135oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Ogita K, Hirata K, Bole DG, Yoshida S, Tamura Y, Leckenby AM, Ueda T. Inhibition of vesicular glutamate storage and exocytotic release by Rose Bengal. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00200.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Kirvell SL, Esiri M, Francis PT. Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer's disease. J Neurochem 2006; 98:939-50. [PMID: 16893425 DOI: 10.1111/j.1471-4159.2006.03935.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized pathologically by plaques, tangles, and cell and synapse loss. As glutamate is the principle excitatory neurotransmitter of the CNS, the glutamatergic system may play an important role in AD. An essential step in glutamate neurotransmission is the concentration of glutamate into synaptic vesicles before release from the presynaptic terminal. Recently a group of proteins responsible for uptake has been identified - the vesicular glutamate transporters (VGLUTs). The generation of antibodies has facilitated the study of glutamatergic neurones. Here, we used antibodies to the VGLUTs together with immunohistochemistry and western blotting to investigate the status of glutamatergic neurones in temporal, parietal and occipital cortices of patients with AD; these regions were chosen to represent severely, moderately and mildly affected regions at the end stage of the disease. There was no change in expression of the synaptic markers in relation to total protein in the temporal cortex, but a significant reduction in synaptophysin and VGLUT1 was found in both the parietal and occipital cortices. These changes were found to relate to the number of tangles in the temporal cortex. There were no correlations with either mental test score or behaviour syndromes, with the exception of depression.
Collapse
Affiliation(s)
- Sara L Kirvell
- Wolfson Centre for Age-Related Diseases, Kings College London, London, UK
| | | | | |
Collapse
|
22
|
Moulder KL, Meeks JP, Mennerick S. Homeostatic regulation of glutamate release in response to depolarization. Mol Neurobiol 2006; 33:133-53. [PMID: 16603793 DOI: 10.1385/mn:33:2:133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 11/30/1999] [Accepted: 08/04/2005] [Indexed: 11/11/2022]
Abstract
Proper nervous system function requires a balance between excitation and inhibition. Systems of homeostasis may have evolved in neurons to help maintain or restore balance between excitation and inhibition, presumably because excessive excitation can cause dysfunction and cell death. This article reviews evidence for homeostatic mechanisms within the hippocampus that lead to differential regulation of glutamate and gamma-aminobutyric acid release in response to conditions of excess depolarization. We recently found differential effects on glutamate release at the level of action potential coupling to transmitter release, vesicular release probability, and vesicle availability. Such differential regulation may help to prevent excitotoxicity and runaway excitation.
Collapse
Affiliation(s)
- Krista L Moulder
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
23
|
Ohtsuki S. New aspects of the blood-brain barrier transporters; its physiological roles in the central nervous system. Biol Pharm Bull 2005; 27:1489-96. [PMID: 15467183 DOI: 10.1248/bpb.27.1489] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The blood-brain barrier (BBB) segregates the circulating blood from interstitial fluid in the brain, and restricts drug permeability into the brain. Our latest studies have revealed that the BBB transporters play important physiological roles in maintaining the brain milieu. The BBB supplies creatine to the brain for an energy-storing system, and creatine transporter localized at the brain capillary endothelial cells (BCECs) is involved in BBB creatine transport. The BBB is involved in the brain-to-blood efflux transport of the suppressive neurotransmitter, gamma-aminobutyric acid, and GAT2/BGT-1 mediates this transport process. BCECs also express serotonin and norepinephrine transporters. Organic anion transporter 3 (OAT3) and ASCT2 are localized at the abluminal membrane of the BCECs. OAT3 is involved in the brain-to-blood efflux of a dopamine metabolite, a uremic toxin and thiopurine nucleobase analogs. ASCT2 plays a role in L-isomer-selective aspartic acid efflux transport at the BBB. Dehydroepiandrosterone sulfate and small neutral amino acids undergo brain-to-blood efflux transport mediated by organic anion transporting polypeptide 2 and ATA2, respectively. The BBB transporters are regulated by various factors, ATA2 by osmolarity, taurine transporter by TNF-alpha, and L-cystine/L-glutamic acid exchange transporter by oxidative stress. Clarifying the physiological roles of BBB transport systems should give us important information allowing the development of better CNS drugs and improving our understanding of the relationship between CNS disorders and BBB function.
Collapse
Affiliation(s)
- Sumio Ohtsuki
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan.
| |
Collapse
|
24
|
Ohtsuki S. [Physiological function of blood-brain barrier transporters as the CNS supporting and protecting system]. YAKUGAKU ZASSHI 2005; 124:791-802. [PMID: 15516806 DOI: 10.1248/yakushi.124.791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The blood-brain barrier (BBB) segregates the circulating blood from interstitial fluid in the brain and restricts drug permeability into the brain. Our latest studies have revealed that the BBB transporters play important physiological roles in maintaining the brain environment. For an energy-storing system, the creatine transporter localized at the brain capillary endothelial cells (BCECs) mediates the supply of creatine from the blood to the brain. The BBB is involved in the brain-to-blood efflux transport of gamma-aminobutyric acid, and GAT2/BGT-1 mediates this transport process. BCECs also express serotonin and norepinephrine transporters. Organic anion transporter 3 (OAT3) and ASCT2 are localized at the abluminal membrane of the BCECs. OAT3 is involved in the brain-to-blood efflux of a dopamine metabolite, a uremic toxin, and thiopurine nucleobase analogues. ASCT2 plays a role in L-isomer-selective aspartic acid efflux transport at the BBB. Dehydroepiandrosterone sulfate and small neutral amino acids undergo brain-to-blood efflux transport mediated by organic anion transporting polypeptide 2 and ATA2, respectively. The BBB transporters are regulated by various factors: ATA2 by osmolarity, taurine transporter by tumor necrosis factor-alpha, and L-cystine/L-glutamic acid exchange transporter by oxidative stress. Clarifying the physiological roles of BBB transport systems should give important information allowing the development of better central nervous system (CNS) drugs and improving our understanding of the relationship between CNS disorders and BBB function.
Collapse
Affiliation(s)
- Sumio Ohtsuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
25
|
Tetsuka K, Takanaga H, Ohtsuki S, Hosoya KI, Terasaki T. The l-isomer-selective transport of aspartic acid is mediated by ASCT2 at the blood-brain barrier. J Neurochem 2004; 87:891-901. [PMID: 14622120 DOI: 10.1046/j.1471-4159.2003.02063.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aspartic acid (Asp) undergoes l-isomer-selective efflux transport across the blood-brain barrier (BBB). This transport system appears to play an important role in regulating l- and d-Asp levels in the brain. The purpose of this study was to identify the responsible transporters and elucidate the mechanism for l-isomer-selective Asp transport at the BBB. The l-isomer-selective uptake of Asp by conditionally immortalized mouse brain capillary endothelial cells used as an in vitro model of the BBB took place in an Na+- and pH-dependent manner. This process was inhibited by system ASC substrates such as l-alanine and l-serine, suggesting that system ASC transporters, ASCT1 and ASCT2, are involved in the l-isomer selective transport. Indeed, l-Asp uptake by oocytes injected with either ASCT1 or ASCT2 cRNA took place in a similar manner to that in cultured BBB cells, whereas no significant d-Asp uptake occurred. Although both ASCT1 and ASCT2 mRNA were expressed in the cultured BBB cells, the expression of ASCT2 mRNA was 6.7-fold greater than that of ASCT1. Moreover, immunohistochemical analysis suggests that ASCT2 is localized at the abluminal side of the mouse BBB. These results suggest that ASCT2 plays a key role in l-isomer-selective Asp efflux transport at the BBB.
Collapse
Affiliation(s)
- Kazuhiro Tetsuka
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
26
|
Angehagen M, Ben-Menachem E, Rönnbäck L, Hansson E. Topiramate protects against glutamate- and kainate-induced neurotoxicity in primary neuronal-astroglial cultures. Epilepsy Res 2003; 54:63-71. [PMID: 12742598 DOI: 10.1016/s0920-1211(03)00039-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Potential neuroprotective effects of the antiepileptic drug (AED) topiramate (TPM) were evaluated using primary neuronal-astroglial cultures or astroglial-enriched cultures from newborn rats exposed to excitotoxic concentrations of glutamate (Glu) or kainate. Neurons expressed functional Glu receptors of the NMDA and AMPA/kainate types as evaluated by immunocytochemistry and Ca(2+) imaging. When Glu (10 mM) was added to 9-10-day cultures incubated with the fluorescent dye calcein/AM for 5h, there was a marked cell loss in both culture types, but was more pronounced in the neuronal-astroglial cultures. When TPM (5-10 microM) was included in the medium together with Glu, the amount of surviving cells was significantly higher in the neuronal-astroglial cultures, but not in the astroglial-enriched cultures. Immuno-labeling of the cultures revealed an enhanced survival of MAP positive neuronal cells when TPM was included in the Glu containing medium. As TPM has a proven negative modulatory effect on kainate activated receptors, neuronal-astroglial cultures were further exposed to excitotoxic concentrations of kainate (100 microM) and analyzed immunohistochemically. Significantly more MAP positive neurons survived in the TPM containing medium and showed a morphology similar to untreated cells. Valproate and phenytoin were used as reference AEDs. In conclusion, our results demonstrate a protective effect of TPM upon neuronal cells in primary culture, exposed to excitotoxic levels of Glu or kainate.
Collapse
Affiliation(s)
- Mikael Angehagen
- Institute of Clinical Neuroscience, Göteborg University, P.O. Box 420, SE-405 30, Göteborg, Sweden.
| | | | | | | |
Collapse
|
27
|
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and a leading cause of legal blindness in working-age adults. The clinical hallmarks of DR include increased vascular permeability, leading to edema, and endothelial cell proliferation. Much of the research effort has been focused on vascular changes, but it is becoming apparent that other degenerative changes occur beyond the vascular cells of the retina. These include increased apoptosis, glial cell reactivity, microglial activation, and altered glutamate metabolism. When occurring together, these changes may be considered as neurodegenerative and could explain some of the functional deficits in vision that begin soon after the onset of diabetes. This review will present the current evidence that neurodegeneration of the retina is a critical component of DR. There are two basic hypotheses that account for loss of cells in the neural retina. First, the loss of blood-retinal barrier integrity, which initially manifests as an increase in vascular permeability, causes a failure to control the composition of the extracellular fluid in the retina, which in turn leads to edema and neuronal cell loss. Alternatively, diabetes has a direct effect on metabolism within the neural retina, leading to an increase in apoptosis, which in turn causes breakdown of the blood-retinal barrier. It is not clear which hypothesis will be found to be correct, and, in fact, it is likely that vascular permeability and neuronal apoptosis are closely linked components of DR. However, the gradual loss of neurons suggests that progress of the disease is ultimately irreversible, since these cells cannot usually be replaced. In light of this possibility, new treatments for DR should be preventive in nature, being implemented before overt clinical symptoms develop. While vascular permeability is the target that is primarily considered for new treatments of DR, evidence presented here suggests that apoptosis of neurons is also an essential target for pharmacological studies. The vision of people with diabetes will be protected only when we have discovered a means to prevent the gradual but constant loss of neurons within the inner retina.
Collapse
Affiliation(s)
- Alistair J Barber
- The Penn State Retina Research Group, The Ulerich Ophthalmology Research Center, Penn State College of Medicine, Hershey Medical Center, 500 University Drive, 17033, Hershey, PA, USA.
| |
Collapse
|
28
|
Jiang Q, Gu Z, Zhang G. Activation, involvement and nuclear translocation of c-Jun N-terminal protein kinase 1 and 2 in glutamate-induced apoptosis in cultured rat cortical neurons. Brain Res 2002; 956:194-201. [PMID: 12445686 DOI: 10.1016/s0006-8993(02)03435-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies showed that c-Jun N-terminal protein kinase 1 and 2 (JNK1&2) were activated in some cases of excitotoxicity. In the present study, activation, subcellular distribution, involvement and upstream regulation of JNK1&2 were investigated in glutamate-induced excitotoxicity in cultured rat cortical neurons. As indicated by Western immunoblot from whole cellular extracts, while JNK1&2 were not significantly changed, the activated JNK1&2 (diphosphorylated JNK1&2, p-JNK1&2), were rapidly increased at 15 min exposure to 50 microM glutamate and reverted to basal level at 12 h after exposure, followed by a significant increase of apoptotic-like cell death as detected by DAPI (a fluorescent DNA binding dye) staining at 9-18 h after exposure. Blockage of the increase of p-JNK1&2 with JNK1&2 antisense oligodeoxynucleotides significantly prevented the cell death. The increase of p-JNK1&2 was largely prevented by blockage of NMDA receptor (a subtype of glutamate receptor) or protein kinase C (PKC), and each blockage also largely prevented the cell death. Combined blockage of PKC and JNK1&2 had no additive protective effect against cell death. Immunocytochemistry study showed at 15 min of glutamate exposure a whole cellular but mainly nuclear increase of p-JNK1&2, together with mild plasma decrease but large nuclear increase of JNK1&2, all of which were also largely prevented by blockage of NMDA receptor or PKC. These results suggested that mainly downstream of NMDA receptor-PKC pathway JNK1&2 were activated, nuclear translocated and causally involved in the glutamate-induced excitotoxicity, possibly through a nuclear elevation of p-JNK1&2.
Collapse
Affiliation(s)
- Qian Jiang
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiangsu 221002, People's Republic of China
| | | | | |
Collapse
|
29
|
Vargová L, Jendelová P, Chvátal A, Syková E. Glutamate, NMDA, and AMPA induced changes in extracellular space volume and tortuosity in the rat spinal cord. J Cereb Blood Flow Metab 2001; 21:1077-89. [PMID: 11524612 DOI: 10.1097/00004647-200109000-00005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glutamate release, particularly in pathologic conditions, may result in cellular swelling. The authors studied the effects of glutamate, N-methyl-D-aspartate (NMDA), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) on extracellular pH (pH(e)), extracellular potassium concentration ([K(+)](e)), and changes in extracellular space (ECS) diffusion parameters (volume fraction alpha, tortuosity lambda) resulting from cellular swelling. In the isolated spinal cord of 4-to 12-day-old rats, the application of glutamate receptor agonists induced an increase in [K(+)](e), alkaline-acid shifts, a substantial decrease in alpha, and an increase in lambda. After washout of the glutamate receptor agonists, alpha either returned to or overshot normal values, whereas lambda remained elevated. Pretreatment with 20 mmol/L Mg(++), MK801, or CNQX blocked the changes in diffusion parameters, [K(+)](e) and pH(e) evoked by NMDA or AMPA. However, the changes in diffusion parameters also were blocked in Ca(2+)-free solution, which had no effect on the [K(+)](e) increase or acid shift. The authors conclude that increased glutamate release may produce a large, sustained and [Ca(2+)](e)-dependent decrease in alpha and increase in lambda. Repetitive stimulation and pathologic states resulting in glutamate release therefore may lead to changes in ECS volume and tortuosity, affecting volume transmission and enhancing glutamate neurotoxicity and neuronal damage.
Collapse
Affiliation(s)
- L Vargová
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | |
Collapse
|
30
|
Jiang Q, Gu Z, Zhang G. Nuclear translocation of extracellular signal-regulated kinases in neuronal excitotoxicity. Neuroreport 2001; 12:2417-21. [PMID: 11496121 DOI: 10.1097/00001756-200108080-00026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Subcellular distributions of extracellular signal-kinases (ERK1/2), including their activated form (p-ERK1/2), were investigated in glutamate-induced apoptotic-like death in cultured rat cortical neurons by Western immunoblot and immunocytochemistry. During 15 min glutamate exposure, p-ERK1/2 was increased in both cytosol and nuclear extracts, but prominently so in nuclear extracts. Simultaneously, ERK1/2 were mildly decreased in cytosol (to 0.7-fold vs sham control), largely increased in nuclear extracts (to 6.2-fold vs sham control), but not changed in total cell extracts. Immunocytochemistry studies also showed a large increase in nuclear and a mild decrease in cytosol extracts of ERK1/2 at 15 min of exposure. After glutamate exposure, all the above changes reverted simultaneously. The nuclear increase of ERK1/2 was largely prevented by inhibition of ERK1/2 activation, but prolonged by elongation of ERK1/2 activation. These observations suggest that stimulation of glutamate receptors in cortical neurons may incur an activation-dependent transient nuclear translocation of ERK1/2, which might be involved in excitotoxicity through a simultaneous strong elevation of p-ERK1/2 in nucleus.
Collapse
Affiliation(s)
- Q Jiang
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou 221002, PR China
| | | | | |
Collapse
|
31
|
Tetsuka K, Hosoya KI, Ohtsuki S, Takanaga H, Yanai N, Ueda M, Obinata M, Terasaki T. Acidic amino acid transport characteristics of a newly developed conditionally immortalized rat type 2 astrocyte cell line (TR-AST). Cell Struct Funct 2001; 26:197-203. [PMID: 11699636 DOI: 10.1247/csf.26.197] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To characterize acidic amino acid transport in type 2 astrocytes, we established conditionally immortalized rat astrocyte cell lines (TR-AST) from newly developed transgenic rats harboring temperature-sensitive SV40 large T-antigen gene. TR-AST exhibited positive immunostaining for anti-GFAP antibody and A2B5 antibody, characteristics associated with type 2 astrocytes, and expressed glutamine synthetase. Acidic amino acid transporters, GLT-1 and system xc-, which consists of xCT and 4F2hc, were expressed in all TR-ASTs by RT-PCR. On the other hand, GLAST expression was found in TR-AST3 and 5. The characteristics of [3H]L-glutamic acid (L-Glu) uptake by TR-AST5 include an Na+-dependent and Na+-independent manner, concentration-dependence, and inhibition by L-aspartic acid (L-Asp) and D-aspartic acid (D-Asp). The corresponding Michaelis-Menten constants for the Na+-dependent and Na+-independent process were 36.3 microM and 155 microM, respectively. [3H]L-Asp and [3H]D-Asp uptake by TR-AST5 had an Na+-dependent and Na+-independent manner. This study demonstrated that GLT-1, system xc-, and GLAST were expressed in TR-AST, which has the characteristics of type 2 astrocytes and is able to transport acidic amino acids.
Collapse
Affiliation(s)
- K Tetsuka
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Saransaari P, Oja SS. Characteristics of hippocampal glycine release in cell-damaging conditions in the adult and developing mouse. Neurochem Res 2001; 26:845-52. [PMID: 11565618 DOI: 10.1023/a:1011624421505] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The release of preloaded [3H]glycine from hippocampal slices from 7-day-old and 3-month-old (adult) mice was studied in different cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and the presence of free radicals and metabolic poisons, using a superfusion system. Glycine release was greatly enhanced in all the above conditions in both age groups, with the exception of hypoxia in developing mice. This coincides with the increased susceptibility to seizures and excitotoxicity during postnatal development. The ischemia-induced release of glycine was Ca2+-independent at both ages. The release was potentiated by exogenously applied glycine but not in Na+-free conditions, indicating the involvement of Na+-dependent transporters operating outwards. The Cl- channel blockers 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonate and diisothiocyanostilbene-2,2'-disulphonate generally reduced the ischemia-induced release, suggesting that this occurs through anion channels in both developing and adult mice. Furthermore, in the adult hippocampus riluzole and amiloride inhibited the release, indicating that Na+ channels also contribute to the ischemia-evoked release. Since glycine is an essential factor in glutamate-induced Ca2+ channel opening at the N-methyl-D-aspartate receptor, the elevated levels of glycine, together with the increased release of excitatory amino acids, must obviously collaborate in the development of ischemic neuronal damage.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, Medical School, University of Tampere, Finland.
| | | |
Collapse
|
33
|
Madrigal JL, Moro MA, Lizasoain I, Lorenzo P, Castrillo A, Boscá L, Leza JC. Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor kappaB-mediated mechanisms. J Neurochem 2001; 76:532-8. [PMID: 11208916 DOI: 10.1046/j.1471-4159.2001.00108.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The underlying mechanisms by which physical or psychological stress causes neurodegeneration are still unknown. We have demonstrated that the high-output and long-lasting synthesizing source of nitric oxide (NO), inducible NO synthase (iNOS), is expressed in brain cortex during stress and that its overexpression accounts for the neurodegenerative changes seen after 3 weeks of repeated stress. Now we have found that acute stress (restraint for 6 h) increases the activity of a calcium-independent NOS and induces the expression of iNOS in brain cortex in adult male rats. In order to elucidate the possible mechanisms involved in this induction, we studied the role of transcription nuclear factor kappaB (NF-kappaB), which is required for iNOS synthesis. We have observed that an acute restraint stress session stimulates the translocation of the NF-kappaB to the nucleus after 4 h and that the administration of the NF-kappaB inhibitor pyrrolidine dithiocarbamate [PDTC, 75 and 150 mg/kg intraperitoneally (i.p.)] at the onset of stress inhibits the stress-induced increase in iNOS expression. Since glutamate release and subsequent NMDA (N-methyl-D-aspartate) receptor activation has been recognized as an early change after exposure to stressful stimuli, and glutamate has been shown to induce iNOS in brain via a NF-kappaB-dependent mechanism, we studied the possible role of excitatory amino acids in the induction of iNOS in our model. Pretreatment with the NMDA receptor antagonist dizocilpine (MK-801, 0.1 and 0.3 mg/kg i.p.) inhibits the stress-induced NF-kappaB activation as well as the stress-induced increase in iNOS expression. Taken together, these findings indicate that excitatory amino acids and subsequent activation of NF-kappaB account for stress-induced iNOS expression in cerebral cortex, and support a possible neuroprotective role for specific inhibitors in this situation.
Collapse
Affiliation(s)
- J L Madrigal
- Departmento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Jiang Q, Gu Z, Zhang G, Jing G. N-methyl-D-aspartate receptor activation results in regulation of extracellular signal-regulated kinases by protein kinases and phosphatases in glutamate-induced neuronal apototic-like death. Brain Res 2000; 887:285-92. [PMID: 11134617 DOI: 10.1016/s0006-8993(00)03003-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular signal-regulated kinases (ERK1/ERK2) have been shown transiently activated and involved in excitotoxicity. We searched for upstream molecules responsible for the regulation of glutamate-induced ERK1/ERK2 activation and ERK1/ERK2-mediated apototic-like death in cultured rat cortical neurons. ERK1/ERK2 activation (monitored by anti-active ERK1/ERK2 antibody) was almost completely prevented by blockage of NMDA receptor (NMDA-R) or elimination of extracellular Ca(2+), but not any other glutamate receptor or L-type voltage-gated Ca(2+) channel. It was prevented largely by inhibition of protein kinase C (PKC), protein-tyrosine kinases (PTK), respectively, but mildly by that of CaM kinase II. Combined inhibition of CaM kinase II (but not PTK) and PKC had an additive effect. Reversion of ERK1/ERK2 activation was largely prevented by inhibition of protein phosphatase (PP) 1 or protein tyrosine phosphatase (PTP). Combined inhibition of PP 1 and PTP had no additive effect. Glutamate-induced apoptotic-like death (determined by DAPI staining) was largely prevented by inhibition of NMDA-R, PKC, CaM kinase II, PTK and MEK1/MEK2 (ERK1/ERK2 kinase), respectively. Combined inhibition of CaM kinase II (but not PKC or PTK) and MEK1/MEK2 had an additive effect. Glutamate-induced apoptotic-like death was promoted by inhibition of PP1 and PTP, respectively. The above results suggested that in glutamate-induced cortical neurotoxicity ERK1/ERK2 activation be mainly mediated by NMDA-R. Subsequently, a pathway dependent on both PKC and PTK was mainly involved, which was also mainly responsible for ERK1/ERK2-mediated apoptotic-like death, and a CaM kinase II-dependent pathway was relatively mildly involved. Reversion of ERK1/ERK2 activation was mainly mediated by a pathway dependent on both PP1 and PTP, which might be involved in the restrain of glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Q Jiang
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiang 221002, PR China
| | | | | | | |
Collapse
|
35
|
Abstract
Recent evidence suggests that blockade of normal excitation in the immature nervous system may have profound effects on neuronal survival during the period of natural cell death. Cell loss following depression of electrical activity in the central nervous system (CNS) may explain the neuropsychiatric deficits in humans exposed to alcohol or other CNS depressants during development. Thus, understanding the role of electrical activity in the survival of young neurons is an important goal of modern basic and clinical neuroscience. Here we review the evidence from in vivo and in vitro model systems that electrical activity participates in promoting neuronal survival. We discuss the potential role of moderate elevations of intracellular calcium in promoting survival, and we address the possible ways in which activity and conventional trophic factors may interact.
Collapse
Affiliation(s)
- S Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
36
|
Cárdenas A, Moro MA, Hurtado O, Leza JC, Lorenzo P, Castrillo A, Bodelón OG, Boscá L, Lizasoain I. Implication of glutamate in the expression of inducible nitric oxide synthase after oxygen and glucose deprivation in rat forebrain slices. J Neurochem 2000; 74:2041-8. [PMID: 10800947 DOI: 10.1046/j.1471-4159.2000.0742041.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide synthesis by inducible nitric oxide synthase (iNOS) has been postulated to contribute to ischemia-reperfusion neurotoxicity. The expression of this enzyme has been demonstrated in cells present in the postischemic brain. The mechanisms of iNOS expression after cerebral ischemia are a subject of current research. We therefore decided to investigate whether glutamate, which is released in ischemia and is implicated in neurotoxicity, might be involved in the mechanisms by which oxygen and glucose deprivation (OGD) leads to the expression of iNOS in rat forebrain slices. In this model, we have shown previously that 20 min of OGD causes the expression of iNOS. We have now found that the NMDA receptor antagonist MK-801 blocks the expression of iNOS, suggesting that the activation of the NMDA subtype of glutamate receptor is implicated in the mechanisms that lead to the expression of this isoform. Moreover, we have found that glutamate alone could trigger the induction process, as shown by the appearance of a Ca(2+)-independent NOS activity and by the detection of iNOS mRNA and protein in slices exposed to glutamate. Glutamate-dependent iNOS expression was concentration-dependent and was blocked by EGTA and by the inhibitors of nuclear factor kappaB (NF-kappaB) activation pyrrolidine dithiocarbamate and MG132. In addition, glutamate induced NF-kappaB translocation to the nucleus, an effect that was inhibited by MG132. Taken together, our data suggest that activation of NMDA receptors by glutamate released in ischemia is involved in the expression of iNOS in rat forebrain slices via a Ca(2+)-dependent activation of the transcription factor NF-kappaB. To our knowledge, this is the first report showing an implication of excitatory amino acids in the expression of iNOS caused by ischemia.
Collapse
Affiliation(s)
- A Cárdenas
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jiang Q, Gu Z, Zhang G, Jing G. Diphosphorylation and involvement of extracellular signal-regulated kinases (ERK1/2) in glutamate-induced apoptotic-like death in cultured rat cortical neurons. Brain Res 2000; 857:71-7. [PMID: 10700554 DOI: 10.1016/s0006-8993(99)02364-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Glutamate-induced excitotoxicity, with certain characteristics of apoptosis, has been implicated in a variety of neuronal degenerative disorders. In some physiological cases, extracellular signal-regulated kinases (ERK1/2) are activated by stimulation of glutamate receptors. In the present study, the activation (diphosphorylation) and role of ERK1/2 in glutamate-induced apoptotic-like death in cultured cortical neurons were investigated. Protein levels and activation (diphosphorylation) levels of ERK1/2 were examined by Western immunoblot, probed with anti-ERK1/2 and anti-active (diphosphorylated) ERK1/2 antibodies, respectively. Apoptotic-like death was determined by DAPI staining. Before a remarkable increase of apoptotic-like cell death was observed at 9-18 h after 15 min exposure to 50 microM glutamate, diphosphorylation levels of ERK1/2 were rapidly increased, peaked at 5-15 min of the exposure, and reverted to sham control level 3 h after the exposure, while the protein levels of ERK1/2 were unaffected. The glutamate concentration effective for inducing apoptotic-like cell death was correlated with that for inducing ERK1/2 diphosphorylation. Both ERK1/2 diphosphorylation and the apoptotic-like cell death were largely prevented by MK-801, a specific NMDA receptor (a subtype receptor of glutamate) antagonist, or the elimination of extracellular Ca(2+) with EGTA. PD98059, a specific inhibitor of ERK1/2 kinase, completely inhibited ERK1/2 diphosphorylation and partially inhibited the apoptotic-like cell death. These results suggest that largely via NMDA receptor-mediated influx of extracellular Ca(2+), ERK1/2 were rapidly and transiently activated and were involved in glutamate-induced apoptotic-like death in cultured rat cortical neurons.
Collapse
Affiliation(s)
- Q Jiang
- Research Center of Biochemistry and Molecular Biology, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, China
| | | | | | | |
Collapse
|
38
|
Liu X, Zhu XZ. Roles of p53, c-Myc, Bcl-2, Bax and caspases in glutamate-induced neuronal apoptosis and the possible neuroprotective mechanism of basic fibroblast growth factor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:210-6. [PMID: 10521575 DOI: 10.1016/s0169-328x(99)00186-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
By using flow-cytometric analysis, we examined the involvement of p53, c-Myc, Bcl-2 and Bax in the glutamate-induced cell death in cultured cortical neurons. The activities of caspase-1-like and caspase-3-like proteases were also measured after the glutamate treatment. The apoptosis rate of the cells increased after 12 h and 24 h treatment with glutamate. The temporal profile of p53, c-Myc, Bcl-2, Bax expression and caspases activation after glutamate treatment suggest that Bcl-2, c-Myc and caspase-3 play important roles in the excitotoxic neuronal cell death. The down-regulation of Bcl-2 may be an important early stage event, which may cause the activation of caspase-3. c-Myc is also involved in the process of apoptosis though its precise role remains elusive. bFGF exhibited the capability to antagonize the neuronal apoptosis caused by glutamate. The antiapoptotic potential of bFGF may result from its attenuating effect on the down-regulation of Bcl-2 induced by glutamate and, subsequently, blockade of apoptosis cascade. This may provide a possible explanation for its neuroprotective effect against ischemic cell death.
Collapse
Affiliation(s)
- X Liu
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
39
|
Saransaari P, Oja SS. Mechanisms of D-aspartate release under ischemic conditions in mouse hippocampal slices. Neurochem Res 1999; 24:1009-16. [PMID: 10478940 DOI: 10.1023/a:1021052725921] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The release of preloaded D-[3H]aspartate, an unmetabolizable analogue of L-glutamate, was studied in superfused hippocampal slices from 7-day-old and 3-month-old (adult) mice under various cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and the presence of free radicals and metabolic poisons. The release was generally markedly enhanced in most of the above conditions, the responses being greater in adults than in developing mice. The presence of dinitrophenol had the most pronounced effect at both ages, followed by NaCN- and free-radical-containing media and ischemia. Hypoxia did not affect release in the immature hippocampus. Under most conditions K+ stimulation (50 mM) was still able markedly to enhance D-aspartate release. This potentiation under cell-damaging conditions in both adult and developing hippocampus signifies that increased L-glutamate release contributes to excitotoxicity and subsequent cell death. The mechanisms of ischemia-induced release of D-aspartate were analyzed in the adult hippocampus using ion channel inhibitors and modified superfusion media. The induced release proved to be partly Ca(2+)-dependent and partly Ca(2+)-independent. The results obtained with Na+ omission and homo- and heteroexchange with D-aspartate and L-glutamate demonstrated that a part of the release in normoxia and ischemia is mediated by the reversal of Na(+)-dependent glutamate transporters. The Na+ channel blockers amiloride and riluzole reduced the ischemia-induced release, also indicating the involvement of Na+ channels. In addition to this, the enhanced release of D-aspartate may comprise a swelling-induced component through chloride channels.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, University of Tampere Medical School, Finland.
| | | |
Collapse
|
40
|
Besson MT, Soustelle L, Birman S. Identification and structural characterization of two genes encoding glutamate transporter homologues differently expressed in the nervous system of Drosophila melanogaster. FEBS Lett 1999; 443:97-104. [PMID: 9989583 DOI: 10.1016/s0014-5793(98)01695-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In vertebrates, excitatory amino acid transporters (EAATs) are believed to mediate the removal of glutamate released at excitatory synapses and to maintain extracellular concentrations of this neurotransmitter below excitotoxic levels. Glutamate is also used in insects as an excitatory neurotransmitter at the neuromuscular junction and probably in the central nervous system where its role remains to be established. We report the molecular characterization and developmental expression pattern of two Drosophila cDNAs: dEAATI, which has recently been identified as a high affinity glutamate transporter [1], and dEAAT2, a novel protein sharing strong homology to dEAATI and to the mammalian EAAT protein family. The developmental expression pattern of the two Drosophila EAAT genes has been compared by Northern blot analysis and whole-mount in situ hybridizations. The two transporters are transcribed in distinct cell types of the nervous system and are strongly expressed in the adult visual system.
Collapse
Affiliation(s)
- M T Besson
- Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, CNRS, Marseille, France
| | | | | |
Collapse
|
41
|
Antonov SM, Gmiro VE, Johnson JW. Binding sites for permeant ions in the channel of NMDA receptors and their effects on channel block. Nat Neurosci 1998; 1:451-61. [PMID: 10196542 DOI: 10.1038/2167] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report the presence of binding sites for permeant monovalent cations at the internal and external entrances to the channel of NMDA receptors. We measured the effects of changing internal cesium (Cs+) and external sodium (Na+) concentrations on the channel-blocking kinetics of the adamantane derivatives IEM-1754 and IEM-1857. Binding of Na+, or of Cs+ after it permeates the channel, to sites at the external channel entrance prevents blockers from entering the channel. Binding of Na+ to a blocked channel prevents blocker unbinding. Cs+ binding to a site at the internal channel entrance prevents IEM-1754 from occupying the deeper of its two sites of block. The results show the critical effects of permeant ions on the kinetics, affinity and voltage-dependence of channel blockers.
Collapse
Affiliation(s)
- S M Antonov
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
42
|
Noack H, Lindenau J, Rothe F, Asayama K, Wolf G. Differential expression of superoxide dismutase isoforms in neuronal and glial compartments in the course of excitotoxically mediated neurodegeneration: relation to oxidative and nitrergic stress. Glia 1998; 23:285-97. [PMID: 9671959 DOI: 10.1002/(sici)1098-1136(199808)23:4<285::aid-glia1>3.0.co;2-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To examine the cellular distribution of radical scavenging enzymes in glia, in comparison to that in neurons and their behaviour during excitotoxically induced neurodegenerative processes, protein levels and the cellular localization of cytosolic and mitochondrial superoxide dismutase (Cu/Zn- and Mn-SOD) were investigated in the rat brain undergoing quinolinic acid (Quin)-induced neurodegeneration. Evidence for the specificity of the applied antibodies to detect immunocytochemically these SOD isoforms was obtained from electron microscopy and Western blotting. In control striatum Mn-SOD was clearly confined to neurons, whereas Cu/Zn-SOD was found, rather delicately, only in astrocytes. Microglia failed to stain with antibodies to both SOD isoforms. Quin application resulted in an initial formation of oxygen and nitrogen radicals as determined by the decline in the ratio of ascorbic to dehydroascorbic acid and by increased levels of nitrated proteins, an indicator for elevated peroxynitrite formation. Morphologically, massive neuronal damage was seen in parallel. Astroglia remained intact but showed initially decreased glutamine synthetase activities. The levels of Mn-SOD protein increased 2-fold 24 h after Quin injection (Western blotting) and declined only slowly over the time period considered (10 days). Cu/Zn-SOD levels increased only 1.3-fold. Immunocytochemical studies revealed that the increase in Mn-SOD is confined to neurons, whereas that of Cu/Zn-SOD was observed only in astroglial cells. Quiescent microglial cells were, as a rule, free of immunocytochemically detectable SOD, whereas in activated microglia a few Mn-SOD immunolabeled mitochondria occurred. Our results suggest a differential protective response in the Quin lesioned striatum in that Mn-SOD is upregulated in neurons and Cu/Zn-SOD in astroglia. Both SOD-isoforms are assumed to be induced to prevent oxidative and nitric oxide/peroxynitrite-mediated damage. In the border zone of the lesion core this strategy may contribute to resist the noxious stimulus.
Collapse
Affiliation(s)
- H Noack
- Institut für Medizinische Neurobiologie, Otto-von-Guericke-Universität Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
43
|
Gao XM, Hashimoto T, Tamminga CA. Phencyclidine (PCP) and dizocilpine (MK801) exert time-dependent effects on the expression of immediate early genes in rat brain. Synapse 1998; 29:14-28. [PMID: 9552172 DOI: 10.1002/(sici)1098-2396(199805)29:1<14::aid-syn2>3.0.co;2-e] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mRNA expression pattern for four different immediate early genes was examined dynamically in rat brain after administration of phencyclidine (PCP; 0.86 or 8.6 mg/kg) or MK801 (0.1 or 1.0 mg/kg). Following each treatment, the expression of cfos, cjun, junB, and zif268 mRNA changed distinctively and dynamically between 1 and 48 hours. cfos mRNA was induced in cortical areas at early times after either dose of PCP or of MK801; the change was especially prominent in cingulate and auditory cortices. zif268 mRNA showed an early (1 hour) activation and a delayed (24-48 hour) suppression after PCP and MK801 in neocortical areas. PCP also caused cjun and junB mRNA induction in cortical areas at early times, with a distribution and time course similar to its effects on cfos mRNA. No alterations in cfos, cjun, or junB mRNA were found in neocortical or hippocampal areas at any delayed time (>6 hours) after PCP treatment, whereas suppression of zif268 expression was prominent even at 48 hours post-treatment. CPP, a competitive NMDA antagonist, showed a similar pattern of effects on cfos and zif268 mRNA expression. These functional consequences of a PCP- or MK801-induced reduction in NMDA-sensitive glutamate transmission may be relevant to an understanding of animal NMDA pharmacology and/or to clinical psychotomimetic side effects of antiglutamatergic treatments.
Collapse
Affiliation(s)
- X M Gao
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore 21228, USA
| | | | | |
Collapse
|
44
|
Doriat JF, Cortey A, Daval JL. Selective alterations in binding kinetic parameters and allosteric regulation of N-methyl-D-aspartate receptors after prolonged seizures in the developing rat brain. Pediatr Res 1998; 43:415-20. [PMID: 9505283 DOI: 10.1203/00006450-199803000-00018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Among glutamate receptor subtypes, the N-methyl-D-aspartate (NMDA) receptor plays a key role in brain development and cognitive processes, and mediates excitotoxic injury. To test the hypothesis that prolonged seizures may affect NMDA receptor characteristics in the developing brain, a 30-min episode of generalized seizures was induced in rats at 5, 10, 15 and 25 d of age by i.p. administrations of bicuculline, NMDA receptors were analyzed using specific binding of [3H]-labeled (+)-5-methyl-10,11-dihydro-5H-dibenzo-[a,d]-cycloheptene-5,10-imin e maleate (MK-801) in brain membrane preparations, and allosteric regulation was studied by addition of glutamate (10 microM) and glycine (10 microM). In control pups, total number of binding sites increased between 5 and 25 d, Bmax values varying from 1032 +/- 93 to 2311 +/- 449 fmol/mg protein, whereas receptor affinity decreased with age, the affinity constant (Kd) changing from 20.9 +/- 2.0 to 29.1 +/- 2.0 nM. Activation of NMDA receptors by glutamate and glycine led to age-dependent decreases in Kd values, from 30% at 5 d to 72% at 25 d. Seizures altered receptor density only at 5 d (by 40%). Receptor affinity was increased after seizures at 5, 15 and 25 d (from 12 to 60%). The capacity of receptor activation by glutamate and glycine was significantly reduced by seizures at 5 d. There was no change either in density nor affinity of receptors at 10 d. Therefore, as previously shown for central adenosine and benzodiazepine receptors, sustained seizures are able to alter the characteristics of NMDA receptors in a specific way depending on the maturational stage, suggesting developmental changes in the mechanisms of brain response to seizures.
Collapse
Affiliation(s)
- J F Doriat
- INSERM U.272, Université Henri Poincaré, Nancy, France
| | | | | |
Collapse
|
45
|
Moro MA, Leza JC, Lorenzo P, Lizasoain I. Peroxynitrite causes aspartate release from dissociated rat cerebellar granule neurones. Free Radic Res 1998; 28:193-204. [PMID: 9645395 DOI: 10.3109/10715769809065804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peroxynitrite (ONOO-) is a powerful oxidant which is formed from the reaction between nitric oxide (NO) and superoxide anion. It has therefore been proposed to mediate the toxic actions caused by NO. Since ONOO- may be formed in the central nervous system (CNS) in pathological conditions such as brain ischaemia, we decided to investigate whether this molecule induces the release of the endogenous excitatory amino acids glutamate and aspartate from neurones. We selected as biological model acutely dissociated rat cerebellar granule neurones in suspension to allow a direct interaction between ONOO- and target cells. Peroxynitrite caused a concentration-dependent release of aspartate but not of glutamate from dissociated cerebellar granule neurones. Peroxynitrite-induced aspartate release was inhibited by dithiothreitol, tetrodotoxin, and in Na+-deprived solutions and not affected by EGTA or pre-incubation with the cytosolic Ca2+ chelator BAPTA/AM. Peroxynitrite also induced an increase in intracellular Ca2+ concentration which was not affected in the presence of EGTA. These data show that ONOO- causes release of aspartate from cerebellar granule neurones and that this effect might arise from an alteration of Na+ membrane permeability leading subsequently to reversal of a Na+-dependent plasma membrane transporter of this excitatory amino acid. In addition, ONOO- alters Ca2+ homeostasis likely due to Na+ overload. Taken together, these findings may help and elucidate some of the intimate mechanisms of NO-induced neuronal damage in pathological circumstances.
Collapse
Affiliation(s)
- M A Moro
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain.
| | | | | | | |
Collapse
|
46
|
Chihab R, Oillet J, Bossenmeyer C, Daval JL. Glutamate triggers cell death specifically in mature central neurons through a necrotic process. Mol Genet Metab 1998; 63:142-7. [PMID: 9562968 DOI: 10.1006/mgme.1997.2644] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whereas immature neurons have been shown to be sensitive to hypoxia and to develop apoptosis, the role of glutamate in neuronal injury is more controversial. Effects of a 6-h exposure to glutamate or its analogues (100 microM) were studied over a period of 72 h in cultured central neurons at two maturational stages, i.e., after 6 and 13 days in vitro. Glutamate was without toxic effects in 6-day-old neurons which became vulnerable to the excitatory amino acid when they were coexposed to 30 nM staurosporine, a protein kinase C inhibitor. In 13-day-old neurons, glutamate and derivatives led to cell death and altered functional activity of surviving neurons over the next 72 h, the greatest injury being observed with glutamate and NMDA. At this developmental stage, persistent inhibition of protein synthesis induced by glutamate, as well as lack of beneficial effect from cycloheximide, argues against programmed neuronal death. Accordingly, quantitative cell nuclear analysis using a fluorescent dye revealed that the effects of glutamate reflect necrosis but not apoptosis. Furthermore, the inability of immature neurons to inhibit protein kinase C may account for their higher resistance to excitotoxicity.
Collapse
Affiliation(s)
- R Chihab
- INSERM U.272, Université Henri Poincaré, Nancy, France
| | | | | | | |
Collapse
|
47
|
Glutamate-agonist-evoked taurine release from the adult and developing mouse hippocampus in cell-damaging conditions. Amino Acids 1997. [DOI: 10.1007/bf01372596] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Johnson SM, Luo X, Bywood PT. Neurotoxic effects of kainic acid on substantia nigra neurons in rat brain slices. Exp Neurol 1997; 146:546-52. [PMID: 9270066 DOI: 10.1006/exnr.1997.6578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Excitatory amino acids (EAAs) have been implicated as mediators of cell death in neurodegenerative diseases involving catecholamine neurons. Few studies, however, have examined the toxic effects of EAAs on identified catecholamine neurons in vitro. We have investigated the neurotoxic effects of kainic acid in a rat brain substantia nigra (SN) slice preparation. Rats (60-80 g) were anesthetised with halothane and killed by cervical dislocation. SN slices, 300 microm thick, were incubated at 35 degrees C in a modified Krebs solution in the presence or absence of kainic acid and then fixed and processed for either immunohistochemistry (IHC) or electron microscopy (EM). In IHC experiments, SN neurons were labeled using antibody to tyrosine hydroxylase (TH) coupled to diaminobenzidine. In control slices, the antibody labeled not only the cell body but also the prolific dendritic arbor of SN neurons. Treatment with 50 microM kainic acid for 15 min or 2 h resulted in loss of TH staining and apparent fragmentation of the dendrites. EM provided ultrastructural evidence for kainic acid-induced degeneration of the dendritic arbor of SN neurons. Typically, the dendritic membrane was broken, or diffuse and collapsed. Ultrastructural damage, including clumping and marginalization of chromatin and vacuolation of the cytoplasm, was also observed in cell bodies. Damage to the dendritic arbor may occur early in the neurotoxic events leading to cell death, preceding the loss of the cell body. Our observations are consistent with the postulated role of EAAs as mediators of catecholamine neuron death.
Collapse
Affiliation(s)
- S M Johnson
- Department of Clinical Pharmacology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide
| | | | | |
Collapse
|
49
|
Borlongan CV, Koutouzis TK, Sanberg PR. 3-Nitropropionic acid animal model and Huntington's disease. Neurosci Biobehav Rev 1997; 21:289-93. [PMID: 9168265 DOI: 10.1016/s0149-7634(96)00027-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder associated with severe degeneration of basal ganglia neurons, especially the intrinsic neurons of the striatum, and characterized by progressive dementia and involuntary abnormal choreiform movements. Despite our increasing knowledge of the pathophysiology of HD, culminating with the discovery of the gene underlying HD, there has been no cure available to completely cease or reverse the progressive neurodegeneration and behavioral consequences of the disease. Animal models that closely mimic the neurobiological and clinical symptoms of the disease continue to offer alternative approaches for studying HD. Recently, we have reported that systemic administration of 3-nitropropionic acid (3-NP), an inhibitor of the mitochondrial citric acid cycle, results in a progressive locomotor deterioration resembling that of HD. Furthermore, we observed congruent with other reports, that 3-NP produces a very selective striatal degeneration. It differs mechanistically from excitotoxic lesions in that 3-NP irreversibly inhibits the mitochondrial citric acid cycle and leads to depressed ATP levels and elevated lactate concentrations. Recent neurochemical studies have implicated lowered glutamate levels and impaired oxidative energy metabolism as underlying mechanisms for many neurodegenerative disorders, including HD. Because of the mechanistic and pathologic similarities between 3-NP lesions and HD, 3-NP has been proposed as an alternative HD model. We further demonstrated that manipulating the time course of 3-NP injections leads to sustained hyperactivity (early HD) or hypoactivity (late HD). The present review will primarily discuss this progressive behavioral pathology induced by 3-NP that closely resembles that of HD. This body of evidence suggests that the 3-NP model is an improved HD model and may offer a unique system wherein testing of experimental treatments for HD can be carried out across different stages of the disease. This future application of the 3-NP model will be very useful especially in assessing the efficacy of treatment modalities, e.g. neural transplantation, during the progression of the disease.
Collapse
Affiliation(s)
- C V Borlongan
- Department of Surgery, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | |
Collapse
|
50
|
Saransaari P, Oja SS. Enhanced GABA release in cell-damaging conditions in the adult and developing mouse hippocampus. Int J Dev Neurosci 1997; 15:163-74. [PMID: 9178035 DOI: 10.1016/s0736-5748(97)80001-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The release of [3H]GABA from hippocampal slices from adult (3-month-old) and developing (7-day-old) mice was studied in cell-damaging conditions in vitro using a superfusion system. Cell damage was induced by modified superfusion media, including hypoxia, hypoglycemia, ischemia, the presence of Free radicals and oxidative stress. The basal release of GABA from the immature and mature hippocampus was generally markedly increased in all cell-damaging conditions. In 7-day-old mice the release was enhanced most in the presence of free radicals. 1.0 mM NaCN and ischemia, whereas in the adults 1.0 mM NaCN provoked the largest release of GABA, followed by ischemia and free radical-containing media. Potassium stimulation (50 mM K+) was still able to potentiate the release in all cell-damaging conditions in both age groups. It was shown by superfusing the slices in Ca- and Na-free media that ischemia-induced GABA release was Ca-independent, occurring by a reversed operation of Na-dependent cell membrane carriers in both adult and developing hippocampus. Glutamate and its receptor agonists, N-methyl-D-aspartate (NMDA), kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), potentiated GABA release only in the immature hippocampus by a receptor-mediated mechanism. The enhancement by kainate and AMPA receptors also operated under ischemic conditions. The massive amount of GABA released simultaneously with excitatory amino acids in the mature and immature hippocampus may be an important protective mechanism against excitotoxicity, counteracting harmful effects that lead to neuronal death. The GABA release induced by activation of presynaptic glutamate receptors may contribute particularly to the maintenance of homeostasis in the hippocampus upon impending hyperexcitation.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, University of Tampere Medical School, Finland
| | | |
Collapse
|