1
|
Flett DL, Lim CH, Ho SM, Mark RF, Marotte LR. Retinocollicular synaptogenesis and synaptic transmission during formation of the visual map in the superior colliculus of the wallaby (Macropus eugenii). Eur J Neurosci 2006; 23:3043-50. [PMID: 16819993 DOI: 10.1111/j.1460-9568.2006.04831.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spontaneous retinal activity has been implicated in the development of the topographic map in the superior colliculus (SC) but a direct demonstration that it reaches the colliculus is lacking. Here we investigate when the retinocollicular projection is capable of transmitting information from the retina in a marsupial mammal, the wallaby (Macropus eugenii). The projection develops postnatally, allowing in vivo analysis throughout development. Quantification of retinocollicular synaptogenesis has been combined with electrophysiology of the development and characteristics of retinocollicular transmission, including in vivo and in vitro recording in the same animals. Prior to postnatal day (P) 12-14 in vitro recording detected only presynaptic activity in retinal axons in the colliculus, in response to stimulation of the optic nerve. Postsynaptic responses, comprising both N-methyl-d-aspartate (NMDA) and non-NMDA responses, were first detected in vitro at P12-14 and retinal synapses were identified. In contrast, postsynaptic responses to optic nerve stimulation could not be detected in vivo until P39, around the time that retinal axons begin arborizing. Around this age density and numbers of total synapses began increasing in the retinorecipient layers of the colliculus. By P55-64, the numbers of retinal synapses had increased significantly and density and numbers of retinal and total synapses continued to increase up to P94-99. During this time the map is undergoing refinement and degenerating axons and synapses were present. The discrepancy between in vitro and in vivo onset of functional connections raises the question of when retinal activity reaches collicular cells in the intact, unanaesthetized animal and this will require investigation.
Collapse
Affiliation(s)
- D L Flett
- Central Nervous System Stability and Degeneration Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | |
Collapse
|
2
|
Sakata Y, Fujioka T, Endoh H, Nakamura S. In vivooptical recordings of synaptic transmission and intracellular Ca2+and Cl-in the superior colliculus of fetal rats. Eur J Neurosci 2006; 23:1405-16. [PMID: 16553604 DOI: 10.1111/j.1460-9568.2006.04683.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the N-methyl-D-aspartate (NMDA) receptor is known to play a crucial role in activity-dependent remodeling of synaptic connections in the fetal superior colliculus (SC), its contribution to the electrical activity of fetal SC neurons has not been determined. Furthermore, whether gamma-aminobutyric acid (GABA)-mediated inhibition occurs either as early as prenatal periods or only after eye opening has been controversial. We therefore performed optical recordings using voltage-, Ca2+- and Cl--sensitive fluorescent dyes to analyse synaptic transmission and changes in intracellular Ca2+ and Cl- in the SC of fetal rats that were still connected with the dams by the umbilical cord. Excitatory and inhibitory responses were evoked by focal SC stimulation. The excitatory synaptic responses are composed of early and late components. The early component was mediated by both non-NMDA and NMDA receptors, whereas the late component occurred mainly via NMDA receptors. Train pulse stimulation at higher currents was required for induction of the inhibition, which was antagonized by bicuculline, and blocking of the GABA-mediated inhibition by bicuculline uncovered masked excitatory synaptic responses. Focal SC stimulation induced increases in [Cl-]i and [Ca2+]i that were mediated by GABA-A receptors and mainly by NMDA receptors, respectively. GABA antagonists augmented SC-induced increases in [Ca2+]i. These results indicate that, in the fetal SC, excitatory and inhibitory synaptic transmissions occur before birth, that the NMDA receptor is a major contributor to excitatory synaptic transmission and increased [Ca2+]i, and that the GABA-A receptor is already functioning to inhibit excitatory neurotransmission.
Collapse
Affiliation(s)
- Yoshiyuki Sakata
- Department of Neuroscience, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | |
Collapse
|
3
|
Henneberger C, Jüttner R, Schmidt SA, Walter J, Meier JC, Rothe T, Grantyn R. GluR- and TrkB-mediated maturation of GABA receptor function during the period of eye opening. Eur J Neurosci 2005; 21:431-40. [PMID: 15673442 DOI: 10.1111/j.1460-9568.2005.03869.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synapse maturation includes the shortening of postsynaptic currents, due to changes in the subunit composition of respective transmitter receptors. Patch clamp experiments revealed that GABAergic inhibitory postsynaptic currents (ISPCs) of superior colliculus neurons significantly shorten from postnatal day (P)1 to P21. The change started after P6 and was steepest between P12 and P15, i.e. around eye opening. It was accompanied by enhanced sensitivity to zolpidem and increased expression of GABAAR alpha1 mRNA, whereas the level of alpha3 mRNA decreased. This result is consistent with the hypothesis that the IPSC kinetics of developing collicular neurons is determined by the level of alpha1/alpha3. As alpha1/alpha3 peaked when N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic currents reached their maximum (P12) it was asked whether NMDAR activity can shape the kinetics of GABAergic IPSCs. Cultured collicular neurons were treated with NMDA or NMDAR block, and it was found that the former resulted in faster and the latter in slower IPSC decay. Group I mGluR blockade had no effect. Experiments with bdnf-/- mice revealed that, with some delay, the increase of alpha1/alpha3 mRNA also occurred in the chronic absence of brain-derived neurotrophic factor (BDNF) and, again, this was accompanied by the shortening of IPSCs. In addition, there was an age-dependent depression of IPSC amplitudes by endogenous BDNF, which might reflect the developmental increase in the expression of GABAAR gamma2L, as opposed to gamma2S. Together, these experiments suggest that the GABAAR alpha subunit switch and the associated change in the IPSC kinetics were specifically controlled by NMDAR activity and independent on the signalling through group I mGluRs or TrkB.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Blotting, Northern
- Brain-Derived Neurotrophic Factor/deficiency
- Dizocilpine Maleate/pharmacology
- Embryo, Mammalian
- Eye/growth & development
- GABA Agonists/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- In Vitro Techniques
- Mice
- Mice, Knockout
- N-Methylaspartate/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Pyridines/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, trkB/physiology
- Receptors, GABA-A/physiology
- Receptors, Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Superior Colliculi/cytology
- Superior Colliculi/growth & development
- Synapses/drug effects
- Synapses/physiology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Valine/analogs & derivatives
- Valine/pharmacology
- Zolpidem
Collapse
Affiliation(s)
- Christian Henneberger
- Sensory and Developmental Physiology, Johannes Mueller Centre for Physiology, University Medicine (Charité), Tucholskystr. 2, D-10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Henneberger C, Kirischuk S, Grantyn R. Brain-derived neurotrophic factor modulates GABAergic synaptic transmission by enhancing presynaptic glutamic acid decarboxylase 65 levels, promoting asynchronous release and reducing the number of activated postsynaptic receptors. Neuroscience 2005; 135:749-63. [PMID: 16154289 DOI: 10.1016/j.neuroscience.2005.06.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 06/10/2005] [Accepted: 06/14/2005] [Indexed: 11/28/2022]
Abstract
Brain-derived neurotrophic factor is known to modulate the function of GABAergic synapses, but the site of brain-derived neurotrophic factor action is still a matter of controversy. This study was aimed at further dissecting the functional alterations produced by brain-derived neurotrophic factor treatment of GABAergic synaptic connections in cultures of the murine superior colliculus. The functional consequences of long-term brain-derived neurotrophic factor treatment were assessed by analysis of unitary evoked and delayed inhibitory postsynaptic currents in response to high frequency stimulation of single axons. It was found that brain-derived neurotrophic factor facilitated the asynchronous release, but had no effect on the probability of evoked release, the size of the readily releasable pool, and the paired-pulse behavior of evoked inhibitory postsynaptic currents. However, the amplitudes of evoked inhibitory postsynaptic currents, delayed inhibitory postsynaptic currents and miniature inhibitory postsynaptic currents were significantly reduced. Non-stationary fluctuation analysis revealed a decrease in the open channel number at the miniature/evoked inhibitory postsynaptic current peak, but no effect on the mean GABA(A) receptor single channel conductance. Quantitative immunocytochemistry uncovered a significant elevation of presynaptic levels of glutamic acid decarboxylase 65. Together, these findings indicate that brain-derived neurotrophic factor treatment induces pre- as well as postsynaptic changes. What effect predominates will depend on the presynaptic activity pattern: at low activation rates brain-derived neurotrophic factor-treated synapses display a pronounced postsynaptic depression, but at high frequencies this depression is fully compensated by an enhancement of asynchronous release.
Collapse
Affiliation(s)
- C Henneberger
- Sensory and Developmental Physiology Group, Institute of Neurophysiology, Johannes-Mueller-Center of Physiology, Charité-University Medicine Berlin, Tucholskystr. 2, D-10117 Berlin, Germany
| | | | | |
Collapse
|
5
|
Mize RR, Salt TE. Contribution of GABAergic inhibition to synaptic responses and LTD early in postnatal development in the rat superior colliculus. Eur J Neurosci 2004; 20:1331-40. [PMID: 15341604 DOI: 10.1111/j.1460-9568.2004.03596.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the development of optic tract evoked field potentials (FP) in the rodent superior colliculus (SC) and the effect of GABA antagonists upon their development and upon induction of long-term depression (LTD). Brain slices were cut from Lister Hooded rats. The optic tract was stimulated while recording from the superficial grey layer. GABAergic inhibition was assessed by adding 100 microm picrotoxin and 3 microm CGP55845 antagonists to block GABA A,B,C receptors. LTD was induced with a 50 Hz, 20 s tetanus. At age P2, the FP consisted only of a presynaptic spike. The GABA antagonists had no effect. By P4, the FP consisted of a presynaptic spike, a longer latency population spike, and a field excitatory postsynaptic potential (fEPSP). The fEPSP was slightly prolonged by the GABA antagonists at this age. By P7-P14, a prominent FP with trailing fEPSP was recorded. The GABA antagonists usually had a large effect, with the fEPSP increasing in both amplitude and duration. A mature FP was usually recorded in P15-P23 slices where the GABA antagonist effect remained substantial. LTD could be induced in 17 of 30 control slices from rats aged P4-P26. The average fEPSP amplitude after tetanus was 77.9% of control. Pre-treatment with GABA antagonists produced a short-term potentiation (average 114.0%), rather than LTD, in 14 of 19 cases. This STP was followed by a more prolonged potentiation in 12 of the 14 cases. We conclude that GABAergic inhibitory circuits mature before eye opening and that GABA contributes to induction of LTD in the developing SC.
Collapse
Affiliation(s)
- R Ranney Mize
- Department of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC 1V 9EL, UK.
| | | |
Collapse
|
6
|
Kato-Negishi M, Muramoto K, Kawahara M, Kuroda Y, Ichikawa M. Developmental changes of GABAergic synapses formed between primary cultured cortical neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 152:99-108. [PMID: 15351497 DOI: 10.1016/j.devbrainres.2004.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2004] [Indexed: 11/29/2022]
Abstract
The characteristics of functional changes of GABAergic synapses between cultured rat cortical neurons were observed by monitoring intracellular calcium level ([Ca2+]in) during development in vitro. After 5 days in vitro (DIV), cultured cortical neurons spontaneously exhibited synchronous oscillatory changes in [Ca2+]in, which were derived from synaptic activity. Exposure to bicuculline, antagonist of gamma-aminobutyric acid (GABA)(A) receptors, caused a marked decrease in the frequency of [Ca2+]in oscillations at 7-20 DIV. Although the frequency of spontaneous oscillations increased during this culture period, the ratio of the decrease in the frequency following bicuculline treatment did not significantly change. Thereafter, to investigate the detailed morphological changes of GABAergic synapses during development in vitro, the cultured neurons were immunostained with antibodies to glutamic acid decarboxylase (GAD), synaptophysin and GABA(A) receptor and were observed under a confocal laser microscope. Most of the GAD-positive puncta colocalized with synaptophysin-positive puncta and were opposed to GABA(A) receptor-positive structures. The images of GAD-positive puncta were reconstructed from the confocal three-dimensional data to analyze their number, volume, and surface area. The number of these puncta increased with culture time at 7-20 DIV. Although the volume of individual GAD-positive puncta did not significantly change, the surface area decreased in a time-dependent manner over the culture period. This system that we developed enabled us to investigate in detail the morphological and functional changes of GABAergic synapses during neuronal development.
Collapse
Affiliation(s)
- Midori Kato-Negishi
- Laboratory of Anatomy and Cell Biology, Department of Basic Technique and Facilities, Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, 2-6 Musashi-dai, Fuchu, Tokyo 183-8526, Japan.
| | | | | | | | | |
Collapse
|
7
|
Behan M, Steinhacker K, Jeffrey-Borger S, Meredith MA. Chemoarchitecture of GABAergic neurons in the ferret superior colliculus. J Comp Neurol 2002; 452:334-59. [PMID: 12355417 DOI: 10.1002/cne.10378] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
gamma-Aminobutyric acid (GABA)ergic neurons are thought to play a key role both in visual processing and in the complex sensory-motor transformations that take place in the mammalian superior colliculus. To understand the organization of GABAergic neurons in the ferret superior colliculus, we applied antisera to several markers of GABAergic function, including GABA, two isoforms of its synthetic enzyme glutamic acid decarboxylase (GAD-65 and GAD-67), and the GABA transporter, GAT-1. We also applied antisera to several calcium binding proteins (calbindin [CB], calretinin [CR], and parvalbumin [PV]) and neuronal nitric oxide synthase (NOS), chemical markers that colocalize with GABA in some areas of the central nervous system. The distribution of GABAergic neurons in the ferret is similar to that of other mammalian species. GABAergic neurons in the ferret superior colliculus were small, morphologically diverse, and widely distributed throughout all layers of the colliculus. As has been shown in other mammalian species, neurons expressing PV, CB, CR, and NOS were differentially distributed in layers and patches throughout the ferret colliculus. None of these markers, however, showed a distribution that mirrored that of GABAergic neurons. Furthermore, few GABAergic neurons colocalized these neurochemical markers. Only 14% of GABAergic neurons in the superficial layers and 18% of neurons in the deeper layers colocalized PV, 14% of GABAergic neurons in the superficial layers and 10% in the deeper layers colocalized CB, and only 1% of GABAergic neurons in both the superficial and deep layers colocalized nitric oxide synthase. Thus, the arrangement of GABAergic neurons in the ferret superior colliculus is broadly distributed and is distinct from other recognized organizational patterns in the superior colliculus.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706-1102, USA.
| | | | | | | |
Collapse
|
8
|
Kirischuk S, Clements JD, Grantyn R. Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. J Physiol 2002; 543:99-116. [PMID: 12181284 PMCID: PMC2290498 DOI: 10.1113/jphysiol.2002.021576] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Paired pulse depression (PPD) is a common form of short-term synaptic plasticity. The aim of this study was to characterise PPD at the level of a single inhibitory bouton. Low-density collicular cultures were loaded with the Ca2+ indicator Oregon Green-1, active boutons were stained with RH414, and action potentials were blocked with TTX. Evoked IPSCs (eIPSCs) and presynaptic Ca2+ transients were recorded in response to direct presynaptic depolarisation of an individual bouton. The single bouton eIPSCs had a low failure rate (< 0.1), large average quantal content (3-6) and slow decay (tau(1) = 15 ms, tau(2) = 81 ms). The PPD of eIPSCs had two distinct components: PPD(fast) and PPD(slow) (tau = 86 ms and 2 s). PPD(slow) showed no dependence on extracellular Ca2+ concentration, or on the first eIPSC's failure rate or amplitude. Most probably, it reflects a release-independent inhibition of exocytosis. PPD(fast) was only observed in normal or elevated Ca2+. It decreased with the failure rate and increased with the amplitude of the first eIPSC. It coincided with paired pulse depression of the presynaptic Ca2+ transients (tau = 120 ms). The decay of the latter was accelerated by EGTA, which also reduced PPD(fast). Therefore, a suppressive effect of residual presynaptic Ca2+ on subsequent Ca2+ influx is considered the most likely cause of PPD(fast). PPD(fast) may also have a postsynaptic component, because exposure to a low-affinity GABA(A) receptor antagonist (TPMPA; 300 microM) counteracted PPD(fast), and asynchronous IPSC amplitudes were depressed for a short interval following an eIPSC. Thus, at these synapses, PPD is produced by at least two release-independent presynaptic mechanisms and one release-dependent postsynaptic mechanism.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Developmental Physiology, Johannes Müller Institute of Physiology, Humboldt University Medical School (Charité), 10117 Berlin, Germany
| | | | | |
Collapse
|
9
|
Henneberger C, Jüttner R, Rothe T, Grantyn R. Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus. J Neurophysiol 2002; 88:595-603. [PMID: 12163512 DOI: 10.1152/jn.2002.88.2.595] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) is involved in numerous aspects of synapse development and plasticity. The present study was aimed at clarifying the significance of endogenous BDNF for the synaptically driven spontaneous network activity and GABAergic inhibition in the superficial layers of the mouse superior colliculus. In this structure neuron survival is unaffected by the absence of BDNF. Two experimental approaches were used: comparison of BDNF-deficient (-/-) and wild-type (+/+) mice and blockade of BDNF receptor signaling by the tyrosine kinase inhibitor K-252a. Patch-clamp recordings were performed on horizontal slices during postnatal days 15 and 16. The lack of BDNF in -/- mice caused a significant reduction of the spontaneous action potential frequency and an increase in the pharmacologically induced disinhibition of spike discharge. This change was accompanied by an increase in the amplitudes of GABAergic evoked, spontaneous, and miniature inhibitory postsynaptic currents (IPSCs). BDNF gene inactivation had no effect on the degree of paired-pulse facilitation or the frequency of miniature IPSCs. The increase of IPSC amplitudes by chronic BDNF deprivation was completely mimicked by acute exposure to K-252a in +/+ animals. The enhancement of GABAergic IPSCs in -/- animals was reversed by acute application of 100 ng/ml BDNF, but this rescue was completely prevented by blocking postsynaptic protein kinase C (PKC) activation with the PKC inhibitor peptide 19-31. From these results we conclude that BDNF increases spontaneous network activity by suppressing GABAergic inhibition, the site of action of BDNF is predominantly postsynaptic, BDNF-induced suppression of GABAergic synaptic transmission is caused by acute downregulation of GABA(A) receptors, and BDNF effects are mediated by its TrkB receptor and require PKC activation in the postsynaptic cell.
Collapse
Affiliation(s)
- Christian Henneberger
- Developmental Physiology, Johannes Müller Institute of Physiology, Charité, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|
10
|
Boller M, Schmidt M. Postnatal maturation of GABA(A) and GABA(C) receptor function in the mammalian superior colliculus. Eur J Neurosci 2001; 14:1185-93. [PMID: 11703447 DOI: 10.1046/j.0953-816x.2001.01746.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the stratum griseum superficiale (SGS) of the mammalian superior colliculus, GABA(C) receptors seem to control the excitability of projection neurons by selective inactivation of local GABAergic interneurons. As the onset of visual responses to SC begins well after birth in the rat, it is possible to study developmental changes in GABAergic mechanisms that are linked to the onset of visual information processing. In order to analyse postnatal changes in inhibitory mechanisms that involve GABA receptor function, we used extracellular field potential (FP) recordings and single cell patch-clamp techniques in slices from postnatal day 4 (P4) to P32 and examined the effects of GABA and muscimol on electrically evoked SGS cell activity. While GABA(A) receptor activation affected FP amplitudes throughout postnatal development, GABA(C) receptor activation did not significantly change FP amplitudes until the third postnatal week. Results from patch-clamping single cells, however, clearly demonstrate that GABA(C) receptors are already functional at P4--similar to GABA(A) receptors. Throughout postnatal development, activation of GABA(C) receptors leads to a strong inhibition of inhibitory postsynaptic activity, indicating that GABA(C) receptors are expressed by inhibitory interneurons. Furthermore, the proportion of neurons that show decreased excitatory postsynaptic activity during GABA(C) receptor activation correlates with the proportion of GABAergic interneurons in SGS. Our patch-clamp results indicate that the functional expression of GABA(C) receptors by GABAergic interneurons does not change significantly during postnatal development. However, our measurements of FP amplitudes indicate that the maturation of the efferent connections of these GABAergic neurons within SGS during the third postnatal week strongly changes GABA(C) receptor function.
Collapse
Affiliation(s)
- M Boller
- Allgemeine Zoologie & Neurobiologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
11
|
Jüttner R, Meier J, Grantyn R. Slow IPSC kinetics, low levels of alpha1 subunit expression and paired-pulse depression are distinct properties of neonatal inhibitory GABAergic synaptic connections in the mouse superior colliculus. Eur J Neurosci 2001; 13:2088-98. [PMID: 11422449 DOI: 10.1046/j.0953-816x.2001.01587.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Remodelling of visual maps in the superior colliculus (SC) depends on neuronal activity. Synaptic inhibition could contribute to this process because spontaneous spike discharge in the SC was modulated by GABA(A) receptor activation at postnatal days (P) 1-3. To investigate the functional capacity of GABAergic synaptic transmission at this early stage of development, whole-cell patch-clamp recordings were made from wide field neurons (WFNs) in horizontal slices comprising the superficial grey layer of the SC. Focal stimulation in the vicinity of WFNs evoked tetrodotoxin-sensitive stimulus-locked inhibitory postsynaptic currents (eIPSCs). The failure rate of eIPSCs was low ( approximately 0.2), and the maximal amplitude of evoked unitary eIPSCs exceeded the amplitude of average miniature IPSCs (mIPSCs) by a factor of 4-5, suggesting that action potential-mediated GABA release was more effective than spontaneous release. Some of the properties of GABAergic synaptic transmission in the neonatal SC were age-specific. In contrast with eIPSCs in the more mature SC at P20-22, neonatal eIPSCs decayed more slowly, preferentially fluctuated in duration, not amplitude, and mostly lacked temporal summation, due to depression at shorter intervals. The paired-pulse ratio (eIPSC2 : eIPSC1) was inversely related to the duration of eIPSCs. PCR analysis showed, in addition, that the ratio of alpha1 : alpha3 subunit expression was lower in the neonatal SC. Together, these results suggest that, at a young age, efficacy of GABAergic synaptic transmission is primarily constrained by the slow kinetics and the saturation of postsynaptic GABA(A) receptors.
Collapse
Affiliation(s)
- R Jüttner
- Developmental Physiology, Johannes Müller Institute of Physiology, Humboldt University Medical School (Charité), Tucholskystrasse 2, D-10117 Berlin, Germany
| | | | | |
Collapse
|
12
|
Jüttner R, Henneberger C, Grantyn R, Rothe T. Early onset of glutamatergic and GABAergic synaptic activity in the visual layers of the rodent superior colliculus. Int J Dev Neurosci 2001; 19:255-61. [PMID: 11337194 DOI: 10.1016/s0736-5748(01)00009-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During postnatal development, the retinocollicular pathway undergoes activity-dependent refinement, resulting in the precise retinotopic map seen in adults. Previous studies established that retinal efferents reach the mouse superior colliculus (SC) by embryonic day 16. Morphologically, synapses were found in the rat SC before birth. As part of an extended project aimed at understanding the development of synaptic transmission in the visual layers of the SC, we report here the presence of functionally active synapses immediately after birth. Circuit activity in mouse SC neurons was detected in horizontal slices of the visual layers using cell-attached voltage clamp. The spontaneous discharge of action potentials was abolished by glutamatergic blockers and facilitated by bicuculline, showing that circuit activity is based on synaptic transmission and that the action of gamma-aminobutyric acid is inhibitory. Using whole-cell voltage clamp, spontaneous glutamatergic postsynaptic currents as well as miniature GABAergic postsynaptic currents were recorded on postnatal day 1. Excitatory and inhibitory postsynaptic currents could also be evoked by electrical stimulation. Glutamatergic postsynaptic currents comprised both (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptor-mediated components. The early function of glutamatergic and GABAergic synaptic transmission in the visual layers of SC suggests that SC neurons are able to process information originating from retinal axons immediately after birth.
Collapse
Affiliation(s)
- R Jüttner
- Developmental Physiology, Johannes Müller Institute of Physiology, Charité, Tucholskystr. 2, D-10117, Berlin, Germany
| | | | | | | |
Collapse
|
13
|
Ozen G, Augustine GJ, Hall WC. Contribution of superficial layer neurons to premotor bursts in the superior colliculus. J Neurophysiol 2000; 84:460-71. [PMID: 10899219 DOI: 10.1152/jn.2000.84.1.460] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro whole-cell patch-clamp methods were used to examine the contribution of one component of intracollicular circuitry, the superficial gray layer, to the generation of bursts of action potentials that occur in the intermediate layer and that command head and eye movements in vivo. Applying a single brief (0.5 ms) pulse of current to the superficial layer of rat collicular slices evoked prolonged bursts of excitatory postsynaptic currents (EPSCs) in the cells of the intermediate layer. The EPSCs were sufficient to elicit bursts of action potentials that lasted as long as 300 ms and resembled presaccadic command bursts. To examine the contribution of neurons within the superficial layer to the production of these bursts, we determined how superficial neurons respond to the same current pulses that evoke bursts in the intermediate layer. Recordings from 61 superficial layer cells revealed 19 neurons that produced multiple action potentials following stimulation. Nine of these 19 neurons were wide- and narrow-field vertical cells, which are known to project to the intermediate layer and could contribute to producing the EPSC bursts. The remaining cells (n = 42) did not generate trains of action potentials and 21 of these showed only subthreshold potential changes in response to the stimulus. Our results indicate that most superficial cells do not directly contribute to production of the EPSC bursts, but a small number do have the properties necessary to provide a prolonged excitatory drive to the premotor neurons.
Collapse
Affiliation(s)
- G Ozen
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
14
|
Cirone J, Salt TE. Physiological role of group III metabotropic glutamate receptors in visually responsive neurons of the rat superficial superior colliculus. Eur J Neurosci 2000; 12:847-55. [PMID: 10762314 DOI: 10.1046/j.1460-9568.2000.00972.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is evidence from immunohistochemical and in situ hybridization studies for the presence of Group I, II and III metabotropic glutamate receptors (mGluRs) in the rat superficial superior colliculus (SSC). The purpose of this study was to investigate if manipulation of Group III mGluRs affects visual responses in the SSC. Drugs were applied by iontophoresis and single neuron activity was recorded extracellularly. L-AP4 (Group III agonist) resulted in a reduction of visual responses in most neurons, but also a potentiation in others. The effect of L-AP4 is drug- and stereospecific in that application of D-AP4 did not significantly affect visual responses. L-AP4 application also resulted in a potentiation of the response to iontophoretically applied NMDA. The effects of MPPG and CPPG (Group III antagonists) were compared with the effect of L-AP4 in the same neuron and were found to produce the opposite effect to L-AP4. Furthermore, the effect of L-AP4 could be blocked by coapplication of MPPG or CPPG. Presynaptic depression of glutamate release is a possible mechanism by which L-AP4 could reduce visual responses in the SSC whereas the potentiation of visual responses by L-AP4 could be due to a reduction of GABAergic inhibition. The finding that MPPG and CPPG, as well as antagonizing the L-AP4 effect, have a direct effect on visual responses suggests that Group III mGluRs are activated by endogenous transmitter released during visual stimulation.
Collapse
Affiliation(s)
- J Cirone
- Department of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | | |
Collapse
|
15
|
Isaeva EV, Sidorenko VG, Fedulova SA, Veselovskii NS. Evoked inhibitory postsynaptic currents in the dynamics of development of cultured hippocampal neurons of rats. NEUROPHYSIOLOGY+ 1999. [DOI: 10.1007/bf02515111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Kirischuk S, Veselovsky N, Grantyn R. Relationship between presynaptic calcium transients and postsynaptic currents at single gamma-aminobutyric acid (GABA)ergic boutons. Proc Natl Acad Sci U S A 1999; 96:7520-5. [PMID: 10377447 PMCID: PMC22118 DOI: 10.1073/pnas.96.13.7520] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Postsynaptic responses to stereotyped activation of single axons are known to fluctuate, but the origin of synaptic variability in the vertebrate central nervous system is still unclear. To test the hypothesis that fluctuations of inhibitory postsynaptic currents reflect variations in presynaptic Ca2+ concentration, we examined single GABAergic axodendritic contacts in low-density cultures. Collicular neurons from rat embryos were loaded with the Ca2+ indicator Oregon Green 488 BAPTA-1. Presynaptic axon terminals were visualized by staining with the styryl dye RH414. Under the condition of action potential block, RH414-labeled boutons were activated selectively by current pulses applied through a fine-tipped glass pipette. Short (1- to 3-ms) depolarization of isolated boutons resulted in stimulus-locked changes of presynaptic Ca2+ concentration ([Ca2+]pre) and in evoked inhibitory postsynaptic currents (eIPSCs). Varying the strength of the stimulating currents produced a wide amplitude range of both presynaptic fluorescence transients (up to 220% of the resting value) and postsynaptic conductance changes (up to 2-3 nS). It was found that average eIPSCs displayed an approximately third-power dependency on [Ca2+]pre. Transmitter release retained its probabilistic character throughout the range of observed [Ca2+]pre values. In any tested single bouton, maximal eIPSCs occurred in association with the largest [Ca2+]pre transients, but failures were present at any [Ca2+]pre. The increase of maximal eIPSC amplitudes in connection with higher [Ca2+]pre supports the hypothesis that GABAergic boutons have the capacity to regulate synaptic strength by changing the number of simultaneously released vesicles.
Collapse
Affiliation(s)
- S Kirischuk
- Arbeitsgruppe Entwicklungsphysiologie, Institut für Physiologie, Medizinische Fakultät (Charité) der Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | | | | |
Collapse
|
17
|
Lo FS, Mize RR. Retinal input induces three firing patterns in neurons of the superficial superior colliculus of neonatal rats. J Neurophysiol 1999; 81:954-8. [PMID: 10036294 DOI: 10.1152/jn.1999.81.2.954] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By using an in vitro isolated brain stem preparation, we recorded extracellular responses to electrical stimulation of the optic tract (OT) from 71 neurons in the superficial superior colliculus (SC) of neonatal rats (P1-13). At postnatal day 1 (P1), all tested neurons (n = 10) already received excitatory input from the retina. Sixty-nine (97%) superficial SC neurons of neonatal rats showed three response patterns to OT stimulation, which depended on stimulus intensity. A weak stimulus evoked only one spike that was caused by activation of non-N-methyl-D-aspartate (NMDA) glutamate receptors. A moderate stimulus elicited a short train (<250 ms) of spikes, which was induced by activation of both NMDA and non-NMDA receptors. A strong stimulus gave rise to a long train (>300 ms) of spikes, which was associated with additional activation of L-type high-threshold calcium channels. The long train firing pattern could also be induced either by temporal summation of retinal inputs or by blocking gamma-aminobutyric acid-A receptors. Because retinal ganglion cells show synchronous bursting activity before eye opening at P14, the retinotectal inputs appear to be sufficient to activate L-type calcium channels in the absence of pattern vision. Therefore activation of L-type calcium channels is likely to be an important source for calcium influx into SC neurons in neonatal rats.
Collapse
Affiliation(s)
- F S Lo
- Department of Cell Biology and Anatomy, Louisiana State University, Medical Center, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
18
|
Lim CH, Ho SM. GABAergic modulation of axonal conduction in the developing rat retinotectal pathway. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 108:299-302. [PMID: 9693806 DOI: 10.1016/s0165-3806(98)00052-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effect of gamma-aminobutyric acid (GABA) on nerve conduction was investigated in the developing rat optic nerves in vitro. Antidromic compound action potentials (CAP) were suppressed by GABA, with increasing attenuation in older preparations. Enhancement of CAP amplitude using bicuculline was observed in postnatal days 4-5 suggesting the presence of endogenous GABA activity. Our findings suggest that the role of electrical activity in the refinement of the retinotectal projection could be limited by the GABAergic action on axonal conduction.
Collapse
Affiliation(s)
- C H Lim
- Developmental Neurobiology Group, Research School of Biological Sciences, Australian National University, Canberra, Australia
| | | |
Collapse
|
19
|
Suppression of sprouting: An early function of NMDA receptors in the absence of AMPA/kainate receptor activity. J Neurosci 1998. [PMID: 9570803 DOI: 10.1523/jneurosci.18-10-03725.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrophysiological studies have documented the existence of synapses showing only NMDA ionotropic glutamate receptor function that are therefore presumably "silent" at resting membrane potentials. Silent synapses are more prevalent in young than in older neurons, and NMDA receptor activity at such contacts may facilitate the appearance of functional AMPA receptors. However, it is uncertain whether such silent synapses actually have a function in young neurons independent of AMPA receptor induction. Using a newly characterized culture system for neurons from larval Xenopus tecta, we show that blocking NMDA receptors or preventing changes in intracellular free Ca2+ concentration with BAPTA AM significantly increases neurite sprouting and elongation in contacted but not in isolated neurons. Blocking AMPA/KA receptors or Na+-dependent action potentials does not mimic this effect. Moreover, in these young neurons, NMDA receptor-dependent Ca2+ responses to glutamate measured with confocal fluo-3 imaging are retained during AMPA/KA receptor blockade. The data suggest that many of the young contacts in these cultures are active even though they use only NMDA ionotropic glutamate receptors. Calcium influx through the NMDA receptor at these contacts seems to reduce neurite motility. This effect should lead to the accumulation of glutamatergic inputs on NMDA receptor-expressing dendrites, which could facilitate the onset of AMPA/KA receptor function and the action potential-dependent phase of synaptogenesis.
Collapse
|
20
|
Temporal correlations between functional and molecular changes in NMDA receptors and GABA neurotransmission in the superior colliculus. J Neurosci 1997. [PMID: 9236237 DOI: 10.1523/jneurosci.17-16-06264.1997] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of the NMDA subtype of glutamate receptor is required for activity-dependent structural plasticity in many areas of the young brain. Previous work has shown that NMDA receptor currents decline approximately at the time that developmental synaptic plasticity ends, and in situ hybridization studies have suggested that receptor subunit changes may be occurring during the same developmental interval. To establish a system in which the relationship between these properties of developing synapses can be explored, we have combined patch-clamp recordings with mRNA- and protein-level biochemical analyses to study the developmental regulation of NMDA receptors in the superficial layers of the rat superior colliculus. These experiments document an abrupt decrease in the NMDA receptor contribution to synaptic currents that occurs before eye opening and is closely associated with changes in NR1 protein, rapidly rising levels of the NMDA receptor subunit NR2A, and decreasing levels of NR2B. The functional and molecular changes also are correlated with the developmental decline in structural plasticity in these layers. In addition, both physiological and biochemical methods show evidence of GABA-mediated inhibition in the superficial collicular layers beginning after eye opening. This may provide an additional heterosynaptic mechanism for controlling excitation and plasticity in this neuropil by pattern vision. Thus our findings lend support to the idea that high levels of NMDA receptor function are associated with the potential for structural rearrangement in CNS neuropil and that the functional downregulation of this molecule results, at least partially, from changes in its subunit composition.
Collapse
|
21
|
Abstract
GABA (gamma-aminobutyrate) is the most prevalent inhibitory transmitter in the mature hypothalamus. In contrast, in the developing hypothalamus, GABA may exert depolarizing actions leading to neuronal excitation. To determine whether GABA is present in hypothalamic neurons early in development, and whether there is a preferential expression in axonal growth cones, immunogold and peroxidase studies were used with light and whole mount transmission electron microscopy. At embryonic day 15, a stage of development at the beginning of hypothalamic neurogenesis, histological sections showed GABA immunoreactivity in fibers and weakly stained perikarya. Hypothalamic neurons (13%) cultured at embryonic day 15 were immunoreactive after 1 day in vitro. The percentage of neurons stained, and the intensity of staining increased during the next few days to 39% at 4 days in vitro. Neuritic growth cones, including lamellipodia and long filopodia, showed strong immunoreactivity before synaptogenesis. By using neuronal whole mounts studied with transmission electron microscopy and GABA silver-enhanced immunogold staining, a quantitative comparison of growth cones after a day and a half in culture revealed that the growth cone of the longest process, the putative axon, had a greater level of immunogold labeling than that of the shorter processes, the putative dendrites. This finding is one of the earliest biochemical differences between putative axons and dendrites. Astrocytes in the same cultures showed no immunolabeling. These results indicate that GABA is present very early in the development of hypothalamic neurons and is in a position to be released.
Collapse
Affiliation(s)
- A N van den Pol
- Section of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
22
|
Abstract
In order to analyse mechanisms of sex differentiation of the hippocampus at the cellular level, the differentiation of hippocampal GABAergic neurons was studied in vitro. Serum-supplemented and serum-free dissociated cell cultures were raised from the hippocampus of embryonic day 17 male and female rat embryos for up to 14 days in vitro. This time period roughly corresponds to the critical phase for sex differentiation of the rat brain as determined in vivo. Serum-free cultures were treated with testosterone and/or 17 beta-oestradiol for the entire culture period. Control cultures from male donors contained twice as many GABA-immunoreactive neurons as those from female donors, while there was no sex difference in overall counts of neurons stained for microtubule-associated protein 5. Measurements of high-affinity uptake of [3H]GABA essentially confirmed this sex difference. The development of the sex difference could not be influenced by long-term treatment with androgen or oestrogen. It is concluded that sex differentiation of a specific subpopulation of hippocampal neurons may take place independently of the environment provided by gonadal steroids and in the absence of extrinsic connections with the hypothalamus or other relays of the limbic circuit.
Collapse
Affiliation(s)
- I Reisert
- Abteilung Anatomie und Zellbiologie, Universität Ulm, Germany
| | | | | | | |
Collapse
|
23
|
Mize RR, Banfro FT, Scheiner CA. Pre- and postnatal expression of amino acid neurotransmitters, calcium binding proteins, and nitric oxide synthase in the developing superior colliculus. PROGRESS IN BRAIN RESEARCH 1996; 108:313-32. [PMID: 8979811 DOI: 10.1016/s0079-6123(08)62549-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurons within the superior colliculus (SC) contain a variety of neurochemicals, including the amino acid neurotransmitters GABA and glutamate, the calcium binding proteins calbindin and parvalbumin, and the neuromodulator nitric oxide. We have examined the development of expression of these substances using antibody immunocytochemistry. These results are summarized in Fig. 10. GABA and calbindin are expressed very early in development, at a time when cells are still dividing and migrating from the subventricular zone. The expression of both GABA and CB is maximal at around E40-46, the age at which these cells have just established their adult lamination and extrinsic afferents have begun to grow into the tectum. GABA and CB likely play diverse roles during this stage of development, including the regulation of intracellular calcium during cell migration and neurite outgrowth. Glutamate is expressed somewhat later in development while parvalbumin immunoreactivity does not appear until shortly after birth. These two substances continue to increase in density throughout the period of postnatal growth, at a time when synapse formation and evoked electrical activity are beginning to develop. Both PV and glutamate may be involved in one or both of these activity-dependent processes. Nitric oxide synthase (NOS) is expressed at different times in different cell groups. NOS appears very early in prenatal development in cells within the SVZ and in the deep gray layer of SC. On the other hands, cells within the intermediate gray layer of SC do not express NOS until shortly before birth. The igl cells that express NOS at this age are clustered neurons similar to those that project to the CFR in the adult. NOS expression occurs in these cells at precisely the time when axons begin to form patches that innervate these clusters. Based upon this temporal correlation, we hypothesize that nitric oxide may regulate synapse formation in this cell group.
Collapse
Affiliation(s)
- R R Mize
- Department of Anatomy, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
24
|
Mize RR, Whitworth RH, Nunes-Cardozo B, van der Want J. Ultrastructural organization of GABA in the rabbit superior colliculus revealed by quantitative postembedding immunocytochemistry. J Comp Neurol 1994; 341:273-87. [PMID: 8163727 DOI: 10.1002/cne.903410211] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have studied the organization of gamma-aminobutyric acid (GABA)ergic profiles in the superior colliculus of the rabbit to determine whether the synaptic types found in cat and monkey also exist in a mammalian species whose visual system has a different organization. Ultrastructure of GABAergic profiles was examined by use of a polyclonal antibody to GABA and quantitative postembedding immunocytochemistry. Three distinct types of vesicle-containing profiles were labeled by the GABA antibody in the rabbit superior colliculus. One type was a putative presynaptic dendrite (PSD profile) that received synaptic input from other profiles and contained pleomorphic synaptic vesicles scattered throughout the profile. These PSD profiles frequently received retinal input and formed dendrodendritic synapses. A second type of profile was a large caliber dendrite, often horizontal in orientation (H profile), that had one or more discrete clusters of pleomorphic synaptic vesicles at sites of synaptic contact with conventional dendrites. These H profiles received few synaptic contacts. A third profile type was a putative axon terminal (F profile) with smaller, more flattened synaptic vesicles that densely and uniformly filled the profile. Quantitative analysis of gold particle density revealed that F profiles had a significantly higher gold particle density (14.3/microns 2) than did PSD or H profiles (10.4 and 10.2/microns 2), suggesting that GABAergic profile types contain different concentrations of GABA. The vesicle density of these profile types also differed, but no obvious relationship between vesicle and particle distributions was observed. We conclude that the profiles labeled by GABA in rabbit superior colliculus are similar to those in cat and monkey and must represent a phylogenetically conserved organization common to many mammals, and that particle density analysis of postembedding immunocytochemistry can distinguish different GABAergic profile types.
Collapse
Affiliation(s)
- R R Mize
- Department of Anatomy, Louisiana State University Medical Center, New Oreleans 70112-1393
| | | | | | | |
Collapse
|
25
|
Lieb K, Reisert I, Pilgrim C. Differentiation of hypothalamic GABAergic neurons in vitro: absence of effects of sex and gonadal steroids. Exp Brain Res 1994; 99:435-40. [PMID: 7957723 DOI: 10.1007/bf00228980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is involved in the control of sexually dimorphic brain functions, such as pituitary secretion and reproductive behavior. Hypothalamic GABAergic systems in vivo exhibit sexually dimorphic functional properties. Sexual dimorphisms in the rat brain are currently thought to be brought about by the organizational influence of gonadal steroids during the perinatal developmental period. The present study is concerned with the question of whether developing hypothalamic GABAergic neurons are primary targets of sex hormones. Since it is impossible to distinguish direct from indirect effects of experimental manipulations of the hormonal environment of the in vivo brain, sex-specific primary cultures raised from embryonic day 14 rat diencephalon and cultured for up to 8 days in vitro (DIV) were used as a model system. Effects of sex steroids were investigated on high affinity uptake of [3H]GABA. GABA transport was already mature at 3 DIV. [3H]GABA uptake was sensitive to inhibition by nipecotic acid and the transmitter was taken up by high affinity transport (Km = 15.2 microM). Immunocytochemical preparations demonstrated extensive networks of GABA-immunoreactive fibers at 8 DIV. Concomitantly with the outgrowth of neurites, there was a marked increase in maximum uptake velocity (Vmax). No differences could be detected regarding cell numbers or uptake kinetics between cultures from male and female donors. Neither cell numbers nor GABA uptake were affected by short- and long-term treatment with estradiol-17 beta or testosterone. It appears that hypothalamic GABAergic neurons in vitro do not develop sex differences in cell numbers or GABA transport.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Lieb
- Abteilung Anatomie und Zellbiologie, Universität Ulm, Germany
| | | | | |
Collapse
|
26
|
Spitzer NC, Debaca RC, Allen KA, Holliday J. Calcium dependence of differentiation of GABA immunoreactivity in spinal neurons. J Comp Neurol 1993; 337:168-75. [PMID: 7506271 DOI: 10.1002/cne.903370111] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The developmental regulation of neurotransmitter synthesis has been extensively studied and appears in many cases to depend on electrical activity. The central nervous system of the Xenopus embryo and young larva is an attractive subject for such studies, since action potentials first elicited from Xenopus spinal neurons at the time of closure of the neural tube are long in duration and calcium-dependent. Moreover, cells exhibit spontaneous elevations of intracellular calcium during this early period as a consequence of calcium influx through voltage-dependent channels, which induces calcium release from intracellular stores. Since the early differentiation of Xenopus spinal neurons in dissociated cell culture parallels development in vivo, we have examined the maturation of gamma-aminobutyric acid (GABA) immunoreactivity in cultured neurons and explored its dependence on spontaneous calcium influx at early stages of development. We find that specific GABA immunoreactivity develops in spinal neurons in dissociated cell culture with the same time course previously defined in vivo. Additionally, this process requires calcium influx that occurs spontaneously through voltage-dependent channels. The appearance of GABA immunoreactivity is blocked by transcriptional inhibitors. The early appearance of GABA raises the possibility that it may play additional roles at early stages of development.
Collapse
Affiliation(s)
- N C Spitzer
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | | | |
Collapse
|
27
|
Schweitzer L, Cecil T, Walsh EJ. Development of GAD-immunoreactivity in the dorsal cochlear nucleus of the hamster and cat: light and electron microscopic observations. Hear Res 1993; 65:240-52. [PMID: 8458755 DOI: 10.1016/0378-5955(93)90217-o] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Physiologic and pharmacologic evidence suggests that inhibitory influences are active in the mammalian dorsal cochlear nucleus (DCN) by the onset of hearing, while anatomical evidence suggests that inhibitory synapses are not present until days or weeks later. One inhibitory neurotransmitter in the DCN is gamma aminobutyric acid (GABA) and its presence can be indexed by immunohistochemical localization of its synthetic enzyme glutamic acid decarboxylase (GAD). The present study investigated the ingrowth and synapse formation of GAD-immunoreactive inputs in the DCN of cat and hamster. GAD-immunoreactive puncta are present in the DCN of the cat at birth and of the hamster on postnatal day (PND) 3. Thus, the present data correlate well with the physiologic and pharmacologic evidence. In both species the first labelled puncta are near the dorsal acoustic stria and may originate from efferent axons in the stria. Several days later a band of labelled puncta is found in the fusiform cell layer. This location is equivalent to the termination zone of cartwheel cells, GAD-immunoreactive interneurons in the DCN. Based on this spatiotemporal sequence in the appearance of GAD-immunoreactive puncta, we suggest that sources of GABA extrinsic to the DCN mature first, followed by intrinsic sources.
Collapse
Affiliation(s)
- L Schweitzer
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, KY 40292
| | | | | |
Collapse
|
28
|
Kraszewski K, Grantyn R. Development of GABAergic connections in vitro: increasing efficacy of synaptic transmission is not accompanied by changes in miniature currents. JOURNAL OF NEUROBIOLOGY 1992; 23:766-81. [PMID: 1331318 DOI: 10.1002/neu.480230613] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Development of inhibitory synaptic transmission was studied using a dissociated cell culture from the superior colliculus of neonatal rat. Patch-clamp recordings in the whole-cell configuration were performed to measure evoked (single-cell-activated) inhibitory postsynaptic currents (IPSCs), miniature IPSCs and current responses to maximal concentrations of exogenous gamma-aminobutyric acid (GABA). Over a period of 3 weeks in vitro (DIV3-24), the fraction of synaptically coupled neurons raised from 0% to 76%. Evoked IPSCs were first observed at DIV5. They had an average amplitude of 33.9 pA during the first week (n = 13) and 129.7 pA during the fourth week (n = 48). This increase by a factor of 3.8 represents a significant rise in the efficacy of GABAergic transmission during in vitro development. However, no developmental change has been observed in the average amplitudes of miniature somatic IPSCs. The latter remained at an average level of about 9 pA (symmetrical chloride concentration and a driving force of 68 mV). No increase was found also in whole-cell current densities induced by saturating concentrations of exogenous GABA. Our results suggest that under the given conditions, synapse maturation was primarily the result of presynaptic sprouting. This conclusion is further supported by bouton counts in immunostained collicular cultures, where the number of axosomatic and axodendritic GABAergic contacts per neuron increased from 0.54 and 0.37, respectively, at DIV3, to 13.84 and greater than 23.1, at DIV24. The overall density of GABAergic neurons decreased during this period from about 41,000/cm2 to 15,600 cm2, indicating that a growing number of contacts is formed by a declining number of presynaptic neurons.
Collapse
Affiliation(s)
- K Kraszewski
- Department of Neurophysiology, Max-Planck-Institute for Psychiatry, Martinsried, Germany
| | | |
Collapse
|
29
|
Kraszewski K, Grantyn R. Unitary, quantal and miniature GABA-activated synaptic chloride currents in cultured neurons from the rat superior colliculus. Neuroscience 1992; 47:555-70. [PMID: 1374855 DOI: 10.1016/0306-4522(92)90165-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of this study was to identify the conductance change induced by one quantum of gamma-aminobutyric acid from axonal release sites on cultured superior colliculus neurons. Unitary (single cell-activated) inhibitory postsynaptic currents and spontaneous synaptic activity were recorded with patch clamp techniques in the whole cell configuration while superfusing the entire neuron with normal saline. Miniature inhibitory postsynaptic currents were recorded in the presence of tetrodotoxin and in reduced [Ca2+]o/[Mg2+]o. In addition, the membrane area contributing to synaptic activity was limited to a narrow window of 50 microns. Smaller neurons were chosen for recording to render a standard deviation of the "instrumental" noise of less than 1.5 pA at a holding voltage of -80 mV. After two weeks in vitro, the percentage of synaptically connected tectal neurons exceeded 50%. At holding voltages of -80 mV (Cl- equilibrium potential -12 mV) minimal amplitudes of unitary inhibitory postsynaptic currents were as low as 7-10 pA, while maximal amplitudes exceeded 500 pA. The mean time to peak and time constant of decay were 3.0 and 34.4 ms, respectively (n = 31). Fluctuating unitary inhibitory postsynaptic currents were deemed to be compound postsynaptic responses. Multiple Gaussian equations could be fitted to the amplitude histograms of unitary postsynaptic currents. This procedure rendered a quantal size between 5.0 and 10.9 pA (mean 7.1 pA; S.D. 1.78 pA) in five neurons from mature cultures. The amplitudes of statistically determined quantal inhibitory postsynaptic currents were slightly smaller than the independent estimate from somatic miniature inhibitory postsynaptic currents. The latter had a mean amplitude of 9.1 pA (S.D. 3.3 pA, n = 23), a mean time to peak of 1.65 ms (n = 9), and a mean time constant of decay of 16.2 ms (n = 9). Single channel recording from outside-out patches showed three to four main conductance states ranging from 9 to 22 pS. Single channel closures at the 21-24 pS level were occasionally observed during relaxation of miniature currents. The small size of whole cell quantal inhibitory postsynaptic currents and somatic miniature currents indicates that one GABA quantum opened only 5-15 single Cl- channels.
Collapse
Affiliation(s)
- K Kraszewski
- Department of Neurophysiology, Max Planck Institute for Psychiatry, Martinsried, F.R.G
| | | |
Collapse
|
30
|
Okada Y. The distribution and function of gamma-aminobutyric acid (GABA) in the superior colliculus. PROGRESS IN BRAIN RESEARCH 1992; 90:249-62. [PMID: 1631301 DOI: 10.1016/s0079-6123(08)63617-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Laminer analysis of the distribution of GABA and GAD in the superior colliculus has shown that the distribution pattern of GABA within the SC is similar in rabbit, cat, and guinea pig. The highest levels of GABA were found in the superficial gray layer (SGL), averaging 37-40 mmol/kg dry weight. The GABA concentrations in the deep layers were each only half that of the levels in the SGL. The concentrations of both GABA and GAD in the upper half of SGL are the same as those in the substantia nigra and medial forebrain bundle which have the highest amounts of GABA in the CNS. Denervation studies of the fibers projecting to SGL suggest that the GABA concentrated in the SGL is intrinsic to the layer. The results obtained from immunohistochemical and electron microscopic studies on the localization of GABA neurons corresponds well with the regional distribution pattern of GABA and GAD reported here. However, pharmacological and electrophysiological studies do not necessarily accord well with the GABA distribution studies because they indicate that there are many GABA sensitive neurons in both the SGL and DGL. To investigate the role of GABA in the SGL, the effect of GABA and its agonists and antagonists on neurotransmission in SGL has been studied in SC slices in a perfusion system. Bath applied GABA (100 microM to 1 mM) enhanced the amplitude of postsynaptic field potentials (PSP) in SGL in a dose-dependent fashion and at concentrations above 1 mM it depressed the PSP in a dose-dependent fashion. A similar response pattern was obtained with muscimol (0.1-10 microM excitation; greater than 10 microM inhibition). However (-)-baclofen only inhibited the PSP. Bicuculline (1 microM) shifted the dose-response inhibitory curve of GABA to the right, while the excitatory effect was enhanced. These results indicate that GABA has an excitatory and inhibitory action on neurotransmission in the SGL. The nigro-tectal GABAergic fibers terminate in the intermediate and deep layers of SC. Inhibition of GABAergic activity in the SC causes irrepressible saccades made toward the center of the movement field while GABA activation delays and slows saccadic eye movements. Thus, GABA in the SC plays an important role in the control of eye movements. The same GABAergic projection is also related to the propagation of generalized seizures. There exist collicular neurons which suppress the propagation of seizures.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Y Okada
- Department of Physiology, School of Medicine, Kobe University, Japan
| |
Collapse
|
31
|
Mize RR. The organization of GABAergic neurons in the mammalian superior colliculus. PROGRESS IN BRAIN RESEARCH 1992; 90:219-48. [PMID: 1321459 DOI: 10.1016/s0079-6123(08)63616-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
GABA is an important inhibitory neurotransmitter in the mammalian superior colliculus. As in the lateral geniculate nucleus, GABA immunoreactive neurons in SC are almost all small and are distributed throughout the structure in all mammalian species studied to date. Unlike the LGN, GABA-labeled neurons in SC have a variety of morphologies. These cells have been best characterized in cat, where horizontal and two granule cell morphologies have been identified. Horizontal cells give rise to one class of presynaptic dendrite while granule C cells give rise to another class of spine-like presynaptic dendrite. Granule A cells may be the origin of some GABAergic axon terminals. GABA containing synaptic profiles form serial synapses, providing a possible substrate for disinhibition. The distribution of GABAA and GABAB receptor subtypes appears similar to that of GABA neurons, with the densest distribution found within the superficial gray layer. However, antibody immunocytochemistry of the beta 2 and beta 3 subunits of the GABAA receptor reveals that it is located at both synaptic and non-synaptic sites, and may be associated with membrane adjacent to terminals with either flattened or round vesicles. A few GABA containing neurons in SC colocalize the pentapeptide leucine enkephalin or the calcium binding protein calbindin. However, none appear to co-localize parvalbumin, a situation different from GABA containing interneurons in the LGN and visual cortex. The diversity of GABA neurons in SC rivals that found in visual cortex, although unlike visual cortex, the pattern of co-occurrence does not distinguish GABA cell types in SC. The superior colliculus also differs from both LGN and visual cortex in that GABA and calbindin immunoreactivity is not altered by either long-term occlusion and/or short-term enucleation in adult Rhesus monkeys. No consistent differences have been found in the optical density of GABA labeling in either cells or neuropil. To conclude, GABA neurons in the superior colliculus share some properties like those in LGN and others like those in visual cortex. In other properties, they differ from GABA neurons in both the LGN and visual cortex. The GABA systems in the superior colliculus are similar in all mammalian species studied, suggesting that they are phylogenetically conserved systems which are not amenable to plastic alterations, a situation different to that in the geniculostriate system.
Collapse
Affiliation(s)
- R R Mize
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis 38163
| |
Collapse
|
32
|
Zhang JH, Sato M, Tohyama M. Different postnatal development profiles of neurons containing distinct GABAA receptor beta subunit mRNAs (beta 1, beta 2, and beta 3) in the rat forebrain. J Comp Neurol 1991; 308:586-613. [PMID: 1650800 DOI: 10.1002/cne.903080407] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The expression of three beta subunit (beta 1, beta 2, and beta 3) mRNAs for gamma-aminobutyric acidA receptor in the postnatal rat forebrain was examined by in situ hybridization histochemistry with probes synthesized for the respective subunit mRNAs. The developmental expression of these subunit mRNAs conformed to one of three patterns. Pattern I was high expression of the mRNA at birth and a constant or increasing expression thereafter. In contrast, pattern II was no or very low expression of the mRNA at birth, with expression quickly increasing to reach the adult level in the early postnatal period. Pattern III was the transient expression of the subunit mRNA or else a marked decrease of its expression after a peak in the early postnatal period. On the basis of this classification, the expression of beta 3 subunit mRNA followed pattern I in most regions of the forebrain, such as the isocortex, the olfactory bulb and some of its related areas, the hippocampal formation, the amygdala, the septum, the bed nucleus of the stria terminalis, the caudate-putamen, the nucleus accumbens, the globus pallidus, the ventral pallidum, and the hypothalamus. In some areas, such as the magnocellular preoptic nucleus, the thalamus, and the subthalamic nucleus, pattern III was seen for this subunit. However, none of the regions of the brain showed pattern II expression of beta 3 subunit mRNA. In contrast, the expression of beta 1 and beta 2 subunit mRNAs followed pattern II in most regions of the forebrain. These included the expression of beta 1 subunit mRNA in the isocortex, the olfactory bulb, the hippocampal formation, the amygdala, the septum, the bed nucleus of the stria terminalis, the thalamus, and the hypothalamus, and the expression of beta 2 subunit mRNA in the isocortex, the olfactory bulb and some of its related areas, the amygdala, the nucleus of the diagonal band, the caudate-putamen, the thalamus, and the hypothalamus. Pattern I was not found for beta 1 subunit mRNA, although it was seen in some areas for beta 2 subunit mRNA, such as the ventral pallidum, the globus pallidus, and the magnocellular preoptic nucleus. On the other hand, pattern III was followed by beta 1 subunit mRNA in the anterior olfactory nucleus, the olfactory tubercle, and the piriform cortex, and the same pattern for the beta 2 subunit was also found in the olfactory tubercle, the hippocampal formation, the septum, the bed nucleus of the stria terminalis, and the nucleus accumbens.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J H Zhang
- Department of Anatomy and Neuroscience, Osaka University Medical School, Japan
| | | | | |
Collapse
|
33
|
Perouansky M, Grantyn R. Is GABA release modulated by presynaptic excitatory amino acid receptors? Neurosci Lett 1990; 113:292-7. [PMID: 1974334 DOI: 10.1016/0304-3940(90)90600-e] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purely GABAergic nature of spontaneous synaptic activity in cultures from the neonatal rat superior colliculus (SC) is of great advantage in investigations aimed at characterizing presynaptic factors regulating GABAergic synaptic transmission. Using SC-derived cultures it was confirmed that excitatory amino acids (EAA) can induce a marked increase in the frequency of spontaneous synaptic Cl- currents (ICl(GABA)SYN). However, this tetrodotoxin-resistant facilitation of Ca2(+)-dependent GABA release required application of EEA to several neurons (multiple cell superfusion). In contrast, no frequency increase of Icl(GABA)SYN was seen with restricted access of EAA to only one neuron and the presynaptic axonal terminals (single cell superfusion). It is therefore concluded that the strong facilitatory effect of glutamate (Glu) and kainate (KA) on GABAergic synaptic activity, as observed under the condition of multiple cell superfusion, is mediated via somatodendritic excitatory amino acid receptors (EAARs).
Collapse
Affiliation(s)
- M Perouansky
- Department of Neurophysiology, Max Planck Institute for Psychiatry, Martinsried, F.R.G
| | | |
Collapse
|