1
|
Koh SD, Drumm BT, Lu H, Kim HJ, Ryoo SB, Kim HU, Lee JY, Rhee PL, Wang Q, Gould TW, Heredia D, Perrino BA, Hwang SJ, Ward SM, Sanders KM. Propulsive colonic contractions are mediated by inhibition-driven poststimulus responses that originate in interstitial cells of Cajal. Proc Natl Acad Sci U S A 2022; 119:e2123020119. [PMID: 35446689 PMCID: PMC9170151 DOI: 10.1073/pnas.2123020119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
The peristaltic reflex is a fundamental behavior of the gastrointestinal (GI) tract in which mucosal stimulation activates propulsive contractions. The reflex occurs by stimulation of intrinsic primary afferent neurons with cell bodies in the myenteric plexus and projections to the lamina propria, distribution of information by interneurons, and activation of muscle motor neurons. The current concept is that excitatory cholinergic motor neurons are activated proximal to and inhibitory neurons are activated distal to the stimulus site. We found that atropine reduced, but did not block, colonic migrating motor complexes (CMMCs) in mouse, monkey, and human colons, suggesting a mechanism other than one activated by cholinergic neurons is involved in the generation/propagation of CMMCs. CMMCs were activated after a period of nerve stimulation in colons of each species, suggesting that the propulsive contractions of CMMCs may be due to the poststimulus excitation that follows inhibitory neural responses. Blocking nitrergic neurotransmission inhibited poststimulus excitation in muscle strips and blocked CMMCs in intact colons. Our data demonstrate that poststimulus excitation is due to increased Ca2+ transients in colonic interstitial cells of Cajal (ICC) following cessation of nitrergic, cyclic guanosine monophosphate (cGMP)-dependent inhibitory responses. The increase in Ca2+ transients after nitrergic responses activates a Ca2+-activated Cl− conductance, encoded by Ano1, in ICC. Antagonists of ANO1 channels inhibit poststimulus depolarizations in colonic muscles and CMMCs in intact colons. The poststimulus excitatory responses in ICC are linked to cGMP-inhibited cyclic adenosine monophosphate (cAMP) phosphodiesterase 3a and cAMP-dependent effects. These data suggest alternative mechanisms for generation and propagation of CMMCs in the colon.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Bernard T. Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Hongli Lu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Hyun Jin Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Seung-Bum Ryoo
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Heung-Up Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Ji Yeon Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Gangnam-Gu, Seoul, Korea 135-710
| | - Qianqian Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Thomas W. Gould
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Dante Heredia
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Brian A. Perrino
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| |
Collapse
|
2
|
The role of enteric inhibitory neurons in intestinal motility. Auton Neurosci 2021; 235:102854. [PMID: 34329834 DOI: 10.1016/j.autneu.2021.102854] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
The enteric nervous system controls much of the mixing and propulsion of nutrients along the digestive tract. Enteric neural circuits involve intrinsic sensory neurons, interneurons and motor neurons. While the role of the excitatory motor neurons is well established, the role of the enteric inhibitory motor neurons (IMNs) is less clear. The discovery of inhibitory transmission in the intestine in the 1960's in the laboratory of Geoff Burnstock triggered the search for the unknown neurotransmitter. It has since emerged that most neurons including the IMNs contain and may utilise more than one transmitter substances; for IMNs these include ATP, the neuropeptide VIP/PACAP and nitric oxide. This review distinguishes the enteric neural pathways underlying the 'standing reflexes' from the pathways operating physiologically during propulsive and non-propulsive movements. Morphological evidence in small laboratory animals indicates that the IMNs are located in the myenteric plexus and project aborally to the circular muscle, where they act by relaxing the muscle. There is ongoing 'tonic' activity of these IMNs to keep the intestinal muscle relaxed. Accommodatory responses to content further activate enteric pathways that involve the IMNs as the final neural element. IMNs are activated by mechanical and chemical stimulation induced by luminal contents, which activate intrinsic sensory enteric neurons and the polarised interneuronal ascending excitatory and descending inhibitory reflex pathways. The latter relaxes the muscle ahead of the advancing bolus, thus facilitating propulsion.
Collapse
|
3
|
Schemann M, Frieling T, Enck P. To learn, to remember, to forget-How smart is the gut? Acta Physiol (Oxf) 2020; 228:e13296. [PMID: 31063665 DOI: 10.1111/apha.13296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Abstract
The enteric nervous system (ENS) resides within the gut wall and autonomously controls gut functions through coordinated activation of sensory, inter and motor neurons. Its activity is modulated by the enteric immune and endocrine system as well as by afferent and efferent nerves of the parasympathetic and sympathetic nervous system. The ENS is often referred to as the second brain and hence is able to perform sophisticated tasks. We review the evidence that the "smartness" of the ENS may even extend to its ability to learn and to memorize. Examples for habituation, sensitization, conditioned behaviour and long-term facilitation are evidence for various forms of implicit learning. Moreover, we discuss how this may change not only basic Neurogastroenterology but also our understanding of development of gut diseases and chronic disorders in gut functions. At the same time, we identify open questions and future challenges to confirm learning, memory and memory deficits in the gut. Despite some remaining experimental challenges, we are convinced that the gut is able to learn and are tempted to answer the question with: Yes, the gut is smart.
Collapse
Affiliation(s)
| | | | - Paul Enck
- Department of Internal Medicine VI, Psychosomatic Medicine and Psychotherapy University Hospital Tübingen Tübingen Germany
| |
Collapse
|
4
|
Chambers JD, Thomas EA, Bornstein JC. Mathematical modelling of enteric neural motor patterns. Clin Exp Pharmacol Physiol 2014; 41:155-64. [PMID: 24471867 DOI: 10.1111/1440-1681.12209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 01/07/2023]
Abstract
1. The enteric nervous system modulates intestinal behaviours, such as motor patterns and secretion. Although much is known about different types of neurons and simple reflexes in the intestine, it remains unclear how complex behaviours are generated. 2. Mathematical modelling is an important tool for assisting the understanding of how the neurons and reflexes can be pieced together to generate intestinal behaviours. 3. Models have identified a functional role for slow excitatory post-synaptic potentials (EPSPs) by distinguishing between fast and slow EPSPs in the ascending excitation reflex. These models also discovered coordinated firing of similarly located neurons as emergent properties of feed-forward networks of interneurons in the intestine. A model of the recurrent network of intrinsic sensory neurons identified important control mechanisms to prevent uncontrolled firing due to positive feedback and that the interaction between these control mechanisms and slow EPSPs is necessary for the networks to encode ongoing sensory stimuli. This model also showed that such networks may mediate migrating motor complexes. 4. A network model of vasoactive intestinal peptide neurons in the submucosal plexus found this relatively sparse recurrent network could produce uncontrolled firing under conditions that appear to be related to cholera toxin-induced hypersecretion. 5. Abstract modelling of the intestinal fed-state motor patterns has identified how stationary contractions can arise from a polarized network. 6. These models have also helped predict and/or explained pharmacological evidence for two rhythm generators and the requirement of feedback from contractions in the circular muscle.
Collapse
Affiliation(s)
- Jordan D Chambers
- Department of Physiology, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
5
|
Gwynne RM, Bornstein JC. Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1162-72. [PMID: 17218474 DOI: 10.1152/ajpgi.00441.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mechanisms underlying nutrient-induced segmentation within the gut are not well understood. We have shown that decanoic acid and some amino acids induce neurally dependent segmentation in guinea pig small intestine in vitro. This study examined the neural mechanisms underlying segmentation in the circular muscle and whether the timing of segmentation contractions also depends on slow waves. Decanoic acid (1 mM) was infused into the lumen of guinea pig duodenum and jejunum. Video imaging was used to monitor intestinal diameter as a function of both longitudinal position and time. Circular muscle electrical activity was recorded by using suction electrodes. Recordings from sites of segmenting contractions showed they are always associated with excitatory junction potentials leading to action potentials. Recordings from sites oral and anal to segmenting contractions revealed inhibitory junction potentials that were time locked to those contractions. Slow waves were never observed underlying segmenting contractions. In paralyzed preparations, intracellular recording revealed that slow-wave frequency was highly consistent at 19.5 (SD 1.4) cycles per minute (c/min) in duodenum and 16.6 (SD 1.1) c/min in jejunum. By contrast, the frequencies of segmenting contractions varied widely (duodenum: 3.6-28.8 c/min, median 10.8 c/min; jejunum: 3.0-27.0 c/min, median 7.8 c/min) and sometimes exceeded slow-wave frequencies for that region. Thus nutrient-induced segmentation contractions in guinea pig small intestine do not depend on slow-wave activity. Rather they result from a neural circuit producing rhythmic localized activity in excitatory motor neurons, while simultaneously activating surrounding inhibitory motor neurons.
Collapse
Affiliation(s)
- R M Gwynne
- Department of Physiology, University of Melbourne, Parkville, Vic 3010, Australia.
| | | |
Collapse
|
6
|
Patierno S, Zellalem W, Ho A, Parsons CG, Lloyd KCK, Tonini M, Sternini C. N-methyl-D-aspartate receptors mediate endogenous opioid release in enteric neurons after abdominal surgery. Gastroenterology 2005; 128:2009-19. [PMID: 15940633 DOI: 10.1053/j.gastro.2005.03.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS We tested the hypothesis that N-methyl-D-aspartate (NMDA) receptors mediate surgery-induced opioid release in enteric neurons. METHODS We used mu opioid receptor (muOR) internalization as a measure of opioid release with immunohistochemistry and confocal microscopy. MuOR internalization was quantified in enteric neurons from nondenervated and denervated ileal segments of guinea pig after abdominal laparotomy with and without pretreatment with NMDA-receptor antagonists acting at different recognition sites (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,b] cyclohepten-5,10-imine (MK-801) or (D) 2-amino-5-phosphopenoic acid (AP-5) at .5, 1 mg/kg; 8-chloro-4-hydroxy-1-oxo-1,2-dihydropyridazinol [4,5-]quinoline-5-oxide choline (MRZ 2/576) or 8-chloro-1,4-dioxo-1,2,3,4-tetrahydropyridazinol [4,5-]quinoline choline salt (MRZ 2/596) at .3, 1 mg/kg, or with an antagonist for the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (1, 3 mg/kg). To determine whether NMDA stimulation induces opioid release, (1) ilea were exposed to NMDA (100 micromol/L) and D-serine (10 micromol/L) with or without the antagonist MK-801 or AP-5 (50 micromol/L); and (2) neuromuscular preparations of the ileum were stimulated electrically (20 Hz, 20 min) with or without MK-801 or AP-5 (50 micromol/L). RESULTS MuOR endocytosis induced by abdominal laparotomy was inhibited significantly by NMDA-receptor antagonists in nondenervated and denervated ileal segments, but not by the AMPA-receptor antagonist. MuOR endocytosis in neurons exposed to NMDA or electrical stimulation was prevented by NMDA-R antagonists. CONCLUSIONS Abdominal laparotomy evokes local release of glutamate that results in endogenous opioid release through the activation of peripheral NMDA receptors. This suggests an interaction between the glutamatergic and opioid systems in response to the noxious and perhaps mechanosensory stimulation of surgery.
Collapse
Affiliation(s)
- Simona Patierno
- CURE Digestive Diseases Research Center, Digestive Diseases Division, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Bian XC, Heffer LF, Gwynne RM, Bornstein JC, Bertrand PP. Synaptic transmission in simple motility reflex pathways excited by distension in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2004; 287:G1017-27. [PMID: 15256359 DOI: 10.1152/ajpgi.00039.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined specific receptor/transmitter combinations used at functionally identified synapses in ascending and descending reflex pathways of guinea pig distal colon. Excitatory (EJPs) or inhibitory junction potentials (IJPs) were recorded intracellularly from nicardipine-paralyzed circular smooth muscle in either the oral or anal recording chamber of a three-chambered organ bath, respectively. Blockade of synaptic transmission in the central chamber with a 0.25 mM Ca2+/12 mM Mg2+ solution abolished EJPs evoked by distension applied either in the central or the far (anal) chamber. IJPs evoked by distension in the central or the far (oral) chamber were depressed to approximately 50% of control. Hexamethonium (nicotinic receptor antagonist, 200 microM) in the central chamber reduced IJPs evoked by far or central distension to 50%, whereas EJPs evoked by far distension were abolished and EJPs evoked by central distension were reduced to 70% of control. Hexamethonium in the recording chambers reduced both IJPs and EJPs evoked by central distension to approximately 50%. EJPs in the ascending pathway were unaffected by blockade of muscarinic receptors in the central chamber or blockade of neurokinin 3 tachykinin receptors in this or the recording chamber. In the descending pathway, blockade of P2 receptors in the same chambers had only a minor effect on distension-evoked IJPs. Thus some intrinsic sensory neurons of guinea pig colon have long descending projections (>30 mm), but ascending projections of <15 mm. In contrast to the ileum, transmission between ascending or descending interneurons and from sensory neurons to descending interneurons is predominantly via nicotinic receptors; but transmission to inhibitory or excitatory motoneurons and from sensory neurons to ascending interneurons involves nicotinic and other unidentified receptors.
Collapse
Affiliation(s)
- X-C Bian
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
8
|
Bertrand PP, Thomas EA. MULTIPLE LEVELS OF SENSORY INTEGRATION IN THE INTRINSIC SENSORY NEURONS OF THE ENTERIC NERVOUS SYSTEM. Clin Exp Pharmacol Physiol 2004; 31:745-55. [PMID: 15566388 DOI: 10.1111/j.1440-1681.2004.04092.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. The enteric nervous system (ENS) is present in the wall of the gastrointestinal tract and contains all the functional classes of neuron required for complete reflex arcs. One of the most important and intriguing classes of neuron is that responsive to sensory stimuli: sensory neurons with cell bodies intrinsic to the ENS. 2. These neurons have three outstanding and interrelated features: (i) reciprocal connections with each other; (ii) a slow excitatory post-synaptic potential (EPSP) resulting from high-speed firing in other sensory neurons; and (iii) a large after-hyperpolarizing potential (AHP) at the soma. Slow EPSP depolarize the cell body, generate action potentials (APs) and reduce the AHP. Conversely, the AHP limits the firing rate and, hence, reduces transmission of slow EPSP. 3. Processing of sensory information starts at the input terminals as different patterns of APs depending on the sensory modality and recent sensory history. At the soma, the ability to fire APs and, hence, drive outputs is also strongly determined by the recent firing history of the neuron (through the AHP) and network activity (through the slow EPSP). Positive feedback within the population of intrinsic sensory neurons means that the network is able to drive outputs well beyond the duration of the stimuli that triggered them. 4. Thus, sensory input and subsequent reflex generation are integrated over several hierarchical levels within the network on intrinsic sensory neurons.
Collapse
Affiliation(s)
- Paul P Bertrand
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
9
|
Furness JB, Jones C, Nurgali K, Clerc N. Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 2004; 72:143-64. [PMID: 15063530 DOI: 10.1016/j.pneurobio.2003.12.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2003] [Accepted: 12/03/2003] [Indexed: 02/08/2023]
Abstract
Intrinsic primary afferent neurons (IPANs) of the enteric nervous system are quite different from all other peripheral neurons. The IPANs are transducers of physiological stimuli, including movement of the villi or distortion of the mucosa, contraction of intestinal muscle and changes in the chemistry of the contents of the gut lumen. They are the first neurons in intrinsic reflexes that influence the patterns of motility, secretion of fluid across the mucosal epithelium and local blood flow in the small and large intestines. In the guinea pig small intestine, where they have been characterized in detail, IPANs have Dogiel type II morphology, that is they are large round or oval neurons with multiple processes, some of which end close to the luminal surface of the intestine, and some of which form synapses with enteric interneurons, motor neurons and with other IPANs. The IPANs have well-defined ionic currents through which their excitability, and their functions in enteric nerve circuits, is determined. These include voltage-gated Na(+) and Ca(2+) currents, a long lasting calcium-activated K(+) current, and a hyperpolarization-activated cationic current. The IPANs exhibit long-term changes in their states of excitation that can be induced by extended periods of low frequency activity in synaptic inputs and by inflammatory mediators, either applied directly or released during an inflammatory challenge. The IPANs may be involved in pathological changes in enteric function following inflammation.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy & Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville, Vic. 3010, Australia.
| | | | | | | |
Collapse
|
10
|
Ji SW, Park H, Chung JP, Lee SI, Lee YH. Effects of Tegaserod on Ileal Peristalsis of Guinea Pig In Vitro. J Pharmacol Sci 2004; 94:144-52. [PMID: 14978352 DOI: 10.1254/jphs.94.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The mechanisms of prokinetic action of tegaserod in the gastrointestinal tract has not been studied in detail. The aim of this study was to investigate the effect of tegaserod on peristaltic reflexes and propagating peristaltic waves in guinea pig ileum. A partitioned organ bath divided into three chambers was used to investigate the effect of tegaserod on peristaltic reflexes. A sensory stimulus was applied to the intermediate chamber, and changes in the circular muscle tension were monitored in a peripheral chamber. Another peristaltic bath was used to investigate the effect of tegaserod on peristaltic waves induced by intraluminal perfusion. Guinea pig ileum exhibited contractions in the circular muscle both orally and anally in response to mucosal stroking. Tegaserod (10(-8) - 10(-6) M) did not influence the maximal amplitude and the area under the curve of contraction both orally and anally to a mucosal stimulus. Intraluminal perfusion of fluid containing tegaserod (10(-8) - 10(-6) M) significantly increased the number of peristaltic waves in a concentration-dependent manner (P<0.05). Also, tegaserod (10(-8) - 10(-6) M) significantly increased the area under the curve of peristaltic waves (P<0.05). It is concluded that tegaserod has prokinetic action on guinea pig ileum by increasing the number of the circular muscle contractions during peristalsis.
Collapse
Affiliation(s)
- Sang Won Ji
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
11
|
Thomas EA, Bornstein JC. Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission. Neuroscience 2003; 120:333-51. [PMID: 12890506 DOI: 10.1016/s0306-4522(03)00039-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recurrent networks of neurons communicating via excitatory connections are common in the nervous system. In the absence of mechanisms to control firing (collectively termed negative feedback), these networks are likely to be bistable and unable to meaningfully encode input signals. In most recurrent circuits, negative feedback is provided by a specialized subpopulation of interneurons, but such neurons are absent from some systems, which therefore require other forms of negative feedback. One such circuit is found within the enteric nervous system of the intestine, where AH/Dogiel type II neurons are interconnected via excitatory synapses acting through metabotropic receptors to produce slow excitatory postsynaptic potentials (slow EPSPs). Negative feedback in this recurrent network may come from either inhibitory postsynaptic potentials arising from the terminals that produce slow EPSPs or from the after hyperpolarizing potentials (AHPs) characteristic of these neurons. We have examined these possibilities using mathematical analysis, based on the Wilson-Cowan model, and computer simulations. Analysis of steady states showed that, under appropriate conditions, both types of negative feedback can provide robust regulation of firing allowing the networks to encode input signals. Numerical simulations were performed using large, anatomically realistic networks with realistic models for metabotropic transmission and suppression of the AHP. In the presence of constant exogenous input, parameters controlling aspects of synaptic events were varied, confirming the analytical results for static stimuli. The simulated networks also responded to time varying inputs in a manner consistent with known physiology. In addition, simulation revealed that neurons in networks with inhibitory contransmission fired in erratic bursts, a phenomenon observed in neurons in unparalysed tissue. Thus, either inhibitory contransmission or AHPs, or both, can allow recurrent networks of AH/Dogiel type II neurons to encode ongoing inputs in a biologically useful way. These neurons appear to be intrinsic primary afferent neurons (IPANs), which implies that the IPANs in a region act in a coordinated fashion.
Collapse
Affiliation(s)
- E A Thomas
- Department of Physiology, University of Melbourne, Parkville 3010, Australia.
| | | |
Collapse
|
12
|
Bian XC, Bornstein JC, Bertrand PP. Nicotinic transmission at functionally distinct synapses in descending reflex pathways of the rat colon. Neurogastroenterol Motil 2003; 15:161-71. [PMID: 12680915 DOI: 10.1046/j.1365-2982.2003.00393.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We examined descending reflex pathways in the rat colon using intracellular recording techniques. Inhibitory junction potentials (IJPs) were recorded from circular smooth muscle when descending pathways were excited by combined mucosal compression and distension. IJPs were reduced to 71% of control when synaptic transmission was blocked in the oral stimulation chamber of a divided organ bath suggesting that two reflex pathways exist, the one involving descending sensory neurones and the other involving descending interneurones. Hexamethonium (200 micromol L(-1)) in the recording chamber abolished reflexly evoked IJPs, while in the stimulation chamber, it was as effective as synaptic blockade. When hexamethonium was added to a chamber lying between the stimulation and recording chambers, it again sharply depressed IJPs to 27% of control; an extent similar to synaptic blockade. A P2 receptor antagonist did not reveal any purinergic neurotransmission. Either granisetron (5-HT3 receptor antagonist, 1 micromol L(-1)) or SB204070 (5-HT4 receptor antagonist, 1 micromol L(-1)) in the stimulation chamber significantly decreased IJPs; these decreases were not additive. We conclude that some sensory neurones and interneurones in rat colon have long anally projecting axons and that acetylcholine, acting via nicotinic receptors, is the primary neurotransmitter from sensory neurones, to inhibitory motor neurones and between interneurones.
Collapse
Affiliation(s)
- X-C Bian
- Department of Physiology, University of Melbourne, Parkville VIC, Australia
| | | | | |
Collapse
|
13
|
Weber E, Neunlist M, Schemann M, Frieling T. Neural components of distension-evoked secretory responses in the guinea-pig distal colon. J Physiol 2001; 536:741-51. [PMID: 11691869 PMCID: PMC2278890 DOI: 10.1111/j.1469-7793.2001.00741.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
1. Using a Ussing chamber and neuronal retrograde tracing with 1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) we characterized the afferent and efferent neuronal pathways which mediated distension-evoked secretion in the guinea-pig distal colon. 2. Acute capsaicin application (10 microM) to the serosal site of the Ussing chamber evoked a secretory response which was blocked by tetrodotoxin (1 microM), the combined application of the NK1 and NK3 receptor antagonists CP-99,994-1 and SR 142801 (1 microM), and by combined application of atropine (10 microM) and the VIP receptor antagonist VIP(6-28) (10 microM). Functional desensitization of extrinsic primary afferents by long-term application of capsaicin significantly diminished distension-evoked secretion by 46 %. 3. After functional desensitization by capsaicin, serosal application of gadolinium (100 microM) inhibited the distension-evoked chloride secretion by 54 %; the L-type Ca(2+) channel blocker nifedipine (1 microM) and the 5-HT(1P) receptor antagonist renzapride (1 microM) had no effect. The combination of atropine and VIP(6-28) or the combination of NK1 and NK3 receptor antagonists almost abolished distension-evoked secretion. 4. The secretory response evoked by electrical field stimulation, carbachol (1 microM) or VIP (1 microM) was not attenuated by gadolinium. Field stimulation-evoked chloride secretion was not affected by blockade of NK1 and NK3 receptors. 5. Twelve per cent of DiI-labelled submucosal neurones with projections to the mucosa were immunoreactive for choline acetyltransferase, substance P and calbindin and very probably represented intrinsic primary afferent neurones. 6. Distension-evoked chloride secretion was mediated by capsaicin-sensitive extrinsic primary afferents and by stretch-sensitive intrinsic primary afferent neurones. Both the extrinsic and intrinsic afferents converge on common efferent pathways. These pathways consist of VIPergic and cholinergic secretomotor neurones that are activated via NK1 and NK3 receptors.
Collapse
Affiliation(s)
- E Weber
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University of Düsseldorf, Germany
| | | | | | | |
Collapse
|
14
|
Percy WH, Brunz JT, Burgers RE, Fromm TH, Merkwan CL, van Dis J. Interrelationship between colonic muscularis mucosae activity and changes in transmucosal potential difference. Am J Physiol Gastrointest Liver Physiol 2001; 281:G479-89. [PMID: 11447028 DOI: 10.1152/ajpgi.2001.281.2.g479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This in vitro study investigated the relationship between rabbit colonic muscularis mucosae motor activity and changes in transmucosal potential difference. Spontaneous muscle contractions and potential difference oscillations occurred independently and were not neurally driven. ACh and histamine directly stimulated the muscularis mucosae, but their mucosal effects were largely indirect, suggesting that muscularis mucosae contractions promote epithelial secretion. 1,1-Dimethyl-4-phenyl-piperazinium iodide and vasoactive intestinal polypeptide induced large potential difference changes but small muscularis mucosae contractions, demonstrating mucosal secretion without significant muscle activity. Lowered intraluminal pH directly stimulated the muscle, whereas a bile salt-lipid mixture evoked TTX- and atropine-sensitive increases in its contractile activity. Increased intraluminal pressure and hypertonic luminal perfusion did not elicit muscularis mucosae excitation. Thus under basal conditions muscle and mucosal activities are independent, but evoked muscularis mucosae contractions can stimulate epithelial secretion. In response to specific luminal stimuli, muscularis mucosae motor activity is increased via the activation of cholinergic nerves. These data suggest that muscularis mucosae and mucosal functions are physiologically linked and that their activities can be coordinated by multiple mechanisms.
Collapse
Affiliation(s)
- W H Percy
- Division of Basic Biomedical Sciences, School of Medicine, University of South Dakota, Vermillion, South Dakota 57069-2390, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Bian X, Bertrand PP, Bornstein JC. Descending inhibitory reflexes involve P2X receptor-mediated transmission from interneurons to motor neurons in guinea-pig ileum. J Physiol 2000; 528:551-60. [PMID: 11060131 PMCID: PMC2270162 DOI: 10.1111/j.1469-7793.2000.00551.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The role of P2X receptors in descending inhibitory reflexes evoked by distension or mucosal distortion in the guinea-pig ileum was studied using intracellular recording from the circular muscle in a two-chambered organ bath. This allowed separate superfusion of the sites of reflex stimulation and recording, thereby allowing drugs to be selectively applied to different parts of the reflex pathway. Inhibitory junction potentials (IJPs) evoked by electrical field stimulation (EFS) in the recording chamber were compared with those evoked during reflexes to control for effects of P2 receptor antagonists on neuromuscular transmission. The P2 receptor antagonists suramin (100 microM) and pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (10 and 60 microM; PPADS), when added to the recording chamber, depressed reflexly evoked IJPs significantly more than those evoked by EFS. In particular, 10 microM PPADS depressed IJPs evoked by distension or mucosal distortion by about 50 %, but had little effect on IJPs evoked by EFS. Blockade of synaptic transmission in the stimulation chamber with a low Ca2+-high Mg2+ solution depressed, but did not abolish, IJPs evoked by distension. The residual reflex IJPs were unaffected by PPADS (10 microM), hyoscine (1 microM), hyoscine plus hexamethonium (200 microM), or hysocine plus hexamethonium plus PPADS in the recording chamber. We conclude that P2X receptors are important for synaptic transmission from descending interneurons to inhibitory motor neurons in descending inhibitory reflex pathways of guinea-pig ileum. Transmission from anally directed axons of distension-sensitive intrinsic sensory neurons to inhibitory motor neurons is unlikely to involve P2X, muscarinic or nicotinic receptors.
Collapse
Affiliation(s)
- X Bian
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
16
|
Stevens RJ, Publicover NG, Smith TK. Propagation and neural regulation of calcium waves in longitudinal and circular muscle layers of guinea pig small intestine. Gastroenterology 2000; 118:892-904. [PMID: 10784588 DOI: 10.1016/s0016-5085(00)70175-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The relative movements of longitudinal muscle (LM) and circular muscle (CM) and the role that nerves play in coordinating their activities has been a subject of controversy. We used fluorescent video imaging techniques to study the origin and propagation of excitability simultaneously in LM and CM of the small intestine. METHODS Opened segments of guinea pig ileum were loaded with the Ca(2+) indicator fluo-3. Mucosal reflexes were elicited by lightly depressing the mucosa with a sponge. RESULTS Spontaneous Ca(2+) waves occurred frequently in LM (1.2 s(-1)) and less frequently in CM (3.2 min(-1)). They originated from discrete pacing sites and propagated at rates 8-9 times faster parallel (LM, 87 mm/s; CM, 77 mm/s) compared with transverse to the long axis of muscle fibers. The presence of Ca(2+) waves in one muscle layer did not affect the origin, rate of conduction, or range of propagation in the other layer. The extent of propagation was limited by collisions with neighboring waves or recently excited regions. Simultaneous excitation of both muscle layers could be elicited by mucosal stimulation of either ascending or descending reflex pathways. Neural excitation resulted in an increase in the frequency of Ca(2+) waves and induction of new pacing sites without eliciting direct coupling between layers. CONCLUSIONS Localized, spontaneous Ca(2+) waves occur independently in both muscle layers, promoting mixing (pendular or segmental) movements, whereas activation of neural reflexes stimulates Ca(2+) waves synchronously in both layers, resulting in strong peristaltic or propulsive movements.
Collapse
Affiliation(s)
- R J Stevens
- Biomedical Engineering Program, Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
17
|
Furness JB, Clerc N. Responses of afferent neurons to the contents of the digestive tract, and their relation to endocrine and immune responses. PROGRESS IN BRAIN RESEARCH 2000; 122:159-72. [PMID: 10737056 DOI: 10.1016/s0079-6123(08)62136-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- J B Furness
- University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
18
|
Thomas EA, Bertrand PP, Bornstein JC. Genesis and role of coordinated firing in a feedforward network: a model study of the enteric nervous system. Neuroscience 1999; 93:1525-37. [PMID: 10501477 DOI: 10.1016/s0306-4522(99)00243-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enteric nervous system can generate complex motor patterns independently of the central nervous system. The ascending enteric reflex pathway consists of sensory neurons, long chains of a single class of orally directed interneuron and excitatory motor neurons. Because of the importance of this pathway in peristalsis, it was modelled from the firing of sensory neurons through to muscle membrane activation. The model was anatomically realistic in the number of neurons simulated and in the patterns of connections between neurons. The model was also realistic in the simulation of ligand-gated currents in neuron and muscle membrane, current flow in the muscle syncytium and voltage-dependent currents in muscle. Sensory neurons were activated in a manner consistent with a brief mechanical stimulus. Transmission between sensory neurons and first-order interneurons was by slow excitatory transmission, which caused interneurons to fire continuously for several hundred milliseconds. Interneurons then transmitted to higher order interneurons by fast excitatory postsynaptic potentials, each lasting for around 40 ms. As the activity propagated along the pathway, random firing became progressively more synchronized between neurons, until the network as a whole was firing in a coordinated manner. The coordinated firing was a robust phenomenon over a wide range of network and neuron parameters. It is therefore possible that this is a general property of feedforward networks that receive high levels of sustained input. The smooth muscle model indicated that bursting input to the muscle may increase the likelihood of muscle cells firing action potentials when compared with uniform input. In addition, the syncytium model explains how the predicted muscle excitation might be related to current experimental observations.
Collapse
Affiliation(s)
- E A Thomas
- Department of Physiology, University of Melbourne, Parkville, Australia.
| | | | | |
Collapse
|
19
|
Abstract
1. We report the first simultaneous mechanical reflex responses of the longitudinal muscle (LM) and circular muscle (CM) layers of the guinea-pig ileum following mucosal stimulation and distension in vitro. 2. Dissection techniques were used to prevent mechanical interaction between the LM and CM layers both oral and anal to a stimulus site. 3. All graded stimuli produced graded contractions of both the LM and CM orally and anally to the stimulus. Contractions occurred synchronously in the LM and CM and under no circumstances were inhibitory responses recorded in either muscle layer, despite the presence of ongoing cholinergic tone in both the LM and CM. Contractions were abolished by tetrodotoxin (1.6 microM). 4. Local brush stroking of the mucosa evoked a peristaltic wave which readily conducted distally over 13 cm, without the presence of fluid in the lumen. No descending relaxation was observed. 5. Apamin (300 nM) disrupted evoked peristaltic waves and significantly increased the rate-of-rise of the LM and CM contractions anal to a stimulus, and the LM oral to a stimulus. 6. Nomega-nitro-L-arginine (100 microM), a nitric oxide synthesis inhibitor, had no overall significant effect on the characteristics of the LM and CM contractions, although on occasion an enhancement in their peak amplitude was noted. 7. It is suggested that the guinea-pig ileum does not conform to the 'law of the intestine' as postulated by Bayliss & Starling (1899). Rather, local physiological stimulation of the ileum elicits a contraction both orally and anally to a stimulus, which occurs synchronously in both the CM and LM layers. Apamin-sensitive inhibitory neurotransmission modulates the rate-of-rise of the anal contraction of the CM, possibly to generate distal propulsion.
Collapse
Affiliation(s)
- N Spencer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | |
Collapse
|
20
|
Johnson PJ, Shum OR, Thornton PD, Bornstein JC. Evidence that inhibitory motor neurons of the guinea-pig small intestine exhibit fast excitatory synaptic potentials mediated via P2X receptors. Neurosci Lett 1999; 266:169-72. [PMID: 10465700 DOI: 10.1016/s0304-3940(99)00275-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intracellular recordings were used to study the contribution of nicotinic and P2X receptors to synaptic transmission to morphologically identified myenteric neurons of guinea-pig ileum. Hexamethonium (100 microM) abolished fast excitatory synaptic potentials (EPSPs) in all orally projecting neurons, but fast EPSPs in anally projecting neurons were resistant to this antagonist. The non-cholinergic fast EPSPs were virtually abolished by suramin (100 microM). This suggests that P2X receptors are important in descending motility reflexes. However, suramin and hexamethonium together did not affect descending inhibitory reflexes when applied to the site of transmission between interneurons in this pathway. These data suggest that P2X receptors are not involved in transmission between descending interneurons, but may be important for transmission to inhibitory motor neurons.
Collapse
Affiliation(s)
- P J Johnson
- Department of Physiology, University of Melbourne, Parkville Vic, Australia
| | | | | | | |
Collapse
|
21
|
Brookes SJ, Chen BN, Costa M, Humphreys CM. Initiation of peristalsis by circumferential stretch of flat sheets of guinea-pig ileum. J Physiol 1999; 516 ( Pt 2):525-38. [PMID: 10087350 PMCID: PMC2269259 DOI: 10.1111/j.1469-7793.1999.0525v.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Segments of isolated guinea-pig intestine, 12 mm long, were distended slowly by intraluminal fluid infusion or by mechanical stretch as either a tube or flat sheet. In all cases, at a constant threshold length, a sudden, large amplitude contraction of the circular muscle occurred orally, corresponding to the initiation of peristalsis. 2. Circumferential stretch of flat sheet preparations evoked graded contractions of the longitudinal muscle (the 'preparatory phase'), which were maintained during circular muscle contraction. This suggests that the lengthening reported during the emptying phase of peristalsis is due to mechanical interactions. 3. The threshold for peristalsis was lower with more rapid stretches and was also lower in long preparations (25 mm) compared with short preparations (5-10 mm), indicating that ascending excitatory pathways play a significant role in triggering peristalsis. 4. Stretching a preparation beyond the threshold for peristalsis evoked contractions of increasing amplitude; thus peristalsis is graded above its threshold. However, during suprathreshold stretch maintained at a constant length, contractions of the circular muscle quickly declined in amplitude and frequency. 5. Circular muscle cells had a resting membrane potential approximately 6 mV more negative than the threshold for action potentials. During slow circumferential stretch, subthreshold graded excitatory motor input to the circular muscle occurred, prior to the initiation of peristalsis. However, peristalsis was initiated by a discrete large excitatory junction potential (12 +/- 2 mV) which evoked bursts of smooth muscle action potentials and which probably arose from synchronized firing of ascending excitatory neuronal pathways.
Collapse
Affiliation(s)
- S J Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia.
| | | | | | | |
Collapse
|
22
|
Abstract
The enteric nervous system exerts local control over mixing and propulsive movements in the small intestine. When digestion is in progress, intrinsic primary afferent neurons (IPANs) are activated by the contents of the intestine. The IPANs that have been physiologically characterized are in the intrinsic myenteric ganglia. They are numerous, about 650/mm length of small intestine in the guinea pig, and communicate with each other through slow excitatory transmission to form self-reinforcing assemblies. High proportions of these neurons respond to chemicals in the lumen or to tension in the muscle; physiological stimuli activate assemblies of hundreds or thousands of IPANs. The IPANs make direct connections with muscle motor neurons and with ascending and descending interneurons. The circular muscle contracts as an annulus, about 2-3 mm in minimum oral-to-anal extent in the guinea pig small intestine. The smooth muscle cells form an electrical syncytium that is innervated by about 300 excitatory and 400 inhibitory motor neurons per mm length. The intrinsic nerve circuits that control mixing and propulsion in the small intestine are now known, but it remains to be determined how they are programmed to generate the motility patterns that are observed.
Collapse
Affiliation(s)
- W A Kunze
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
23
|
Grider JR, Foxx-Orenstein AE, Jin JG. 5-Hydroxytryptamine4 receptor agonists initiate the peristaltic reflex in human, rat, and guinea pig intestine. Gastroenterology 1998; 115:370-80. [PMID: 9679042 DOI: 10.1016/s0016-5085(98)70203-3] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS The peristaltic reflex induced by mucosal stimuli is mediated by intrinsic sensory calcitonin gene-related peptide (CGRP) neurons activated by 5-hydroxytryptamine (5-HT) released from enterochromaffin cells. The involvement of 5-HT4 receptors was examined with selective 5-HT4 agonists. METHODS Compartmented intestinal segments were used to measure neurotransmitter release and the mechanical components of the reflex. RESULTS In human jejunal and rat and guinea pig colonic segments, addition of the 5-HT4 agonist HTF 919 elicited release of CGRP only into the compartment where the 5-HT4 agonist was added; vasoactive intestinal peptide (VIP) was released only into the compartment where descending relaxation was measured, and substance P (SP) was released only into the compartment where ascending contraction was measured. The CGRP antagonist hCGRP8-37 inhibited both mechanical responses by 75%-80%. Release of CGRP, VIP, and SP as well as ascending and descending responses were inhibited by selective 5-HT4 but not by selective 5-HT3 antagonists. Similar results were obtained with a different 5-HT4 agonist, R093877. However, HTF 919 was 10-30 times more potent (median effective concentration, approximately 10 nmol/L for peptide release and 5 nmol/L for mechanical responses) than R093877. CONCLUSIONS Selective 5-HT4 agonists applied to the mucosa in nanomolar concentrations trigger the peristaltic reflex in human, rat, and guinea pig intestine.
Collapse
Affiliation(s)
- J R Grider
- Departments of Physiology and Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | |
Collapse
|
24
|
Gregersen H, Kassab G, Pallencaoe E, Lee C, Chien S, Skalak R, Fung YC. Morphometry and strain distribution in guinea pig duodenum with reference to the zero-stress state. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:G865-74. [PMID: 9357829 DOI: 10.1152/ajpgi.1997.273.4.g865] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the present study is to determine the distribution of residual circumferential strains along the duodenum in anesthetized guinea pigs. A silicone elastomer was allowed to harden in the duodenal lumen under a pressure of 0.7 kPa. The duodenum was excised with the cast and photographed. The zero-stress state was obtained by cutting rings of duodenum radially. The geometric configuration at the zero-stress state is of fundamental importance, because it is the basic state with respect to which the physical stresses and strains are defined. A basic piece of information is the way the tangent vector rotates from one end of the circumference to the other. In the duodenum at zero-stress state, the total rotation of the tangent from one tip to the other is -500 to -850 , with the lowest absolute value in the proximal duodenum. In other words, the duodenum usually turns itself inside out on changing from a loaded state to the zero-stress state. The serosal circumference, the duodenal wall thickness, and the ratio of wall thickness to mucosal circumference decreased in the distal direction. In the pressurized state, the serosal Cauchy strain was tensile and increased in the distal direction; the mucosal Cauchy strain was compressive in the proximal half of the duodenum and tensile in the distal half. The large circumferential residual strains must be taken into account in a study of physiological problems in which the stresses and strains are important, e.g., the bolus transport function.
Collapse
Affiliation(s)
- H Gregersen
- Department of Bioengineering, Institute of Mechanics and Materials, University of California, San Diego, La Jolla 92093-0404, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Yuan SY, Brookes SJ, Costa M. Distension-evoked ascending and descending reflexes in the isolated guinea-pig stomach. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1997; 62:94-102. [PMID: 9021655 DOI: 10.1016/s0165-1838(96)00115-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Distension-evoked gastric reflexes were studied by intracellular recording from circular muscle cells in the gastric fundus, corpus and antrum in the isolated guinea-pig stomach. Localised electrical stimulation, 2 mm circumferential to the recording electrode, evoked inhibitory junctions potentials in all three gastric regions, sometimes followed by depolarisations in the antrum. In the mid corpus, the inhibitory responses were substantially reduced by Nw-nitro-L-arginine (100 microM), unmasking excitatory junction potentials. Residual hyperpolarisations were blocked by apamin (0.5 microM) which also enhanced the amplitude of excitatory junction potentials. These excitatory junction potentials were abolished by hyoscine (1 microM). Thus transmission from inhibitory motor neurons is mediated by both nitric oxide and an apamin-sensitive mechanism. Transmission from excitatory motor neurons to the circular muscle is mediated by acetylcholine via muscarinic receptors. Balloon distension of 10 s duration of the fundus or antrum elicited inhibitory junction potentials in circular muscle cells of the mid corpus. These inhibitory junction potentials were blocked by tetrodotoxin (0.6 microM) and were greatly reduced by Nw-nitro-L-arginine (100 microM). The residual hyperpolarisations were blocked by apamin (0.5 microM). This indicates the presence of ascending and descending inhibitory reflex pathways in the stomach. In 3 out of 7 experiments, following blockade of inhibitory transmission, small nerve-mediated excitatory junction potentials were evoked by antral distension indicating the presence of an additional ascending excitatory reflex pathway. Distension of the corpus elicited prominent inhibitory junction potentials, sometimes followed by large depolarisations, in circular muscle cells in the fundus, but not in the antrum. This suggests that there is also an ascending inhibitory reflex pathway from the corpus to the fundus but no distension-sensitive descending reflex pathway from the corpus to the antrum. These results demonstrate that within the stomach there are reflex pathways which can be activated by localised distension and project at some distance orally and aborally within the gastric wall. It is likely that the inhibitory reflex pathways are involved in gastric adaptive relaxation which occurs when the intact, isolated stomach is distended. The excitatory reflex pathways from the antrum to the corpus are likely to be involved in the intrinsic excitatory reflex responses observed in the isolated intact stomach to distension and thus be involved in the mixing and emptying of gastric contents.
Collapse
Affiliation(s)
- S Y Yuan
- Department of Human Physiology, Flinders University, Adelaide, Australia
| | | | | |
Collapse
|
26
|
Abstract
As the function of the gastrointestinal tract is to a large degree mechanical, it has become increasingly popular to acquire distensibility data in motility research based on various parameters. Hence it is important to know on which geometrical and mechanical assumptions the various parameters are based. Currently, compliance and tone derived from pressure-volume curves are by far the most often used parameters. However, pressure-volume relations obtained in tubular organs must be carefully interpreted as they provide no direct measure of luminal cross-sectional area and other variables useful in plane stress and strain analysis. Thus, erroneous conclusions concerning tissue distensibility may be deduced. Other parameters, such as wall tension, stress and strain, give more useful information about mechanical behaviour. Distensibility data procure significance in fluid mechanics and in the study of tone, peristaltic reflexes, and mechanoreceptor kinematics. Such data are needed for the determination of the interaction between stimulus, electrical responses in neurons and the mechanical behaviour of the gut. Furthermore, from a clinical perspective, investigation of visco-elastic properties is important because GI diseases are associated with growth and remodelling. For example, prestenotic dilatation, increased collagen synthesis, dysmotility and altered distensibility are common features of obstructive diseases. The purpose of this review is to discuss the physiological and clinical importance of acquiring biomechanical data, distensibility parameters and interpretation of these results and their associated errors. We will also discuss some aspects of the relationship between morphology, growth and biomechanics. Finally, we will outline a number of techniques to study the mechanical properties of the GI tract.
Collapse
Affiliation(s)
- H Gregersen
- Centre of Biomechanics and Motility, Skejby University Hospital, Denmark
| | | |
Collapse
|
27
|
Johnson PJ, Bornstein JC, Yuan SY, Furness JB. Analysis of contributions of acetylcholine and tachykinins to neuro-neuronal transmission in motility reflexes in the guinea-pig ileum. Br J Pharmacol 1996; 118:973-83. [PMID: 8799571 PMCID: PMC1909536 DOI: 10.1111/j.1476-5381.1996.tb15495.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The roles of acetylcholine (ACh) and tachykinins in neuro-neuronal transmission during ascending excitatory and descending inhibitory reflexes were studied by recording intracellular reflex responses of the circular muscle to physiological stimuli. Experiments were carried out in opened segments of guinea pig ileum in an organ bath that was partitioned so that three regions could be independently exposed to drugs. 2. Ascending excitatory reflexes evoked by either distension from the serosal side or compression of the mucosa were depressed by 55% and 85%, respectively, in the presence of hexamethonium (200 microM) and by 30% and 45%, respectively, by a desensitizing concentration of the selective NK3 receptor agonist, senktide (1 microM), in the chamber in which reflexes were initiated. Together, hexamethonium and senktide abolished responses to compression. A residual response to distension persisted. This was abolished by hyoscine (1 microM). 3. Hexamethonium (200 microM) abolished ascending reflexes when applied to the region between the stimulus and the recording sites, or to the recording chamber. 4. Descending reflex responses were reduced by 35% by synaptic blockade in the stimulus chamber with physiological saline containing 0.1 mM Ca2+ plus 10 mM Mg2+. Senktide (1 microM) in the stimulus chamber reduced distension reflexes to the same extent as synaptic blockade, whereas hexamethonium (200 microM) and hyoscine (1 microM) depressed responses by less than 20%. Responses to compression were reduced by 40% by senktide alone, while senktide and hexamethonium together reduced responses by 60%, an effect similar to synaptic blockade. Under these conditions, hyoscine in the stimulus chamber restored reflexes evoked by distension, but did not alter those evoked by mucosal compression. 5. Total synaptic blockade in the intermediate chamber, between stimulus and recording sites, reduced descending reflex responses by more than 90%. In contrast, hexamethonium (200 microM) had no effect and hyoscine (1 microM) reduced only the responses to distension (by 30%). Senktide (1 microM) depressed responses to both stimuli by approximately 80%. 6. Application of hexamethonium (200 microM) to the recording chamber depressed descending reflex responses to distension applied in the near stimulation chamber by 15%, but had no effect on responses to compression in the near chamber or to either stimulus applied in the far chamber. 7. Descending reflexes evoked by near chamber stimuli were unaffected by hyoscine (1 microM) or senktide (1 microM) applied to the recording chamber; hyoscine enhanced reflexes evoked by compression in the far chamber by 50%. 8. For the ascending excitatory reflex pathway, it is concluded that transmission from sensory neurones is mediated by ACh acting via both nicotinic and muscarinic receptors, and by tachykinins acting at NK3 receptors. Transmission from ascending interneurones appears to be predominantly via nicotinic receptors. The descending inhibitory pathways are more complex, and while transmission from sensory neurones involves nicotinic, muscarinic and NK3 receptor-dependent components, transmission from descending interneurones to inhibitory motor neurones is neither cholinergic nor due to tachykinins acting via NK3 receptors.
Collapse
Affiliation(s)
- P J Johnson
- Department of Physiology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
28
|
Furness JB, Johnson PJ, Pompolo S, Bornstein JC. Evidence that enteric motility reflexes can be initiated through entirely intrinsic mechanisms in the guinea-pig small intestine. Neurogastroenterol Motil 1995; 7:89-96. [PMID: 7621324 DOI: 10.1111/j.1365-2982.1995.tb00213.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although motility reflexes can be elicited in the intestine in vivo after all neural connections with the central nervous system are cut, or in vitro in isolated intestinal segments, it is not proven that the cell bodies of the primary sensory neurons for these reflexes are in the intestinal wall. It is feasible that the nerve cells are in dorsal root ganglia and that axon reflexes are involved in the initiation of the reflexes. We have examined reflexes in segments of guinea-pig intestine in which extrinsic denervation, 9-11 days before the intestine was removed, and isolation of the intestine in vitro were combined. The experimental segments were isolated from extrinsic inputs by severing nerves in the mesentery and those running in the gut wall that entered the segment. The effectiveness of denervation was confirmed histochemically. Ascending and descending reflexes were evoked by mucosal distortion or distension and responses were recorded by intracellular microelectrodes in the circular muscle. Reflex responses recorded after denervation were no different to those recorded from control tissue. It is concluded that, in the small intestine of the guinea-pig, cell bodies of primary sensory neurons for mucosal and probably for distension reflexes are intrinsic to the organ.
Collapse
Affiliation(s)
- J B Furness
- Department of Anatomy & Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
29
|
Yuan SY, Bornstein JC, Furness JB. Pharmacological evidence that nitric oxide may be a retrograde messenger in the enteric nervous system. Br J Pharmacol 1995; 114:428-32. [PMID: 7533617 PMCID: PMC1510253 DOI: 10.1111/j.1476-5381.1995.tb13244.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. The effects of inhibition of nitric oxide synthase on neuro-neuronal and neuromuscular transmission during motility reflexes in the small intestine of the guinea-pig were examined. 2. Isolated segments of intestine were secured in a three chambered organ bath so that different parts of the reflex pathways could be independently exposed to drug-containing solutions. Reflexes were evoked by distension or compression of the mucosa in two adjacent chambers and reflex responses were recorded from the circular muscle with intracellular microelectrodes in the third chamber. Thus, the actions of drugs at connections between sensory neurones and interneurones, between interneurones and other interneurones and at motor neurones could be distinguished. 3. NG-monomethyl-L-arginine (L-NMMA; 100 microM), an inhibitor of nitric oxide synthase, did not affect the ascending excitatory reflex when added to either the central stimulation chamber or the recording chamber. 4. In contrast, L-NMMA (100 microM) enhanced the descending inhibitory reflex when added to the chamber in which stimuli were applied. This effect was prevented by prior exposure to L-arginine (100 microM), which had no effect by itself. Conduction of reflexes between the stimulus chamber and the recording chamber was unaffected by the presence of L-NMMA in an intervening chamber. 5. L-NMMA (100 microM) added to the recording chamber depressed the descending inhibitory reflex, an effect that was prevented by previous exposure to L-arginine. 6. The nitric oxide donor, sodium nitroprusside (100 microM), added to the stimulus chamber, depressed both ascending excitatory and descending inhibitory reflexes. When added to the middle chamber,sodium nitroprusside had no effect on conduction of reflexes through this chamber.7. It is deduced that nitric oxide, released from the cell bodies of descending interneurones, suppresses transmission from synaptic connections made with them by enteric sensory neurones.
Collapse
Affiliation(s)
- S Y Yuan
- Department of Physiology, University of Melbourne, Parkville, Vic, Australia
| | | | | |
Collapse
|
30
|
Yuan SY, Bornstein JC, Furness JB. Investigation of the role of 5-HT3 and 5-HT4 receptors in ascending and descending reflexes to the circular muscle of guinea-pig small intestine. Br J Pharmacol 1994; 112:1095-100. [PMID: 7952869 PMCID: PMC1910247 DOI: 10.1111/j.1476-5381.1994.tb13196.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. The present study was undertaken to ascertain whether 5-hydroxytryptamine (5-HT) acting at either 5-HT3 or 5-HT4 receptors plays a significant role in motility reflexes in the guinea-pig small intestine. 2. An isolated segment of small intestine was opened along its mesenteric border and pinned, mucosa uppermost, in a three chambered organ bath so that the oral, middle and anal regions of a single preparation could be separately superfused. 3. Conventional intracellular recording methods were used to monitor the responses of the circular muscle in the oral or the anal end chambers when distension was applied in either of the other two chambers or the mucosal villi were compressed in the middle chamber. Drugs were added to the middle chamber. 4. 5-HT3 receptor antagonists (tropisetron, 0.1-10 microM; granisetron, 1 microM and BRL 46470, 1 microM) depressed the ascending excitatory reflex evoked by these stimuli but had no effect on the descending inhibitory reflex. The depression of the excitatory reflex was observed whether the reflex was evoked from the chamber containing the drug or was simply conducted, via interneurones, through this chamber. 5. The 5-HT4 receptor antagonist, SDZ 205-557 (1 microM), had no significant effect on either the ascending or descending reflex pathways. However, 5-HT4 receptors were present as cisapride (0.1 microM) significantly enhanced the ascending excitation without affecting the descending inhibition. This effect of cisapride was converted to a significant depression of the ascending reflex by SDZ 205-557. 6. The results suggest that 5-HT3, but not 5-HT4, receptors play an important role in the ascending excitatory reflex and that these receptors may be on interneurones in the reflex pathway.
Collapse
Affiliation(s)
- S Y Yuan
- Department of Physiology, University of Melbourne, Parkville, Vic., Australia
| | | | | |
Collapse
|
31
|
Bornstein JC. Local neural control of intestinal motility: nerve circuits deduced for the guinea-pig small intestine. Clin Exp Pharmacol Physiol 1994; 21:441-52. [PMID: 7982274 DOI: 10.1111/j.1440-1681.1994.tb02540.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. Propulsion of digesta along the intestine appears to occur by the action of a series of local reflexes which cause contraction oral to the digesta and relaxation of circular muscle on the anal side. 2. There is now substantial evidence available about the identities of the enteric neurons that mediate these reflexes. 3. The motor neurons and interneurons of the reflex pathways lie within the myenteric plexus. These neurons can be classified electrophysiologically as S-neurons and have distinctive projections and neurochemistries. 4. The sensory neurons may lie in the myenteric plexus, but there is some evidence for sensory neurons in the submucous plexus. A contribution from extrinsic sensory neurons to local motility reflexes cannot be ruled out. Intrinsic sensory neurons are probably AH-neurons and are large multi-axonal cells.
Collapse
Affiliation(s)
- J C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Neya T, Mizutani M, Yamasato T. Role of 5-HT3 receptors in peristaltic reflex elicited by stroking the mucosa in the canine jejunum. J Physiol 1993; 471:159-73. [PMID: 7907142 PMCID: PMC1143956 DOI: 10.1113/jphysiol.1993.sp019895] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The role played by the 5-HT3 receptor, a serotonin subtype receptor, in peristaltic reflexes was studied in dogs first given ketamine, then anaesthetized with urethane (1.0 g kg-1, I.V.) and alpha-chloralose (100 mg kg-1, I.V.). The jejunal loop was partitioned into two segments with respect to blood supply. Drugs were infused intra-arterially into each segment. 2. Stroking of the mucosa of the aboral and oral segments elicited an ascending contraction and a descending relaxation, respectively. 3. The ascending contraction was concentration-dependently inhibited by treatment of the aboral segment with the 5-HT3 receptor antagonists ICS 205-930 and ondansetron (1.4 pmol min-1 to 14 nmol min-1 for both). The maximal inhibition was 49.5 and 69.3%, respectively. The response was not affected by treatment of the oral segment with these drugs. The descending relaxation was inhibited by 51.4 and 60.8%, respectively, by treatment of the oral segment with ICS 205-930 and ondansetron (1.4 nmol min-1 for both). 4. The ascending contraction was markedly inhibited by treatment of either segment with hexamethonium (140 nmol min-1). The response was abolished by treating both segments with hexamethonium and by treating the oral segment with atropine (14 nmol min-1). 5. These results suggest firstly that, in the canine jejunum, enteric neurons with 5-HT3 receptors play a role as sensory neurons or interneurons in the ascending excitatory and the descending inhibitory pathways of the peristaltic reflex elicited by stroking the mucosa, and secondly, that the ascending limb is composed of cholinergic interneurons and motoneurons.
Collapse
Affiliation(s)
- T Neya
- Department of Physiology, Okayama University Medical School, Japan
| | | | | |
Collapse
|
33
|
McMurray G, Shaw C, Johnston CF, Halton DW. Choline acetyltransferase (ChAT) immunoreactivity in a sub-population of mammalian intestinal endocrine cells. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1993; 106:509-15. [PMID: 7904923 DOI: 10.1016/0742-8413(93)90171-g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
1. The distribution of choline acetyltransferase (ChAT) in rat and guinea-pig intestine has been analysed using an indirect immunofluorescence technique. 2. ChAT immunoreactivity was apparent in nerve fibres and cell bodies of the myenteric and submucous plexus and in fibres throughout the muscle coats and the mucosa. 3. Staining was also evident in a sub-population of mucosal endocrine cells in the small intestine, implying the existence of this enzyme and its product (acetylcholine) in these cells. 4. These data are consistent with previous observations on the distribution of ChAT activity in mammalian intestine.
Collapse
Affiliation(s)
- G McMurray
- School of Clinical Medicine, Queen's University of Belfast, Northern Ireland, U.K
| | | | | | | |
Collapse
|
34
|
Yuan SY, Furness JB, Bornstein JC. Post-stimulus depression of reflex changes in circular muscle activity in the guinea pig small intestine. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1992; 40:171-80. [PMID: 1460230 DOI: 10.1016/0165-1838(92)90198-p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The extent and time course of depression of successive reflex responses recorded with intracellular microelectrodes from the circular smooth muscle of the guinea pig small intestine were determined. Two stimuli were used, distension and distortion of the mucosa by compression; these were applied either at the same or at different sites. Excitatory responses oral and inhibitory responses anal to the stimuli were recorded. Post-stimulus depression of both ascending excitatory and descending inhibitory reflexes occurred, but the extent of depression was slightly less for the descending inhibition. A conditioning distension lasting 9 s depressed the excitatory response to a test distension applied 2 s later at the same site by 90%. After 30 s the depression was 50% and test responses were normal if inter-stimulus intervals were increased to 2 min. Increasing the duration of the conditioning stimulus increased the depression. Post-stimulus depression was less for compression stimuli than for distension stimuli and prior mucosal compression had almost no effect on responses to subsequent distension. The post-stimulus depression was greater if conditioning and test stimuli were at the same rather than different sites. For different sites, conditioning stimuli at 15 mm from the recording site (near) depressed responses to stimuli at 30 mm (far) to a greater extent than far stimuli depressed responses to near stimuli. If the conditioning stimulus at 15 mm was maintained until after the far test stimulus was applied, depression of the test response did not occur. It is concluded that the major sites of post-stimulus depression are at the synapses between primary sensory neurons and the first interneurons of reflex pathways, and that post-stimulus depression also occurs at other places in the pathway, presumably at synapses between interneurons or between interneurons and motor neurons.
Collapse
Affiliation(s)
- S Y Yuan
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|