1
|
Lebouc M, Bonamy L, Dhellemmes T, Scharnholz J, Richard Q, Courtand G, Brochard A, Martins F, Landry M, Baufreton J, Garret M. Developmental alterations of indirect-pathway medium spiny neurons in mouse models of Huntington's disease. Neurobiol Dis 2025; 208:106874. [PMID: 40090469 DOI: 10.1016/j.nbd.2025.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025] Open
Abstract
Huntington's disease (HD) is a complex neurodegenerative disorder with cognitive and motor symptoms that typically manifest in adulthood. However, embryonic brain development impairments leading to cortical defects in HD mutation carriers has been shown recently supporting a neurodevelopmental component in HD. Despite HD is primarily recognized as a striatal pathology, developmental alterations in this structure, particularly during the early postnatal period, remain poorly understood. To fill this gap, we examined striatal development in newborn R6/1 mice. We found that D2 receptor-expressing indirect-pathway medium spiny neurons (D2-MSNs) present in the matrix striatal compartment undergo early morphological and electrophysiological maturation. Altered electrophysiological properties were also observed in newborn CAG140 mice. Additionally, we also observed a D2-MSN-selective reduction in glutamatergic cortico-striatal transmission at the beginning of the second postnatal week as well as a reduced projection of D2-MSNs onto the GPe at birth in R6/1 mice. All these alterations were transient with the circuit normalizing after the second postnatal week. These results identify a compartment- and cell-type specific defect in D2-MSNs maturation, which can contribute in their latter vulnerability, as this cell-type is the first to degenerate in HD during adulthood.
Collapse
Affiliation(s)
- Margaux Lebouc
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Léa Bonamy
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | | | - Quentin Richard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Gilles Courtand
- Univ. Bordeaux, CNRS, INCIA, UMR 5297, F-33000 Bordeaux, France
| | - Alexandre Brochard
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Frédéric Martins
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Marc Landry
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Maurice Garret
- Univ. Bordeaux, CNRS, INCIA, UMR 5297, F-33000 Bordeaux, France
| |
Collapse
|
2
|
Parr AC, Sydnor VJ, Calabro FJ, Luna B. Adolescent-to-adult gains in cognitive flexibility are adaptively supported by reward sensitivity, exploration, and neural variability. Curr Opin Behav Sci 2024; 58:101399. [PMID: 38826569 PMCID: PMC11138371 DOI: 10.1016/j.cobeha.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cognitive flexibility exhibits dynamic changes throughout development, with different forms of flexibility showing dissociable developmental trajectories. In this review, we propose that an adolescent-specific mode of flexibility in the face of changing environmental contingencies supports the emergence of adolescent-to-adult gains in cognitive shifting efficiency. We first describe how cognitive shifting abilities monotonically improve from childhood to adulthood, accompanied by increases in brain state flexibility, neural variability, and excitatory/inhibitory balance. We next summarize evidence supporting the existence of a dopamine-driven, adolescent peak in flexible behavior that results in reward seeking, undirected exploration, and environmental sampling. We propose a neurodevelopmental framework that relates these adolescent behaviors to the refinement of neural phenotypes relevant to mature cognitive flexibility, and thus highlight the importance of the adolescent period in fostering healthy neurocognitive trajectories.
Collapse
Affiliation(s)
- Ashley C. Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
| | - Valerie J. Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
| | - Finnegan J. Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh PA, 14213, USA
| |
Collapse
|
3
|
Liu C, Filbey FM. Unlocking the age-old secrets of reward and substance use. Pharmacol Biochem Behav 2024; 239:173766. [PMID: 38604456 DOI: 10.1016/j.pbb.2024.173766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Although substance use is widespread across the lifespan from early adolescence to older adulthood, the prevalence of substance use disorder (SUD) differs between age groups. These age differences in SUD rates necessitate an investigation into how age moderates reward sensitivity, and consequently influences the risks and consequences related to substance use. This theoretical review integrates evidence from the literature to address the dynamic interplay between age and reward in the context of substance use. Overall, increasing evidence demonstrates that age moderates reward sensitivity and underlying reward system neurobiology. Reward sensitivity undergoes a non-linear trajectory across the lifespan. Low levels of reward sensitivity are associated with childhood and late adulthood. In contrast, high levels are associated with early to late adolescence, followed by a decline in the twenties. These fluctuations in reward sensitivity across the lifespan contribute to complex associations with substance use. This lends support to adolescence and young adulthood as vulnerable periods for the risk of subsequent SUD. More empirical research is needed to investigate reward sensitivity during SUD maintenance and recovery. Future research should also involve larger sample sizes and encompass a broader range of age groups, including older adults.
Collapse
Affiliation(s)
- Che Liu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, United States of America.
| | - Francesca M Filbey
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, United States of America
| |
Collapse
|
4
|
Jauhari A, Singh T, Yadav S. Neurodevelopmental Disorders and Neurotoxicity: MicroRNA in Focus. J Chem Neuroanat 2022; 120:102072. [DOI: 10.1016/j.jchemneu.2022.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
5
|
Reynolds LM, Flores C. Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Front Neural Circuits 2021; 15:735625. [PMID: 34566584 PMCID: PMC8456011 DOI: 10.3389/fncir.2021.735625] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Mesocorticolimbic dopamine circuity undergoes a protracted maturation during adolescent life. Stable adult levels of behavioral functioning in reward, motivational, and cognitive domains are established as these pathways are refined, however, their extended developmental window also leaves them vulnerable to perturbation by environmental factors. In this review, we highlight recent advances in understanding the mechanisms underlying dopamine pathway development in the adolescent brain, and how the environment influences these processes to establish or disrupt neurocircuit diversity. We further integrate these recent studies into the larger historical framework of anatomical and neurochemical changes occurring during adolescence in the mesocorticolimbic dopamine system. While dopamine neuron heterogeneity is increasingly appreciated at molecular, physiological, and anatomical levels, we suggest that a developmental facet may play a key role in establishing vulnerability or resilience to environmental stimuli and experience in distinct dopamine circuits, shifting the balance between healthy brain development and susceptibility to psychiatric disease.
Collapse
Affiliation(s)
- Lauren M Reynolds
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France.,Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, QC, Canada
| |
Collapse
|
6
|
Post-weaning social isolation impairs purinergic signaling in rat brain. Neurochem Int 2021; 148:105111. [PMID: 34171414 DOI: 10.1016/j.neuint.2021.105111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/25/2021] [Accepted: 06/20/2021] [Indexed: 01/14/2023]
Abstract
Early life stressors, such as social isolation (SI), can disrupt brain development contributing to behavioral and neurochemical alterations in adulthood. Purinergic receptors and ectonucleotidases are key regulators of brain development in embryonic and postnatal periods, and they are involved in several psychiatric disorders, including schizophrenia. The extracellular ATP drives purinergic signaling by activating P2X and P2Y receptors and it is hydrolyzed by ectonucleotidases in adenosine, which activates P1 receptors. The purpose of this study was to investigate if SI, a rodent model used to replicate abnormal behavior relevant to schizophrenia, impacts purinergic signaling. Male Wistar rats were reared from weaning in group-housed or SI conditions for 8 weeks. SI rats exhibited impairment in prepulse inhibition and social interaction. SI presented increased ADP levels in cerebrospinal fluid and ADP hydrolysis in the hippocampus and striatum synaptosomes. Purinergic receptor expressions were upregulated in the prefrontal cortex and downregulated in the hippocampus and striatum. A2A receptors were differentially expressed in SI prefrontal cortex and the striatum, suggesting distinct roles in these brain structures. SI also presented decreased ADP, adenosine, and guanosine levels in the cerebrospinal fluid in response to D-amphetamine. Like patients with schizophrenia, uric acid levels were prominently increased in SI rats after D-amphetamine challenge. We suggest that the SI-induced deficits in prepulse inhibition might be related to the SI-induced changes in purinergic signaling. We provide new evidence that purinergic signaling is markedly affected in a rat model relevant to schizophrenia, pointing out the importance of purinergic system in psychiatry conditions.
Collapse
|
7
|
Parr AC, Calabro F, Larsen B, Tervo-Clemmens B, Elliot S, Foran W, Olafsson V, Luna B. Dopamine-related striatal neurophysiology is associated with specialization of frontostriatal reward circuitry through adolescence. Prog Neurobiol 2021; 201:101997. [PMID: 33667595 PMCID: PMC8096717 DOI: 10.1016/j.pneurobio.2021.101997] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/09/2023]
Abstract
Characterizing developmental changes in frontostriatal circuitry is critical to understanding adolescent development and can clarify neurobiological mechanisms underlying increased reward sensitivity and risk-taking and the emergence of psychopathology during this period. However, the role of striatal neurobiology in the development of frontostriatal circuitry through human adolescence remains largely unknown. We examined background connectivity during a reward-guided decision-making task ("reward-state"), in addition to resting-state, and assessed the association between age-related changes in frontostriatal connectivity and age-related changes in reward learning and risk-taking through adolescence. Further, we examined the contribution of dopaminergic processes to changes in frontostriatal circuitry and decision-making using MR-based assessments of striatal tissue-iron as a correlate of dopamine-related neurobiology. Connectivity between the nucleus accumbens (NAcc) and ventral anterior cingulate, subgenual cingulate, and orbitofrontal cortices decreased through adolescence into adulthood, and decreases in reward-state connectivity were associated with improvements reward-guided decision-making as well as with decreases in risk-taking. Finally, NAcc tissue-iron mediated age-related changes and was associated with variability in connectivity, and developmental increases in NAcc R2' corresponded with developmental decreases in connectivity. Our results provide evidence that dopamine-related striatal properties contribute to the specialization of frontostriatal circuitry, potentially underlying changes in risk-taking and reward sensitivity into adulthood.
Collapse
Affiliation(s)
- Ashley C. Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Bart Larsen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Brenden Tervo-Clemmens
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Samuel Elliot
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Valur Olafsson
- NUBIC, Northeastern University, Boston, MA, 02115, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| |
Collapse
|
8
|
Mollick JA, Hazy TE, Krueger KA, Nair A, Mackie P, Herd SA, O'Reilly RC. A systems-neuroscience model of phasic dopamine. Psychol Rev 2020; 127:972-1021. [PMID: 32525345 PMCID: PMC8453660 DOI: 10.1037/rev0000199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe a neurobiologically informed computational model of phasic dopamine signaling to account for a wide range of findings, including many considered inconsistent with the simple reward prediction error (RPE) formalism. The central feature of this PVLV framework is a distinction between a primary value (PV) system for anticipating primary rewards (Unconditioned Stimuli [USs]), and a learned value (LV) system for learning about stimuli associated with such rewards (CSs). The LV system represents the amygdala, which drives phasic bursting in midbrain dopamine areas, while the PV system represents the ventral striatum, which drives shunting inhibition of dopamine for expected USs (via direct inhibitory projections) and phasic pausing for expected USs (via the lateral habenula). Our model accounts for data supporting the separability of these systems, including individual differences in CS-based (sign-tracking) versus US-based learning (goal-tracking). Both systems use competing opponent-processing pathways representing evidence for and against specific USs, which can explain data dissociating the processes involved in acquisition versus extinction conditioning. Further, opponent processing proved critical in accounting for the full range of conditioned inhibition phenomena, and the closely related paradigm of second-order conditioning. Finally, we show how additional separable pathways representing aversive USs, largely mirroring those for appetitive USs, also have important differences from the positive valence case, allowing the model to account for several important phenomena in aversive conditioning. Overall, accounting for all of these phenomena strongly constrains the model, thus providing a well-validated framework for understanding phasic dopamine signaling. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Jessica A Mollick
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Thomas E Hazy
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Kai A Krueger
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Ananta Nair
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Prescott Mackie
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Seth A Herd
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Randall C O'Reilly
- Department of Psychology and Neuroscience, University of Colorado Boulder
| |
Collapse
|
9
|
Maturation of the human striatal dopamine system revealed by PET and quantitative MRI. Nat Commun 2020; 11:846. [PMID: 32051403 PMCID: PMC7015913 DOI: 10.1038/s41467-020-14693-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/28/2020] [Indexed: 01/18/2023] Open
Abstract
The development of the striatum dopamine (DA) system through human adolescence, a time of increased sensation seeking and vulnerability to the emergence of psychopathology, has been difficult to study due to pediatric restrictions on direct in vivo assessments of DA. Here, we applied neuroimaging in a longitudinal sample of n = 146 participants aged 12–30. R2′, an MR measure of tissue iron which co-localizes with DA vesicles and is necessary for DA synthesis, was assessed across the sample. In the 18–30 year-olds (n = 79) we also performed PET using [11C]dihydrotetrabenazine (DTBZ), a measure of presynaptic vesicular DA storage, and [11C]raclopride (RAC), an indicator of D2/D3 receptor availability. We observed decreases in D2/D3 receptor availability with age, while presynaptic vesicular DA storage (as measured by DTBZ), which was significantly associated with R2′ (standardized coefficient = 0.29, 95% CI = [0.11, 0.48]), was developmentally stable by age 18. Our results provide new evidence for maturational specialization of the striatal DA system through adolescence. How the human dopamine system changes during adolescence is still unclear. Here, the authors combine PET and quantitative MRI measures to show that dopamine D2/D3 receptor availability decreases with age while presynaptic dopamine vesicular storage was developmentally stable by age 18
Collapse
|
10
|
Crawford CA, Teran A, Ramirez GI, Katz CG, Mohd-Yusof A, Eaton SE, Real V, McDougall SA. Age-dependent effects of dopamine receptor inactivation on cocaine-induced behaviors in male rats: Evidence of dorsal striatal D2 receptor supersensitivity. J Neurosci Res 2019; 97:1546-1558. [PMID: 31304635 DOI: 10.1002/jnr.24491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), which irreversibly inactivates dopamine (DA) receptors, causes pronounced age-dependent behavioral effects in rats. For example, EEDQ either augments or does not affect the DA agonist-induced locomotor activity of preweanling rats while attenuating the locomotion of adolescent and adult rats. The twofold purpose of this study was to determine whether EEDQ would: (a) potentiate or attenuate the cocaine-induced locomotor activity of preweanling, adolescent, and adult rats; and (b) alter the sensitivity of surviving D2 receptors. Rats were treated with vehicle or EEDQ (2.5 or 7.5 mg/kg) on postnatal day (PD) 17, PD 39, and PD 84. In the behavioral experiments, saline- or cocaine-induced locomotion was assessed 24 hr later. In the biochemical experiments, dorsal striatal samples were taken 24 hr after vehicle or EEDQ treatment and later assayed for NPA-stimulated GTPγS receptor binding, G protein-coupled receptor kinase 6 (GRK6), and β-arrestin-2 (ARRB2). GTPγS binding is a direct measure of ligand-induced G protein activation, while GRK6 and ARRB2 modulate the internalization and desensitization of D2 receptors. Results showed that EEDQ potentiated the locomotor activity of preweanling rats, while attenuating the locomotion of older rats. NPA-stimulated GTPγS binding was elevated in EEDQ-treated preweanling rats, relative to adults, indicating enhanced functional coupling between the G protein and receptor. EEDQ also reduced ARRB2 levels in all age groups, which is indicative of increased D2 receptor sensitivity. In sum, the present results support the hypothesis that D2 receptor supersensitivity is a critical factor mediating the locomotor potentiating effects of EEDQ in cocaine-treated preweanling rats.
Collapse
Affiliation(s)
- Cynthia A Crawford
- Department of Psychology, California State University, San Bernardino, California
| | - Angie Teran
- Department of Psychology, California State University, San Bernardino, California
| | - Goretti I Ramirez
- Department of Psychology, California State University, San Bernardino, California
| | - Caitlin G Katz
- Department of Psychology, California State University, San Bernardino, California
| | - Alena Mohd-Yusof
- Department of Psychology, California State University, San Bernardino, California
| | - Shannon E Eaton
- Department of Psychology, California State University, San Bernardino, California
- Department of Psychology, University of Kentucky, Lexington, Kentucky
| | - Vanessa Real
- Department of Psychology, California State University, San Bernardino, California
| | - Sanders A McDougall
- Department of Psychology, California State University, San Bernardino, California
| |
Collapse
|
11
|
Ghanbari A, Moradi Kor N, Rashidy-Pour A. Bombesin-induced enhancement of memory consolidation in male and female rat pups: Role of glutamatergic and dopaminergic systems. Neuropeptides 2018; 70:101-106. [PMID: 29880391 DOI: 10.1016/j.npep.2018.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/18/2018] [Accepted: 05/30/2018] [Indexed: 02/04/2023]
Abstract
Previous studies have shown that the neuropeptide bombesin (BBS) enhances consolidation of specifically for inhibitory avoidance memory in adult rats. However, its effect on memory consolidation during premature period is not clear as well. Thus, this study evaluated the effect of BBS and its interaction with glutamatergic and dopaminergic systems on memory consolidation in rat pups. Male and female rat pups (30 days old) were trained in an inhibitory avoidance (IA) task (0.5 mA, 3 s footshock). Memory retention was tested 24 h later during which the latency to re-enter to the shock compartment was recorded. First, the effects of different doses (0.001, 0.0025, 0.005, 0.01 and 0.02 mg/kg) of BBS injected immediately following training were tested. Then, the effect of the most effective dose of BBS obtained in the previous experiment was examined in the presence of the glutamate NMDA receptor antagonist MK-801 (0.05 mg/kg), the dopamine D1 receptor antagonist SCH-23390 (0.05 mg/kg) and the dopamine D2 receptor antagonist sulpiride (20 mg/kg). Findings indicate that BBS significantly enhances memory consolidation at all tested doses in male pups and at a dose of 0.01 mg/kg in female pups. MK-801, SCH-23390 and sulpiride administration before BBS injection in individual groups significantly blocked BBS-induced memory enhancement. Our findings indicate that similar to adult rats, BBS enhances memory consolidation in developing rat. This enhancing effect is mediated, at least in part, via an interaction with glutamatergic and dopaminergic systems.
Collapse
Affiliation(s)
- Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Nasroallah Moradi Kor
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee and Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Research Center of Physiology, Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
12
|
Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016; 43:1239-65. [PMID: 26841063 PMCID: PMC4874844 DOI: 10.1111/ejn.13196] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 12/12/2022]
Abstract
The external globus pallidus (GPe) of the basal ganglia is in a unique and powerful position to influence processing of motor information by virtue of its widespread projections to all basal ganglia nuclei. Despite the clinical importance of the GPe in common motor disorders such as Parkinson's disease, there is only limited information about its cellular composition and organizational principles. In this review, recent advances in the understanding of the diversity in the molecular profile, anatomy, physiology and corresponding behaviour during movement of GPe neurons are described. Importantly, this study attempts to build consensus and highlight commonalities of the cellular classification based on existing but contentious literature. Additionally, an analysis of the literature concerning the intricate reciprocal loops formed between the GPe and major synaptic partners, including both the striatum and the subthalamic nucleus, is provided. In conclusion, the GPe has emerged as a crucial node in the basal ganglia macrocircuit. While subtleties in the cellular makeup and synaptic connection of the GPe create new challenges, modern research tools have shown promise in untangling such complexity, and will provide better understanding of the roles of the GPe in encoding movements and their associated pathologies.
Collapse
Affiliation(s)
- Daniel J Hegeman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellie S Hong
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vivian M Hernández
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
13
|
Abstract
Adolescence is characterized by heightened risk-taking, including substance misuse. These behavioral patterns are influenced by ontogenic changes in neurotransmitter systems, particularly the dopamine system, which is fundamentally involved in the neural coding of reward and motivated approach behavior. During adolescence, this system evidences a peak in activity. At the same time, the dopamine (DA) system is neuroplastically altered by substance abuse, impacting subsequent function. Here, we describe properties of the dopamine system that change with typical adolescent development and that are altered with substance abuse. Much of this work has been gleaned from animal models due to limitations in measuring dopamine in pediatric samples. Structural and functional neuroimaging techniques have been used to examine structures that are heavily DA-innervated; they measure morphological and functional changes with age and with drug exposure. Presenting marijuana abuse as an exemplar, we consider recent findings that support an adolescent peak in DA-driven reward-seeking behavior and related deviations in motivational systems that are associated with marijuana abuse/dependence. Clinicians are advised that (1) chronic adolescent marijuana use may lead to deficiencies in incentive motivation, (2) that this state is due to marijuana's interactions with the developing DA system, and (3) that treatment strategies should be directed to remediating resultant deficiencies in goal-directed activity.
Collapse
|
14
|
Age-dependent changes in cocaine sensitivity across early ontogeny in male and female rats: possible role of dorsal striatal D2(High) receptors. Psychopharmacology (Berl) 2015; 232:2287-301. [PMID: 25589144 PMCID: PMC4465861 DOI: 10.1007/s00213-014-3860-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/25/2014] [Indexed: 01/19/2023]
Abstract
RATIONALE Responsiveness to acute psychostimulant administration varies across ontogeny. OBJECTIVE The purpose of the present study was to determine if age-dependent changes in D2(High) receptors may be responsible for the ontogeny of cocaine sensitivity in preweanling, adolescent, and adult rats. METHODS [(3)H]-Domperidone/dopamine competition assays were used to determine ontogenetic changes in the proportion of D2(High) receptors in male and female preweanling [postnatal day (PD) 5, 10, 15, and 20], adolescent (PD 40), and adult (PD 80) rats. In the behavioral experiment, responsiveness to cocaine (2.5, 5, 10, or 20 mg/kg) was assessed on PD 20, PD 40, and PD 80 for 60 min. Male and female rats were habituated to the apparatus on the 2 days prior to testing. Distance traveled data were presented both untransformed and as percent of saline controls. RESULTS Male and female preweanling rats (PD 5-PD 20) had a significantly greater percentage of dorsal striatal D2(High) receptors than adolescent or adult rats. Likewise, preweanling rats (PD 20) were more sensitive to the behavioral effects of cocaine than the two older age groups. Adolescent and adult rats responded in a generally similar manner; however, analysis of the untransformed locomotor activity data suggested that adolescent rats were hyporesponsive to 2.5 and 20 mg/kg cocaine when compared to adults. CONCLUSIONS Data from the present study are consistent with the hypothesis that ontogenetic changes in D2(High) receptors are responsible for age-dependent differences in psychostimulant sensitivity.
Collapse
|
15
|
Varela FA, Der-Ghazarian T, Lee RJ, Charntikov S, Crawford CA, McDougall SA. Repeated aripiprazole treatment causes dopamine D2 receptor up-regulation and dopamine supersensitivity in young rats. J Psychopharmacol 2014; 28:376-86. [PMID: 24045880 PMCID: PMC5673084 DOI: 10.1177/0269881113504016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aripiprazole is a second-generation antipsychotic that is increasingly being prescribed to children and adolescents. Despite this trend, little preclinical research has been done on the neural and behavioral actions of aripiprazole during early development. In the present study, young male and female Sprague-Dawley rats were pretreated with vehicle, haloperidol (1 mg/kg), or aripiprazole (10 mg/kg) once daily on postnatal days (PD) 10-20. After 1, 4, or 8 days (i.e. on PD 21, PD 24, or PD 28), amphetamine-induced locomotor activity and stereotypy, as well as dorsal striatal D2 receptor levels, were measured in separate groups of rats. Pretreating young rats with aripiprazole or haloperidol increased D2 binding sites in the dorsal striatum. Consistent with these results, dopamine supersensitivity was apparent when aripiprazole- and haloperidol-pretreated rats were given a test day injection of amphetamine (2 or 4 mg/kg). Increased D2 receptor levels and altered behavioral responding persisted for at least 8 days after conclusion of the pretreatment regimen. Contrary to what has been reported in adults, repeated aripiprazole treatment caused D2 receptor up-regulation and persistent alterations of amphetamine-induced behavior in young rats. These findings are consistent with human clinical studies showing that children and adolescents are more prone than adults to aripiprazole-induced side effects, including extrapyramidal symptoms.
Collapse
Affiliation(s)
- Fausto A. Varela
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Taleen Der-Ghazarian
- Department of Psychology, California State University, San Bernardino, CA, USA,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ryan J. Lee
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Sergios Charntikov
- Department of Psychology, California State University, San Bernardino, CA, USA,Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Cynthia A. Crawford
- Department of Psychology, California State University, San Bernardino, CA, USA
| | | |
Collapse
|
16
|
Yetnikoff L, Reichard RA, Schwartz ZM, Parsely KP, Zahm DS. Protracted maturation of forebrain afferent connections of the ventral tegmental area in the rat. J Comp Neurol 2014; 522:1031-47. [PMID: 23983069 PMCID: PMC4217282 DOI: 10.1002/cne.23459] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 01/21/2023]
Abstract
The mesocorticolimbic dopamine system has long attracted the interest of researchers concerned with the unique gamut of behavioral and mental health vulnerabilities associated with adolescence. Accordingly, the development of the mesocorticolimbic system has been studied extensively, but almost exclusively with regard to dopaminergic output, particularly in the nucleus accumbens and medial prefrontal cortex. To the contrary, the ontogeny of inputs to the ventral tegmental area (VTA), the source of mesocorticolimbic dopamine, has been neglected. This is not a trivial oversight, as the activity of VTA neurons, which reflects their capacity to transmit information about salient events, is sensitively modulated by inputs. Here, we assessed the development of VTA afferent connections using the β subunit of cholera toxin (Ctβ) as a retrograde axonal tracer in adolescent (postnatal day 39) and early adult (8-9-week-old) rats. After intra-VTA injections of Ctβ, adolescent and early adult animals exhibited qualitatively similar distributions of retrogradely labeled neurons in the sense that VTA-projecting neurons were present at all of the same rostrocaudal levels in all of the same structures in both age groups. However, quantitation of retrogradely labeled neurons revealed that adolescent brains, compared with early adult brains, had significantly fewer VTA-projecting neurons preferentially within an interconnected network of cortical and striatopallidal forebrain structures. These findings provide a novel perspective on the development of the mesocorticolimbic dopamine system and may have important implications for age-dependent specificity in the function of this system, particularly with regard to adolescent impulsivity and mental health vulnerabilities.
Collapse
Affiliation(s)
- Leora Yetnikoff
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Rhett A. Reichard
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Zachary M. Schwartz
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Kenneth P. Parsely
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Daniel S. Zahm
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
17
|
McDougall SA, Valentine JM, Gonzalez AE, Humphrey DE, Widarma CB, Crawford CA. Behavioral effects of dopamine receptor inactivation during the adolescent period: age-dependent changes in dorsal striatal D2(High) receptors. Psychopharmacology (Berl) 2014; 231:1637-47. [PMID: 24287603 PMCID: PMC3969390 DOI: 10.1007/s00213-013-3355-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/02/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Dopamine (DA) receptor inactivation produces opposing behavioral effects across ontogeny. For example, inactivating DA receptors in the dorsal striatum attenuates DA agonist-induced behaviors of adult rats, while potentiating the locomotor activity of preweanling rats. OBJECTIVE The purpose of this study was to determine if DA receptor inactivation potentiates the DA agonist-induced locomotor activity of adolescent rats and whether alterations in D2(High) receptors are responsible for this effect. METHODS In the behavioral experiment, the irreversible receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) or its vehicle (100 % dimethyl sulfoxide, DMSO) was bilaterally infused into the dorsal striatum on postnatal day (PD) 39. On PD 40, adolescent rats were given intrastriatal infusions of the DA agonist R(-)-propylnorapomorphine (NPA) or vehicle and locomotor activity was measured for 40 min. In the receptor binding experiment, rats received IP injections of EEDQ or DMSO (1:1 (v/v) in distilled water) on PD 17, PD 39, or PD 84. One day later, striatal samples were taken and subsequently assayed for D2-specific binding and D2(High) receptors using [(3)H]-domperidone. RESULTS Unlike what is observed during the preweanling period, EEDQ attenuated the NPA-induced locomotor activity of adolescent rats. EEDQ reduced D2 receptor levels in the dorsal striatum of all age groups while increasing the proportion of D2(High) receptors. Regardless of pretreatment condition (i.e., DMSO or EEDQ), preweanling rats had a greater percentage of D2(High) receptors than adolescent or adult rats. CONCLUSIONS DA receptor inactivation affects the behaviors of preweanling and older rats differently. The DA supersensitivity exhibited by EEDQ-treated preweanling rats may result from an excess of D2(High) receptors.
Collapse
|
18
|
Wei W, Li L, Yu G, Ding S, Li C, Zhou FM. Supersensitive presynaptic dopamine D2 receptor inhibition of the striatopallidal projection in nigrostriatal dopamine-deficient mice. J Neurophysiol 2013; 110:2203-16. [PMID: 23945778 DOI: 10.1152/jn.00161.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The dopamine (DA) D2 receptor (D2R)-expressing medium spiny neurons (D2-MSNs) in the striatum project to and inhibit the GABAergic neurons in the globus pallidus (GP), forming an important link in the indirect pathway of the basal ganglia movement control circuit. These striatopallidal axon terminals express presynaptic D2Rs that inhibit GABA release and thus regulate basal ganglion function. Here we show that in transcription factor Pitx3 gene mutant mice with a severe DA loss in the dorsal striatum mimicking the DA denervation in Parkinson's disease (PD), the striatopallidal GABAergic synaptic transmission displayed a heightened sensitivity to presynaptic D2R-mediated inhibition with the dose-response curve shifted to the left, although the maximal inhibition was not changed. Functionally, low concentrations of DA were able to more efficaciously reduce the striatopallidal inhibition-induced pauses of GP neuron activity in DA-deficient Pitx3 mutant mice than in wild-type mice. These results demonstrate that presynaptic D2R inhibition of the striatopallidal synapse becomes supersensitized after DA loss. These supersensitive D2Rs may compensate for the lost DA in PD and also induce a strong disinhibition of GP neuron activity that may contribute to the motor-stimulating effects of dopaminergic treatments in PD.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | | | | | | | | | | |
Collapse
|
19
|
McDougall SA, Nuqui CM, Quiroz AT, Martinez CM. Early ontogeny of D-amphetamine-induced one-trial behavioral sensitization. Pharmacol Biochem Behav 2013; 104:154-62. [PMID: 23360956 DOI: 10.1016/j.pbb.2013.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/30/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
Abstract
The early ontogeny of D-amphetamine-induced one-trial behavioral sensitization was characterized using male and female preweanling and preadolescent rats. In Experiment 1, rats were injected with saline or D-amphetamine (1, 4, or 8mg/kg) in activity chambers or the home cage on postnatal day (PD) 12, PD 16, PD 20, or PD 24. One day later, rats were challenged with either 0.5 or 2mg/kg D-amphetamine and distance traveled was measured in activity chambers for 120min. In Experiment 2, saline or D-amphetamine was administered in activity chambers on PD 24, while a challenge injection of D-amphetamine (0.25-4mg/kg) was given on PD 25. At younger ages (PD 13 and PD 17), a strong sensitized response was evident on the test day regardless of whether rats were pretreated with D-amphetamine (4 or 8mg/kg) before being placed in the activity chamber or 30min after being returned to the home cage. Rats did not display D-amphetamine-induced behavioral sensitization on PD 21, nor was context-dependent sensitization apparent on PD 25 even when a broad dose range of D-amphetamine was used. When low doses of D-amphetamine were administered on the pretreatment and test days (1 and 0.5mg/kg, respectively), sensitized responding was not evident at any age. In summary, D-amphetamine-induced one-trial behavioral sensitization was only apparent within a narrow developmental window during early ontogeny. This ontogenetic pattern of sensitized responding is similar to the one produced by methamphetamine and distinct from the pattern produced by cocaine. The unique sensitization profiles resulting from repeated D-amphetamine and cocaine treatment may be a consequence of their different mechanisms of action.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, 5500 University Parkway, California State University, San Bernardino, CA 92407, USA.
| | | | | | | |
Collapse
|
20
|
Luciana M, Wahlstrom D, Porter JN, Collins PF. Dopaminergic modulation of incentive motivation in adolescence: age-related changes in signaling, individual differences, and implications for the development of self-regulation. Dev Psychol 2012; 48:844-61. [PMID: 22390660 PMCID: PMC3341492 DOI: 10.1037/a0027432] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Behavioral activation that is associated with incentive-reward motivation increases in adolescence relative to childhood and adulthood. This quadratic developmental pattern is generally supported by behavioral and experimental neuroscience findings. It is suggested that a focus on changes in dopamine neurotransmission is informative in understanding the mechanism for this adolescent increase in reward-related behavioral activation and subsequent decline into adulthood. Evidence is presented to indicate that incentive-reward motivation is modulated by mesoaccumbens dopamine, and that it increases in adolescence before declining into adulthood because of normative developmental changes at the molecular level. Potential mechanisms of variation in functional mesoaccumbens dopamine transmission are discussed with a focus on the interplay between tonic and phasic modes of dopamine transmission in modulating both general incentive-motivational biases and the efficacy of reward learning during exposure to novel reward experiences. Interactions between individual difference factors and these age-related trends are discussed.
Collapse
Affiliation(s)
- Monica Luciana
- Department of Psychology and Center for Neurobehavioral Development, University of Minnesota, USA.
| | | | | | | |
Collapse
|
21
|
Carrara-Nascimento PF, Griffin WC, Pastrello DM, Olive MF, Camarini R. Changes in extracellular levels of glutamate in the nucleus accumbens after ethanol-induced behavioral sensitization in adolescent and adult mice. Alcohol 2011; 45:451-60. [PMID: 21570797 DOI: 10.1016/j.alcohol.2011.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 12/25/2022]
Abstract
Repeated administration of low doses of ethanol gradually increases locomotor responses to ethanol in adult Swiss mice. This phenomenon is known as behavioral sensitization. However, we have shown that adolescent Swiss mice show either behavioral tolerance or no sensitization after repeated ethanol injections. Although the mesolimbic dopamine system has been extensively implicated in behavioral sensitization, several studies have demonstrated an important role of glutamatergic transmission in this phenomenon. In addition, relatively few studies have examined the role of developmental factors in behavioral sensitization to ethanol. To examine the relationship between age differences in behavioral sensitization to ethanol and the neurochemical adaptations related to glutamate within nucleus accumbens (NAc), in vivo microdialysis was conducted in adolescent and adult Swiss mice treated with ethanol (1.8 g/kg) or saline for 15 days and subsequently challenged with an acute dose (1.8 g/kg) of ethanol 6 days later. Consistent with previous findings, only adult mice demonstrated evidence of behavioral sensitization. However, ethanol-treated adolescent mice demonstrated a 196.1 ± 40.0% peak increase in extracellular levels of glutamate in the NAc after ethanol challenge in comparison with the basal values, whereas ethanol-treated adult mice demonstrated a 52.2 ± 6.2% reduction in extracellular levels of glutamate in the NAc after ethanol challenge. These observations suggest an age-dependent inverse relationship between behavioral and glutamatergic responses to repeated ethanol exposure.
Collapse
|
22
|
Cumming P. Absolute abundances and affinity states of dopamine receptors in mammalian brain: A review. Synapse 2011; 65:892-909. [DOI: 10.1002/syn.20916] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/14/2011] [Indexed: 12/14/2022]
|
23
|
Levant B, Zarcone TJ, Davis PF, Ozias MK, Fowler SC. Differences in methylphenidate dose response between periadolescent and adult rats in the familiar arena-novel alcove task. J Pharmacol Exp Ther 2011; 337:83-91. [PMID: 21205916 PMCID: PMC3063734 DOI: 10.1124/jpet.110.174425] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/10/2010] [Indexed: 11/22/2022] Open
Abstract
Methylphenidate is a psychostimulant widely used in the treatment of attention deficit hyperactivity disorder. In this study, the effects of two nonstereotypy-inducing doses of methylphenidate (2.5 and 5.0 mg/kg s.c.) were examined in periadolescent [postnatal days (P) 35 and 42] and young adult (P70), male Long-Evans rats using a three-period locomotor activity paradigm that affords inferences about exploration, habituation, and attention to a novel stimulus (an "alcove") in a familiar environment in a single test session. In the first test period, P35 and P42 rats were more active than P70 rats, and methylphenidate increased locomotion in a dose-related manner. The introduction of a novel spatial stimulus in the third test period revealed a significant interaction of dose and age such that P70 rats exhibited dose-related increases in distance traveled, but P35 rats did not. Furthermore, methylphenidate dose-relatedly disrupted the rats' tendency to spend increasing amounts of time in the alcove across the test period at P70 but not at P35. Brain and serum methylphenidate concentrations were significantly lower at P35 than at P70, with intermediate levels at P42. Developmental differences in dopaminergic neurochemistry were also observed, including increased dopamine content in the caudate-putamen, nucleus accumbens, and frontal cortex and decreased densities of D(1)-like receptors in the frontal cortex in P70 than in P42 rats. These results raise the possibility that children and adults may respond differently when treated with this drug, particularly in situations involving response to novelty and that these effects involve developmental differences in pharmacokinetics and dopaminergic neurochemistry.
Collapse
Affiliation(s)
- Beth Levant
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Mail Stop 1018, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
24
|
Nr4a1-eGFP is a marker of striosome-matrix architecture, development and activity in the extended striatum. PLoS One 2011; 6:e16619. [PMID: 21305052 PMCID: PMC3030604 DOI: 10.1371/journal.pone.0016619] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 01/07/2011] [Indexed: 11/19/2022] Open
Abstract
Transgenic mice expressing eGFP under population specific promoters are widely used in neuroscience to identify specific subsets of neurons in situ and as sensors of neuronal activity in vivo. Mice expressing eGFP from a bacterial artificial chromosome under the Nr4a1 promoter have high expression within the basal ganglia, particularly within the striosome compartments and striatal-like regions of the extended amygdala (bed nucleus of the stria terminalis, striatal fundus, central amygdaloid nucleus and intercalated cells). Grossly, eGFP expression is inverse to the matrix marker calbindin 28K and overlaps with mu-opioid receptor immunoreactivity in the striatum. This pattern of expression is similar to Drd1, but not Drd2, dopamine receptor driven eGFP expression in structures targeted by medium spiny neuron afferents. Striosomal expression is strong developmentally where Nr4a1-eGFP expression overlaps with Drd1, TrkB, tyrosine hydroxylase and phospho-ERK, but not phospho-CREB, immunoreactivity in “dopamine islands”. Exposure of adolescent mice to methylphenidate resulted in an increase in eGFP in both compartments in the dorsolateral striatum but eGFP expression remained brighter in the striosomes. To address the role of activity in Nr4a1-eGFP expression, primary striatal cultures were prepared from neonatal mice and treated with forskolin, BDNF, SKF-83822 or high extracellular potassium and eGFP was measured fluorometrically in lysates. eGFP was induced in both neurons and contaminating glia in response to forskolin but SKF-83822, brain derived neurotrophic factor and depolarization increased eGFP in neuronal-like cells selectively. High levels of eGFP were primarily associated with Drd1+ neurons in vitro detected by immunofluorescence; however ∼15% of the brightly expressing cells contained punctate met-enkephalin immunoreactivity. The Nr4a1-GFP mouse strain will be a useful model for examining the connectivity, physiology, activity and development of the striosome system.
Collapse
|
25
|
Santucci AC, Rabidou D. Residual performance impairments in adult rats trained on an object discrimination task subsequent to cocaine administration during adolescence. Addict Biol 2011; 16:30-42. [PMID: 20192947 DOI: 10.1111/j.1369-1600.2009.00200.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The present study was conducted to determine whether cognitive impairments in adult rats treated with cocaine during adolescence demonstrated in previous investigations extend to tests of object discrimination learning. Accordingly, 30-day-old male Long-Evans rats were injected subcutaneously with either 10 or 20 mg/kg cocaine or received control injections of saline for 7-8 consecutive days. An extended abstinence period was then introduced (mean = 70.7 ± 9.8 days) before subjects, who were now young adults (mean = 106.3 ± 10.2 days old), were assessed for acquisition of a two-choice object discrimination task. Using a correctional learning procedure conducted in a water maze, subjects were trained (eight trials per day for 10 days) to approach one of two multi-dimentional 'junk' objects. Although all animals acquired the discrimination to a reasonable extent, cocaine-treated subjects exhibited lower percentages of correct choices over the course of training (10 mg/kg = 59.6 ± 7.2% and 20 mg/kg = 59.4 ± 4.9%) relative to the saline control group (67.5 ± 4.9%). Further analyses revealed that saline-treated subjects acquired proficient discrimination performance earlier during the course of training, achieving an approximate 72% performance rate after only 3 days of training. This was in contrast to the two cocaine-treated groups needing 7 days of training to achieve comparable levels of performance. In addition, saline-treated subjects required significantly fewer trials (20.8 ± 8.9) than either cocaine-treated group (10 mg/kg = 52.2 ± 11.9 and 20 mg/kg = 63.3 ± 8.7) to reach an 87.5% correct response criterion (i.e. 7-correct-out-of-8-consecutive-trials) and performed at a higher above-chance level (13.5%) than either cocaine-treated group (3.6% and 5.3% for the 10 and 20 mg/kg cocaine groups, respectively). These findings demonstrate the existence of cognitive impairments in adulthood subsequent to cocaine exposure during adolescence despite a prolonged drug-free interval. Speculation regarding the neurobiological basis for this effect, especially with regard to alterations to prefrontal circuitry, is provided.
Collapse
Affiliation(s)
- Anthony C Santucci
- Department of Psychology, Manhattanville College, Purchase, NY 10577, USA.
| | | |
Collapse
|
26
|
Medeiros LF, Rozisky JR, de Souza A, Hidalgo MP, Netto CA, Caumo W, Battastini AMO, Torres ILDS. Lifetime behavioural changes after exposure to anaesthetics in infant rats. Behav Brain Res 2010; 218:51-6. [PMID: 21056062 DOI: 10.1016/j.bbr.2010.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/17/2010] [Accepted: 10/22/2010] [Indexed: 11/15/2022]
Abstract
The aim of this study was to assess the effect of acute use of general anaesthetic with or without a surgical procedure, at post-natal day 14 (P14), on behavioural responses in the short-, medium- and long-term, evaluated in open field (OF) and elevated plus-maze (EPM) tests. Fourteen-day-old male Wistar rats were divided into two experimental designs (ED): inhalation and intravenous anaesthetic, and these groups were subdivided into: 1st ED - control (C), isoflurane (ISO), isoflurane/surgery (ISO-SUR); 2nd ED - control (C), fentanyl/S(+)-ketamine (FK) and fentanyl+ketamine-s/surgery (FK-SUR). In the OF the following were found: (a) in the 1st ED: an increase in the locomotor activity in the ISO group at P14, and ISO and ISO-SUR groups at P30; the ISO-SUR group showed a reduced latency to leave the first quadrant at P30 and P60; (b) in the 2nd ED: FK and FK-SUR groups presented increased locomotor activity at P30, and the FK group showed a reduction in the number of faecal boluses. In the EPM the following were found: FK and FK-SUR groups presented an increase in the number of non-protected head-dipping (NPHD) movements and in the number of entries and time spent in open arms at P30; the FK group showed an increased number of protected head-dipping movements, NPHD and entries and time spent in the open arms at P60. The behavioural changes observed may be related to locomotor activity (1st ED) and anxiety level (2nd ED) and they may result from changes in neurotransmitters/hormones (DA, 5HT, CRH) and glutamate/NMDA receptors, respectively.
Collapse
Affiliation(s)
- Liciane Fernandes Medeiros
- Post Graduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences (ICBS), Universidade Federal do Rio Grande do Sul, 90050-170 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen YI, Choi JK, Xu H, Ren J, Andersen SL, Jenkins BG. Pharmacologic neuroimaging of the ontogeny of dopamine receptor function. Dev Neurosci 2010; 32:125-38. [PMID: 20523024 DOI: 10.1159/000286215] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 02/09/2010] [Indexed: 01/23/2023] Open
Abstract
Characterization of the ontogeny of the cerebral dopaminergic system is crucial for gaining a greater understanding of normal brain development and its alterations in response to drugs of abuse or conditions such as attention-deficit hyperactivity disorder. Pharmacological MRI (phMRI) was used to determine the response to dopamine transporter (DAT) blockers cocaine and methylphenidate (MPH), the dopamine releaser D-amphetamine (AMPH), the selective D1 agonist dihydrexidine, and the D2/D3 agonist quinpirole in young (<30 days old) and adult (>60 days old) rats. In adult rats, cocaine (0.5 mg/kg i.v.) or MPH (2 mg/kg) induced primarily positive cerebral blood volume (rCBV) changes in the dopaminergic circuitry, but negative rCBV changes in the young animals. Microdialysis measurements in the striatum showed that young rats have a smaller increase in extracellular dopamine in response to cocaine than adults. The young rats showed little rCBV response to the selective D1 agonist dihydrexidine in contrast to robust rCBV increases observed in the adults, whereas there was a similar negative rCBV response in the young and adult rats to the D2 agonist quinpirole. We also performed a meta-analysis of literature data on the development of D1 and D2 receptors and the DAT. These data suggest a predominance of D2-like over D1-like function between 20 and 30 days of age. These combined results suggested that the dopamine D1 receptor is functionally inhibited at young age.
Collapse
Affiliation(s)
- Y Iris Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Herbert MS, Der-Ghazarian T, Palmer AG, McDougall SA. One-trial cocaine-induced behavioral sensitization in preweanling rats: role of contextual stimuli. Exp Clin Psychopharmacol 2010; 18:284-95. [PMID: 20545393 PMCID: PMC2896227 DOI: 10.1037/a0019142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Using a one-trial procedure, preweanling rats exhibit robust sensitization regardless of whether drug pretreatment and testing occur in the same or different environments. The purpose of the present study was to determine whether one-trial context-specific and context-independent sensitization of preweanling rats could be dissociated by varying the pretreatment dose of cocaine, by varying the pretreatment drug, or by minimizing interoceptive cues. In Experiments 1a and 1b, rats were pretreated with a broad dose range of cocaine (0-40 mg/kg) before placement in a novel activity chamber or the home cage. In Experiment 2, rats were pretreated with a locomotor-enhancing drug (e.g., methylphenidate, U50,488, or MK-801) before placement in a novel activity or anesthesia chamber. In Experiment 3, rats were anesthetized with isoflurane before cocaine administration to minimize the effects of interoceptive and injection cues. In all experiments, rats were challenged with cocaine on the test day (24 hr later), with locomotion being measured in activity chambers. Results showed that (a) the pretreatment dose of cocaine (10-40 mg/kg) did not differentially affect context-specific and context-independent sensitization; (b) cross-sensitization between methylphenidate and cocaine was observed in the context-specific condition, but not when using a context-independent procedure; and (c) sensitization was evident if injection and interoceptive cues were minimized. One possibility is that associative processes do not modulate the one-trial sensitization of preweanling rats. Alternatively, "unitization" may cause preweanling rats to treat the different environments as equivalent, thus permitting robust sensitization even when drug pretreatment and testing occur in different environments.
Collapse
Affiliation(s)
- Matthew S Herbert
- Department of Psychology, California State University, San Bernardino, CA 92407, USA
| | | | | | | |
Collapse
|
29
|
Kuhn C, Johnson M, Thomae A, Luo B, Simon SA, Zhou G, Walker QD. The emergence of gonadal hormone influences on dopaminergic function during puberty. Horm Behav 2010; 58:122-37. [PMID: 19900453 PMCID: PMC2883625 DOI: 10.1016/j.yhbeh.2009.10.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/22/2009] [Accepted: 10/27/2009] [Indexed: 01/04/2023]
Abstract
Adolescence is the developmental epoch during which children become adults-intellectually, physically, hormonally and socially. Brain development in critical areas is ongoing. Adolescents are risk-taking and novelty-seeking and they weigh positive experiences more heavily and negative experiences less than adults. This inherent behavioral bias can lead to risky behaviors like drug taking. Most drug addictions start during adolescence and early drug-taking is associated with an increased rate of drug abuse and dependence. The hormonal changes of puberty contribute to physical, emotional, intellectual and social changes during adolescence. These hormonal events do not just cause maturation of reproductive function and the emergence of secondary sex characteristics. They contribute to the appearance of sex differences in non-reproductive behaviors as well. Sex differences in drug use behaviors are among the latter. The male predominance in overall drug use appears by the end of adolescence, while girls develop the rapid progression from first use to dependence (telescoping) that represent a female-biased vulnerability. Sex differences in many behaviors including drug use have been attributed to social and cultural factors. A narrowing gap in drug use between adolescent boys and girls supports this thesis. However, some sex differences in addiction vulnerability reflect biologic differences in brain circuits involved in addiction. The purpose of this review is to summarize the contribution of sex differences in the function of ascending dopamine systems that are critical to reinforcement, to briefly summarize the behavioral, neurochemical and anatomical changes in brain dopaminergic functions related to addiction that occur during adolescence and to present new findings about the emergence of sex differences in dopaminergic function during adolescence.
Collapse
Affiliation(s)
- Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wahlstrom D, White T, Luciana M. Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neurosci Biobehav Rev 2009; 34:631-48. [PMID: 20026110 DOI: 10.1016/j.neubiorev.2009.12.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 11/26/2022]
Abstract
Human adolescence has been characterized by increases in risk-taking, emotional lability, and deficient patterns of behavioral regulation. These behaviors have often been attributed to changes in brain structure that occur during this developmental period, notably alterations in gray and white matter that impact synaptic architecture in frontal, limbic, and striatal regions. In this review, we provide a rationale for considering that these behaviors may be due to changes in dopamine system activity, particularly overactivity, during adolescence relative to either childhood or adulthood. This rationale relies on animal data due to limitations in assessing neurochemical activity more directly in juveniles. Accordingly, we also present a strategy that incorporates molecular genetic techniques to infer the status of the underlying tone of the dopamine system across developmental groups. Implications for the understanding of adolescent behavioral development are discussed.
Collapse
Affiliation(s)
- Dustin Wahlstrom
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
31
|
Cunningham RL, Giuffrida A, Roberts JL. Androgens induce dopaminergic neurotoxicity via caspase-3-dependent activation of protein kinase Cdelta. Endocrinology 2009; 150:5539-48. [PMID: 19837873 PMCID: PMC2795716 DOI: 10.1210/en.2009-0640] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aged men have a greater incidence of Parkinson's disease (PD) than women. PD is a neurodegenerative condition associated with the loss of dopamine neurons in the nigrostriatal pathway. This study examined the neurotoxic effects of androgens in a dopaminergic cell line (N27 cells) and the downstream signaling pathways activated by androgens. Treatment of N27 cells with testosterone- and dihydrotestosterone-induced mitochondrial dysfunction, protein kinase C (PKC)-delta cleavage, and apoptosis in dopaminergic neuronal cells. Inhibition of caspase-3 prevented the cleavage of PKCdelta from the full-length element to the catalytic fragment and apoptosis in N27 cells, suggesting that androgen-induced apoptosis is mediated by caspase-3-dependent activation of PKCdelta. Androgen-induced apoptosis may be specific to dopamine neurons as evidenced by a lack of testosterone-induced apoptosis in GnRH neurons. These results support a neurotoxic consequence of testosterone on dopaminergic neurons and may provide insight into the gender bias found in PD.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Department of Pharmacology and the Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| | | | | |
Collapse
|
32
|
Wahlstrom D, Collins P, White T, Luciana M. Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn 2009; 72:146-59. [PMID: 19944514 DOI: 10.1016/j.bandc.2009.10.013] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 10/22/2009] [Indexed: 12/28/2022]
Abstract
Adolescence is characterized by increased risk-taking, novelty-seeking, and locomotor activity, all of which suggest a heightened appetitive drive. The neurotransmitter dopamine is typically associated with behavioral activation and heightened forms of appetitive behavior in mammalian species, and this pattern of activation has been described in terms of a neurobehavioral system that underlies incentive-motivated behavior. Adolescence may be a time of elevated activity within this system. This review provides a summary of changes within cortical and subcortical dopaminergic systems that may account for changes in cognition and affect that characterize adolescent behavior. Because there is a dearth of information regarding neurochemical changes in human adolescents, models for assessing links between neurochemical activity and behavior in human adolescents will be described using molecular genetic techniques. Furthermore, we will suggest how these techniques can be combined with other methods such as pharmacology to measure the impact of dopamine activity on behavior and how this relation changes through the lifespan.
Collapse
Affiliation(s)
- Dustin Wahlstrom
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
33
|
Frederick AL, Stanwood GD. Drugs, biogenic amine targets and the developing brain. Dev Neurosci 2009; 31:7-22. [PMID: 19372683 DOI: 10.1159/000207490] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 09/08/2008] [Indexed: 01/12/2023] Open
Abstract
Defects in the development of the brain have a profound impact on mature brain functions and underlying psychopathology. Classical neurotransmitters and neuromodulators, such as dopamine, serotonin, norepinephrine, acetylcholine, glutamate and GABA, have pleiotropic effects during brain development. In other words, these molecules produce multiple diverse effects to serve as regulators of distinct cellular functions at different times in neurodevelopment. These systems are impacted upon by abuse of a variety of illicit drugs, neurotherapeutics and environmental contaminants. In this review, we describe the impact of drugs and chemicals on brain formation and function in animal models and in human populations, highlighting sensitive periods and effects that may not emerge until later in life.
Collapse
Affiliation(s)
- Aliya L Frederick
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232-6600, USA
| | | |
Collapse
|
34
|
Bhide PG. Dopamine, cocaine and the development of cerebral cortical cytoarchitecture: a review of current concepts. Semin Cell Dev Biol 2009; 20:395-402. [PMID: 19560044 DOI: 10.1016/j.semcdb.2009.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
Exposure of the developing fetus to cocaine produces lasting adverse effects on brain structure and function. Animal models show that cocaine exerts its effects by interfering with monoamine neurotransmitter function and that dopamine is cocaine's principal monoamine target in the fetal brain. This review will examine the role of dopamine receptor signaling in the regulation of normal development of the cerebral cortex, the seat of higher cognitive functions, and discuss whether dopamine receptor signaling mechanisms are the principal mediators of cocaine's deleterious effects on the ontogeny of cerebral cortical cytoarchitecture.
Collapse
Affiliation(s)
- Pradeep G Bhide
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
35
|
Harrison LM, Lahoste GJ, Ruskin DN. Ontogeny and dopaminergic regulation in brain of Ras homolog enriched in striatum (Rhes). Brain Res 2008; 1245:16-25. [PMID: 18929545 PMCID: PMC2615551 DOI: 10.1016/j.brainres.2008.09.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/12/2008] [Accepted: 09/23/2008] [Indexed: 11/20/2022]
Abstract
Rhes is one of several signaling molecules preferentially expressed in the striatum. This GTP-binding protein affects dopamine-mediated signaling and behavior. Denervating the striatum of its dopaminergic inputs in adulthood reduces rhes mRNA expression. Here we show that dopamine depletion in adult rats by 6-hydroxydopamine caused a significant decrease in striatal Rhes protein levels as measured by Western blotting. The role of dopamine input on rhes mRNA induction during ontogeny was also examined. Rhes mRNA was measured on postnatal days 4, 6, 8, 10, 15, and 24 with in situ hybridization to determine its normal ontogeny. Signal in striatum was detectable, but very low, on postnatal day 4 and increased gradually to peak levels at days 15 and 24. Outside of the striatum, rhes mRNA was expressed at high levels in hippocampus and cerebellum during the postnatal period. Hippocampal signal was initially highest in CA3 and dentate gyrus, but shifted to higher expression in CA1 by the late postnatal period. Several other nuclei showed low levels of rhes mRNA during ontogeny. Depletion of dopamine by 6-hydroxydopamine injection on postnatal day 4 did not affect the ontogenetic development of rhes mRNA, such that expression did not differ statistically in lesioned versus vehicle-treated animals tested in adulthood. These findings suggest that although dopamine input is not necessary for the ontogenetic development of rhes mRNA expression, changes in both rhes mRNA and Rhes protein are integral components of the response of the adult striatum to dopamine depletion.
Collapse
Affiliation(s)
- Laura M Harrison
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
36
|
Halladay LR, Iñiguez SD, Furqan F, Previte MC, Chisum AM, Crawford CA. Methylphenidate potentiates morphine-induced antinociception, hyperthermia, and locomotor activity in young adult rats. Pharmacol Biochem Behav 2008; 92:190-6. [PMID: 19100281 DOI: 10.1016/j.pbb.2008.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 11/09/2008] [Accepted: 11/24/2008] [Indexed: 02/09/2023]
Abstract
The goal of this study was to determine if the exaggerated morphine-induced conditioned place preference (CPP) response seen in adult rats after preweanling methylphenidate exposure is unique to reward-mediated behaviors or is indicative of generalized changes in opioid-mediated behaviors. Rats were exposed to saline or methylphenidate (2.0 or 5.0 mg/kg) for 10 consecutive days starting on postnatal (PD) 11 with testing beginning on PD 60. In Experiment 1, morphine-induced (0, 2.5, 5.0 or 10.0 mg/kg) antinociception was assessed using the tail immersion and hot plate tasks. In Experiment 2, morphine-induced (0, 2.5, 5.0, or 10.0 mg/kg) hyperthermia and locomotor activity were measured. Morphine caused an increase in antinociception, with early methylphenidate (5.0 mg/kg) exposure potentiating the effects of 5.0 mg/kg morphine. Rectal temperatures were elevated after morphine, with the greatest increase occurring in male rats. Methylphenidate potentiated the hyperthermic effects of morphine (10.0 mg/kg) but only in males. Moderate doses (2.5 and 5.0 mg/kg) of morphine increased the locomotor activity of adult rats, while a higher dose (10.0 mg/kg) decreased locomotion. Interestingly, methylphenidate-pretreated females showed increased locomotor activity relative to controls. These results suggest that early methylphenidate exposure induces general changes in opioid system functioning that are not specific to reward-mediated behaviors.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Department of Psychology, California State University, San Bernardino, CA 92407, USA
| | | | | | | | | | | |
Collapse
|
37
|
Marques JM, Olsson IAS, Ogren SO, Dahlborn K. Evaluation of exploration and risk assessment in pre-weaning mice using the novel cage test. Physiol Behav 2008; 93:139-47. [PMID: 17888463 DOI: 10.1016/j.physbeh.2007.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 07/27/2007] [Accepted: 08/13/2007] [Indexed: 02/05/2023]
Abstract
Exploration and risk behaviour (risk assessment/risk taking) are critical to enable mice to cope with novel situations and gain control over their environment. Evaluation of those behaviours would therefore be a useful part of early phenotypic characterization of genetically modified mice, allowing early detection of behavioural phenotypes that require special attention and/or are of scientific interest. This study aimed to evaluate exploration and risk behaviour in pre-weaning mice using the novel cage test, which consists in exploration of a novel, clean, Makrolon type III cage. The results of this test were compared with those obtained in more complex and established tests to which the same mice were subjected as adolescents and young adults. Mice of two inbred strains (129S6/Bkl, n=10; C57BL/6Bkl, n=10) and one hybrid (B6CBAF1/Bkl, n=10) were used for validation of the test. The animals were tested in the novel cage (at weaning), the open field test (at 5 weeks), and from 9 weeks of age in three other tests: the elevated plus-maze, the concentric square field and the rat exposure test. The novel cage test effectively detected strain differences in pre-weaning mice as regards exploration and risk behaviour and the results were largely consistent with those obtained in the established tests later in life. In all tests 129S6 displayed a low locomotion and high risk assessment, while C57BL/6 and B6CBAF1 showed high locomotion and exploration. In addition high levels of risk taking were observed in C57BL/6. The novel cage test is rapid, requires no special equipment and is as discriminatory as more complex tests in detecting strain/genotype differences. This suggests that the novel cage test is a valuable tool for evaluation of exploration, risk assessment and risk taking in juvenile mice.
Collapse
Affiliation(s)
- Joana M Marques
- Section for Comparative Physiology and Medicine, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
38
|
O'Neill C, Nolan BJ, Macari A, O'Boyle KM, O'Connor JJ. Adenosine A1 receptor-mediated inhibition of dopamine release from rat striatal slices is modulated by D1 dopamine receptors. Eur J Neurosci 2007; 26:3421-8. [DOI: 10.1111/j.1460-9568.2007.05953.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Elevated dopamine levels during gestation produce region-specific decreases in neurogenesis and subtle deficits in neuronal numbers. Brain Res 2007; 1182:11-25. [PMID: 17950709 DOI: 10.1016/j.brainres.2007.08.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/22/2007] [Accepted: 08/30/2007] [Indexed: 11/21/2022]
Abstract
Dopamine levels in the fetal brain were increased by administering the dopamine precursor 3,4-dihydroxy-l-phenylalanine (l-DOPA) to pregnant mice in drinking water. The l-DOPA exposure decreased bromodeoxyuridine (BrdU) labeling in the lateral ganglionic eminence and frontal cortical neuroepithelium but not medial or caudal ganglionic eminences. The regional differences appear to reflect heterogeneity in precursor cells' responses to dopamine receptor activation. Relative numbers of E15-generated neurons were decreased at postnatal day 21 (P21) in the caudate-putamen, nucleus accumbens and frontal cortex but not globus pallidus in the l-DOPA group. TUNEL labeling did not show significant differences on P0, P7 or P14 in the caudate-putamen or frontal cortex, suggesting that cell death was not altered. Although virtually all cells in the P21 brains that were labeled with the E15 BrdU injection were NeuN-positive, stereological analyses showed no significant changes in total numbers of NeuN-positive or NeuN-negative cells in the P21 caudate-putamen or frontal cortex. Thus persisting deficits in neuronal numbers were evident in the l-DOPA group only by birth-dating analyses and not upon gross histological examination of brain sections or analysis of total numbers of neurons or glia. One explanation for this apparent discrepancy is that l-DOPA exposure decreased cell proliferation at E15 but not at E13. By E15, expansion of the neuroepithelial precursor pool is complete and any decrease in cell proliferation likely produces only marginal decreases in the total numbers of cells generated. Our l-DOPA exposure model may be pertinent to investigations of neurological dysfunction produced by developmental dopamine imbalance.
Collapse
|
40
|
Iwatsubo K, Suzuki S, Li C, Tsunematsu T, Nakamura F, Okumura S, Sato M, Minamisawa S, Toya Y, Umemura S, Ishikawa Y. Dopamine induces apoptosis in young, but not in neonatal, neurons via Ca2+-dependent signal. Am J Physiol Cell Physiol 2007; 293:C1498-508. [PMID: 17804610 DOI: 10.1152/ajpcell.00088.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dopamine signaling plays a major role in regulation of neuronal apoptosis. During the postnatal period, dopamine signaling is known to be dramatically changed in the striatum. However, because it is difficult to culture neurons after birth, little is known about developmental changes in dopamine-mediated apoptosis. To examine such changes, we established the method of primary culture of striatal neurons from 2- to 3-wk-old (young) mice. Dopamine, via D(1)-like receptors, induced apoptosis in young, but not neonatal, striatal neurons, suggesting that the effect of dopamine on apoptosis changed with development. In contrast, although isoproterenol (Iso), a beta-adrenergic receptor agonist, increased cAMP production to a greater degree than dopamine, Iso did not increase apoptosis in striatal neurons from young and neonatal mice, suggesting a minor role of cAMP in dopamine-mediated apoptosis. Next, we examined the effect of dopamine on Ca(2+) signaling. Dopamine, but not Iso, markedly increased intracellular Ca(2+) in striatal neurons from young mice, and Ca(2+)-chelating agents abolished dopamine-induced apoptosis, suggesting that Ca(2+) played a major role in the dopamine-mediated apoptosis pathway. In contrast, dopamine failed to increase intracellular Ca(2+) in neonatal neurons, and the expression of PLC, which can increase intracellular Ca(2+) via D(1)-like receptor activation, was significantly greater in young than in neonatal striatal neurons. These data suggest that the developmental change in dopamine-mediated Ca(2+) signaling was responsible for differences between young and neonatal striatum in induction of apoptosis. Furthermore, the culture of young striatal neurons is feasible and may provide a new tool for developmental studies.
Collapse
Affiliation(s)
- Kousaku Iwatsubo
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, New Jersey Medical School-University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Araki KY, Sims JR, Bhide PG. Dopamine receptor mRNA and protein expression in the mouse corpus striatum and cerebral cortex during pre- and postnatal development. Brain Res 2007; 1156:31-45. [PMID: 17509542 PMCID: PMC1994791 DOI: 10.1016/j.brainres.2007.04.043] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/24/2022]
Abstract
The outcome of dopaminergic signaling and effectiveness of dopaminergic drugs depend on the relative preponderance of each of the five dopamine receptors in a given brain region. The separate contribution of each receptor to overall dopaminergic tone is difficult to establish at a functional level due to lack of receptor subtype specific pharmacological agents. A surrogate for receptor function is receptor protein or mRNA expression. We examined dopamine receptor mRNA expression by quantitative reverse transcription real-time PCR in the striatum, globus pallidus, frontal cortex and cingulate cortex of embryonic and postnatal mice. Samples of each region were collected by laser capture microdissection. D1- and D2-receptor mRNAs were the most abundant in all the regions of the mature brain. The D1-receptor was predominant over the D2-receptor in the frontal and cingulate cortices whereas the situation was reversed in the striatum and globus pallidus. In the proliferative domains of the embryonic forebrain, D3-, D4- and D5-receptors were predominant. In the corpus striatum and cerebral cortex, the D3- and D4-receptors were the only receptors that showed marked developmental regulation. By analyzing D1 receptor protein expression, we show that developmental changes in mRNA expression reliably translate into changes in protein levels, at least for the D1-receptor.
Collapse
Affiliation(s)
- Kiyomi Y. Araki
- Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| | - John R. Sims
- Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
- Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| | - Pradeep G. Bhide
- Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| |
Collapse
|
42
|
Crawford CA, Villafranca SW, Cyr MC, Farley CM, Reichel CM, Gheorghe SL, Krall CM, McDougall SA. Effects of early methylphenidate exposure on morphine- and sucrose-reinforced behaviors in adult rats: relationship to dopamine D2 receptors. Brain Res 2007; 1139:245-53. [PMID: 17274963 DOI: 10.1016/j.brainres.2006.12.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 12/24/2006] [Accepted: 12/30/2006] [Indexed: 11/20/2022]
Abstract
Methylphenidate is commonly used to treat Attention Deficit Hyperactivity Disorder (ADHD) in school-aged children, and there is an increasing trend to prescribe methylphenidate to younger preschool-aged children. While the efficacy of methylphenidate is not in question, there is evidence that early methylphenidate treatment may have long-term effects on later drug responsiveness. The goal of this study was to determine whether early exposure to methylphenidate would alter morphine-induced conditioned place preference (CPP) and sucrose-reinforced lever-pressing in young adult rats. We also assessed whether early methylphenidate exposure would impact dopamine D(2) binding sites. Sprague-Dawley rats were treated with methylphenidate (0, 2, or 5 mg/kg) once a day from PD 11-PD 20. On PD 60, morphine-induced CPP or sucrose-reinforced lever-pressing was assessed. A 10-day CPP procedure was used, which included 1 preconditioning day, 8 conditioning days, and 1 test day. After CPP testing, D(2) receptor binding was determined in striatal and accumbal tissue samples. In the sucrose experiment, rats were trained to lever-press on a progressive ratio schedule for one sucrose pellet. Results showed that early exposure to methylphenidate (5 mg/kg) increased the magnitude of morphine-induced CPP. Exposure to methylphenidate did not alter the number of D(2) binding sites, however, there were positive correlations between the number of D(2) binding sites and the strength of the CPP. In the sucrose-reinforced lever-press experiment, rats exposed to methylphenidate (2 and 5 mg/kg) had higher break points than saline controls. These results suggest that early exposure to methylphenidate alters reward system functioning, thereby making these systems more sensitive to appetitive stimuli.
Collapse
Affiliation(s)
- Cynthia A Crawford
- Department of Psychology, California State University, San Bernardino, CA 92407, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Catlow BJ, Kirstein CL. Cocaine during adolescence enhances dopamine in response to a natural reinforcer. Neurotoxicol Teratol 2006; 29:57-65. [PMID: 17184971 PMCID: PMC1847617 DOI: 10.1016/j.ntt.2006.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
The use of cocaine during adolescent development could alter the normal growth of brain regions affected by cocaine, specifically the reward system, and impact the adult mesolimbic system. However, there is scant literature aimed at determining whether animals are more vulnerable to the adverse effects of drugs during adolescence. The present study investigated whether cocaine pretreatment in either adolescence or adulthood altered the dopaminergic response to a naturally reinforcing substance in adulthood. To evaluate the responsivity of the mesolimbic system after repeated cocaine, sucrose was offered during the dialysis procedure and dialysates were collected. Regardless of age all saline pretreated rats had significant increases in sucrose-induced extracellular dopamine (DA) levels in the nucleus accumbens septi (NAcc) as compared to baseline levels. Rats pretreated with cocaine as adults also had significant increases in DA levels after sucrose. Interestingly, sucrose intake significantly enhanced DA levels in cocaine pretreated adolescent rats as compared to all other conditions. The results from the present study show that in rats pretreated with cocaine during adolescence there is an enhanced response of the dopaminergic system in animals exposed to a naturally reinforcing substance. Therefore, cocaine exposure during adolescence results in long-term functional changes in the mesolimbic pathway. Future studies need to ascertain the underlying mechanisms and their potential role in cocaine addiction.
Collapse
Affiliation(s)
| | - Cheryl L. Kirstein
- *Corresponding author. Tel.: +1 813 974 9626; fax: +1 813 974 4617. E-mail address: (C.L. Kirstein)
| |
Collapse
|
44
|
Estelles J, Lluch J, Rodríguez-Arias M, Aguilar MA, Miñarro J. Cocaine exposure during adolescence affects anxiety in adult mice. Brain Res Bull 2006; 71:393-403. [PMID: 17208657 DOI: 10.1016/j.brainresbull.2006.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 10/08/2006] [Accepted: 10/13/2006] [Indexed: 11/17/2022]
Abstract
Psychostimulant drugs such as cocaine have profound and long-lasting neurobiological effects, which may affect anxiety or social behaviors. These actions could be greater when cocaine is administered during a developmental period such as adolescence. The present work attempts to further clarify the long-lasting effects of cocaine administration on mice, examining three major variables: age; pattern of drug administration; and housing conditions. Adolescent (postnatal day 26) or early adult mice (postnatal day 46) were exposed to a daily or binge cocaine administration and 15 days later their behavior was evaluated, the mice being housed either in isolation or in groups during this stage. After a period free of drug, the behaviors evaluated were: spontaneous and cocaine-induced motor activity; anxiety, using the elevated plus maze; the social profile, assessed in a social interaction test. Daily cocaine administration increased avoidance and flee in isolated adolescent-treated mice and decreased social contacts in those which were grouped. On the other hand, the binge pattern modified the anxiety of the grouped adolescent-treated mice evidenced by the increase in time spent on the open arms of the plus maze. An increase in spontaneous and cocaine-induced motor activity was shown in animals after a daily pre-treatment. The results are discussed in terms of presenting cocaine-induced behavioral changes within a specific temporal window and depending on the three variables studied.
Collapse
Affiliation(s)
- Josefina Estelles
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez 21, 46010 Valencia, Spain
| | | | | | | | | |
Collapse
|
45
|
Abstract
Initiation and experimentation with illicit drugs often occurs in adolescence. Evidence suggests that adolescent rats are more sensitive to some of the effects of drugs of abuse than adult rats. The present study investigated whether adolescent and adult female Sprague Dawley rats differ in cocaine-induced locomotor activity. Animals were placed in the test environment for 30 minutes, and then administered an intraperitoneal (IP) injection of either cocaine (20mg/kg) or saline (0.9%). Both adult and adolescent animals showed significant increases in locomotor activity as a result of cocaine administration compared to saline controls. Interestingly, cocaine induced significantly more locomotor activity in the adolescent females compared to the adults, demonstrating that cocaine acts differently in developing animals.
Collapse
Affiliation(s)
- Briony J Catlow
- Department of Psychology, Cognitive and Neural Sciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | | |
Collapse
|
46
|
Collins SL, Wade D, Ledon J, Izenwasser S. Neurochemical alterations produced by daily nicotine exposure in periadolescent vs. adult male rats. Eur J Pharmacol 2005; 502:75-85. [PMID: 15464092 DOI: 10.1016/j.ejphar.2004.08.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/17/2004] [Accepted: 08/20/2004] [Indexed: 12/01/2022]
Abstract
Chronic treatment with nicotine differentially alters behavior in adolescent rats compared to adult rats. It is not known, however, whether the effects of nicotine on the neurochemical pathways with which it interacts differ in adolescents vs. adults. In the current study, the effects of a 7-day treatment with nicotine on nicotinic, dopaminergic, and serotonergic neurochemistry were examined in the caudate putamen and nucleus accumbens in periadolescent vs. adult male rats. Nicotine treatment increased dopamine transporter densities and decreased serotonin transporter densities in periadolescent rats. There was no change in nicotinic acetylcholine receptor densities or dopamine D1 or D2 receptor densities in nicotine-pretreated periadolescent rats. In adult rats pretreated with nicotine, there was an increase in nicotinic acetylcholine densities, but no change in dopamine transporter, dopamine D1 or D2 receptor, or serotonin transporter densities. Overall, these findings show that periadolescent rats have neurochemical adaptations to nicotine different from adult rats. These alterations may explain, at least in part, the differential behavioral effects of chronic nicotine in adult and adolescent male rats.
Collapse
Affiliation(s)
- Stephanie L Collins
- Department of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, 1400 NW 10th Avenue, Suite 704A (D-80), Miami, FL 33136, USA
| | | | | | | |
Collapse
|
47
|
McDougall SA, Hernandez RM, Reichel CM, Farley CM. The partial D2-like dopamine receptor agonist terguride acts as a functional antagonist in states of high and low dopaminergic tone: evidence from preweanling rats. Psychopharmacology (Berl) 2005; 178:431-9. [PMID: 15765258 DOI: 10.1007/s00213-004-2033-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE In adult rats, the partial D(2)-like agonist terguride acts as an antagonist at normosensitive D(2)-like post-synaptic receptors, while it acts as an agonist at the same receptors during states of low dopaminergic tone. OBJECTIVE The purpose of the present study was to determine whether partial D(2)-like agonists exhibit both antagonistic and agonistic actions during the preweanling period. METHODS In experiments 1 and 2 (examining the agonistic actions of terguride), preweanling rats were either given an escalating regimen of amphetamine to induce a state of amphetamine withdrawal or pretreated with the tyrosine hydroxylase inhibitor AMPT. Distance traveled was measured after rats were injected with saline, terguride (0.4-1.6 mg/kg), or the full D(2)-like receptor agonist NPA (0.01 mg/kg). In experiment 3 (examining the antagonistic actions of terguride), preweanling rats were pretreated with terguride 30 min before they were tested with saline, NPA (0.05 mg/kg), or amphetamine (1.5 mg/kg). RESULTS NPA had an exaggerated locomotor activating effect when tested under conditions of amphetamine withdrawal, while the partial D(2)-like agonist did not enhance distance traveled under any circumstance. Similarly, NPA increased and terguride did not affect the distance-traveled scores of AMPT-pretreated rats. In experiment 3, terguride pretreatment significantly reduced the distance traveled of amphetamine-treated and NPA-treated rats. CONCLUSIONS The behavioral evidence indicates that, during the preweanling period, terguride antagonizes D(2)-like post-synaptic receptors in a state of high dopaminergic tone; however, there is no evidence that terguride is capable of stimulating D(2)-like post-synaptic receptors during states of low dopaminergic tone.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, San Bernardino, CA, 92407, USA.
| | | | | | | |
Collapse
|
48
|
Collins SL, Montano R, Izenwasser S. Nicotine treatment produces persistent increases in amphetamine-stimulated locomotor activity in periadolescent male but not female or adult male rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:175-87. [PMID: 15527885 DOI: 10.1016/j.devbrainres.2004.08.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2004] [Indexed: 10/26/2022]
Abstract
Nicotine is a popular addictive drug used among the adolescent population, and it has long been questioned whether nicotine use in adolescence may lead to the use of other psychostimulant drugs. It is not fully understood, however, how nicotine alters behavior and brain neurochemistry in the adolescent age cohort and how this may affect subsequent illicit drug use. In the current study, periadolescent and adult male and female rats were treated with nicotine for 7 days. One day or 30 days after this treatment, the effects of amphetamine on locomotor activity were studied. Sensitization to nicotine occurred in periadolescent female and adult male and female rats, but not in periadolescent male rats over the course of the 7-day treatment period. On day 8 (1 day after treatment with nicotine ended) and on day 37 (30 days after treatment with nicotine ended), nicotine-pretreated periadolescent male rats were sensitized to the locomotor-activating effects of amphetamine. The response to amphetamine of periadolescent female and adult male and female rats was unchanged at either time point after nicotine pretreatment. Thus, adolescent males are more sensitive than adults or females to the stimulant effects of amphetamine after exposure to nicotine, and this effect is long-lasting. These data suggest that nicotine use during adolescence may carry a greater risk than during adulthood and that male adolescent smokers may be particularly vulnerable to the risk of stimulant abuse.
Collapse
Affiliation(s)
- Stephanie L Collins
- Department of Psychiatry and Behavioral Sciences, Research Division, University of Miami School of Medicine, 1400 NW 10th Avenue, Suite 704A (D80), Miami FL 33136, USA
| | | | | |
Collapse
|
49
|
Costa LG, Steardo L, Cuomo V. Structural effects and neurofunctional sequelae of developmental exposure to psychotherapeutic drugs: experimental and clinical aspects. Pharmacol Rev 2004; 56:103-47. [PMID: 15001664 DOI: 10.1124/pr.56.1.5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The advent of psychotherapeutic drugs has enabled management of mental illness and other neurological problems such as epilepsy in the general population, without requiring hospitalization. The success of these drugs in controlling symptoms has led to their widespread use in the vulnerable population of pregnant women as well, where the potential embryotoxicity of the drugs has to be weighed against the potential problems of the maternal neurological state. This review focuses on the developmental toxicity and neurotoxicity of five broad categories of widely available psychotherapeutic drugs: the neuroleptics, the antiepileptics, the antidepressants, the anxiolytics and mood stabilizers, and a newly emerging class of nonprescription drugs, the herbal remedies. A brief review of nervous system development during gestation and following parturition in mammals is provided, with a description of the development of neurochemical pathways that may be involved in the action of the psychotherapeutic agents. A thorough discussion of animal research and human clinical studies is used to determine the risk associated with the use of each drug category. The potential risks to the fetus, as demonstrated in well described neurotoxicity studies in animals, are contrasted with the often negative findings in the still limited human studies. The potential risk fo the human fetus in the continued use of these chemicals without more adequate research is also addressed. The direction of future research using psychotherapeutic drugs should more closely parallel the methodology developed in the animal laboratories, especially since these models have already been used extremely successfully in specific instances in the investigation of neurotoxic agents.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Pharmacology and Human Physiology, University of Bari Medical School, Italy
| | | | | |
Collapse
|
50
|
Fukui R, Svenningsson P, Matsuishi T, Higashi H, Nairn AC, Greengard P, Nishi A. Effect of methylphenidate on dopamine/DARPP signalling in adult, but not young, mice. J Neurochem 2003; 87:1391-401. [PMID: 14713295 DOI: 10.1046/j.1471-4159.2003.02101.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methylphenidate (MPH), a dopamine uptake inhibitor, is the most commonly prescribed drug for the treatment of attention-deficit/hyperactivity disorder (ADHD) in children. We examined the effect of MPH on dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32) phosphorylation at Thr34 (PKA-site) and Thr75 (Cdk5-site) using neostriatal slices from young (14-15- and 21-22-day-old) and adult (6-8-week-old) mice. MPH increased DARPP-32 Thr34 phosphorylation and decreased Thr75 phosphorylation in slices from adult mice. The effect of MPH was blocked by a dopamine D1 antagonist, SCH23390. In slices from young mice, MPH did not affect DARPP-32 phosphorylation. As with MPH, cocaine stimulated DARPP-32 Thr34 phosphorylation in slices from adult, but not from young mice. In contrast, a dopamine D1 agonist, SKF81297, regulated DARPP-32 phosphorylation comparably in slices from young and adult mice, as did methamphetamine, a dopamine releaser. The results suggest that dopamine synthesis and the dopamine transporter are functional at dopaminergic terminals in young mice. In contrast, the lack of effect of MPH in young mice is likely attributable to immature development of the machinery that regulates vesicular dopamine release.
Collapse
Affiliation(s)
- Ryuichi Fukui
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | | | | | | | | | | | | |
Collapse
|