1
|
Feng T, Deng X, Xu Z, Xu J. Diaporlabanoids A-C, Immunosuppressive Dinorlabdane Diterpene Alkaloids with an Unprecedented Carbon Skeleton from Mangrove Endophytic Fungus Diaporthe phaseolorum H3-2. Org Lett 2025. [PMID: 40434028 DOI: 10.1021/acs.orglett.5c01572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Diaporlabanoids A-C (1-3, respectively), three highly modified dinorlabdane diterpene alkaloids featuring an unprecedented succinimide-containing 6/6/6/5/5-fused pentacyclic skeleton, were obtained from endophytic fungus Diaporthe phaseolorum H3-2 isolated from the Chinese mangrove Ceriops tagal. Their structures, including absolute configurations, were elucidated via spectroscopic data, X-ray crystallography, GIAO 13C NMR (DP4+), and electronic circular dichroism (ECD) calculations. Notably, 1 exhibited fascinating immunosuppressive activity via the inhibition of the CaN/NFAT and PKCθ/NFκB signal transduction pathways.
Collapse
Affiliation(s)
- Ting Feng
- Collaborative Innovation Center of Ecological Civilization, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xiaolin Deng
- Collaborative Innovation Center of Ecological Civilization, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Zhiyong Xu
- Collaborative Innovation Center of Ecological Civilization, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Jing Xu
- Collaborative Innovation Center of Ecological Civilization, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Kotlyar M, Guo Z, Rao AVS, Peng H, Wang J, Ma Z, Schiene-Fischer C, Fischer G, Liu JO. Identification of Rapaglutin E as an Isoform-Specific Inhibitor of Glucose Transporter 1. ACS Chem Biol 2025; 20:1004-1009. [PMID: 40226990 DOI: 10.1021/acschembio.5c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Natural products rapamycin and FK506 are macrocyclic compounds with therapeutic benefits whose unique scaffold inspired the generation and exploration of hybrid macrocycle rapafucins. From this library, a potent inhibitor of the facilitative glucose transporter (GLUT), rapaglutin A (RgA), was previously identified. RgA is a pan-GLUT inhibitor of Class I isoforms GLUT1, GLUT3, and GLUT4. Herein, we report the discovery of rapaglutin E (RgE). Unlike RgA, RgE is highly specific for GLUT1. Further characterization revealed that RgE and RgA likely bound to distinct sites on GLUT1 despite their shared FKBP-binding domain, suggesting that the distinct effector domains of RgE and RgA play key roles in the recognition of GLUTs.
Collapse
Affiliation(s)
- Marnie Kotlyar
- Chemistry Biology Interface Graduate Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Zufeng Guo
- Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - A V Subba Rao
- Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Hanjing Peng
- Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Jingxin Wang
- Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Zhongnan Ma
- Department of Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Gunter Fischer
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Jun O Liu
- Chemistry Biology Interface Graduate Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
- The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Departments of Pharmacology and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Zeng X, Pan Y, Lin J, Zheng Z, Wu H, Wang Y, Wu Y, Shen Y, Chen Y, Zhao Y, Xia Q, Duan Y, He K. IL-21R-Targeted Nano-immunosuppressant Prevents Acute Rejection in Allogeneic Transplantation by Blocking Maturation of T Follicular Helper Cells. Acta Biomater 2025:S1742-7061(25)00337-X. [PMID: 40339970 DOI: 10.1016/j.actbio.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
During organ transplantation, immune rejection is a primary cause of graft failure. In the underlying pathophysiology of rejection, T follicular helper (Tfh) cells and interleukin-21 (IL-21) play pivotal roles. Tfh cells exacerbate the humoral immune response by promoting B cell differentiation and antibody production, which leads to damage of the transplanted tissue. IL-21, a key pro-inflammatory cytokine, binds to its receptor (IL-21R) to enhance both the growth and function of Tfh cells, while also further driving B cell activation and differentiation into plasma cells. Building on this knowledge, we have developed a tacrolimus-based nano-inhibitor designed to target Tfh cells. This nano-inhibitor is constructed using a mPEG-PLGA-PLL (PEAL) scaffold, with IL-21R monoclonal antibodies conjugated to its surface, and tacrolimus encapsulated within the structure. In vitro experiments demonstrated that this nano-inhibitor effectively targets Tfh cells, inhibiting the differentiation of naive CD4+ T cells into Tfh cells. In co-culture systems of T and B cells, it significantly suppresses the activation of both cell types, leading to a reduction in IgG antibody production. In vivo, the nano-inhibitor selectively targets secondary lymphoid organs, reduces systemic inflammation, minimizes lymphocyte infiltration into the graft, and induces immune tolerance toward the transplanted tissue. In addition, no significant toxicity was observed in vitro or in vivo. As a therapeutic agent that simultaneously modulates both T and B cell responses, we believe it holds significant promise for broader applications in transplantation immunotherapy. STATEMENT OF SIGNIFICANCE: This study presents a groundbreaking nano-immunosuppressant designed to target both T and B cells, addressing the critical challenge of acute rejection in allogeneic transplantation. By combining tacrolimus nanoparticles with IL-21 receptor antibodies, this immunosuppressant effectively suppresses Tfh cell proliferation and B cell activation, significantly reducing IgG generation. The formulation enhances tacrolimus's bioavailability, minimizes off-target toxicity, and overcomes its narrow therapeutic window. In vitro and in vivo studies show reduced lymphocyte infiltration, lower inflammatory markers, and decreased nephrotoxicity compared to conventional tacrolimus.
Collapse
Affiliation(s)
- Xiandong Zeng
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yixiao Pan
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Zhigang Zheng
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Wu
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yining Wang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - You Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yufei Shen
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yujia Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yifan Zhao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Qiang Xia
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.
| | - Kang He
- Department of Liver Surgery and Liver Transplantation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Tomlinson ACA, Knox JE, Brunsveld L, Ottmann C, Yano JK. The "three body solution": Structural insights into molecular glues. Curr Opin Struct Biol 2025; 91:103007. [PMID: 40014904 DOI: 10.1016/j.sbi.2025.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Molecular glues are small molecules that nucleate novel or stabilize natural, protein-protein interactions resulting in a ternary complex. Their success in targeting difficult to drug proteins of interest has led to ever-increasing interest in their use as therapeutics and research tools. While molecular glues and their targets vary in structure, inspection of diverse ternary complexes reveals commonalities. Whether of high or low molecular weight, molecular glues are often rigid and form direct hydrophobic interactions with their target protein. There is growing evidence that these hotspots can accommodate multiple ternary complex binding modes and enable targeting of traditionally undruggable targets. Advances in screening from the molecular glue degrader literature and insights in structure-based drug design, especially from the non-degrading tri-complex work, are likely intersectional.
Collapse
Affiliation(s)
| | | | - Luc Brunsveld
- Eindhoven University of Technology, Eindhoven, Netherlands
| | | | | |
Collapse
|
5
|
Chandler F, Reddy PAN, Bhutda S, Ross RL, Datta A, Walden M, Walker K, Di Donato S, Cassel JA, Prakesch MA, Aman A, Datti A, Campbell LJ, Foglizzo M, Bell L, Stein DN, Ault JR, Al-Awar RS, Calabrese AN, Sicheri F, Del Galdo F, Salvino JM, Greenberg RA, Zeqiraj E. Molecular glues that inhibit deubiquitylase activity and inflammatory signaling. Nat Struct Mol Biol 2025:10.1038/s41594-025-01517-5. [PMID: 40097626 DOI: 10.1038/s41594-025-01517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
Deubiquitylases (DUBs) are crucial in cell signaling and are often regulated by interactions within protein complexes. The BRCC36 isopeptidase complex (BRISC) regulates inflammatory signaling by cleaving K63-linked polyubiquitin chains on type I interferon receptors (IFNAR1). As a Zn2+-dependent JAMM/MPN (JAB1, MOV34, MPR1, Pad1 N-terminal) DUB, BRCC36 is challenging to target with selective inhibitors. Here, we discover first-in-class inhibitors, termed BRISC molecular glues (BLUEs), which stabilize a 16-subunit human BRISC dimer in an autoinhibited conformation, blocking active sites and interactions with the targeting subunit, serine hydroxymethyltransferase 2. This unique mode of action results in selective inhibition of BRISC over related complexes with the same catalytic subunit, splice variants and other JAMM/MPN DUBs. BLUE treatment reduced interferon-stimulated gene expression in cells containing wild-type BRISC and this effect was abolished when using structure-guided, inhibitor-resistant BRISC mutants. Additionally, BLUEs increase IFNAR1 ubiquitylation and decrease IFNAR1 surface levels, offering a potential strategy to mitigate type I interferon-mediated diseases. Our approach also provides a template for designing selective inhibitors of large protein complexes by promoting rather than blocking protein-protein interactions.
Collapse
Affiliation(s)
- Francesca Chandler
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Poli Adi Narayana Reddy
- Medicinal Chemistry, Molecular and Cellular Oncogenesis (MCO) Program and The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Smita Bhutda
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Arindam Datta
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miriam Walden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kieran Walker
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Stefano Di Donato
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Joel A Cassel
- Medicinal Chemistry, Molecular and Cellular Oncogenesis (MCO) Program and The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Michael A Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Alessandro Datti
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Lisa J Campbell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Martina Foglizzo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lillie Bell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Daniel N Stein
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Rima S Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frank Sicheri
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK.
| | - Joseph M Salvino
- Medicinal Chemistry, Molecular and Cellular Oncogenesis (MCO) Program and The Wistar Cancer Center Molecular Screening, The Wistar Institute, Philadelphia, PA, USA.
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
6
|
Khan MA, Hanna A, Sridhara S, Chaudhari H, Me HM, Attieh RM, Abu Jawdeh BG. Maintenance Immunosuppression in Kidney Transplantation: A Review of the Current Status and Future Directions. J Clin Med 2025; 14:1821. [PMID: 40142628 PMCID: PMC11943253 DOI: 10.3390/jcm14061821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Kidney transplantation remains the gold standard for managing end-stage kidney disease, providing superior survival and quality-of-life outcomes compared to dialysis. Despite the ongoing gap between organ availability and demand, it is inevitable that kidney transplantation will continue to grow. This is owed to broader organ sharing, increased comfort of transplant programs with marginal kidney utilization, and the expansion of paired exchange among living donor kidneys. The evolution of kidney transplantation could not have been possible without the availability of effective immunosuppressive regimens that prevent rejection and maintain graft function. Mycophenolic acid and calcineurin inhibitors continue to serve as the foundation of modern maintenance immunosuppression. While these agents have markedly reduced acute rejection rates, their long-term efficacy in graft survival remains suboptimal. Alternative immunosuppressive therapies, including belatacept and mammalian target of rapamycin inhibitors, have demonstrated potential benefits. However, concerns regarding an increased risk of rejection have limited their widespread adoption as primary treatment options. In addition to ongoing efforts to refine steroid- and calcineurin inhibitor-sparing strategies, the identification of practical and quantifiable biomarkers for predicting long-term graft survival remains a critical objective. This review evaluates contemporary immunosuppressive protocols, highlights existing challenges, and explores future directions for optimizing long-term transplant outcomes.
Collapse
Affiliation(s)
- Muhammad Ali Khan
- Division of Nephrology and Hypertension, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA; (A.H.); (S.S.); (H.C.); (H.M.M.)
| | - Alessandra Hanna
- Division of Nephrology and Hypertension, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA; (A.H.); (S.S.); (H.C.); (H.M.M.)
| | - Srilekha Sridhara
- Division of Nephrology and Hypertension, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA; (A.H.); (S.S.); (H.C.); (H.M.M.)
| | - Harshad Chaudhari
- Division of Nephrology and Hypertension, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA; (A.H.); (S.S.); (H.C.); (H.M.M.)
| | - Hay Me Me
- Division of Nephrology and Hypertension, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA; (A.H.); (S.S.); (H.C.); (H.M.M.)
| | - Rose Mary Attieh
- Department of Transplant, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Bassam G. Abu Jawdeh
- Division of Nephrology and Hypertension, Mayo Clinic Arizona, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA; (A.H.); (S.S.); (H.C.); (H.M.M.)
| |
Collapse
|
7
|
Mazidi Z, Wieser M, Spinu N, Weidinger A, Kozlov AV, Vukovic K, Wellens S, Murphy C, Singh P, Lagares LM, Bobbili MR, Liendl L, Schosserer M, Diendorfer A, Bettelheim B, Eilenberg W, Exner T, Culot M, Jennings P, Wilmes A, Novic M, Benfenati E, Grillari-Voglauer R, Grillari J. Cyclosporin A toxicity on endothelial cells differentiated from induced pluripotent stem cells: Assembling an adverse outcome pathway. Toxicol In Vitro 2025; 103:105954. [PMID: 39550010 DOI: 10.1016/j.tiv.2024.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 06/15/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024]
Abstract
Cyclosporin A (CSA) is a potent immunosuppressive agent in pharmacologic studies. However, there is evidence for side effects, specifically regarding vascular dysfunction. Its mode of action inducing endothelial cell toxicity is partially unclear, and a connection with an adverse outcome pathway (AOP) is not established yet. Therefore, we designed this study to get deeper insights into the mechanistic toxicology of CSA on angiogenesis. Stem cells, especially induced pluripotent stem cells (iPSCs) with the ability of differentiation to all organs of the body, are considered a promising in vitro model to reduce animal experimentation. In this study, we differentiated iPSCs to endothelial cells (ECs) as one cell type that in other studies would allow to generate multi-cell type organoids from single donors. Flow cytometry and immunostaining confirmed our scalable differentiation protocol. Then dose and time course experiments assessing CSA cytotoxicity on iPS derived endothelial cells were performed. Transcriptomic data suggested CSA dependent induction of reactive oxygen species (ROS), mitochondrial dysfunction, and impaired angiogenesis via ROS induction which was confirmed by in vitro experiments. In order to put these data into a potential adverse outcome pathway (AOP) context, we performed a literature review for CSA-mediated endothelial cell toxicity and combined our experimental data with the publicly available knowledge. Such an AOP will help to design in vitro test batteries and to model events observed in human toxicity studies, as well in predictive toxicology.
Collapse
Affiliation(s)
- Zahra Mazidi
- Evercyte GmbH, Leberstrasse 20, 1110 Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | | | - Nicoleta Spinu
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstrasse 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstrasse 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Kristijan Vukovic
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri"-IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Sara Wellens
- University of Artois, UR2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Cormac Murphy
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Pranika Singh
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Liadys Mora Lagares
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstrasse 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Lisa Liendl
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | - Bruno Bettelheim
- Department of Obstetrics and Gynecology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Wolf Eilenberg
- Department of General Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Thomas Exner
- Seven Past Nine d.o.o., Hribljane 10, 1380 Cerknica, Slovenia
| | - Maxime Culot
- University of Artois, UR2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Marjana Novic
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri"-IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Regina Grillari-Voglauer
- Evercyte GmbH, Leberstrasse 20, 1110 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johannes Grillari
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstrasse 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
8
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
9
|
Jing X, Mackay JP, Passioura T. Macrocyclic peptides as a new class of targeted protein degraders. RSC Chem Biol 2025:d4cb00199k. [PMID: 39822773 PMCID: PMC11733494 DOI: 10.1039/d4cb00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025] Open
Abstract
Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics. In particular, existing targeted degrader design is largely only applicable to the same set of protein targets as traditional small molecules (i.e., ∼15% of the human proteome). Here, we consider the potential of macrocyclic peptides to overcome this limitation. Such molecules possess several features that make them well-suited for the role, including the ability to induce the formation of ternary protein complexes that can involve relatively flat surfaces and their structural commonality with E3 ligase-recruiting peptide degrons. For these reasons, macrocyclic peptides provide the opportunity both to broaden the number of targets accessible to degrader activity and to broaden the number of E3 ligases that can be harnessed to mediate that activity.
Collapse
Affiliation(s)
- Xuefei Jing
- School of Life and Environmental Sciences, The University of Sydney Sydney NSW 2006 Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney Sydney NSW 2006 Australia
| | - Toby Passioura
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Insamo South Pty Ltd Chippendale NSW 2008 Australia
| |
Collapse
|
10
|
Kunasol C, Chattipakorn N, Chattipakorn SC. Impact of calcineurin inhibitors on gut microbiota: Focus on tacrolimus with evidence from in vivo and clinical studies. Eur J Pharmacol 2025; 987:177176. [PMID: 39637933 DOI: 10.1016/j.ejphar.2024.177176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Calcineurin Inhibitors (CNIs), including tacrolimus and cyclosporine A, are the most widely used immunosuppressive drugs in solid organ transplantation. Those drugs play a pivotal role in preventing graft rejection and reducing autoimmunity. However, recent studies indicate that CNIs can disrupt the composition of gut microbiota or result in "gut dysbiosis". This dysbiosis has been shown to be a significant factor in reducing host immunity by decreasing innate immune cells and impairing metabolic regulation, leading to lipid and glucose accumulation. Several in vivo and clinical studies have demonstrated a mechanistic link between gut dysbiosis and the side effects of CNI. Those studies have unveiled that gut dysbiosis induced by CNIs contributes to adverse effects such as hyperglycemia, nephrotoxicity, and diarrhea. These adverse effects of the induced gut dysbiosis require interventions to restore microbial balance. Probiotics and dietary supplements have emerged as potential interventions to mitigate the side effects of gut dysbiosis caused by CNIs. In this complex relationship between CNI treatment, gut dysbiosis, and interventions, several types of gut microbiota and host immunity are involved. However, the mechanisms underlying these relationships remain elusive. Therefore, the aim of this review is to comprehensively summarize and discuss the major findings from in vivo and clinical data regarding the impact of treatment with CNIs on gut microbiota. This review also explores interventions to mitigate dysbiosis for therapeutic approaches of the side effects of CNIs. The possible underlying mechanisms of CNIs-induced gut dysbiosis with or without interventions are also presented and discussed.
Collapse
Affiliation(s)
- Chanon Kunasol
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
11
|
London N. Covalent Proximity Inducers. Chem Rev 2025; 125:326-368. [PMID: 39692621 PMCID: PMC11719315 DOI: 10.1021/acs.chemrev.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Molecules that are able to induce proximity between two proteins are finding ever increasing applications in chemical biology and drug discovery. The ability to introduce an electrophile and make such proximity inducers covalent can offer improved properties such as selectivity, potency, duration of action, and reduced molecular size. This concept has been heavily explored in the context of targeted degradation in particular for bivalent molecules, but recently, additional applications are reported in other contexts, as well as for monovalent molecular glues. This is a comprehensive review of reported covalent proximity inducers, aiming to identify common trends and current gaps in their discovery and application.
Collapse
Affiliation(s)
- Nir London
- Department
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
12
|
Ferreira PA. Personal essay of a rookie's journey with Bill Pak and his legacy: tales and perspectives on PI-PLC, NorpA and cyclophilin, NinaA - William L. Pak, PhD., 1932-2023: in memoriam. J Neurogenet 2024; 38:165-174. [PMID: 38913811 DOI: 10.1080/01677063.2024.2366455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
The neurogenetics and vision community recently mourned William L. Pak, PhD, whose pioneering work spearheaded the genetic, electrophysiological, and molecular bases of biological processes underpinning vision. This essay provides a historical background to the daunting challenges and personal experiences that carved the path to seminal findings. It also reflects on the intellectual framework, mentoring philosophy, and inspirational legacy of Bill Pak's research. An emphasis and perspectives are placed on the discoveries and implications to date of the phosphatidylinositol-specific phospholipase C (PI-PLC), NorpA, and the cyclophilin, NinaA of the fruit fly, Drosophila melanogaster, and their respective mammalian homologues, PI-PLCβ4, and cyclophilin-related protein, Ran-binding protein 2 (Ranbp2) in critical biological processes and diseases of photoreceptors and other neurons.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Departments of Ophthalmology and Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
13
|
Chandler F, Reddy PAN, Bhutda S, Ross RL, Datta A, Walden M, Walker K, Di Donato S, Cassel JA, Prakesch MA, Aman A, Datti A, Campbell LJ, Foglizzo M, Bell L, Stein DN, Ault JR, Al-awar RS, Calabrese AN, Sicheri F, Del Galdo F, Salvino JM, Greenberg RA, Zeqiraj E. Molecular glues that inhibit deubiquitylase activity and inflammatory signalling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611787. [PMID: 39282282 PMCID: PMC11398498 DOI: 10.1101/2024.09.07.611787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Deubiquitylases (DUBs) are crucial in cell signalling and are often regulated by interactions within protein complexes. The BRCC36 isopeptidase complex (BRISC) regulates inflammatory signalling by cleaving K63-linked polyubiquitin chains on Type I interferon receptors (IFNAR1). As a Zn2+-dependent JAMM/MPN DUB, BRCC36 is challenging to target with selective inhibitors. We discovered first-in-class inhibitors, termed BRISC molecular glues (BLUEs), which stabilise a 16-subunit BRISC dimer in an autoinhibited conformation, blocking active sites and interactions with the targeting subunit SHMT2. This unique mode of action results in selective inhibition of BRISC over related complexes with the same catalytic subunit, splice variants and other JAMM/MPN DUBs. BLUE treatment reduced interferon-stimulated gene expression in cells containing wild type BRISC, and this effect was absent when using structure-guided, inhibitor-resistant BRISC mutants. Additionally, BLUEs increase IFNAR1 ubiquitylation and decrease IFNAR1 surface levels, offering a potential new strategy to mitigate Type I interferon-mediated diseases. Our approach also provides a template for designing selective inhibitors of large protein complexes by promoting, rather than blocking, protein-protein interactions.
Collapse
Affiliation(s)
- Francesca Chandler
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Poli Adi Narayana Reddy
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Smita Bhutda
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca L. Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Arindam Datta
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miriam Walden
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kieran Walker
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Stefano Di Donato
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Joel A. Cassel
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Michael A. Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Alessandro Datti
- Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Lisa J. Campbell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Martina Foglizzo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lillie Bell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Daniel N. Stein
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James R. Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Rima S. Al-awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frank Sicheri
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals, NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Joseph M. Salvino
- The Wistar Cancer Center for Molecular Screening, The Wistar Institute, Philadelphia, PA, USA
| | - Roger A. Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
14
|
Fischer MA, Jia L, Edelblum KL. Type I IFN Induces TCR-dependent and -independent Antimicrobial Responses in γδ Intraepithelial Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1380-1391. [PMID: 39311642 PMCID: PMC11493514 DOI: 10.4049/jimmunol.2400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Intraepithelial lymphocytes (IELs) expressing the TCRγδ survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I IFN is a central component of an antiviral immune response, yet how these proinflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFN-γ production, yet low-level TCR activation synergizes with type I IFN to induce IFN-γ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of costimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFN-γ expression in a STAT4-dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFN-γ production in vivo. However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFN-γ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and may produce IFN-γ in a TCR-dependent manner under permissive conditions.
Collapse
Affiliation(s)
- Matthew A Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
15
|
Zhang SH, Zeng N, Xu JZ, Liu CQ, Xu MY, Sun JX, An Y, Zhong XY, Miao LT, Wang SG, Xia QD. Recent breakthroughs in innovative elements, multidimensional enhancements, derived technologies, and novel applications of PROTACs. Biomed Pharmacother 2024; 180:117584. [PMID: 39427546 DOI: 10.1016/j.biopha.2024.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Proteolysis Targeting Chimera (PROTAC) is an emerging and evolving technology based on targeted protein degradation (TPD). Small molecule PROTACs have shown great efficacy in degrading disease-specific proteins in preclinical and clinical studies, but also showed various limitations. In recent years, new technologies and advances in TPD have provided additional optimized strategies based on conventional PROTACs that can overcome the shortcomings of conventional PROTACs in terms of undruggable targets, bioavailability, tissue-specificity, spatiotemporal control, and degradation scope. In addition, some designs of special targeting chimeras and applications based on multidisciplinary science have shed light on novel therapeutic modalities and drug design. However, each improvement has its own advantages, disadvantages and application conditions. In this review, we summarize the exploration of PROTAC elements, depict a landscape of improvements and derived concepts of PROTACs, and expect to provide perspectives for technological innovations, combinations and applications in future targeting chimera design.
Collapse
Affiliation(s)
- Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Lin-Tao Miao
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
16
|
Zhang X, Qi X, Lu X, Gao H. Modified tectonic corneoscleral graft technique for treating devastating corneoscleral infections. BMC Ophthalmol 2024; 24:402. [PMID: 39261792 PMCID: PMC11389300 DOI: 10.1186/s12886-024-03669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND This study aims to evaluate the clinical outcomes and efficacy of a modified tectonic corneoscleral graft (TCG) in patients suffering from devastating corneoscleral infections. METHODS Thirty-eight eyes from 38 patients who underwent the modified TCG were included in this study. The outcomes measured were recurrence rates, best-corrected visual acuity (BCVA), ocular surface stability, postoperative complications, and graft survival. RESULTS Among the 38 patients, 23 had fungal infections, 9 had bacterial infections and 6 had Pythium insidiosum infections. At the final follow-up, with an average duration of 25.1 ± 8.6 months, the rate of monocular blindness decreased from 100 to 58%. Significant improvements in LogMAR BCVA were observed from preoperative to postoperative measurements (P < 0.001). Thirty-two eyes (84.2%) maintained a stable ocular surface. The survival rate of ocular surface stability was 84.2%±5.9% at one year and 57.7%±9.7% at three years post-surgery. Twenty eyes (52.6%) retained a clear graft, with a survival rate for graft clarity was 81.6%±6.3% at one year and 36.0%±10.8% at three years post-surgery. The incidence of immune rejection was 36.8%. Corneal epithelial defects were observed in ten patients, and choroidal detachment occurred in four patients. No cases of elevated intraocular pressure were detected. CONCLUSIONS The modified TCG is effective in eradicating infections, preserving the eyeball, and maintaining useful vision in cases of devastating corneoscleral infections. Regular use of tacrolimus, timely administration of glucocorticoids, and good patient compliance can help mitigate postoperative challenges.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), 372 Jingsi Road, Jinan, 250021, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, 372 Jingsi Road, Jinan, 250021, China
- School of Ophthalmology, Shandong First Medical University, 372 Jingsi Road, Jinan, 250021, China
| | - Xiaolin Qi
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), 372 Jingsi Road, Jinan, 250021, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, 372 Jingsi Road, Jinan, 250021, China
- School of Ophthalmology, Shandong First Medical University, 372 Jingsi Road, Jinan, 250021, China
| | - Xiuhai Lu
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), 372 Jingsi Road, Jinan, 250021, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, 372 Jingsi Road, Jinan, 250021, China
- School of Ophthalmology, Shandong First Medical University, 372 Jingsi Road, Jinan, 250021, China
| | - Hua Gao
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), 372 Jingsi Road, Jinan, 250021, China.
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, 372 Jingsi Road, Jinan, 250021, China.
- School of Ophthalmology, Shandong First Medical University, 372 Jingsi Road, Jinan, 250021, China.
| |
Collapse
|
17
|
Unsal Y, Baltu D, Gulhan B, Okur FV, Ozaltın F, Düzova A, Topaloğlu R, Ozon ZA, Gonç EN. Calcineurin inhibitor-related hyperkalemia is caused by hyporeninemic hypoaldosteronism and fludrocortisone is an effective treatment: Report of a case series and review of the literature. Pediatr Transplant 2024; 28:e14778. [PMID: 38767038 DOI: 10.1111/petr.14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/31/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Calcineurin inhibitors (CNIs) are widely used in transplantation. Although CNI-related hyperkalemia is common (10%-60.6%), the underlying pathogenetic mechanism is not well-elucidated and may lead to dose adjustment or treatment withdrawal. OBJECTIVE The aim of this study is to describe CNI-related hyperkalemia due to hyporeninemic hypoaldosteronism in pediatric transplant recipients who were successfully treated with fludrocortisone. METHOD In a total of 55 hematopoietic stem cell (HSCT) and 35 kidney transplant recipients followed according to institutional immunosuppression protocols, recipients diagnosed with CNI-related hyperkalemia were reviewed. Recipients who were receiving intravenous fluid, potassium, or were diagnosed with hemolysis, acute graft rejection, or had an eGFR < 30 mL/min/1.73m2, were excluded. A detailed analysis of clinical history as well as biochemical studies was carried out to reveal possible pathophysiology. RESULTS Three pediatric transplant recipients (one HSCT, two kidney transplantation) with findings of hyperkalemia, hyponatremia, and a mild elevation in blood urea nitrogen while on CNIs were recruited. Urinary potassium excretion was diminished while sodium excretion was increased. Plasma aldosterone levels were low, and renin was not increased in response. Primary adrenal insufficiency was ruled out, and hyporeninemic hypoaldosteronism was diagnosed. CNI-related hyperkalemia was detected earlier in case 1, who had HSCT (22 days), than in the second and third cases, who had kidney transplantation (24 and 30 months post-transplantation, respectively). The discrepancy was hypothesized to be explained by higher overall CNI dose due to higher serum target CNI used in HSCT than kidney transplantation. Electrolyte imbalance was reversed upon administration of physiologic dose fludrocortisone (0.05 mg, daily), while fludrocortisone was ceased after CNI withdrawal in case 1, which is additional evidence for the etiological association of CNIs and hyporeninemic hypoaldosteronism. CONCLUSION Our three cases strengthen the premise that CNI-related hyperkalemia may be due to hyporeninemic hypoaldosteronism, and the timing and severity may be related to CNI dose. Fludrocortisone is a safe and effective treatment in CNI-related hyperkalemia, providing maintenance of CNIs, which are one of the essential therapeutic agents for pediatric transplantation.
Collapse
Affiliation(s)
- Yagmur Unsal
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Demet Baltu
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Bora Gulhan
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Fatma Visal Okur
- Division of Pediatric Hematology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Fatih Ozaltın
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ali Düzova
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rezan Topaloğlu
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Zeynep Alev Ozon
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Elmas Nazlı Gonç
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
18
|
Ghanbar MI, Danoff SK. Review of Pulmonary Manifestations in Antisynthetase Syndrome. Semin Respir Crit Care Med 2024; 45:365-385. [PMID: 38710221 DOI: 10.1055/s-0044-1785536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antisynthetase syndrome (ASyS) is now a widely recognized entity within the spectrum of idiopathic inflammatory myopathies. Initially described in patients with a triad of myositis, arthritis, and interstitial lung disease (ILD), its presentation can be diverse. Additional common symptoms experienced by patients with ASyS include Raynaud's phenomenon, mechanic's hand, and fever. Although there is a significant overlap with polymyositis and dermatomyositis, the key distinction lies in the presence of antisynthetase antibodies (ASAs). Up to 10 ASAs have been identified to correlate with a presentation of ASyS, each having manifestations that may slightly differ from others. Despite the proposal of three classification criteria to aid diagnosis, the heterogeneous nature of patient presentations poses challenges. ILD confers a significant burden in patients with ASyS, sometimes manifesting in isolation. Notably, ILD is also often the initial presentation of ASyS, requiring pulmonologists to remain vigilant for an accurate diagnosis. This article will comprehensively review the various aspects of ASyS, including disease presentation, diagnosis, management, and clinical course, with a primary focus on its pulmonary manifestations.
Collapse
Affiliation(s)
- Mohammad I Ghanbar
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sonye K Danoff
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
19
|
Haridas V, Dutta S, Munjal A, Singh S. Inhibitors to degraders: Changing paradigm in drug discovery. iScience 2024; 27:109574. [PMID: 38646175 PMCID: PMC11031827 DOI: 10.1016/j.isci.2024.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
The chemical understanding of biological processes provides not only a deeper insight but also a solution to abnormal biological functioning. Protein degradation, a natural biological process for debris removal in the cell, has been studied for years. The recent finding that natural degradation pathways can be utilized for therapeutic purposes is a paradigm shift in the drug discovery approach. Methods such as Proteolysis Targeting Chimera (PROTAC), lysosomal targeting chimera, hydrophobic tagging, AUtophagy TArgeting Chimera, AUTOphagy TArgeting Chimera and several other variants of these methods have made a considerable impact on the way of drug design. Few selected examples testify that a huge wave of change is on the way. The drug design based on the targeted protein degradation is a powerful tool in our arsenal. More molecules will be invented that will uncover the hidden secrets of biological functioning and provide enduring solutions to several unmet medical needs.
Collapse
Affiliation(s)
- V. Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
| | - Souvik Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, New Delhi 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, New Delhi 110067, India
| |
Collapse
|
20
|
Song Y, Jin Q, Zhou B, Deng C, Zhou W, Li W, Yi L, Ding M, Chen Y, Gao T, Zhang L, Xie M. A novel FK506-loading mesoporous silica nanoparticle homing to lymph nodes for transplant rejection treatment. Int J Pharm 2024; 656:124074. [PMID: 38565406 DOI: 10.1016/j.ijpharm.2024.124074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/04/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Tacrolimus (FK506) is an effective therapeutic for transplant rejection in clinical practice, primarily inhibiting rejection by suppressing the activation and proliferation of allogeneic T cells in the lymph nodes (LNs). However, conventional administration methods face challenges in directly delivering free FK506 to the LNs. In this study, we introduce a novel LN-targeted delivery system based on mesoporous silica nanoparticles (MSNs-FK506-MECA79). These particles were designed to selectively target high endothelial venules in LNs; this was achieved through surface modification with MECA79 antibodies. Their mean size and zeta potential were 201.18 ± 5.98 nm and - 16.12 ± 0.36 mV, respectively. Our findings showed that MSNs-FK506-MECA79 could accumulate in LNs and increase the local concentration of FK506 from 28.02 ± 7.71 ng/g to 123.81 ± 76.76 ng/g compared with the free FK506 treatment group. Subsequently, the therapeutic efficacy of MSNs-FK506-MECA79 was evaluated in a skin transplantation model. The treatment with MSNs-FK506-MECA79 could lead to a decrease in the infiltration of T cells in the grafts, a reduction in the grade of rejection, and a significant prolongation of survival. Consequently, this study presents a promising strategy for the active LN-targeted delivery of FK506 and improving the immunotherapeutic effects on transplant rejection.
Collapse
Affiliation(s)
- Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Binqian Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Mengdan Ding
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China.
| |
Collapse
|
21
|
Deigin V, Linkova N, Vinogradova J, Vinogradov D, Polyakova V, Medvedev D, Krasichkov A, Volpina O. The First Reciprocal Activities of Chiral Peptide Pharmaceuticals: Thymogen and Thymodepressin, as Examples. Int J Mol Sci 2024; 25:5042. [PMID: 38732260 PMCID: PMC11084461 DOI: 10.3390/ijms25095042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Peptides show high promise in the targeting and intracellular delivery of next-generation biotherapeutics. The main limitation is peptides' susceptibility to proteolysis in biological systems. Numerous strategies have been developed to overcome this challenge by chemically enhancing the resistance to proteolysis. In nature, amino acids, except glycine, are found in L- and D-enantiomers. The change from one form to the other will change the primary structure of polypeptides and proteins and may affect their function and biological activity. Given the inherent chiral nature of biological systems and their high enantiomeric selectivity, there is rising interest in manipulating the chirality of polypeptides to enhance their biomolecular interactions. In this review, we discuss the first examples of up-and-down homeostasis regulation by two enantiomeric drugs: immunostimulant Thymogen (L-Glu-L-Trp) and immunosuppressor Thymodepressin (D-Glu(D-Trp)). This study shows the perspective of exploring chirality to remove the chiral wall between L- and D-biomolecules. The selected clinical result will be discussed.
Collapse
Affiliation(s)
- Vladislav Deigin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia; (V.D.); (O.V.)
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, St. Petersburg 191036, Russia;
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia
| | - Julia Vinogradova
- The Department of Hospital Therapy No. 2, I.M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., Building 2, Moscow 119991, Russia; (J.V.); (D.V.)
| | - Dmitrii Vinogradov
- The Department of Hospital Therapy No. 2, I.M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., Building 2, Moscow 119991, Russia; (J.V.); (D.V.)
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2-4, St. Petersburg 191036, Russia;
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia
| | - Dmitrii Medvedev
- St. Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo Ave., St. Petersburg 197110, Russia
- The Department of Social Rehabilitation and Occupational Therapy of the St. Petersburg Medical and Social Institute, Kondratievsky St., 72A, St. Petersburg 195271, Russia
| | - Alexander Krasichkov
- Department of Radio Engineering Systems, Saint Petersburg Electrotechnical University ‘LETI’, St. Petersburg 197376, Russia
| | - Olga Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia; (V.D.); (O.V.)
| |
Collapse
|
22
|
Dashti NK, Perret R, Balzer B, Naous R, Michal M, Dermawan JK, Antonescu CR. Vascular Neoplasms With NFATC1/C2 Gene Alterations : Expanding the Clinicopathologic and Molecular Characteristics of a Distinct Entity. Am J Surg Pathol 2024; 48:487-496. [PMID: 38189436 PMCID: PMC11591551 DOI: 10.1097/pas.0000000000002175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Despite significant advances in their molecular pathogenesis, skeletal vascular tumors remain diagnostically challenging due to their aggressive radiologic appearance and significant morphologic overlap. Within the epithelioid category and at the benign end of the spectrum, recurrent FOS/FOSB fusions have defined most epithelioid hemangiomas, distinguishing them from epithelioid hemangioendothelioma and angiosarcoma. More recently, the presence of EWSR1/FUS :: NFATC1/2 fusions emerged as the genetic hallmark of a novel group of unusual vascular proliferations, often displaying epithelioid morphology, with alternating vasoformative and solid growth, variable atypia, reminiscent of composite hemangioendothelioma. In this study, we further our understanding and morphologic spectrum of NFATC -fusion positive vascular neoplasms by describing 9 new cases, including soft tissue locations and novel fusion partners. Combining with the initial cohort of 5 cases, a total of 14 patients were analyzed, showing slight female predilection and an age range of 10 to 66 (mean 42 y). Twelve patients had solitary lesions, while 2 had multifocal polyostotic (pelvic bones) disease. Overall, 12 lesions were intra-osseous and 2 in soft tissue. By targeted RNA Fusion panels or FISH, there were 6 cases of EWSR1::NFATC1 , 4 EWSR1::NFATC2 , 2 FUS::NFATC2 , 1 EWSR1 rearrangement, and 1 with a novel FABP4::NFATC2 fusion. Follow-up was available in 4 patients. One patient experienced 2 local recurrences, 11 and 15 years postdiagnosis, and one patient experienced progressive disease despite multimodality treatment (curettings, embolization, radiation) over 3 years. In summary, our extended investigation confirms that NFATC -related fusions define a distinct group of vascular neoplasms with variable architecture, epithelioid phenotype, and cytologic atypia, commonly located in the bone, occasionally multifocal and with potential for local recurrence and aggressive behavior but no metastatic potential. Molecular analysis is recommended in diagnostically challenging cases with atypical histology to exclude malignancy.
Collapse
Affiliation(s)
- Nooshin K. Dashti
- Department of Pathology and Laboratory Medicine Dartmouth Health, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Raul Perret
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Center, Bordeaux, France
- Bordeaux Institute of Oncology, BRIC, INSERM, Bordeaux University, Bergonié Institute, Bordeaux, France
| | | | - Rana Naous
- University of Pittsburgh Medical Center, Shadyside, Pittsburgh, PA, USA
| | - Michael Michal
- Biopticka Laboratory, Pilsen, Czech Republic
- Department of Pathology, Charles University, Faculty of Medicine in Plzen, Czech Republic
| | - Josephine K. Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cristina R. Antonescu
- Department of Pathology and Lab Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
23
|
Fischer MA, Jia L, Edelblum KL. Type I interferon induces TCR-dependent and -independent antimicrobial responses in γδ intraepithelial lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584444. [PMID: 38559228 PMCID: PMC10979951 DOI: 10.1101/2024.03.11.584444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Intraepithelial lymphocytes (IEL) expressing the γδ T cell receptor (TCR) survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I interferon (IFN) is a central component of an antiviral immune response, yet how these pro-inflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs, and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFNγ production, yet low level TCR activation synergizes with type I IFN to induce IFNγ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of co-stimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFNγ expression in a STAT4- dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFNγ production in vivo . However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFNγ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and under permissive conditions, produce IFNγ in a TCR-dependent manner.
Collapse
|
24
|
Kanatoula DD, Bodner E, Ghoreschi K, Meier K, Solimani F. Non-biologic immunosuppressive drugs for inflammatory and autoimmune skin diseases. J Dtsch Dermatol Ges 2024; 22:400-421. [PMID: 38259085 DOI: 10.1111/ddg.15270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/08/2023] [Indexed: 01/24/2024]
Abstract
Non-biologic immunosuppressive drugs, such as azathioprine, dapsone or methotrexate are fundamental treatment options for a wide range of autoimmune and chronic inflammatory skin diseases. Some of these drugs were initially used for malignancies (e.g., azathioprine or methotrexate) or infectious diseases (e.g., hydroxychloroquine or dapsone) but are nowadays mostly used for their immunosuppressive/immunomodulating action. Although dermatologists have years of clinical experience with these drugs, some of the mechanisms of action are not fully understood and are the subject of research. Although these drugs are commonly used, lack of experience or knowledge regarding their safety profiles and management leads to skepticism among physicians. Here, we summarize the mechanism of action and detailed management of adverse effects of the most commonly used immunosuppressive drugs for skin diseases. Furthermore, we discuss the management of these drugs during pregnancy and breastfeeding, as well as their interaction and handling during vaccination.
Collapse
Affiliation(s)
- Danai Dionysia Kanatoula
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Euna Bodner
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Katharina Meier
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| |
Collapse
|
25
|
Kanatoula DD, Bodner E, Ghoreschi K, Meier K, Solimani F. Nicht-Biologika-Immunsuppressiva bei entzündlichen und autoimmunen Hautkrankheiten: Non-biologic immunosuppressive drugs for inflammatory and autoimmune skin diseases. J Dtsch Dermatol Ges 2024; 22:400-423. [PMID: 38450929 DOI: 10.1111/ddg.15270_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/08/2023] [Indexed: 03/08/2024]
Abstract
ZusammenfassungNicht‐Biologika‐Immunsuppressiva wie Azathioprin, Dapson oder Methotrexat sind grundlegende Behandlungsmöglichkeiten für ein breites Spektrum von Autoimmunerkrankungen und chronisch‐entzündlichen Hauterkrankungen. Einige dieser Medikamente wurden ursprünglich bei malignen Erkrankungen (zum Beispiel Azathioprin oder Methotrexat) oder Infektionskrankheiten (zum Beispiel Hydroxychloroquin oder Dapson) eingesetzt, werden aber heute hauptsächlich wegen ihrer immunsuppressiven/immunmodulierenden Wirkung verwendet. Obwohl Dermatologen über jahrelange klinische Erfahrung mit diesen Arzneimitteln verfügen, sind einige der Wirkmechanismen noch nicht vollständig geklärt und noch Gegenstand der Forschung. Obwohl diese Medikamente häufig eingesetzt werden, führen mangelnde Erfahrung oder fehlendes Wissen über ihre Sicherheitsprofile und ihr Management zu einer skeptischen Haltung bei den Ärzten. Hier fassen wir den Wirkmechanismus und das detaillierte Management der Nebenwirkungen der am häufigsten verwendeten immunsuppressiven Medikamente für Hautkrankheiten zusammen. Darüber hinaus diskutieren wir den Umgang mit diesen Medikamenten während der Schwangerschaft und Stillzeit sowie ihre Wechselwirkung und Handhabung im Zusammenhang mit Impfungen.
Collapse
Affiliation(s)
- Danai Dionysia Kanatoula
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Euna Bodner
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Kamran Ghoreschi
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Katharina Meier
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
| | - Farzan Solimani
- Abteilung für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin
- BIH Biomedical Innovation Academy, Berlin Institute of Health, Charité - Universitätsmedizin Berlin
| |
Collapse
|
26
|
Laue T, Junge N, Leiskau C, Mutschler F, Ohlendorf J, Baumann U. Diminished measles immunity after paediatric liver transplantation-A retrospective, single-centre, cross-sectional analysis. PLoS One 2024; 19:e0296653. [PMID: 38315673 PMCID: PMC10843477 DOI: 10.1371/journal.pone.0296653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/16/2023] [Indexed: 02/07/2024] Open
Abstract
Liver transplantation in childhood has an excellent long-term outcome, but is associated with a long-term risk of infection. Measles is a vaccine-preventable infection, with case series describing severe courses with graft rejection, mechanical ventilation and even death in liver transplant recipients. Since about 30% of liver transplanted children receive liver transplants in their first year of life, not all have reached the recommended age for live vaccinations. On the contrary, live vaccines are contraindicated after transplantation. In addition, vaccination response is poorer in individuals with liver disease compared to healthy children. This retrospective, single-centre, cross-sectional study examines measles immunity in paediatric liver transplant recipients before and after transplantation. Vaccination records of 239 patients, followed up at Hannover Medical School between January 2021 and December 2022 were analysed. Twenty eight children were excluded due to stem cell transplantation, regular immunoglobulin substitution or measles vaccination after transplantation. More than 55% of all 211 children analysed and 75% of all those vaccinated at least once are measles seropositive after transplantation-48% after one and 84% after two vaccinations-which is less than in healthy individuals. Interestingly, 26% of unvaccinated children also showed measles antibodies and about 5-15% of vaccinated patients who were seronegative at the time of transplantation were seropositive afterwards, both possibly through infection. In multivariable Cox proportional hazards regression, the number of vaccinations (HR 4.30 [95% CI 2.09-8.83], p<0.001), seropositivity before transplantation (HR 2.38 [95% CI 1.07-5.30], p = 0.034) and higher age at time of first vaccination (HR 11.5 [95% CI 6.92-19.1], p<0.001) are independently associated with measles immunity after transplantation. In contrast, older age at testing is inversely associated (HR 0.09 [95% CI 0.06-0.15], p<0.001), indicating a loss of immunity. Vaccination in the first year of life does not pose a risk of non-immunity. The underlying liver disease influences the level of measles titres of twice-vaccinated patients; those with acute liver failure being the lowest compared to children with metabolic disease. In summary, vaccine response is poorer in children with liver disease. Liver transplant candidates should be vaccinated before transplantation even if this is earlier in the first year of life. Checking measles IgG and re-vaccinating seronegative patients may help to achieve immunity after transplantation.
Collapse
Affiliation(s)
- Tobias Laue
- Division for Paediatric Gastroenterology and Hepatology, Department of Paediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Norman Junge
- Division for Paediatric Gastroenterology and Hepatology, Department of Paediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Christoph Leiskau
- Paediatric Gastroenterology, Department of Paediatrics and Adolescent Medicine, University Medical Centre Goettingen, Georg August University Goettingen, Goettingen, Germany
| | - Frauke Mutschler
- Division for Paediatric Gastroenterology and Hepatology, Department of Paediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Johanna Ohlendorf
- Division for Paediatric Gastroenterology and Hepatology, Department of Paediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ulrich Baumann
- Division for Paediatric Gastroenterology and Hepatology, Department of Paediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Guareschi F, Del Favero E, Ricci C, Cantù L, Brandolini M, Sambri V, Nicoli S, Pescina S, D'Angelo D, Rossi I, Buttini F, Bettini R, Sonvico F. Cyclosporine A micellar nasal spray characterization and antiviral action against SARS-CoV-2. Eur J Pharm Sci 2024; 193:106673. [PMID: 38103657 DOI: 10.1016/j.ejps.2023.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The upper airways represent the point of entrance from where Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection spreads to the lungs. In the present work, α-tocopheryl-polyethylene-glycol succinate (TPGS) micelles loaded with cyclosporine A (CSA) were developed for nasal administration to prevent or treat the viral infection in the very first phases. The behavior of the micelles in presence of simulated nasal mucus was investigated in terms of stability and mucopenetration rate, evidencing long-term stability and fast diffusion across the glycoproteins matrix. Moreover, the spray characteristics of the micellar formulation and deposition profile in a silicon nasal model were studied using three nasal spray devices. Results allowed to identify the nasal spray pump (BiVax, Aptar) able to provide the wider and uniform deposition of the nasal cavity. The cyclosporine A micelles antiviral activity against SARS-CoV-2 was tested on the Omicron BA.1 variant using Vero E6 cells with protocols simulating treatment before, during and after the infection of the upper airways. Complete viral inactivation was observed for the cyclosporine-loaded micelles while a very low activity was evidenced for the non-formulated drug, suggesting a synergistic activity of the drug and the formulation. In conclusion, this work showed that the developed cyclosporine A-loaded micellar formulations have the potential to be clinically effective against a wide spectrum of coronavirus variants.
Collapse
Affiliation(s)
- Fabiola Guareschi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20054 Milan, Italy
| | - Caterina Ricci
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20054 Milan, Italy
| | - Laura Cantù
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20054 Milan, Italy
| | - Martina Brandolini
- Unit of Microbiology, The Great Romagna Hub Laboratory, Piazza della Liberazione 60, 47522 Pievesestina, Italy
| | - Vittorio Sambri
- Unit of Microbiology, The Great Romagna Hub Laboratory, Piazza della Liberazione 60, 47522 Pievesestina, Italy; Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum-University of Bologna, Via Massarenti 1, 40138 Bologna, Italy
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Davide D'Angelo
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Irene Rossi
- Nanopharm Ltd, Franklin House, Grange Road, Cwmbran NP44 3WY, United Kingdom
| | - Francesca Buttini
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fabio Sonvico
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
28
|
Pinto B, Muzumdar R, Hecht Baldauff N. Bone health in children undergoing solid organ transplantation. Curr Opin Pediatr 2023; 35:703-709. [PMID: 37811914 DOI: 10.1097/mop.0000000000001290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW Pediatric solid organ transplant recipients are a unique and growing patient population who are at risk for metabolic bone disease both before and after transplantation. RECENT FINDINGS The odds of sustaining a fracture in adulthood are significantly higher if an individual has sustained at least one childhood fracture, therefore, close monitoring before and after transplant is essential. Emerging data in patients with chronic kidney disease mineral and bone disorder (CKD-MBD) and hepatic osteodystrophy highlights the role of fibroblast growth factor 23 in the pathogenesis of metabolic bone disease in these conditions. While dual X-ray absorptiometry (DXA) is the most widely used imaging modality for assessment of bone mass in children, quantitative computer tomography (QCT) is an emerging modality, especially for patients with glucocorticoid-induced osteoporosis. SUMMARY Solid organ transplantation improves organ function and quality of life; however, bone mineral density can decline following transplantation, particularly during the first three to six months. Immunosuppressive medications, including glucocorticoids, are a major contributing factor. Following transplant, treatment should be tailored to achieve mineral homeostasis, correct nutritional deficiencies, and improve physical conditioning. In summary, early identification and treatment of metabolic bone disease can improve the bone health status of pediatric transplant recipients as they enter adulthood. VIDEO ABSTRACT http://links.lww.com/MOP/A71.
Collapse
Affiliation(s)
- Bianca Pinto
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
29
|
Padron A, Prakash P, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Emerging role of cyclophilin A in HIV-1 infection: from producer cell to the target cell nucleus. J Virol 2023; 97:e0073223. [PMID: 37843371 PMCID: PMC10688351 DOI: 10.1128/jvi.00732-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The HIV-1 genome encodes a small number of proteins with structural, enzymatic, regulatory, and accessory functions. These viral proteins interact with a number of host factors to promote the early and late stages of HIV-1 infection. During the early stages of infection, interactions between the viral proteins and host factors enable HIV-1 to enter the target cell, traverse the cytosol, dock at the nuclear pore, gain access to the nucleus, and integrate into the host genome. Similarly, the viral proteins recruit another set of host factors during the late stages of infection to orchestrate HIV-1 transcription, translation, assembly, and release of progeny virions. Among the host factors implicated in HIV-1 infection, Cyclophilin A (CypA) was identified as the first host factor to be packaged within HIV-1 particles. It is now well established that CypA promotes HIV-1 infection by directly binding to the viral capsid. Mechanistic models to pinpoint CypA's role have spanned from an effect in the producer cell to the early steps of infection in the target cell. In this review, we will describe our understanding of the role(s) of CypA in HIV-1 infection, highlight the current knowledge gaps, and discuss the potential role of this host factor in the post-nuclear entry steps of HIV-1 infection.
Collapse
Affiliation(s)
- Adrian Padron
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Jeremy Luban
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chris Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
30
|
Deutscher RCE, Safa Karagöz M, Purder PL, Kolos JM, Meyners C, Oki Sugiarto W, Krajczy P, Tebbe F, Geiger TM, Ünal C, Hellmich UA, Steinert M, Hausch F. [4.3.1]Bicyclic FKBP Ligands Inhibit Legionella Pneumophila Infection by LpMip-Dependent and LpMip-Independent Mechanisms. Chembiochem 2023; 24:e202300442. [PMID: 37489700 DOI: 10.1002/cbic.202300442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Legionella pneumophila is the causative agent of Legionnaires' disease, a serious form of pneumonia. Its macrophage infectivity potentiator (Mip), a member of a highly conserved family of FK506-binding proteins (FKBPs), plays a major role in the proliferation of the gram-negative bacterium in host organisms. In this work, we test our library of >1000 FKBP-focused ligands for inhibition of LpMip. The [4.3.1]-bicyclic sulfonamide turned out as a highly preferred scaffold and provided the most potent LpMip inhibitors known so far. Selected compounds were non-toxic to human cells, displayed antibacterial activity and block bacterial proliferation in cellular infection-assays as well as infectivity in human lung tissue explants. The results confirm [4.3.1]-bicyclic sulfonamides as anti-legionellal agents, although their anti-infective properties cannot be explained by inhibition of LpMip alone.
Collapse
Affiliation(s)
- Robin C E Deutscher
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - M Safa Karagöz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Patrick L Purder
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Jürgen M Kolos
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Wisely Oki Sugiarto
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Patryk Krajczy
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Frederike Tebbe
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Germany, Humboldtstraße 10, 07743, Jena, Germany
| | - Thomas M Geiger
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Can Ünal
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry & Macromolecular Chemistry (IOMC), Friedrich Schiller University Germany, Humboldtstraße 10, 07743, Jena, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 9, 60438, Frankurt/Main, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Helmholtz Centre for Infection Research, 38106, Braunschweig, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany
| |
Collapse
|
31
|
Matsumi S, Kimura SI, Nakamura Y, Kawamura M, Takeshita J, Kawamura S, Yoshino N, Misaki Y, Yoshimura K, Gomyo A, Okada Y, Akahoshi Y, Tamaki M, Kusuda M, Kameda K, Wada H, Tanihara A, Sato M, Nakasone H, Kako S, Kanda Y. Substitution of calcineurin inhibitors with corticosteroids after allogeneic hematopoietic cell transplantation. Int J Hematol 2023; 118:450-461. [PMID: 37480446 DOI: 10.1007/s12185-023-03645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Combination of calcineurin inhibitors (CIs) with short-term methotrexate is a standard prophylactic regimen for graft-versus-host disease (GVHD). However, it is sometimes difficult to continue CIs due to adverse effects, such as renal impairment and fluid overload. In such cases, we replace CIs with corticosteroids, considering that full dose of CIs is equivalent to prednisolone (PSL) at 1 mg/kg. We retrospectively evaluated the clinical significance of replacement of CIs with corticosteroids after allogeneic hematopoietic cell transplantation (HCT). We evaluated 42 patients switched from CIs to corticosteroids within 90 days among the 479 patients who underwent allogeneic HCT at our center between 2007 and 2019. Renal impairment (n = 33), fluid overload (n = 13), and thrombotic microangiopathy (n = 3) were the main reasons for switching. Although creatinine and body weight returned to baseline at 4 weeks after switching, 100-day non-relapse mortality was high (57.1%). Grade II-IV acute GVHD was seen in 10 (24.4%) patients who did not have it before switching treatment (n = 41). In conclusion, CIs were switched to corticosteroids in patients with severe clinical conditions. The incidence of acute GVHD was acceptable. Although the short-term mortality rate was high, improvement of renal function or fluid overload was observed in a certain proportion of the patients.
Collapse
Affiliation(s)
- Shimpei Matsumi
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Shun-Ichi Kimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Yuhei Nakamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Masakatsu Kawamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Junko Takeshita
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Shunto Kawamura
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Nozomu Yoshino
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Yukiko Misaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Kazuki Yoshimura
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Ayumi Gomyo
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Yosuke Okada
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Yu Akahoshi
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Masaharu Tamaki
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Machiko Kusuda
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Kazuaki Kameda
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Hidenori Wada
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Aki Tanihara
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Miki Sato
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Hideki Nakasone
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Shinichi Kako
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan.
| |
Collapse
|
32
|
Nolze A, Matern S, Grossmann C. Calcineurin Is a Universal Regulator of Vessel Function-Focus on Vascular Smooth Muscle Cells. Cells 2023; 12:2269. [PMID: 37759492 PMCID: PMC10528183 DOI: 10.3390/cells12182269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Calcineurin, a serine/threonine phosphatase regulating transcription factors like NFaT and CREB, is well known for its immune modulatory effects and role in cardiac hypertrophy. Results from experiments with calcineurin knockout animals and calcineurin inhibitors indicate that calcineurin also plays a crucial role in vascular function, especially in vascular smooth muscle cells (VSMCs). In the aorta, calcineurin stimulates the proliferation and migration of VSMCs in response to vascular injury or angiotensin II administration, leading to pathological vessel wall thickening. In the heart, calcineurin mediates coronary artery formation and VSMC differentiation, which are crucial for proper heart development. In pulmonary VSMCs, calcineurin/NFaT signaling regulates the release of Ca2+, resulting in increased vascular tone followed by pulmonary arterial hypertension. In renal VSMCs, calcineurin regulates extracellular matrix secretion promoting fibrosis development. In the mesenteric and cerebral arteries, calcineurin mediates a phenotypic switch of VSMCs leading to altered cell function. Gaining deeper insights into the underlying mechanisms of calcineurin signaling will help researchers to understand developmental and pathogenetical aspects of the vasculature. In this review, we provide an overview of the physiological function and pathophysiology of calcineurin in the vascular system with a focus on vascular smooth muscle cells in different organs. Overall, there are indications that under certain pathological settings reduced calcineurin activity seems to be beneficial for cardiovascular health.
Collapse
Affiliation(s)
| | | | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
33
|
D'Ambrosio HK, Keeler AM, Derbyshire ER. Examination of Secondary Metabolite Biosynthesis in Apicomplexa. Chembiochem 2023; 24:e202300263. [PMID: 37171468 DOI: 10.1002/cbic.202300263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Natural product discovery has traditionally relied on the isolation of small molecules from producing species, but genome-sequencing technology and advances in molecular biology techniques have expanded efforts to a wider array of organisms. Protists represent an underexplored kingdom for specialized metabolite searches despite bioinformatic analysis that suggests they harbor distinct biologically active small molecules. Specifically, pathogenic apicomplexan parasites, responsible for billions of global infections, have been found to possess multiple biosynthetic gene clusters, which hints at their capacity to produce polyketide metabolites. Biochemical studies have revealed unique features of apicomplexan polyketide synthases, but to date, the identity and function of the polyketides synthesized by these megaenzymes remains unknown. Herein, we discuss the potential for specialized metabolite production in protists and the possible evolution of polyketide biosynthetic gene clusters in apicomplexan parasites. We then focus on a polyketide synthase from the apicomplexan Toxoplasma gondii to discuss the unique domain architecture and properties of these proteins when compared to previously characterized systems, and further speculate on the possible functions for polyketides in these pathogenic parasites.
Collapse
Affiliation(s)
- Hannah K D'Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Aaron M Keeler
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
34
|
Costa-Verdera H, Unzu C, Valeri E, Adriouch S, González Aseguinolaza G, Mingozzi F, Kajaste-Rudnitski A. Understanding and Tackling Immune Responses to Adeno-Associated Viral Vectors. Hum Gene Ther 2023; 34:836-852. [PMID: 37672519 DOI: 10.1089/hum.2023.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
As the clinical experience in adeno-associated viral (AAV) vector-based gene therapies is expanding, the necessity to better understand and control the host immune responses is also increasing. Immunogenicity of AAV vectors in humans has been linked to several limitations of the platform, including lack of efficacy due to antibody-mediated neutralization, tissue inflammation, loss of transgene expression, and in some cases, complement activation and acute toxicities. Nevertheless, significant knowledge gaps remain in our understanding of the mechanisms of immune responses to AAV gene therapies, further hampered by the failure of preclinical animal models to recapitulate clinical findings. In this review, we focus on the current knowledge regarding immune responses, spanning from innate immunity to humoral and adaptive responses, triggered by AAV vectors and how they can be mitigated for safer, durable, and more effective gene therapies.
Collapse
Affiliation(s)
- Helena Costa-Verdera
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCSS Ospedale San Raffaele, Milan, Italy
| | - Carmen Unzu
- DNA and RNA Medicine Division, CIMA, Universidad de Navarra, IdisNA, Pamplona, Spain
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCSS Ospedale San Raffaele, Milan, Italy
| | - Sahil Adriouch
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie University, Rouen, France
| | - Gloria González Aseguinolaza
- DNA and RNA Medicine Division, CIMA, Universidad de Navarra, IdisNA, Pamplona, Spain
- Vivet Therapeutics S.L., Pamplona, Spain; and
| | | | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCSS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
35
|
Vale N, Pereira M, Mendes RA. Systemic Inflammatory Disorders, Immunosuppressive Treatment and Increase Risk of Head and Neck Cancers-A Narrative Review of Potential Physiopathological and Biological Mechanisms. Cells 2023; 12:2192. [PMID: 37681925 PMCID: PMC10487135 DOI: 10.3390/cells12172192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Head and neck cancers (HNCs) are known to present multiple factors likely to influence their development. This review aims to provide a comprehensive overview of the current scientific literature on the interplay between systemic inflammatory disorders, immunosuppressive treatments and their synergistic effect on HNC risk. Both cell-mediated and humoral-mediated systemic inflammatory disorders involve dysregulated immune responses and chronic inflammation and these inflammatory conditions have been associated with an increased risk of HNC development, primarily in the head and neck region. Likewise, the interaction between systemic inflammatory disorders and immunosuppressive treatments appears to amplify the risk of HNC development, as chronic inflammation fosters a tumor-promoting microenvironment, while immunosuppressive therapies further compromise immune surveillance and anti-tumor immune responses. Understanding the molecular and cellular mechanisms underlying this interaction is crucial for developing targeted prevention strategies and therapeutic interventions. Additionally, the emerging field of immunotherapy provides potential avenues for managing HNCs associated with systemic inflammatory disorders, but further research is needed to determine its efficacy and safety in this specific context. Future studies are warranted to elucidate the underlying mechanisms and optimize preventive strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Mariana Pereira
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui Amaral Mendes
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-7401, USA
| |
Collapse
|
36
|
Kaye J. Integrating T Cell Activation Signals to Regulate Gene Expression through Cyclosporin-Sensitive NFAT. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:323-324. [PMID: 37987776 DOI: 10.4049/jimmunol.2300224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This Pillars of Immunology article is a commentary on three pivotal articles: “Nuclear factor of activated T cells contains Fos and Jun,” an article written by J. Jain, P. G. McCaffrey, V. E. Valge-Archer, and A. Rao, and published in Nature, in 1992, https://www.nature.com/articles/356801a0; “The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun,” written by J. Jain, P. G. McCaffrey, Z. Miner, T. K. Kerppola, J. N. Lambert, G. L. Verdine, T. Curran, and A. Rao, and published in Nature, in 1993, https://www.nature.com/articles/365352a0; and “Isolation of the cyclosporin-sensitive T cell transcription factor NFATp,” written by P. G. McCaffrey, C. Luo, T. K. Kerppola, J. Jain, T. M. Badalian, A. M. Ho, E. Burgeon, W. S. Lane, J. N. Lambert, T. Curran, et al., and published in Science, in 1993, https://www.science.org/doi/10.1126/science.8235597.
Collapse
Affiliation(s)
- Jonathan Kaye
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
37
|
Oliver M, Patriquin CJ, Pavenski K. Predictors of relapse and prophylactic management of immune thrombotic thrombocytopenic purpura. Transfus Apher Sci 2023; 62:103749. [PMID: 37344323 DOI: 10.1016/j.transci.2023.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
- Monika Oliver
- Department of Medicine, University of Alberta, Canada; Division of Hematology, University of Alberta Hospital, Canada
| | - Christopher J Patriquin
- Department of Medicine, University of Toronto, Canada; Division of Medical Oncology & Hematology, University Health Network, Toronto, Canada
| | - Katerina Pavenski
- Department of Medicine, University of Toronto, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Canada; Departments of Medicine and Laboratory Medicine, St. Michael's Hospital-Unity Health Toronto, Canada.
| |
Collapse
|
38
|
Athanassiou P, Athanassiou L. Current Treatment Approach, Emerging Therapies and New Horizons in Systemic Lupus Erythematosus. Life (Basel) 2023; 13:1496. [PMID: 37511872 PMCID: PMC10381582 DOI: 10.3390/life13071496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE), the prototype of systemic autoimmune diseases is characterized by extreme heterogeneity with a variable clinical course. Renal involvement may be observed and affects the outcome. Hydroxychloroquine should be administered to every lupus patient irrespective of organ involvement. Conventional immunosuppressive therapy includes corticosteroids, methotrexate, cyclophosphamide, mycophenolate mofetil, azathioprine, cyclosporine and tacrolimus. However, despite conventional immunosuppressive treatment, flares occur and broad immunosuppression is accompanied by multiple side effects. Flare occurrence, target organ involvement, side effects of broad immunosuppression and increased knowledge of the pathogenetic mechanisms involved in SLE pathogenesis as well as the availability of biologic agents has led to the application of biologic agents in SLE management. Biologic agents targeting various pathogenetic paths have been applied. B cell targeting agents have been used successfully. Belimumab, a B cell targeting agent, has been approved for the treatment of SLE. Rituximab, an anti-CD20 targeting agent is also used in SLE. Anifrolumab, an interferon I receptor-targeting agent has beneficial effects on SLE. In conclusion, biologic treatment is applied in SLE and should be further evaluated with the aim of a good treatment response and a significant improvement in quality of life.
Collapse
Affiliation(s)
| | - Lambros Athanassiou
- Department of Rheumatology, Asclepeion Hospital, Voula, GR16673 Athens, Greece
| |
Collapse
|
39
|
Lee SK, Choi JY, Jung ES, Kwon JH, Jang JW, Bae SH, Yoon SK. An Immunological Perspective on the Mechanism of Drug Induced Liver Injury: Focused on Drugs for Treatment of Hepatocellular Carcinoma and Liver Transplantation. Int J Mol Sci 2023; 24:5002. [PMID: 36902432 PMCID: PMC10003078 DOI: 10.3390/ijms24055002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The liver is frequently exposed to potentially toxic materials, and it is the primary site of clearance of foreign agents, along with many innate and adaptive immune cells. Subsequently, drug induced liver injury (DILI), which is caused by medications, herbs, and dietary supplements, often occurs and has become an important issue in liver diseases. Reactive metabolites or drug-protein complexes induce DILI via the activation of various innate and adaptive immune cells. There has been a revolutionary development of treatment drugs for hepatocellular carcinoma (HCC) and liver transplantation (LT), including immune checkpoint inhibitors (ICIs), that show high efficacy in patients with advanced HCC. Along with the high efficacy of novel drugs, DILI has become a pivotal issue in the use of new drugs, including ICIs. This review demonstrates the immunological mechanism of DILI, including the innate and adaptive immune systems. Moreover, it aims to provide drug treatment targets, describe the mechanisms of DILI, and detail the management of DILI caused by drugs for HCC and LT.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
40
|
Molecular and therapeutic insights of rapamycin: a multi-faceted drug from Streptomyces hygroscopicus. Mol Biol Rep 2023; 50:3815-3833. [PMID: 36696023 PMCID: PMC9875782 DOI: 10.1007/s11033-023-08283-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
The advancement in pharmaceutical research has led to the discovery and development of new combinatorial life-saving drugs. Rapamycin is a macrolide compound produced from Streptomyces hygroscopicus. Rapamycin and its derivatives are one of the promising sources of drug with broad spectrum applications in the medical field. In recent times, rapamycin has gained significant attention as of its activity against cytokine storm in COVID-19 patients. Rapamycin and its derivatives have more potency when compared to other prevailing drugs. Initially, it has been used exclusively as an anti-fungal drug. Currently rapamycin has been widely used as an immunosuppressant. Rapamycin is a multifaceted drug; it has anti-cancer, anti-viral and anti-aging potentials. Rapamycin has its specific action on mTOR signaling pathway. mTOR has been identified as a key regulator of different pathways. There will be an increased demand for rapamycin, because it has lesser adverse effects when compared to steroids. Currently researchers are focused on the production of effective rapamycin derivatives to combat the growing demand of this wonder drug. The main focus of the current review is to explore the origin, development, molecular mechanistic action, and the current therapeutic aspects of rapamycin. Also, this review article revealed the potential of rapamycin and the progress of rapamycin research. This helps in understanding the exact potency of the drug and could facilitate further studies that could fill in the existing knowledge gaps. The study also gathers significant data pertaining to the gene clusters and biosynthetic pathways involved in the synthesis and production of this multi-faceted drug. In addition, an insight into the mechanism of action of the drug and important derivatives of rapamycin has been expounded. The fillings of the current review, aids in understanding the underlying molecular mechanism, strain improvement, optimization and production of rapamycin derivatives.
Collapse
|
41
|
Saha BC, Kumari R, Ambasta A. Comparision of efficacy and safety of 0.03% and 0.1% tacrolimus ointment in children with vernal keratoconjunctivitis. Ther Adv Ophthalmol 2023; 15:25158414231173532. [PMID: 37255622 PMCID: PMC10226287 DOI: 10.1177/25158414231173532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
Background Topical immunosuppressants such as tacrolimus in different concentrations are a breakthrough in the management of recalcitrant vernal keratoconjunctivitis (VKC); however, there is a lacks of comparative studies to guide their use in VKC management. Objective To compare the efficacy and safety of tacrolimus 0.03% and 0.1% eye ointment in the treatment of recalcitrant VKC. Design A retrospective comparative single-centre observational study. Method We reviewed records of a total of 48 recalcitrant VKC patients treated with two different strengths of tacrolimus ointment between April 2016 and March 2017. Of these, 39 fulfilled the inclusion criteria and were categorized into two groups, A and B, depending on the use of strength of tacrolimus (0.03% and 0.1%) used, respectively. Group A had 18 patients, while group B had 21 patients. Thirty-six patients, 18 from each group, were finally analysed and compared. Records of patients were explored for the subjective symptoms and objective sign score of the patient at baseline and at each time point. The main outcome measures were composite scoring and comparison of total subjective symptom scores (TSSSs) and total objective sign scores (TOSSs) within and between the groups at each follow-up. Percentage of patient with significant reduction in symptom and sign scores as compared with baseline was considered success of treatment. Chi-square and t-tests were used for comparison of outcomes between both groups. Results Mixed variety was most commonly encountered type of VKC. The signs and symptoms were significantly reduced in patients with treatment in both groups (p = 0.001) in all types of VKC. However, in group B, there was significant improvement in the size of papillae (p = 0.04) as compared baseline in contrast to group A. Side effects like burning and stinging in group B were significantly higher as compared with group A. Conclusions Both strengths of tacrolimus (0.03% and 0.1%) are effective in all forms of recalcitrant VKC. Papillary component of VKC responds better with higher strength (0.1%) but is associated with more significant side effects. Different strengths of tacrolimus can be used strategically depending upon the severity and clinical type of VKC to intensify outcome and minimize side effects.
Collapse
Affiliation(s)
- Bhawesh Chandra Saha
- Department of Ophthalmology, All India
Institute of Medical Sciences, Patna, Bihar, India
| | | | - Anita Ambasta
- Regional Institute of Ophthalmology, Indira
Gandhi Institute of Medical Sciences, Patna, Bihar, India
| |
Collapse
|
42
|
Naito M, Ikeda K, Aoyama S, Kanamoto M, Akasaka Y, Kido Y, Nakanishi M, Kanna M, Yamamotoya T, Matsubara A, Hinata N, Asano T, Nakatsu Y. Par14 interacts with the androgen receptor, augmenting both its transcriptional activity and prostate cancer proliferation. Cancer Med 2022; 12:8464-8475. [PMID: 36583514 PMCID: PMC10134346 DOI: 10.1002/cam4.5587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a major cause of cancer morbidity and mortality for men globally, and androgen signaling clearly drives its onset and progression. Androgen receptor (AR) regulation is complex and remains elusive, despite several studies tackling these issues. Therefore, elucidating the mechanism(s) underlying AR regulation is a potentially promising approach to suppressing PCa. METHODS We report that Par14, one isoform of the prolyl isomerases homologous to Pin1, is a critical regulator of AR transcriptional activity and is essential for PCa cell growth. RESULTS Par14 was shown to be overexpressed in PCa, based on analyses of deposited data. Importantly, overexpression of Par14 significantly enhanced androgen-sensitive LNCap cell growth. In contrast, silencing of Par14 dramatically decreased cell growth in LNCap cells by causing cell cycle arrest. Mechanistically, silencing of the Par14 gene dramatically induced cyclin-dependent kinase inhibitor p21 at both the mRNA and the protein level through modulating the localization of p53. In addition, suppression of Par14 in LNCap cells was shown to downregulate the expressions of androgen response genes, at both the mRNA and the protein level, induced by dihydrotestosterone. Par14 was shown to directly associate with AR in nuclei via its DNA-binding domain and augment AR transcriptional activity. CONCLUSION Thus, Par14 plays a critical role in PCa progression, and its enhancing effects on AR signaling are likely to be involved in the underlying molecular mechanisms. These findings suggest Par14 to be a promising therapeutic target for PCa.
Collapse
Affiliation(s)
- Miki Naito
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan.,Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Kenichiro Ikeda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Shunya Aoyama
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Mayu Kanamoto
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yasuyuki Akasaka
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan.,Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yuri Kido
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Mikako Nakanishi
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Machi Kanna
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Takeshi Yamamotoya
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan.,Department of Urology, Hiroshima General Hospital, Hatsukaichi, Hiroshima, Japan
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Tomoichiro Asano
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yusuke Nakatsu
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| |
Collapse
|
43
|
FK506-binding protein, FKBP12, promotes serine utilization and negatively regulates threonine deaminase in fission yeast. iScience 2022; 25:105659. [PMID: 36505930 PMCID: PMC9730122 DOI: 10.1016/j.isci.2022.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
FK506-binding protein with a molecular weight of 12 kDa (FKBP12) is a receptor of the immunosuppressive drugs, FK506 and rapamycin. The physiological functions of FKBP12 remain ambiguous because of its nonessentiality and multifunctionality. Here, we show that FKBP12 promotes the utilization of serine as a nitrogen source and regulates the isoleucine biosynthetic pathway in fission yeast. In screening for small molecules that inhibit serine assimilation, we found that the growth of fission yeast cells in medium supplemented with serine as the sole nitrogen source, but not in glutamate-supplemented medium, was suppressed by FKBP12 inhibitors. Knockout of FKBP12 phenocopied the action of these compounds in serine-supplemented medium. Metabolome analyses and genetic screens identified the threonine deaminase, Tda1, to be regulated downstream of FKBP12. Genetic and biochemical analyses unveiled the negative regulation of Tda1 by FKBP12. Our findings reveal new roles of FKBP12 in amino acid biosynthesis and nitrogen metabolism homeostasis.
Collapse
|
44
|
Akbarian M, Chen SH. Instability Challenges and Stabilization Strategies of Pharmaceutical Proteins. Pharmaceutics 2022; 14:2533. [PMID: 36432723 PMCID: PMC9699111 DOI: 10.3390/pharmaceutics14112533] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Maintaining the structure of protein and peptide drugs has become one of the most important goals of scientists in recent decades. Cold and thermal denaturation conditions, lyophilization and freeze drying, different pH conditions, concentrations, ionic strength, environmental agitation, the interaction between the surface of liquid and air as well as liquid and solid, and even the architectural structure of storage containers are among the factors that affect the stability of these therapeutic biomacromolecules. The use of genetic engineering, side-directed mutagenesis, fusion strategies, solvent engineering, the addition of various preservatives, surfactants, and additives are some of the solutions to overcome these problems. This article will discuss the types of stress that lead to instabilities of different proteins used in pharmaceutics including regulatory proteins, antibodies, and antibody-drug conjugates, and then all the methods for fighting these stresses will be reviewed. New and existing analytical methods that are used to detect the instabilities, mainly changes in their primary and higher order structures, are briefly summarized.
Collapse
Affiliation(s)
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
45
|
Schulz S, Schall C, Stehle T, Breitmeyer C, Krysenko S, Mitulski A, Wohlleben W. Optimization of the precursor supply for an enhanced FK506 production in Streptomyces tsukubaensis. Front Bioeng Biotechnol 2022; 10:1067467. [DOI: 10.3389/fbioe.2022.1067467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Tacrolimus (FK506) is a macrolide widely used as immunosuppressant to prevent transplant rejection. Synthetic production of FK506 is not efficient and costly, whereas the biosynthesis of FK506 is complex and the level produced by the wild type strain, Streptomyces tsukubaensis, is very low. We therefore engineered FK506 biosynthesis and the supply of the precursor L-lysine to generate strains with improved FK506 yield. To increase FK506 production, first the intracellular supply of the essential precursor lysine was improved in the native host S. tsukubaensis NRRL 18488 by engineering the lysine biosynthetic pathway. Therefore, a feedback deregulated aspartate kinase AskSt* of S. tsukubaensis was generated by site directed mutagenesis. Whereas overexpression of AskSt* resulted only in a 17% increase in FK506 yield, heterologous overexpression of a feedback deregulated AskCg* from Corynebacterium glutamicum was proven to be more efficient. Combined overexpression of AskCg* and DapASt, showed a strong enhancement of the intracellular lysine pool following increase in the yield by approximately 73% compared to the wild type. Lysine is coverted into the FK506 building block pipecolate by the lysine cyclodeaminase FkbL. Construction of a ∆fkbL mutant led to a complete abolishment of the FK506 production, confirming the indispensability of this enzyme for FK506 production. Chemical complementation of the ∆fkbL mutant by feeding pipecolic acid and genetic complementation with fkbL as well as with other lysine cyclodeaminase genes (pipAf, pipASt, originating from Actinoplanes friuliensis and Streptomyces pristinaespiralis, respectively) completely restored FK506 production. Subsequently, FK506 production was enchanced by heterologous overexpression of PipAf and PipASp in S. tsukubaensis. This resulted in a yield increase by 65% compared to the WT in the presence of PipAf from A. friuliensis. For further rational yield improvement, the crystal structure of PipAf from A. friuliensis was determined at 1.3 Å resolution with the cofactor NADH bound and at 1.4 Å with its substrate lysine. Based on the structure the Ile91 residue was replaced by Val91 in PipAf, which resulted in an overall increase of FK506 production by approx. 100% compared to the WT.
Collapse
|
46
|
Chen Y, Chen W. Genome-Wide Integration of Genetic and Genomic Studies of Atopic Dermatitis: Insights into Genetic Architecture and Pathogenesis. J Invest Dermatol 2022; 142:2958-2967.e8. [PMID: 35577104 DOI: 10.1016/j.jid.2022.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/23/2022]
Abstract
Atopic dermatitis (AD) is a common heterogeneous, chronic, itching, and inflammatory skin disease. Genetic studies have identified multiple AD susceptibility genes. However, the genetic architecture of AD has not been elucidated. In this study, we conducted a large-scale meta-analysis of AD (35,647 cases and 1,013,885 controls) to characterize the genetic basis of AD. The heritability of AD in different datasets varied from 0.6 to 7.1%. We identified 31 previously unreported genes by integrating multiomics data. Among the 31 genes, MCL1 was identified as a potential treatment target for AD by mediating gene‒drug interactions. Tissue enrichment analyses and phenome-wide association study provided strong support for the role of the hemic and immune systems in AD. Across 1,207 complex traits and diseases, genetic correlations indicated that AD shared links with multiple respiratory phenotypes. The phenome-wide Mendelian randomization analysis (Mendelian randomization‒phenome-wide association study) revealed that the age of onset of diabetes exhibited a positive causal effect on AD (inverse-variance weighted β = 0.39, SEM = 0.09, P = 2.77 × 10-5). Overall, these results provide important insights into the genetic architecture of AD and will lead to a more thorough and complete understanding of the molecular mechanisms underlying AD.
Collapse
Affiliation(s)
- Yanxuan Chen
- Department of General Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wenyan Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
47
|
Chaudhary A, Patel M, Singh S. Current Debates on Etiopathogenesis and Treatment Strategies for Vitiligo. Curr Drug Targets 2022; 23:1219-1238. [PMID: 35388753 DOI: 10.2174/1389450123666220406125645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/12/2021] [Accepted: 12/31/2021] [Indexed: 01/25/2023]
Abstract
Vitiligo is an acquired, chronic, and progressive depigmentation or hypopigmentation characterized by the destruction of melanocytes and the occurrence of white patches or macules in the skin, mucosal surface of eyes, and ears. Melanocytes are the melanin pigment-producing cells of the skin which are destroyed in pathological conditions called vitiligo. Approximately 0.5 - 2.0% of the population is suffering from vitiligo, and a higher prevalence rate of up to 8.8% has been reported in India. It is caused by various pathogenic factors like genetic predisposition, hyperimmune activation, increased oxidative stress, and alteration in neuropeptides level. Genetic research has revealed a multi- genetic inheritance that exhibits an overlap with other autoimmune disorders. However, melanocytes specific genes are also affected (such as DDR1, XBP1, NLRP1, PTPN22, COMT, FOXP3, ACE, APE, GSTP1, TLR, SOD, and CTLA-4). A number of therapeutic options are employed for the treatment of vitiligo. The topical corticosteroids and immunomodulators are currently in practice for the management of vitiligo. Phototherapies alone and in combinations with other approaches are used in those patients who do not respond to the topical treatment. The main focus of this review is on the etiopathological factors, pharmacological management (phototherapy, topical, systemic, and surgical therapy), and herbal drugs used to treat vitiligo.
Collapse
Affiliation(s)
- Ankit Chaudhary
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Mayank Patel
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
48
|
Sasso J, Tenchov R, Wang D, Johnson LS, Wang X, Zhou QA. Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic. Biochemistry 2022; 62:601-623. [PMID: 35856839 PMCID: PMC9910052 DOI: 10.1021/acs.biochem.2c00245] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted protein degradation is a rapidly exploding drug discovery strategy that uses small molecules to recruit disease-causing proteins for rapid destruction mainly via the ubiquitin-proteasome pathway. It shows great potential for treating diseases such as cancer and infectious, inflammatory, and neurodegenerative diseases, especially for those with "undruggable" pathogenic protein targets. With the recent rise of the "molecular glue" type of protein degraders, which tighten and simplify the connection of an E3 ligase with a disease-causing protein for ubiquitination and subsequent degradation, new therapies for unmet medical needs are being designed and developed. Here we use data from the CAS Content Collection and the publication landscape of recent research on targeted protein degraders to provide insights into these molecules, with a special focus on molecular glues. We also outline the advantages of the molecular glues and summarize the advances in drug discovery practices for molecular glue degraders. We further provide a thorough review of drug candidates in targeted protein degradation through E3 ligase recruitment. Finally, we highlight the progression of molecular glues in drug discovery pipelines and their targeted diseases. Overall, our paper provides a comprehensive reference to support the future development of molecular glues in medicine.
Collapse
|
49
|
Wang Z, Yan H, Boysen JC, Secreto CR, Tschumper RC, Ali D, Guo Q, Zhong J, Zhou J, Gan H, Yu C, Jelinek DF, Slager SL, Parikh SA, Braggio E, Kay NE. B cell receptor signaling drives APOBEC3 expression via direct enhancer regulation in chronic lymphocytic leukemia B cells. Blood Cancer J 2022; 12:99. [PMID: 35778390 PMCID: PMC9249768 DOI: 10.1038/s41408-022-00690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Constitutively activated B cell receptor (BCR) signaling is a primary biological feature of chronic lymphocytic leukemia (CLL). The biological events controlled by BCR signaling in CLL are not fully understood and need investigation. Here, by analysis of the chromatin states and gene expression profiles of CLL B cells from patients before and after Bruton's tyrosine kinase inhibitor (BTKi) ibrutinib treatment, we show that BTKi treatment leads to a decreased expression of APOBEC3 family genes by regulating the activity of their enhancers. BTKi treatment reduces enrichment of enhancer marks (H3K4me1 and H3K27ac) and chromatin accessibility at putative APOBEC3 enhancers. CRISPR-Cas9 directed deletion or inhibition of the putative APOBEC3 enhancers leads to reduced APOBEC3 expression. We further find that transcription factor NFATc1 couples BCR signaling with the APOBEC3 enhancer activity to control APOBEC3 expression. We also find that enhancer-regulated APOBEC3 expression contributes to replication stress in malignant B cells. In total we demonstrate a novel mechanism for BTKi suppression of APOBEC3 expression via direct enhancer regulation in an NFATc1-dependent manner, implicating BCR signaling as a potential regulator of leukemic genomic instability.
Collapse
MESH Headings
- APOBEC Deaminases/biosynthesis
- APOBEC Deaminases/genetics
- APOBEC Deaminases/metabolism
- Chromatin
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
Collapse
Affiliation(s)
- Zhiquan Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Huihuang Yan
- Division of Computational Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Justin C Boysen
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Charla R Secreto
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Dania Ali
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qianqian Guo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jian Zhong
- Epigenomics Development Laboratory, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiaqi Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haiyun Gan
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chuanhe Yu
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Diane F Jelinek
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Susan L Slager
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Computational Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sameer A Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Esteban Braggio
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Neil E Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
50
|
Soini L, Leysen S, Davis J, Ottmann C. Molecular glues to stabilise protein-protein interactions. Curr Opin Chem Biol 2022; 69:102169. [PMID: 35749929 DOI: 10.1016/j.cbpa.2022.102169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
Targeting protein-protein interactions (PPIs) has become a common approach to tackle various diseases whose pathobiology is driven by their mis-regulation in important signalling pathways. Modulating PPIs has tremendous untapped therapeutic potential and different approaches can be used to modulate PPIs. Initially, therapeutic effects were mostly sought by inhibiting PPIs. However, by gaining insight in the mode of action of certain therapeutic compounds, it became clear that stabilising (i.e. enhancing) PPIs can also be useful. The latter strategy is recently gaining a lot of attention, as stabilising physiologic, or even inducing novel interactions of a target protein with E3 ubiquitin ligases forms the basis of the targeted protein degradation (TPD) approach. An emerging additional example for drug discovery based on PPI stabilisation are the 14-3-3 proteins, a family of regulatory proteins, which engages in many protein-protein interactions, some of which might become therapeutical targets.
Collapse
Affiliation(s)
- Lorenzo Soini
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Structural Biology and Biophysics, UCB Biopharma UK, Slough, UK
| | - Seppe Leysen
- Department of Structural Biology and Biophysics, UCB Biopharma UK, Slough, UK
| | - Jeremy Davis
- Department of Chemistry, UCB Biopharma UK, Slough, UK.
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|