1
|
Deurloo MHS, Eide S, Turlova E, Li Q, Spijker S, Sun HS, Groffen AJA, Feng ZP. Rasal1 regulates calcium dependent neuronal maturation by modifying microtubule dynamics. Cell Biosci 2024; 14:13. [PMID: 38246997 PMCID: PMC10800070 DOI: 10.1186/s13578-024-01193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Rasal1 is a Ras GTPase-activating protein which contains C2 domains necessary for dynamic membrane association following intracellular calcium elevation. Membrane-bound Rasal1 inactivates Ras signaling through its RasGAP activity, and through such mechanisms has been implicated in regulating various cellular functions in the context of tumors. Although highly expressed in the brain, the contribution of Rasal1 to neuronal development and function has yet to be explored. RESULTS We examined the contributions of Rasal1 to neuronal development in primary culture of hippocampal neurons through modulation of Rasal1 expression using molecular tools. Fixed and live cell imaging demonstrate diffuse expression of Rasal1 throughout the cell soma, dendrites and axon which localizes to the neuronal plasma membrane in response to intracellular calcium fluctuation. Pull-down and co-immunoprecipitation demonstrate direct interaction of Rasal1 with PKC, tubulin, and CaMKII. Consequently, Rasal1 is found to stabilize microtubules, through post-translational modification of tubulin, and accordingly inhibit dendritic outgrowth and branching. Through imaging, molecular, and electrophysiological techniques Rasal1 is shown to promote NMDA-mediated synaptic activity and CaMKII phosphorylation. CONCLUSIONS Rasal1 functions in two separate roles in neuronal development; calcium regulated neurite outgrowth and the promotion of NMDA receptor-mediated postsynaptic events which may be mediated both by interaction with direct binding partners or calcium-dependent regulation of down-stream pathways. Importantly, the outlined molecular mechanisms of Rasal1 may contribute notably to normal neuronal development and synapse formation.
Collapse
Affiliation(s)
- M H S Deurloo
- Department of Physiology, University of Toronto, Toronto, Canada
| | - S Eide
- Department of Physiology, University of Toronto, Toronto, Canada
| | - E Turlova
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Q Li
- Department of Physiology, University of Toronto, Toronto, Canada
| | - S Spijker
- Department Molecular and Cellular Neurobiology, Neurogenomics and Cognition Research, VU University of Amsterdam, Amsterdam, The Netherlands
| | - H-S Sun
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - A J A Groffen
- Department of Functional Genomics, Center for Neurogenomics and Cognition Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Z-P Feng
- Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Urrutia PJ, González-Billault C. A Role for Second Messengers in Axodendritic Neuronal Polarity. J Neurosci 2023; 43:2037-2052. [PMID: 36948585 PMCID: PMC10039749 DOI: 10.1523/jneurosci.1065-19.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Neuronal polarization is a complex molecular process regulated by intrinsic and extrinsic mechanisms. Nerve cells integrate multiple extracellular cues to generate intracellular messengers that ultimately control cell morphology, metabolism, and gene expression. Therefore, second messengers' local concentration and temporal regulation are crucial elements for acquiring a polarized morphology in neurons. This review article summarizes the main findings and current understanding of how Ca2+, IP3, cAMP, cGMP, and hydrogen peroxide control different aspects of neuronal polarization, and highlights questions that still need to be resolved to fully understand the fascinating cellular processes involved in axodendritic polarization.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile 7510157
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile 8380453
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile 7800003
- Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
3
|
|
4
|
Zhao Q, Lu D, Wang J, Liu B, Cheng H, Mattson MP, Cheng A. Calcium dysregulation mediates mitochondrial and neurite outgrowth abnormalities in SOD2 deficient embryonic cerebral cortical neurons. Cell Death Differ 2018; 26:1600-1614. [PMID: 30390091 DOI: 10.1038/s41418-018-0230-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial superoxide dismutase 2 (SOD2) is a major antioxidant defense enzyme. Here we provide evidence that SOD2 plays critical roles in maintaining calcium homeostasis in newly generated embryonic cerebral cortical neurons, which is essential for normal mitochondrial function and subcellular distribution, and neurite outgrowth. Primary cortical neurons in cultures established from embryonic day 15 SOD2+/+ and SOD2-/- mice appear similar during the first 24 h in culture. During the ensuing two days in culture, SOD2-/- neurons exhibit a profound reduction of neurite outgrowth and their mitochondria become fragmented and accumulate in the cell body. The structural abnormalities of the mitochondria are associated with reduced levels of phosphorylated (S637) dynamin related protein 1 (Drp1), a major mitochondrial fission-regulating protein, whereas mitochondrial fusion regulating proteins (OPA1 and MFN2) are relatively unaffected. Mitochondrial fission and Drp1 dephosphorylation coincide with impaired mitochondrial Ca2+ buffering capacity and an elevation of cytosolic Ca2+ levels. Treatment of SOD2-/- neurons with the Ca2+ chelator BAPTA-AM significantly increases levels of phosphorylated Drp1, reduces mitochondrial fragmentation and enables neurite outgrowth.
Collapse
Affiliation(s)
- Qijin Zhao
- Laboratory of Neurosciences, Biomedical Research Center, National Institute on Aging Intramural Research Program, 251 Bayview Blvd, Baltimore, MD, 21224, USA.,Laboratory of Calcium Signaling and Mitochondrial Biomedicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Daoyuan Lu
- Laboratory of Neurosciences, Biomedical Research Center, National Institute on Aging Intramural Research Program, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Jing Wang
- Laboratory of Neurosciences, Biomedical Research Center, National Institute on Aging Intramural Research Program, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Beibei Liu
- Laboratory of Calcium Signaling and Mitochondrial Biomedicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Heping Cheng
- Laboratory of Calcium Signaling and Mitochondrial Biomedicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Mark P Mattson
- Laboratory of Neurosciences, Biomedical Research Center, National Institute on Aging Intramural Research Program, 251 Bayview Blvd, Baltimore, MD, 21224, USA. .,Department of Neuroscience, Johns Hopkins University School Medicine, Baltimore, MD, 21205, USA.
| | - Aiwu Cheng
- Laboratory of Neurosciences, Biomedical Research Center, National Institute on Aging Intramural Research Program, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
5
|
Chen H, Streifel KM, Singh V, Yang D, Mangini L, Wulff H, Lein PJ. From the Cover: BDE-47 and BDE-49 Inhibit Axonal Growth in Primary Rat Hippocampal Neuron-Glia Co-Cultures via Ryanodine Receptor-Dependent Mechanisms. Toxicol Sci 2018; 156:375-386. [PMID: 28003438 DOI: 10.1093/toxsci/kfw259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread environmental contaminants associated with adverse neurodevelopmental outcomes in children and preclinical models; however, the mechanisms by which PBDEs cause developmental neurotoxicity remain speculative. The structural similarity between PBDEs and nondioxin-like (NDL) polychlorinated biphenyls (PCBs) suggests shared toxicological properties. Consistent with this, both NDL PCBs and PBDEs have been shown to stabilize ryanodine receptors (RyRs) in the open configuration. NDL PCB effects on RyR activity are causally linked to increased dendritic arborization, but whether PBDEs similarly enhance dendritic growth is not known. In this study, we quantified the effects of individual PBDE congeners on not only dendritic but also axonal growth since both are regulated by RyR-dependent mechanisms, and both are critical determinants of neuronal connectivity. Neuronal-glial co-cultures dissociated from the neonatal rat hippocampus were exposed to BDE-47 or BDE-49 in the culture medium. At concentrations ranging from 20 pM to 2 µM, neither PBDE congener altered dendritic arborization. In contrast, at concentrations ≥ 200 pM, both congeners delayed neuronal polarization resulting in significant inhibition of axonal outgrowth during the first few days in vitro. The axon inhibitory effects of these PBDE congeners occurred independent of cytotoxicity, and were blocked by pharmacological antagonism of RyR or siRNA knockdown of RyR2. These results demonstrate that the molecular and cellular mechanisms by which PBDEs interfere with neurodevelopment overlap with but are distinct from those of NDL PCBs, and suggest that altered patterns of neuronal connectivity may contribute to the developmental neurotoxicity of PBDEs.
Collapse
Affiliation(s)
- Hao Chen
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Karin M Streifel
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Vikrant Singh
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, California 95616
| | - Dongren Yang
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Linley Mangini
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, California 95616
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine
| |
Collapse
|
6
|
Lin CY, Huang WJ, Li K, Swanson R, Cheung B, Lin VW, Lee YS. Differential intensity-dependent effects of magnetic stimulation on the longest neurites and shorter dendrites in neuroscreen-1 cells. J Neural Eng 2015; 12:026013. [PMID: 25769013 DOI: 10.1088/1741-2560/12/2/026013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Magnetic stimulation (MS) is a potential treatment for neuropsychiatric disorders. This study investigates whether MS-regulated neuronal activity can translate to specific changes in neuronal arborization and thus regulate synaptic activity and function. APPROACH To test our hypotheses, we examined the effects of MS on neurite growth of neuroscreen-1 (NS-1) cells over the pulse frequencies of 1, 5 and 10 Hz at field intensities controlled via machine output (MO). Cells were treated with either 30% or 40% MO. Due to the nature of circular MS coils, the center region of the gridded coverslip (zone 1) received minimal (∼5%) electromagnetic current density while the remaining area (zone 2) received maximal (∼95%) current density. Plated NS-1 cells were exposed to MS twice per day for three days and then evaluated for length and number of neurites and expression of brain-derived neurotrophic factor (BDNF). MAIN RESULTS We show that MS dramatically affects the growth of the longest neurites (axon-like) but does not significantly affect the growth of shorter neurites (dendrite-like). Also, MS-induced changes in the longest neurite growth were most evident in zone 1, but not in zone 2. MS effects were intensity-dependent and were most evident in bolstering longest neurite outgrowth, best seen in the 10 Hz MS group. Furthermore, we found that MS-increased BDNF expression and secretion was also frequency-dependent. Taken together, our results show that MS exerts distinct effects when different frequencies and intensities are applied to the neuritic compartments (longest neurite versus shorter dendrite(s)) of NS-1 cells. SIGNIFICANCE These findings support the concept that MS increases BDNF expression and signaling, which sculpts longest neurite arborization and connectivity by which neuronal activity is regulated. Understanding the mechanisms underlying MS is crucial for efficiently incorporating its use into potential therapeutic strategies.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Mattson MP, Barger SW. Roles for calcium signaling in structural plasticity and pathology in the hippocampal system. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030711] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mark P. Mattson
- Sanders‐Brown Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, U.S.A
| | - Steven W. Barger
- Sanders‐Brown Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, U.S.A
| |
Collapse
|
8
|
Sandhu MS, Lee KZ, Fregosi RF, Fuller DD. Phrenicotomy alters phrenic long-term facilitation following intermittent hypoxia in anesthetized rats. J Appl Physiol (1985) 2010; 109:279-87. [PMID: 20395548 DOI: 10.1152/japplphysiol.01422.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intermittent hypoxia (IH) can induce a persistent increase in neural drive to the respiratory muscles known as long-term facilitation (LTF). LTF of phrenic inspiratory activity is often studied in anesthetized animals after phrenicotomy (PhrX), with subsequent recordings being made from the proximal stump of the phrenic nerve. However, severing afferent and efferent axons in the phrenic nerve has the potential to alter the excitability of phrenic motoneurons, which has been hypothesized to be an important determinant of phrenic LTF. Here we test the hypothesis that acute PhrX influences immediate and long-term phrenic motor responses to hypoxia. Phrenic neurograms were recorded in anesthetized, ventilated, and vagotomized adult male rats with intact phrenic nerves or bilateral PhrX. Data were obtained before (i.e., baseline), during, and after three 5-min bouts of isocapnic hypoxia. Inspiratory burst amplitude during hypoxia (%baseline) was greater in PhrX than in phrenic nerve-intact rats (P < 0.001). Similarly, burst amplitude 55 min after IH was greater in PhrX than in phrenic nerve-intact rats (175 + or - 9 vs. 126 + or - 8% baseline, P < 0.001). In separate experiments, phrenic bursting was recorded before and after PhrX in the same animal. Afferent bursting that was clearly observable in phase with lung deflation was immediately abolished by PhrX. The PhrX procedure also induced a form of facilitation as inspiratory burst amplitude was increased at 30 min post-PhrX (P = 0.01 vs. pre-PhrX). We conclude that, after PhrX, axotomy of phrenic motoneurons and, possibly, removal of phrenic afferents result in increased phrenic motoneuron excitability and enhanced LTF following IH.
Collapse
Affiliation(s)
- M S Sandhu
- Dept. of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, Univ. of Florida, PO Box 100154, 100 S. Newell Dr., Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
9
|
Gruol DL, Netzeband JG, Quina LA, Blakely-Gonzalez PK. Contribution of L‐type channels to Ca 2+ regulation of neuronal properties in early developing Purkinje neurons. THE CEREBELLUM 2005; 4:128-39. [PMID: 16035195 DOI: 10.1080/14734220510007969] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Activity driven Ca2+ signaling is an important regulator of neuronal development. Early developing Purkinje neurons (postnatal day 5-7) prior to the stage of dendritic development express a somatic Ca2+ signaling pathway that is electrically driven and communicates information from the cell membrane to the cytosol and nucleus. In the current studies, we examined the properties and potential functional role of this pathway using acutely isolated Purkinje neurons from postnatal day 5-7 rat pups and brief K+ stimulation to activate the pathway. Results show that the amplitude of the nuclear Ca2+ signal increases as a function of the cytosolic Ca2+ signal but is larger than the cytosolic Ca2+ signal at strong K+ stimulations. Both L-type and P-type Ca2+ channels contribute to the Ca2+ signal. We also show using semiquantitative immunohistochemical methods that activation of this Ca2+ signaling pathway results in activation the transcription factor CREB and that L-type Ca2+ channels play a prominent role in this effect. The level of cfos, a transcription factor whose expression is regulated by CREB, was also increased by K+ stimulation. K+ stimulation also altered the level of the Ca2+ binding protein calbindin, an effect that involved L-type Ca2+ channels. The relationship between increases in Ca2+ and calbindin expression was bell-shaped, with high levels of Ca2+ decreasing calbindin expression. The level of the transmitter GABA was also increased by K+ stimulation but this effect was not dependent on L-type Ca2+ channels. Taken together, these results support a role for L-type channels in the phenotypic expression of Purkinje neuron properties during early development and suggest that the different activity patterns of early developing Purkinje neurons could be one mechanism for signaling the induction of specific genes through differences in cytosolic or nuclear Ca2+.
Collapse
Affiliation(s)
- D L Gruol
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California, USA.
| | | | | | | |
Collapse
|
10
|
Ramakers GJ, Avci B, van Hulten P, van Ooyen A, van Pelt J, Pool CW, Lequin MB. The role of calcium signaling in early axonal and dendritic morphogenesis of rat cerebral cortex neurons under non-stimulated growth conditions. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 126:163-72. [PMID: 11248350 DOI: 10.1016/s0165-3806(00)00148-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effects of depolarizing stimuli on neurite outgrowth have been shown to depend on an influx of extracellular calcium. However, the role of calcium under non-stimulated growth conditions is less well established. Here we investigated the contribution of calcium signaling to early neuronal morphogenesis of rat cerebral cortex neurons at three levels by blocking L-type voltage sensitive calcium channels, by depleting intracellular calcium or by blocking myosin light chain kinase. Detailed quantitative morphological analysis of neurons treated for 1 day revealed that depletion of intracellular calcium strongly decreased the density of filopodia, arrested axonal outgrowth and strongly decreased dendritic branching. Preventing calcium influx through L-type voltage sensitive calcium channels and blocking of myosin light chain kinase activity selectively decreased dendritic branching. Our observations support an essential role for basal intracellular calcium levels in axonal elongation. Furthermore, under non-stimulated conditions calcium entry through L-type voltage sensitive calcium channels and myosin light chain kinase play an important role in dendritic branching.
Collapse
Affiliation(s)
- G J Ramakers
- Neurons and Networks, Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam, Meibergdreef 33, 1105 AZ Amsterdam ZO, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Abstract
An early and essential step in the formation of functional neuronal circuits is the establishment of cell polarity, a process involving the morphological and functional differentiation of the axon (axonogenesis). We now report that treatment of cultured embryonic hippocampal neurons with ethidium bromide (EtBr; an agent that depletes mitochondrial DNA), prior to the establishment of cell polarity, prevents axon formation while permitting outgrowth of minor processes. The polarity-suppressing action of EtBr occurs under conditions of maintained cellular ATP levels, and is not mimicked by ATP-depleting agents (iodoacetate, p-(trifluoromethyoxy)phenylhydrazone [FCCP], and cyanide). Levels of tau, a microtubule-associated protein involved in axonogenesis, were not decreased in neurons treated with EtBr. Electron and confocal microscope analyses showed that EtBr treatment altered mitochondrial ultrastructure and subcellular localization. Basal levels of intracellular calcium were elevated 2- to 3-fold, intramitochondrial calcium levels were greatly increased, and mitochondrial transmembrane potential was decreased in EtBr-treated neurons. Exposure of neurons to a calcium ionophore prevented axonogenesis. Confocal images of intracellular calcium levels and mitochondrial localization in the same cells revealed congregations of mitochondria at the base of the axon associated with local reductions of intracellular calcium levels. When taken together with previous data indicating important roles for calcium in regulating neurite outgrowth, the present findings suggest critical roles for mitochondrial function and modulation of calcium homeostasis in the establishment of neuronal polarity.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging and Department of Anatomy & Neurobiology, University of Kentucky, Lexington 40536-0230, USA.
| | | |
Collapse
|
13
|
Soares S, Fischer I, Ravaille-Veron M, Vincent JD, Nothias F. Induction of MAP1B phosphorylation in target-deprived afferent fibers after kainic acid lesion in the adult rat. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980629)396:2<193::aid-cne5>3.0.co;2-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Mattson MP. Free radicals, calcium, and the synaptic plasticity-cell death continuum: emerging roles of the transcription factor NF kappa B. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1998; 42:103-68. [PMID: 9476172 DOI: 10.1016/s0074-7742(08)60609-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA
| |
Collapse
|
15
|
Abstract
To examine the mechanisms responsible for the more rapid nerve regeneration observed after a previous (conditioning) nerve injury, adult rats were subjected to a midthigh sciatic nerve transection by using one of three protocols designed to facilitate or restrict nerve regeneration: 1) ligation, in which transected axons were prevented from regenerating; 2) cut, in which transected axons were permitted to extend into peripheral target tissue but were separated from the denervated peripheral nerve stump; and 3) crush, in which axons could regenerate normally through the denervated distal nerve tract. The affected dorsal root ganglia (DRG) were subsequently removed, dissociated, and cultured for up to 3 days, and the timing of neurite initiation, rate of outgrowth, and arborization pattern of previously injured neurons were compared with control DRG. Our results indicate that conditioning lesions have at least four distinct and differentially regulated effects on neuronal morphogenesis: 1) conditioning lesions promote earlier neurite initiation, 2) prior nerve injury decreases the ability of neurons to extend long neurites following a second axotomy, 3) exposure to the environment of a denervated peripheral nerve stimulates greater initial rates of neurite outgrowth, and 4) conditioning lesions reduces initial neuritic branching frequency, resulting in straighter neurites whose growth cones extend further distances from their cell bodies. The primary effect of all conditioning lesions on cultured DRG neurons appeared to be to advance the timing of morphogenesis, resulting in conditioning-lesioned neurons that exhibited characteristics consistent with control neurons that had been cultured for an additional day or more. A secondary effect of conditioning lesions on neurite outgrowth rates was dependent on the local environment of the axons prior to culturing.
Collapse
Affiliation(s)
- K L Lankford
- Department of Neurology, Yale University School of Medicine, Veterans Affairs Medical Center, West Haven, Connecticut 06515, USA
| | | | | |
Collapse
|
16
|
Abstract
The outgrowth of neuronal processes involves a great increase in the surface area of the cell. The supply of membrane material necessarily must be coordinated with the demands for neurite growth. The selective growth of only one or two neurites at any given time during the development of polarity raises the possibility that the production of materials by the soma is limiting for growth (Dotti and Banker, 1987; Dotti et al., Goslin and Banker, 1990). To examine the role of the availability of membrane components during the development of polarity and axonal elongation, we treated neurons with brefeldin A, an antibiotic that disrupts the trafficking of vesicles from the Golgi complex to the plasma membrane. Treatment with brefeldin A (1 microg/ml) inhibited axonal growth within 0.5 hr; in unpolarized cells it prevented the formation of an axon. These results indicate that the availability of membrane components of Golgi-derived vesicles is required for axonal growth and hence the development of polarity. Inhibitors of protein and RNA synthesis also blocked axonal growth and the development of polarity, but over a much slower time course. This suggests that the full complement of proteins and mRNAs required for the initial development of polarity is present for several hours before polarity is actually established.
Collapse
|
17
|
Sattler R, Tymianski M, Feyaz I, Hafner M, Tator CH. Voltage-sensitive calcium channels mediate calcium entry into cultured mammalian sympathetic neurons following neurite transection. Brain Res 1996; 719:239-46. [PMID: 8782889 DOI: 10.1016/0006-8993(96)00125-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Calcium ion entry following mechanical neurite transection was examined in cultured sympathetic neurons loaded with the Ca2+ indicator fluo-3. Neurite transection produced a rapid [Ca2+]i rise in the cell soma which preceded any [Ca2+]i rise in the neurite (n = 30). Blocking sodium channels with tetrodotoxin had no effect on the Ca2+ rise, but inactivating voltage-sensitive Ca2+ channels by bath-applying 140 mM potassium prior to the transection, and the simultaneous application of nimodipine and omega-conotoxin GVIA, blockers of L-type and N-type Ca2+ channels, respectively, considerably attenuated the Ca2+ rise in the soma and neurites. These data contradict the intuitive hypothesis that Ca2+ entry following mechanical neurite transection occurs via non-specific influx pathways produced by cell-membrane disruption and provide direct evidence in mammalian neurons that immediate, traumatically-induced, increases in neuronal [Ca2+]i are amenable to pharmacological manipulation.
Collapse
Affiliation(s)
- R Sattler
- Department of Applied Cell Biology, Technical University of Mannheim, Germany
| | | | | | | | | |
Collapse
|
18
|
Abstract
Hypoxia threatens brain function during the entire life-span starting from early fetal age up to senescence. This review compares the short-term, long-term and life-spanning effects of fetal chronic hypoxia and neonatal anoxia on several behavioural paradigms including novelty-induced spontaneous and learning behaviours. Furthermore, it reveals that perinatal hypoxia is an additional threat to neurodegeneration and decline of cognitive and other behaviours during the aging process. Prenatal hypoxia evokes a temporary delay of ingrowth of cholinergic and serotonergic fibres into the hippocampus and neocortex, and causes an enhanced neurodegeneration of 5-HT-ir axons during aging. Neonatal anoxia suppresses hippocampal ChAT activity and up-regulates muscarinic receptor sites for 3H-QNB and 3H-pirenzepine binding in the hippocampus in the early postnatal age. The altered development of axonal arborization and pre- and postsynaptic cholinergic functions may be an important underlying mechanism to explain the behavioural deficits. As far as the cellular mechanisms of perinatal hypoxia is concerned, our primary aim was to study the putative importance of Ca2+ homeostasis of developing neurons by means of pharmacological interventions and by measuring the development of immunoexpression of Ca(2+)-binding proteins. We assessed that nimodipine, an L-type calcium channel blocker, prevented or attenuated the adverse behavioural and neurochemical effects of perinatal hypoxias, while it enhanced the early postnatal development of ir-Ca(2+)-binding proteins. The results are discussed in the context of different related research areas on brain development and hypoxia and ischaemia.
Collapse
Affiliation(s)
- C Nyakas
- Department of Animal Physiology, University of Groningen, Haren, The Netherlands
| | | | | |
Collapse
|
19
|
Sarder M, Abe K, Saito H, Nishiyama N. Comparative effect of IL-2 and IL-6 on morphology of cultured hippocampal neurons from fetal rat brain. Brain Res 1996; 715:9-16. [PMID: 8739617 DOI: 10.1016/0006-8993(95)01291-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has become increasingly clear that immune cytokines have an effect on growth and differentiation in the nervous system as well as in the immune system. We have previously reported that interleukin-2 (IL-2) promotes survival of primary cultured neurons from fetal rat brain. In the present study, we investigated the effects of IL-2 as well as IL-6, one of the neurotrophic cytokines, on neuronal morphology and regeneration after damage in primary cultured hippocampal neurons. For neuronal morphology, IL-2 significantly promoted the elongation and branching of neurites, but IL-6 enhanced only the elongation. The neurite-elongating effect of IL-2 was different from that of IL-6 in terms of both effective concentration and maximal effect. In laser beam-damaged neurons, IL-2 significantly increased both the number and the length of branches emerging from the proximal part of damaged neurite. IL-2 also increased the length and the number of non-damaged neurites. IL-6, however, did not affect any of these parameters in damaged neurons. These results suggest that IL-2 and IL-6 modulate neuronal morphology through distinct mechanisms.
Collapse
Affiliation(s)
- M Sarder
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
20
|
Abstract
Highly branched dendritic shapes are distinguishing characteristics of neurons and certain other cell types, but the physical mechanisms responsible for their formation are not well understood. Here, we model the growth of cells under the control of diffusible growth-regulating factors (morphogens such as calcium ion) whose local internal concentration results from influx and active extrusion across the cell membrane. Nonlinearities in voltage-dependent ionic permeabilities enhance unstable growth, so that branching dendritic outgrowths results from self-sustaining internal morphogen gradients. Simulations display complex patterns of branching growth, influenced by membrane conductance, galvanotropism and chemotropism. This self-organizing pattern formation is in agreement with the development of real neurons under corresponding conditions.
Collapse
Affiliation(s)
- H G Hentschel
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
21
|
Lankford KL, Kenney AM, Kocsis JD. Cellular mechanisms regulating neurite initiation. PROGRESS IN BRAIN RESEARCH 1996; 108:55-81. [PMID: 8979794 DOI: 10.1016/s0079-6123(08)62532-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- K L Lankford
- Department of Neurology, Yale University School of Medicine and Neuroscience, West Haven, CT, USA
| | | | | |
Collapse
|
22
|
Lorenzon P, Zacchetti D, Codazzi F, Fumagalli G, Meldolesi J, Grohovaz F. Ca2+ waves in PC12 neurites: a bidirectional, receptor-oriented form of Ca2+ signaling. J Cell Biol 1995; 129:797-804. [PMID: 7730413 PMCID: PMC2120454 DOI: 10.1083/jcb.129.3.797] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Spatial and temporal aspects of Ca2+ signaling were investigated in PC12 cells differentiated with nerve growth factor, the well known nerve cell model. Activation of receptors coupled to polyphosphoinositide hydrolysis gave rise in a high proportion of the cells to Ca2+ waves propagating non decrementally and at constant speed (2-4 microns/s at 18 degrees C and approximately 10-fold faster at 37 degrees C) along the neurites. These waves relied entirely on the release of Ca2+ from intracellular stores since they could be generated even when the cells were incubated in Ca(2+)-free medium. In contrast, when the cells were depolarized with high K+ in Ca(2+)-containing medium, increases of cytosolic Ca2+ occurred in the neurites but failed to evolve into waves. Depending on the receptor agonist employed (bradykinin and carbachol versus ATP) the orientation of the waves could be opposite, from the neurite tip to the cell body or vice versa, suggesting different and specific distribution of the responsible surface receptors. Cytosolic Ca2+ imaging results, together with studies of inositol 1,4,5-trisphosphate generation in intact cells and inositol 1,4,5-trisphosphate-induced Ca2+ release from microsomes, revealed the sustaining process of the waves to be discharge of Ca2+ from the inositol 1,4,5-trisphosphate- (and not the ryanodine-) sensitive stores distributed along the neurites. The activation of the cognate receptor appears to result from the coordinate action of the second messenger and Ca2+. Because of their properties and orientation, the waves could participate in the control of not only conventional cell activities, but also excitability and differential processing of inputs, and thus of electrochemical computation in nerve cells.
Collapse
Affiliation(s)
- P Lorenzon
- Department of Pharmacology, University of Milano, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Mandell JW, Banker GA. The microtubule cytoskeleton and the development of neuronal polarity. Neurobiol Aging 1995; 16:229-37; discussion 238. [PMID: 7566333 DOI: 10.1016/0197-4580(94)00164-v] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The concept that axons and dendrites represent a fundamental polarization of the nerve cell has been borne out by numerous morphological, functional, and molecular studies. How does polarity arise during development? We and others have focused on the role of the microtubule cytoskeleton because microtubules (a) are essential components of axons and dendrites; (b) possess an inherent polarity at the molecular level; (c) are regulated by interactions with microtubule associated proteins (MAPs), some of which have polarized distributions in mature neurons. Here we review data on the initial acquisition of polarity as observed in neuronal culture and roles for microtubules and MAPs in this morphogenetic event. We present data clarifying some previously conflicting results on tau localization during the establishment of polarity and provide new evidence that phosphorylation of tau is spatially regulated during the development of polarity in culture. Elucidation of mechanisms locally regulating tau phosphorylation during normal neuronal development may provide clues to the significance of its abnormal phosphorylation in Alzheimer's disease.
Collapse
|
24
|
Lankford KL, Rand MN, Waxman SG, Kocsis JD. Blocking Ca2+ mobilization with thapsigargin reduces neurite initiation in cultured adult rat DRG neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 84:151-63. [PMID: 7743635 DOI: 10.1016/0165-3806(94)00159-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Adult rat DRG neurons rapidly extend extensive neuritic arbors after a 1-2-day delay in culture and generate large depolarization-induced calcium signals during this time period that are derived primarily from intracellular calcium release. To assess whether intracellular calcium mobilization is required for neurite initiation, calcium stores were depleted by brief exposure to the irreversible endoplasmic reticulum calcium ATPase inhibitor thapsigargin; cultures were then maintained for 3 days, immunostained for neurofilament and scored for percentage of neurons with neurites at least twice as long as the cell body. Brief thapsigargin treatment (20 min) during the first 24 h in culture resulted in a substantial decrease in neurite initiation frequency without affecting neuronal or nonneuronal cell survival, suggesting that intracellular calcium mobilization is necessary for triggering neurite initiation in these neurons.
Collapse
Affiliation(s)
- K L Lankford
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
25
|
Audesirk T, Shugarts D, Cabell-Kluch L, Wardle K. The effects of triethyl lead on the development of hippocampal neurons in culture. Cell Biol Toxicol 1995; 11:1-10. [PMID: 7600254 DOI: 10.1007/bf00769987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Triethyl lead is the major metabolite of tetraethyl lead, which is used in industrial processes and as an antiknock additive to gasoline. We tested the hypothesis that low levels of triethyl lead (0.1 nmol/L to 5 mumol/L) interfere with the normal development of cultured E18 rat hippocampal neurons, possibly through increases in intracellular free calcium ion concentration, [Ca2+]in. The study assessed survival and differentiation using morphometric analysis of individual neurons. We also looked at short-term (up to 3.75-h) changes in intracellular calcium using the calcium-sensitive dye fura-2. Survival of neurons was significantly reduced at 5 mumol/L, and overall production of neurites was reduced at > or = 2 mumol/L. The length of axons and the number of axons and dendrites were reduced at > or = 1 mumol/L. Neurite branching was inhibited at 10 nmol/L for dendrites and 100 nmol/L for axons. Increases in intracellular calcium were observed during a 3.75-h exposure of newly plated neurons to 5 mumol/L triethyl lead. These increases were prevented by BAPTA-AM; which clamps [Ca2+]in at about 100 nmol/L. Culturing neurons with BAPTA-AM and 5 mumol/L triethyl lead did not reverse the effects of triethyl lead, suggesting that elevation of [Ca2+]in is not responsible for decreases in survival and neurite production. Triethyl lead has been shown to disrupt cytoskeletal elements, particularly neurofilaments, at very low levels, suggesting a possible mechanism for its inhibition of neurite branching at nanomolar concentrations.
Collapse
Affiliation(s)
- T Audesirk
- Department of Biology, University of Colorado at Denver, USA
| | | | | | | |
Collapse
|
26
|
Hentschel HG, Fine A. Instabilities in Cellular Dendritic Morphogenesis. PHYSICAL REVIEW LETTERS 1994; 73:3592-3595. [PMID: 10057422 DOI: 10.1103/physrevlett.73.3592] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
27
|
Hall GF. Cellular responses of identified lamprey central neurons to axonal and dendritic injury. An in situ model for studying cellular injury on the single cell level in the vertebrate CNS. Ann N Y Acad Sci 1993; 679:43-64. [PMID: 8512208 DOI: 10.1111/j.1749-6632.1993.tb18288.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- G F Hall
- Department of Neurology (Neuroscience), Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Davenport RW, McCaig CD. Hippocampal growth cone responses to focally applied electric fields. JOURNAL OF NEUROBIOLOGY 1993; 24:89-100. [PMID: 8419526 DOI: 10.1002/neu.480240108] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A wide variety of cell types respond to electric fields in culture. Despite evidence for electric fields existing in the mammalian embryo, there are few studies testing the effects electric fields exert on neurons from the mammalian central nervous system (CNS). The present study demonstrates orientation responses to focally applied electric fields of embryonic rat hippocampal neurons isolated in culture. The most striking result from this study is that different growth cones of the same neuron can show differential responsiveness to focally applied electric fields: growth cones on the short, straight processes that are destined to become dendrites, oriented toward the cathode, whereas growth cones on the longest process, the presumptive axon, did not orient. The present experiments bring a significant increase in resolution to the study of neuronal growth cone orientation by applied electric fields: a novel examination of the early events leading to orientation. Growth cones on dendrites displayed a spectrum of orientation responses: directed lamellipodial extension, directed filopodial extension and/or reorientation, cytoplasmic swelling of existing filopodia, consolidation of filopodia, and rapid elongation of the entire process. Individual growth cones displayed only one or two of these responses. Additionally, not all growth cones on these short processes sustained their initial orientation response: 35% adapted within 6 min.
Collapse
Affiliation(s)
- R W Davenport
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523
| | | |
Collapse
|
29
|
Barger SW, Wolchok SR, Van Eldik LJ. Disulfide-linked S100 beta dimers and signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1160:105-12. [PMID: 1420327 DOI: 10.1016/0167-4838(92)90043-d] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
S100 beta is a calcium-binding protein with neurotrophic and mitogenic activities, both of which may be mediated by the protein's ability to stimulate an increase in intracellular free calcium ([Ca2+]i). These extracellular trophic activities of S100 beta require a disulfide-linked, dimeric form of the protein. In this chapter, we present a minireview on the current state of knowledge concerning extracellular functions of S100 beta, with emphasis on the potential relevance of these activities to neuropathological disorders. We also report a simplified procedure for preparation of pharmacological amounts of biologically active S100 beta dimers, based on the finding that formation of disulfide-linked S100 beta dimers can be stimulated by the presence of calcium or lipid.
Collapse
Affiliation(s)
- S W Barger
- Department of Cell Biology, Vanderbilt University, Nashville, TN 37232-6600
| | | | | |
Collapse
|
30
|
|
31
|
Popov VI, Bocharova LS. Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons. Neuroscience 1992; 48:53-62. [PMID: 1584425 DOI: 10.1016/0306-4522(92)90337-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mossy fibre synapses on the CA3 hippocampal neurons in the brain of ground squirrels repeatedly undergo a striking structural transformation during hibernation. In the middle of hibernation bout the giant complex mossy fibre synapses have a reduced number of dendritic spine infoldings that are smaller and have a decreased number of postsynaptic densities in comparison with mossy fibre synapses of active animals. Two hours after arousal all these parameters of mossy fibre synapses increase and significantly exceed their levels not only in torpid but in active euthermic animals between bouts of torpor. The longer postsynaptic densities and the greater proportion of perforated postsynaptic densities were found soon after arousal. These rapid, reversible and repeated changes indicate a cyclic process of partial denervation/reinnervation of hippocampal neurons by mossy fibres in the course of the innate, stereotyped behaviour.
Collapse
Affiliation(s)
- V I Popov
- Institute of Cell Biophysics, Academy of Sciences, Pushchino, Moscow Region, Russia
| | | |
Collapse
|
32
|
Bell J, Zhang XN, Whitaker-Azmitia PM. 5-HT3 receptor-active drugs alter development of spinal serotonergic innervation: lack of effect of other serotonergic agents. Brain Res 1992; 571:293-7. [PMID: 1535269 DOI: 10.1016/0006-8993(92)90667-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Our work has focused on identifying the type of serotonin receptor through which serotonin acts as a developmental signal in the central nervous system. Previously, we have found that the regulation of development of ascending serotonergic neurons is through the balance of two serotonin receptors. One, the 5-HT1a receptor, releases a growth factor from astroglial cells. The other receptor is related to a release-regulating autoreceptor and can be stimulated indirectly by serotonin releasers such as fenfluramine. In the present study, we examined the receptors which regulate development of the descending neurons by treating pregnant rats with selective serotonergic drugs, from gestation day 12 until birth. Pups were subsequently tested for alterations in development by nociceptive testing (tail-flick latency) and by determining the binding of 3H-paroxetine, an indicator of serotonin terminal density, in spinal cord. Our results show that agents stimulating the 5-HT1a receptor (8-OH-DPAT) or the 5-HT1b receptor (TFMPP) or substances which release serotonin (fenfluramine) had no effect on the development of spinal serotonergic pathways. However, agents acting on the 5-HT3 receptor did--the agonist phenylbiguanide (PG) increased latency on tail-flick testing (postnatal days 10 and 30), while the antagonist, MDL 72222, decreased latency (postnatal days 10 and 18). Interestingly, both the agonist and the antagonist significantly increased 3H-paroxetine binding on postnatal day 18. Our results are discussed in terms of a possible mechanism by which 5-HT3 receptors may influence development.
Collapse
Affiliation(s)
- J Bell
- Department of Psychiatry and Behavioral Sciences, State University of New York, Stony Brook 11794
| | | | | |
Collapse
|
33
|
Abstract
This paper examines the hypothesis that intracellular calcium plays guiding roles in the formation and adaptive modification of neural circuits in development and adult plasticity and that imbalances in calcium regulation lead to the degeneration of neural circuits in aging and disease. The neuronal growth cone is the motile structure largely responsible for the generation of neuroarchitecture. Studies of developing neurons in culture demonstrated that environmental signals believed to play key roles in neural development (i.e., neurotransmitters and growth factors) regulate growth cones by altering neuronal calcium-regulating systems. Different components of neurite outgrowth (i.e., neurite elongation and growth cone motility) are based upon different cytoskeletal systems (microtubules and microfilaments) which are differentially affected by calcium. In addition, cytoskeleton-associated proteins such as tau and microtubule-associated protein 2 (MAP2) are likely candidates for regulation by calcium. "Natural" neuronal death in development may occur as the result of growth factor deficiency or excess excitatory activity leading to sustained elevations in intracellular calcium levels. With aging and in disease, a loss of calcium homeostasis may underlie the aberrant neurodegeneration that occurs. For example, neurons subjected to conditions (e.g., glutamate and beta-amyloid) that cause sustained rises in intracellular calcium exhibit changes in the cytoskeleton similar to those seen in neurofibrillary tangles of Alzheimer's disease and related disorders. Taken together, the data suggest that cellular systems for calcium homeostasis are integral to both the adaptive and aberrant neuroarchitectural changes that occur throughout the lifespan of the nervous system.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536
| |
Collapse
|
34
|
Guthrie PB, Segal M, Kater SB. Independent regulation of calcium revealed by imaging dendritic spines. Nature 1991; 354:76-80. [PMID: 1944573 DOI: 10.1038/354076a0] [Citation(s) in RCA: 185] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The dendritic spine is a basic structural unit of neuronal organization. It is assumed to be a primary locus of synaptic plasticity, and to undergo long-term morphological and functional changes, at least some of which are regulated by intracellular calcium concentrations. It is known that physiological stimuli can cause marked increases in intracellular calcium levels in hippocampal dendritic shafts, but it is completely unknown to what extent such changes in the dendrites would also be seen by calcium-sensing structures within spines. Will calcium levels in all spines change in parallel with the dendrite or will there be a heterogeneous response? This study, through direct visualization and measurement of intracellular calcium concentrations in individual living spines, demonstrates that experimentally evoked changes in calcium concentrations in the dendritic shaft ([Ca2+]d).
Collapse
Affiliation(s)
- P B Guthrie
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins
| | | | | |
Collapse
|
35
|
Mattson MP, Engle MG, Rychlik B. Effects of elevated intracellular calcium levels on the cytoskeleton and tau in cultured human cortical neurons. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1991; 15:117-42. [PMID: 1663746 DOI: 10.1007/bf03159951] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Considerable evidence suggests that altered neuronal calcium homeostasis plays a role in the neuronal degeneration that occurs in an array of neurological disorders. A reduction in microtubules, the accumulation of 8-15 nm straight filaments, and altered antigenicity toward antibodies to the microtubule-associated protein tau and ubiquitin, as well as granulovacuolar degeneration, are observed in many human neurodegenerative disorders. Progress toward understanding how and why human neurons degenerate has been hindered by the inability to examine living human neurons under controlled conditions. We used cultured human fetal cerebral cortical neurons to examine ultrastructural and antigenic changes resulting from elevations in intracellular calcium levels. Elevation of intracellular calcium by exposure to a calcium ionophore or a reduced level of extracellular Na+ for periods of hours to days caused a loss of microtubules, an increase in 8-15 nm straight filaments, and increased immunostaining with Alz-50 and 5E2 (tau antibodies) and ubiquitin antibodies. Granulovacuolar degeneration was also observed. Antigenic changes in tau were sensitive to phosphatases, and the electrophoretic mobility of tau was altered in cells exposed to calcium ionophore, indicating that tau was excessively phosphorylated as the result of elevated intracellular calcium levels. Colchicine also caused an accumulation of straight filaments and altered tau immunoreactivity, suggesting that a disruption of microtubules secondary to altered calcium homeostasis may be a key event leading to altered tau disposition and neuronal degeneration. These data demonstrate that aberrant rises in intraneuronal calcium levels can result in changes in the neuronal cytoskeleton similar to those seen in neurodegenerative disorders, and suggest that this experimental system will be useful in furthering our understanding of the cellular and molecular mechanisms of human neurological disorders.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging, University of Kentucky Medical Center, Lexington 40536-0230
| | | | | |
Collapse
|
36
|
Abstract
The exact nature of growth cone motility is far from understood but progress has been made in several areas. It now appears that growth cones pull and not push; we will review the biophysical basis of growth cone movement. Current ideas on the regulation of growth cone motility and the relationship between motility and axon pathfinding are also discussed.
Collapse
Affiliation(s)
- S R Heidemann
- Department of Physiology, Michigan State University, East Lansing 48824-1101
| | | |
Collapse
|
37
|
Mattson MP. Evidence for the involvement of protein kinase C in neurodegenerative changes in cultured human cortical neurons. Exp Neurol 1991; 112:95-103. [PMID: 2013310 DOI: 10.1016/0014-4886(91)90118-v] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Roles of protein kinases in mediating adaptive neuronal responses to activation of signal transduction pathways are well known. Recent findings suggest that kinases may also be involved in pathological processes in the nervous system. The present study employed cultured human cerebral cortical neurons to test the hypothesis that overactivation of protein kinase C (PKC) can result in neurodegeneration. Phorbol 12-myristate 13-acetate (PMA), an activator of PKC, caused the degeneration of neurons over a period of 3-24 h. The PKC inhibitor H-7 prevented the neurodegeneration normally caused by PMA, and an inactive phorbol (4 alpha-phorbol 12,13-didecanoate; PDD) did not cause neurodegeneration. The neurodegeneration caused by PMA was independent of calcium influx. Immunoreactivity toward antibodies that recognize the microtubule-associated protein tau in Alzheimer neurofibrillary tangles (Alz-50 and 5E2) was greatly increased in neurons exposed to PMA. The antigenic changes were prevented by H-7. These findings indicate that high levels of activation of PKC can cause neurodegeneration and are consistent with the possibility that altered cellular signaling contributes to pathological neuronal degeneration in the intact nervous system.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536-0230
| |
Collapse
|