1
|
Rojo-Tolosa S, Sánchez-Martínez JA, Caballero-Vázquez A, Pineda-Lancheros LE, González-Gutiérrez MV, Pérez-Ramírez C, Jiménez-Morales A, Morales-García C. SingleNucleotide Polymorphisms as Biomarkers of Mepolizumab and Benralizumab Treatment Response in Severe Eosinophilic Asthma. Int J Mol Sci 2024; 25:8139. [PMID: 39125709 PMCID: PMC11311889 DOI: 10.3390/ijms25158139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The most promising treatment options for severe uncontrolled asthma (SUA) have emerged in recent years with the development of monoclonal antibodies for blocking selective targets responsible for the underlying inflammation, such as mepolizumab and benralizumab. However, there is variability in treatment response that is not fully controlled. The variability of the response to mepolizumab and benralizumab could be influenced by single-nucleotide polymorphisms (SNPs), and it would be useful to detect these and use them as predictive biomarkers of response. We conducted a retrospective observational cohort study of 72 Caucasian patients recruited from a tertiary hospital with severe uncontrolled eosinophilic asthma treated with mepolizumab and benralizumab. Polymorphisms in the IL5 (rs4143832, rs17690122), RAD50 (rs11739623, rs4705959), IL1RL1 (rs1420101, rs17026974, rs1921622), GATA2 (rs4857855), IKZF2 (rs12619285), FCGR2A (rs1801274), FCGR2B (rs3219018, rs1050501), FCGR3A (rs10127939, rs396991), FCER1A (rs2251746, rs2427837), FCER1B (rs1441586, rs573790, rs569108), and ZNF415 (rs1054485) genes were analyzed by real-time polymerase chain reaction (PCR) using Taqman probes. The response was analyzed after 12 months of treatment. In patients under mepolizumab treatment, a treatment response defined as a reduction in exacerbations was associated with ZNF415 rs1054485-T (p = 0.042; OR = 5.33; 95% CI = 1.06-30.02), treatment response defined as a reduction in oral corticosteroids use was associated with the number of exacerbations in the previous year (p = 0.029; OR = 3.89; 95% CI = 1.24-14.92), and treatment response defined as improvement in lung function was associated with the age at the beginning of biological therapy (p = 0.002; OR = 1.10; 95% CI = 1.04-1.18), FCER1B rs569108-AA (p < 0.001; OR = 171.06; 95% CI = 12.94-6264.11), and FCER1A rs2427837-A (p = 0.021; OR = 8.61; 95% CI = 1.71-76.62). On the other hand, in patients under benralizumab treatment, treatment response, defined as a reduction in exacerbations, was associated with ZNF415 rs1054485-T (p = 0.073; OR = 1.3 × 108; 95% CI = 1.8 × 10-19-NA), FCER1B rs569108-AA (p = 0.050; OR = 11.51; 95% CI = 1.19-269.78), allergies (p = 0.045; OR = 4.02; 95% CI = 1.05-16.74), and sex (p = 0.028; OR = 4.78; 95% CI = 1.22-20.63); and treatment response defined as improvement in lung function was associated with polyposis (p = 0.027; OR = 9.16; 95% CI = 1.58-91.4), IKZF2 rs12619285-AA (p = 0.019; OR = 9.1; 95% CI = 1.7-75.78), IL5 rs4143832-T (p = 0.017; OR = 11.1; 95% CI = 1.9-112.17), and FCER1B rs1441586-C (p = 0.045; OR = 7.81; 95% CI = 1.16-73.45). The results of this study show the potential influence of the studied polymorphisms on the response to mepolizumab and benralizumab and the clinical benefit that could be obtained by defining predictive biomarkers of treatment response.
Collapse
Affiliation(s)
- Susana Rojo-Tolosa
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - José Antonio Sánchez-Martínez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| | - Alberto Caballero-Vázquez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| | - Laura Elena Pineda-Lancheros
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
- Department of Pharmacy, Faculty of Sciences, National University of Colombia, Bogota Campus, Cra. 30 No. 45-03, Bogotá 11001, Colombia
| | - María Victoria González-Gutiérrez
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| | - Cristina Pérez-Ramírez
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain;
| | - Alberto Jiménez-Morales
- Pharmacy Service, Pharmacogenetics Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - Concepción Morales-García
- Respiratory Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain; (J.A.S.-M.); (A.C.-V.); (M.V.G.-G.); (C.M.-G.)
| |
Collapse
|
2
|
The Alleviating Effect of Lagerstroemia indica Flower Extract on Stretch Marks through Regulation of Mast Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041274. [PMID: 35209065 PMCID: PMC8877584 DOI: 10.3390/molecules27041274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022]
Abstract
Striae distensae (SD) or stretch marks are common linear scars of atrophic skin with disintegrating extracellular matrix (ECM) structures. Although fibroblasts contribute to the construction of ECM structure in SD, some studies have reported that mast cell degranulation causes the disruption of ECM in early SD lesions. Lagerstroemia indica flower (LIF) has traditionally been used in India as a diuretic. However, little is known about the effect and molecular action of Lagerstroemia indica flower extract (LIFE) on alleviating SD. This study evaluated the effects of LIFE on mast cell degranulation and the synthesis of ECM components in fibroblasts. LIFE inhibits the adhesion of rat basophilic leukemia (RBL) cells, RBL-2H3 on fibronectin (FN) and the expression of integrin, a receptor for FN, thereby reducing focal adhesion kinase (FAK) phosphorylation. In addition, LIFE attenuated the allergen-induced granules and cytokine interleukin 3 (IL-3) through the adhesion with FN. Moreover, the conditioned medium (CM) of activated mast cells decreases the synthesis of ECM components, and LIFE restores the abnormal expressions induced by activated mast cells. These results demonstrate that LIFE suppresses FN-induced mast cell activation and promotes the synthesis of ECM components in fibroblast, which indicates that LIFE may be a useful cosmetic agent for SD treatment.
Collapse
|
3
|
Min SY, Park CH, Yu HW, Park YJ. Anti-Inflammatory and Anti-Allergic Effects of Saponarin and Its Impact on Signaling Pathways of RAW 264.7, RBL-2H3, and HaCaT Cells. Int J Mol Sci 2021; 22:ijms22168431. [PMID: 34445132 PMCID: PMC8395081 DOI: 10.3390/ijms22168431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Saponarin{5-hydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-7-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one}, a flavone found in young green barley leaves, is known to possess antioxidant, antidiabetic, and hepatoprotective effects. In the present study, the anti-inflammatory, anti-allergic, and skin-protective effects of saponarin were investigated to evaluate its usefulness as a functional ingredient in cosmetics. In lipopolysaccharide-induced RAW264.7 (murine macrophage) cells, saponarin (80 μM) significantly inhibited cytokine expression, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, inducible nitric oxide synthase, and cyclooxygenase (COX)-2. Saponarin (80 μM) also inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 involved in the mitogen-activated protein kinase signaling pathway in RAW264.7 cells. Saponarin (40 μM) significantly inhibited β-hexosaminidase degranulation as well as the phosphorylation of signaling effectors (Syk, phospholipase Cγ1, ERK, JNK, and p38) and the expression of inflammatory mediators (tumor necrosis factor [TNF]-α, IL-4, IL-5, IL-6, IL-13, COX-2, and FcεRIα/γ) in DNP-IgE- and DNP-BSA-stimulated RBL-2H3 (rat basophilic leukemia) cells. In addition, saponarin (100 μM) significantly inhibited the expression of macrophage-derived chemokine, thymus and activation-regulated chemokine, IL-33, thymic stromal lymphopoietin, and the phosphorylation of signaling molecules (ERK, p38 and signal transducer and activator of transcription 1 [STAT1]) in TNF-α- and interferon (IFN)-γ-stimulated HaCaT (human immortalized keratinocyte) cells. Saponarin (100 μM) also significantly induced the expression of hyaluronan synthase-3, aquaporin 3, and cathelicidin antimicrobial peptide (LL-37) in HaCaT cells, which play an important role as skin barriers. Saponarin remarkably inhibited the essential factors involved in the inflammatory and allergic responses of RAW264.7, RBL-2H3, and HaCaT cells, and induced the expression of factors that function as physical and chemical skin barriers in HaCaT cells. Therefore, saponarin could potentially be used to prevent and relieve immune-related skin diseases, including atopic dermatitis.
Collapse
|
4
|
Park CH, Min SY, Yu HW, Kim K, Kim S, Lee HJ, Kim JH, Park YJ. Effects of Apigenin on RBL-2H3, RAW264.7, and HaCaT Cells: Anti-Allergic, Anti-Inflammatory, and Skin-Protective Activities. Int J Mol Sci 2020; 21:ijms21134620. [PMID: 32610574 PMCID: PMC7370139 DOI: 10.3390/ijms21134620] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/31/2022] Open
Abstract
Apigenin (4',5,7-trihydroxyflavone, flavonoid) is a phenolic compound that is known to reduce the risk of chronic disease owing to its low toxicity. The first study on apigenin analyzed its effect on histamine release in the 1950s. Since then, anti-mutation and antitumor properties of apigenin have been widely reported. In the present study, we evaluated the apigenin-mediated amelioration of skin disease and investigated its applicability as a functional ingredient, especially in cosmetics. The effect of apigenin on RAW264.7 (murine macrophage), RBL-2H3 (rat basophilic leukemia), and HaCaT (human immortalized keratinocyte) cells were analyzed. Apigenin (100 μM) significantly inhibited nitric oxide (NO) production, cytokine expression (interleukin (IL)-1β, IL6, cyclooxygenase (COX)-2, and inducible nitric oxide synthase [iNOS]), and phosphorylation of mitogen-activated protein kinase (MAPK) signal molecules, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) in RAW264.7 cells. Apigenin (30 M) also inhibited the phosphorylation of signaling molecules (Lyn, Syk, phospholipase Cγ1, ERK, and JNK) and the expression of high-affinity IgE receptor FcεRIα and cytokines (tumor necrosis factor (TNF)-α, IL-4, IL-5, IL-6, IL-13, and COX-2) that are known to induce inflammation and allergic responses in RBL-2H3 cells. Further, apigenin (20 μM) significantly induced the expression of filaggrin, loricrin, aquaporin-3, hyaluronic acid, hyaluronic acid synthase (HAS)-1, HAS-2, and HAS-3 in HaCaT cells that are the main components of the physical barrier of the skin. Moreover, it promoted the expression of human β-defensin (HBD)-1, HBD-2, HBD-3, and cathelicidin (LL-37) in HaCaT cells. These antimicrobial peptides are known to play an important role in the skin as chemical barriers. Apigenin significantly suppressed the inflammatory and allergic responses of RAW264.7 and RBL cells, respectively, and would, therefore, serve as a potential prophylactic and therapeutic agent for immune-related diseases. Apigenin could also be used to improve the functions of the physical and chemical skin barriers and to alleviate psoriasis, acne, and atopic dermatitis.
Collapse
Affiliation(s)
- Che-Hwon Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Seon-Young Min
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Hye-Won Yu
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Kyungmin Kim
- Jeju R&D Center, AMI Cosmetics Co., Ltd., 16, Sancheondandong-gil, Jeju-si 63359, Korea; (K.K.); (S.K.)
| | - Suyeong Kim
- Jeju R&D Center, AMI Cosmetics Co., Ltd., 16, Sancheondandong-gil, Jeju-si 63359, Korea; (K.K.); (S.K.)
| | - Hye-Ja Lee
- Natural Products Laboratory, DAEBONG Life Science Co., Ltd., 213-4, Chumdan-Ro, Jeju-si 63309, Korea; (H.-J.L.); (J.-H.K.)
| | - Ji-Hye Kim
- Natural Products Laboratory, DAEBONG Life Science Co., Ltd., 213-4, Chumdan-Ro, Jeju-si 63309, Korea; (H.-J.L.); (J.-H.K.)
| | - Young-Jin Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
- Correspondence: ; Tel.: +82-43-840-3601
| |
Collapse
|
5
|
Han EJ, Kim HS, Sanjeewa K, Herath K, Jeon YJ, Jee Y, Lee J, Kim T, Shim SY, Ahn G. Eckol from Ecklonia cava Suppresses Immunoglobulin E-mediated Mast Cell Activation and Passive Cutaneous Anaphylaxis in Mice. Nutrients 2020; 12:E1361. [PMID: 32397556 PMCID: PMC7284712 DOI: 10.3390/nu12051361] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Eckol, a precursor compound belonging to the dibenzo-1,4-dioxin class of phlorotannins, is a phloroglucinol derivative that exerts various activities. In the present study, we investigated the antiallergic effects of eckol isolated from the marine brown algae, Ecklonia cava using immunoglobulin E (IgE)/bovine serum albumin (BSA)-stimulated mouse bone marrow-derived cultured mast cells (BMCMC) and a mouse model of anaphylaxis. Eckol inhibited IgE/BSA-induced BMCMC degranulation by reducing β-hexosaminidase release. A flow cytometric analysis revealed that eckol decreases FcεRI expression on cell surface and IgE binding to the FcεRI in BMCMC. Moreover, eckol suppressed the production of the cytokines, interleukin (IL)-4, IL-5, IL-6, and IL-13 and the chemokine, thymus activation-regulated chemokine (TARC) by downregulating, IκB-α degradation and NF-κB nuclear translocation. Furthermore, it attenuated the passive cutaneous anaphylactic reaction induced by IgE/BSA-stimulation in the ear of BALB/c mice. These results suggest that eckol is a potential therapeutic candidate for the prevention and treatment of allergic disorders.
Collapse
Affiliation(s)
- Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea;
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101 gil, Janghang-eup, Seocheon 33662, Korea;
| | - K.K.A. Sanjeewa
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (K.K.A.S.); (Y.-J.J.)
| | - K.H.I.N.M. Herath
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (K.H.I.N.M.H.); (Y.J.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (K.K.A.S.); (Y.-J.J.)
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (K.H.I.N.M.H.); (Y.J.)
| | - Jeongjun Lee
- Naturetech, 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungbuk 27858, Korea; (J.L.); (T.K.)
| | - Taehee Kim
- Naturetech, 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon-gun, Chungbuk 27858, Korea; (J.L.); (T.K.)
| | - Sun-Yup Shim
- Fisheries Science Institute, Chonnam National University, Daehak-Ro, Yeosu 59626, Korea
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea;
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea
| |
Collapse
|
6
|
Lee M, Shim SY. Inhibitory Effects of Eriodictyol-7- O- β-d-glucuronide and 5,7-Dihydroxy-4-chromene Isolated from Chrysanthemum zawadskii var. latilobum in FcεRI-Mediated Human Basophilic KU812F Cell Activation. Molecules 2020; 25:molecules25040994. [PMID: 32102220 PMCID: PMC7070965 DOI: 10.3390/molecules25040994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 01/18/2023] Open
Abstract
Chrysanthemum zawadskii var. latilobum (CZL) has been used in Eastern medicine for the treatment of various diseases, such as pneumonia, bronchitis, cough, the common cold, pharyngitis, bladder-related disorders, gastroenteric disorders, and hypertension. In the present study, we isolated two strong antiallergic compounds from CZL, namely, eriodictyol-7-O-β-d-glucuronide (EDG) and 5,7-dihydroxy-4-chromene (DC), and investigated their antiallergic effects in FcεRI-mediated human basophilic KU812F cells. EDG and DC downregulated the protein and messenger RNA (mRNA) expression of FcεRI on the cell surface. Moreover, Western blotting analysis showed that EDG and DC inhibited the expression of protein tyrosine kinases such as Syk and Lyn, and extracellular-regulated kinases (ERK) 1/2. These results suggested that EDG and DC, antiallergic constituents of CZL, are potential therapeutic candidates for protection against and for the treatment of allergic disorders.
Collapse
Affiliation(s)
- Mina Lee
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon-si, Jeonnam 57922, Korea;
| | - Sun-Yup Shim
- Department of Aqualife Science, College of Fisheries and Ocean Sciences, Chonnam National University, 50 Daehak-Ro, Yeosu, Jeonnam 59626, Korea
- Correspondence: ; Tel.: +82-61-659-7160; Fax: +82-61-659-7169
| |
Collapse
|
7
|
Harcha PA, López X, Sáez PJ, Fernández P, Barría I, Martínez AD, Sáez JC. Pannexin-1 Channels Are Essential for Mast Cell Degranulation Triggered During Type I Hypersensitivity Reactions. Front Immunol 2019; 10:2703. [PMID: 31849935 PMCID: PMC6896164 DOI: 10.3389/fimmu.2019.02703] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
Mast cells (MCs) release pro-inflammatory mediators through a process called degranulation response. The latter may be induced by several conditions, including antigen recognition through immunoglobulin E (IgE) or "cross-linking," classically associated with Type I hypersensitivity reactions. Early in this reaction, Ca2+ influx and subsequent increase of intracellular free Ca2+ concentration are essential for MC degranulation. Several membrane channels that mediate Ca2+ influx have been proposed, but their role remains elusive. Here, we evaluated the possible contribution of pannexin-1 channels (Panx1 Chs), well-known as ATP-releasing channels, in the increase of intracellular Ca2+ triggered during cross-linking reaction of MCs. The contribution of Panx1 Chs in the degranulation response was evaluated in MCs from wild type (WT) and Panx1 knock out (Panx1-/-) mice after anti-ovalbumin (OVA) IgE sensitization. Notably, the degranulation response (toluidine blue and histamine release) was absent in Panx1-/- MCs. Moreover, WT MCs showed a rapid and transient increase in Ca2+ signal followed by a sustained increase after antigen stimulation. However, the sustained increase in Ca2+ signal triggered by OVA was absent in Panx1-/- MCs. Furthermore, OVA stimulation increased the membrane permeability assessed by dye uptake, a prevented response by Panx1 Ch but not by connexin hemichannel blockers and without effect on Panx1-/- MCs. Interestingly, the increase in membrane permeability of WT MCs was also prevented by suramin, a P2 purinergic inhibitor, suggesting that Panx1 Chs act as ATP-releasing channels impermeable to Ca2+. Accordingly, stimulation with exogenous ATP restored the degranulation response and sustained increase in Ca2+ signal of OVA stimulated Panx1-/- MCs. Moreover, opening of Panx1 Chs in Panx1 transfected HeLa cells increased dye uptake and ATP release but did not promote Ca2+ influx, confirming that Panx1 Chs permeable to ATP are not permeable to Ca2+. These data strongly suggest that during antigen recognition, Panx1 Chs contribute to the sustained Ca2+ signal increase via release of ATP that activates P2 receptors, playing a critical role in the sequential events that leads to degranulation response during Type I hypersensitivity reactions.
Collapse
Affiliation(s)
- Paloma A Harcha
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ximena López
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo J Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Paola Fernández
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Iván Barría
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
8
|
Park YH, Kim DK, Kim HS, Lee D, Lee MB, Min KY, Jo MG, Lee JE, Kim YM, Choi WS. WZ3146 inhibits mast cell Lyn and Fyn to reduce IgE-mediated allergic responses in vitro and in vivo. Toxicol Appl Pharmacol 2019; 383:114763. [PMID: 31526816 DOI: 10.1016/j.taap.2019.114763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
Abstract
Mast cells (MCs) play an important role as effector cells that cause allergic responses in allergic diseases. For these reasons, MC is considered an attractive therapeutic target for allergic disease treatment. In this study, we investigated the inhibitory effect of WZ3146, N-[3-[5-chloro-2-[4-(4-methylpiperazin-1-yl)anilino]pyrimidin-4-yl]oxyphenyl]prop-2-enamide, and the mechanisms of its actions on the MC activation and IgE-mediated allergic response by using three types of MCs such as rat basophilic leukemia (RBL)-2H3 cells, mouse bone marrow mast cells (BMMCs), and human Laboratory of Allergic Diseases 2 (LAD2) cells. WZ3146 inhibited antigen-stimulated degranulation in a dose-dependent manner (IC50, ~ 0.35 μM for RBL-2H3 cells; ~ 0.39 μM for BMMCs; ~ 0.41 for LAD2 cells). WZ3146 also suppressed the production of histamine, tumor necrosis factor (TNF)-α and interleukin (IL)-6, which mediate various allergic responses, in a dose-dependent manner. As the mechanism of WZ3146 to inhibit MCs, it inhibited the activation of spleen tyrosine kinase (Syk) and the downstream signaling proteins of Syk such as linker for activation of T cell (LAT) and phospholipase (PL) Cγ1 in the signaling pathway of FcεRI. In addition, WZ3146 inhibited the activation of Akt, extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun N-terminal kinase (JNK). However, WZ3146 did not inhibit degranulation of MCs by thapsigargin or ionomycin, which increase calcium concentration in cytosol. Notably, WZ3146 inhibited the activity of Lyn and Fyn, but not Syk. In an following animal experiment, WZ3146 inhibited IgE-dependent passive cutaneous anaphylaxis (PCA) in a dose-dependent manner (ED50, ~ 20 mg/kg). Taken together, in this study we show that the pyrimidine derivative, WZ3146, inhibits the IgE-mediated allergic response by inhibiting Lyn and Fyn Src-family kinases, which are initially activated by antigen stimulation in MCs. Therefore, we propose that WZ3146 could be used as a new therapeutic agent for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Young Hwan Park
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Do Kyun Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyuk Soon Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Dajeong Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Bum Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Geun Jo
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Ji Eon Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea.
| |
Collapse
|
9
|
Nugrahini AD, Ishida M, Nakagawa T, Nishi K, Sugahara T. Anti-degranulation activity of caffeine: In vitro and in vivo study. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
10
|
Kawamoto Y, Kondo H, Hasegawa M, Kurimoto C, Ishii Y, Kato C, Botei T, Shinya M, Murate T, Ueno Y, Kawabe M, Goto Y, Yamamoto R, Iida M, Yajima I, Ohgami N, Kato M, Takeda K. Inhibition of mast cell degranulation by melanin. Biochem Pharmacol 2019; 163:178-193. [DOI: 10.1016/j.bcp.2019.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
|
11
|
Shapla UM, Solayman M, Alam N, Khalil MI, Gan SH. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem Cent J 2018; 12:35. [PMID: 29619623 PMCID: PMC5884753 DOI: 10.1186/s13065-018-0408-3] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023] Open
Abstract
An organic compound known as 5-hydroxymethylfurfural (HMF) is formed from reducing sugars in honey and various processed foods in acidic environments when they are heated through the Maillard reaction. In addition to processing, storage conditions affect the formation HMF, and HMF has become a suitable indicator of honey quality. HMF is easily absorbed from food through the gastrointestinal tract and, upon being metabolized into different derivatives, is excreted via urine. In addition to exerting detrimental effects (mutagenic, genotoxic, organotoxic and enzyme inhibitory), HMF, which is converted to a non-excretable, genotoxic compound called 5-sulfoxymethylfurfural, is beneficial to human health by providing antioxidative, anti-allergic, anti-inflammatory, anti-hypoxic, anti-sickling, and anti-hyperuricemic effects. Therefore, HMF is a neo-forming contaminant that draws great attention from scientists. This review compiles updated information regarding HMF formation, detection procedures, mitigation strategies and effects of HMF on honey bees and human health.
Collapse
Affiliation(s)
- Ummay Mahfuza Shapla
- Laboratory of Preventive and Integrative Bio-medicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Solayman
- Laboratory of Preventive and Integrative Bio-medicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh. .,Department of Biochemistry, Primeasia University, Banani, 1213, Bangladesh.
| | - Nadia Alam
- School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Md Ibrahim Khalil
- Laboratory of Preventive and Integrative Bio-medicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh.,School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
12
|
Shim SY. Suppressive Effects of Vaccinium angustifolium Root Extract via Down-Regulation of Activation of Syk, Lyn, and NF-κB in FcɛRI-Mediated Allergic Reactions. Prev Nutr Food Sci 2018; 23:30-34. [PMID: 29662845 PMCID: PMC5894783 DOI: 10.3746/pnf.2018.23.1.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023] Open
Abstract
Vaccinium angustifolium, reported as the lowbush blueberry, has a rich polyphenolic content with which biological activities have been closely associated. In this study, the effects of V. angustifolium root extract (VAE) on the anti-FcɛRI α chain antibody (CRA-1)-induced FcɛRI-mediated signaling factors, protein tyrosine kinases (PTK), Lyn, Syk, and nuclear factor kappa-B cells (NF-κB) in KU812F cells were investigated. The total phenolic content of VAE was found to be 170±1.9 mg gallic acid equivalents/g. Western blot analysis revealed that VAE dose-dependently inhibited FcɛRI-mediated phosphorylation of PTK involving Lyn and Syk. Evaluation of intracellular reactive oxygen species (ROS) by spectrofluorometric analysis using 2′7′-dichlorofluorescin-diacetate revealed that they were reduced by VAE in a dose-dependent manner. Moreover, VAE reduced the levels of β-hexosaminidase released from CRA-1-stimulated KU812F cells. It was identified that VAE suppressed CRA-1-induced activation of NF-κB by Western blot analysis. Our results show that VAE may contribute to the inhibition of allergic actions via inactivation of basophils through the inhibition of β-hexosaminidase release and ROS production, which occurs as a result of inhibition of PTK, Syk, Lyn, and NF-κB.
Collapse
Affiliation(s)
- Sun-Yup Shim
- College of Pharmacy, Sunchon National University, Jeonnam 57922, Korea
| |
Collapse
|
13
|
Gao YY, Liu QM, Liu B, Xie CL, Cao MJ, Yang XW, Liu GM. Inhibitory Activities of Compounds from the Marine Actinomycete Williamsia sp. MCCC 1A11233 Variant on IgE-Mediated Mast Cells and Passive Cutaneous Anaphylaxis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10749-10756. [PMID: 29148756 DOI: 10.1021/acs.jafc.7b04314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The compounds of the deep-sea-derived marine Williamsia sp. MCCC 1A11233 (CDMW) were isolated, which are secondary metabolites of the actinomycetes. In this study, seven kinds of CDMW were found to decrease degranulation and histamine release in immunoglobulin E (IgE)-mediated rat basophilic leukemia (RBL)-2H3 cells. The production of cytokines (tumor necrosis factor-α, interleukin-4) was inhibited by these CDMW in RBL-2H3 cells, and their chemical structures were established mainly based on detailed analysis of their NMR spectra. CDMW-3, CDMW-5, and CDMW-15 were further demonstrated to block mast cell-dependent passive cutaneous anaphylaxis in IgE-sensitized mice. Bone marrow mononuclear cells (BMMCs) were established to clarify the effect of CDMW-3, CDMW-5, and CDMW-15 on mast cells. The seven kinds of CDMW decreased the degranulation and histamine release of BMMCs. Furthermore, flow cytometry results indicated that CDMW-3, CDMW-5, and CDMW-15 increased the annexin+ cell population of BMMCs. In conclusion, CDMW-3, CDMW-5, and CDMW-15 have obvious antiallergic activity due to induction of the apoptosis of mast cells.
Collapse
Affiliation(s)
- Yuan-Yuan Gao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| | - Bo Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration , 184 Daxue Road, Xiamen 361005, P. R. China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration , 184 Daxue Road, Xiamen 361005, P. R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen 361021, Fujian, P. R. China
| |
Collapse
|
14
|
Maximiano WMA, da Silva EZM, Santana AC, de Oliveira PT, Jamur MC, Oliver C. Mast Cell Mediators Inhibit Osteoblastic Differentiation and Extracellular Matrix Mineralization. J Histochem Cytochem 2017; 65:723-741. [PMID: 28980852 DOI: 10.1369/0022155417734174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mast cells are multifunctional immune cells that participate in many important processes such as defense against pathogens, allergic reactions, and tissue repair. These cells perform their functions through the release of a wide variety of mediators. This release occurs mainly through cross-linking IgE (immunoglobulin E) bound to high affinity IgE receptors by multivalent antigens. The abundance of mast cells in connective tissue, surrounding blood vessels, and their involvement in the early stages of bone repair support the possibility of physiological and pathological interactions between mast cells and osteoblasts. However, the participation of mast cell mediators in osteogenesis is not fully understood. Therefore, the objective of this work was to investigate the role of mast cell mediators in the acquisition of the osteogenic phenotype in vitro. The results show that pooled mast cell mediators can affect proliferation, morphology, and cytoskeleton of osteoblastic cells, and impair the activity and expression of alkaline phosphatase as well as the expression of bone sialoprotein. Also, mast cell mediators inhibit the expression of mRNA for those proteins and inhibit the formation and maturation of calcium nodules and consequently inhibit mineralization. Therefore, mast cell mediators can modulate osteogenesis and are potential therapeutic targets for treatments of bone disorders.
Collapse
Affiliation(s)
- William Marcatti Amarú Maximiano
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana Carolina Santana
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Tambasco de Oliveira
- Department of Morphology, Stomatology, and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
15
|
Jiang JZ, Ye J, Jin GY, Piao HM, Cui H, Zheng MY, Yang JS, Che N, Choi YH, Li LC, Yan GH. Asiaticoside Mitigates the Allergic Inflammation by Abrogating the Degranulation of Mast Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8128-8135. [PMID: 28891650 DOI: 10.1021/acs.jafc.7b01590] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of asiaticoside (AS) on allergic responses mediated by mast cells were investigated. AS showed no obvious cytotoxicity on RPMCs (rat peritoneal mast cells). AS reduced the intracellular calcium in RPMCs and deprived the histamine release and degranulation. AS also decreased the generation of antigen-induced tumor necrosis factor α, interleukin (IL)-4, IL-8, and IL-1β in RBL-2H3 cells sensitized by IgE. The suppression of AS on pro-inflammatory cytokines was related with the activation of the intracellular FcεRI and the inhibition of the nuclear factor-κB signaling pathway. In addition, AS disabled the phosphorylation of antigen-induced Syk, Lyn, Gab2, and PLCγ1, thus suppressing the downstream Akt phosphorylation and MAPKs pathways. It also increased HO-1 and Nrf2 expression time dependently. In summary, we demonstrate that AS suppresses the allergic inflammation mediated by mast cells and this effect might be mediated by FcεRI-dependent signaling pathways.
Collapse
Affiliation(s)
- Jing Zhi Jiang
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Jing Ye
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Guang Yu Jin
- Department of Respiratory Medicine, Yanbian University Hospital , Yanji 133000, Jilin China
| | - Hong Mei Piao
- Department of Respiratory Medicine, Yanbian University Hospital , Yanji 133000, Jilin China
| | - Hong Cui
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Ming Yu Zheng
- College of Pharmacy, Yanbian University , Yanji 133002, Jilin, China
| | - Jin Shi Yang
- College of Pharmacy, Yanbian University , Yanji 133002, Jilin, China
| | - Nan Che
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Yun Ho Choi
- Department of Anatomy, Medical School of Institute of Medical Sciences, Chonbuk National University , Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Liang Chang Li
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Guang Hai Yan
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| |
Collapse
|
16
|
González-de-Olano D, Álvarez-Twose I. Insights in Anaphylaxis and Clonal Mast Cell Disorders. Front Immunol 2017; 8:792. [PMID: 28740494 PMCID: PMC5502410 DOI: 10.3389/fimmu.2017.00792] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/22/2017] [Indexed: 11/15/2022] Open
Abstract
The prevalence of anaphylaxis among patients with clonal mast cell disorders (MCD) is clearly higher comparing to the general population. Due to a lower frequency of symptoms outside of acute episodes, clonal MCD in the absence of skin lesions might sometimes be difficult to identify which may lead to underdiagnosis, and anaphylaxis is commonly the presenting symptom in these patients. Although the release of mast cell (MC) mediators upon MC activation might present with a wide variety of symptoms, particular clinical features typically characterize MC mediator release episodes in patients with clonal MCD without skin involvement. Final diagnosis requires a bone marrow study, and it is recommended that this should be done in reference centers. In this article, we address the main triggers for anaphylaxis, risk factors, clinical presentation, diagnosis, and management of patients with MC activation syndromes (MCASs), with special emphasis on clonal MCAS [systemic mastocytosis and mono(clonal) MC activations syndromes].
Collapse
Affiliation(s)
| | - Iván Álvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast), Hospital Virgen del Valle, Toledo, Spain
| |
Collapse
|
17
|
Chakraborty S, Kar N, Kumari L, De A, Bera T. Inhibitory effect of a new orally active cedrol-loaded nanostructured lipid carrier on compound 48/80-induced mast cell degranulation and anaphylactic shock in mice. Int J Nanomedicine 2017; 12:4849-4868. [PMID: 28744120 PMCID: PMC5511028 DOI: 10.2147/ijn.s132114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Type I hypersensitivity is an allergic reaction characterized by the overactivity of the immune system provoked by normally harmless substances. Glucocorticoids, anti-histamines, or mast cell stabilizers are the choices of treatment for type I hypersensitivity. Even though these drugs have the anti-allergic effect, they can have several side effects in prolong use. Cedrol is the main bioactive compound of Cedrus atlantica with anti-tumor, anti-oxidative, and platelet-activating factor inhibiting properties. METHODS In this study, the preparation and anti-anaphylactic effect of cedrol-loaded nanostructured lipid carriers (NLCs) were evaluated. NLCs were prepared using Compritol® 888 ATO and triolein as lipid phase and vitamin E d-α-tocopherylpolyethyleneglycol 1000 succinate, soya lecithin, and sodium deoxycholate as nanoparticle stabilizers. RESULTS The average diameter of cedrol-NLCs (CR-NLCs) was 71.2 nm (NLC-C1) and 91.93 nm (NLC-C2). The particle had negative zeta potential values of -31.9 mV (NLC-C1) and -44.5 mV (NLC-C2). Type I anaphylactoid reaction in the animal model is significantly reduced by cedrol and cedrol-NLC. This in vivo activity of cedrol resulted that cedrol suppressed compound 48/80-induced peritoneal mast cell degranulation and histamine release from mast cells. Furthermore, compound 48/80-evoked Ca2+ uptake into mast cells was reduced in a dose-dependent manner by cedrol and cedrol-NLC. Studies confirmed that the inhibition of type I anaphylactoid response in vivo in mice and compound 48/80-induced mast cell activation in vitro are greatly enhanced by the loading of cedrol into the NLCs. The safety of cedrol and CR-NLC was evaluated as selectivity index (SI) with prednisolone and cromolyn sodium as positive control. SI of CR-NLC-C2 was found to be 11.5-fold greater than both prednisolone and cromolyn sodium. CONCLUSION Administration of CR-NLC 24 hours before the onset of anaphylaxis can prevent an anaphylactoid reaction. NLCs could be a promising vehicle for the oral delivery of cedrol to protect anaphylactic reactions.
Collapse
Affiliation(s)
- Shreyasi Chakraborty
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Nabanita Kar
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Leena Kumari
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Asit De
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Tanmoy Bera
- Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
18
|
Khoryati L, Augusto JF, Shipley E, Contin-Bordes C, Douchet I, Mitrovic S, Truchetet ME, Lazaro E, Duffau P, Couzi L, Jacquemin C, Barnetche T, Vacher P, Schaeverbeke T, Blanco P, Richez C. IgE Inhibits Toll-like Receptor 7- and Toll-like Receptor 9-Mediated Expression of Interferon-α by Plasmacytoid Dendritic Cells in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol 2017; 68:2221-31. [PMID: 26991804 DOI: 10.1002/art.39679] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 03/08/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Plasmacytoid dendritic cells (PDCs) play a central role in pathogenesis of systemic lupus erythematosus (SLE) through their unique ability to produce large amounts of type I interferon (IFN) upon Toll-like receptor 7 (TLR-7) and TLR-9 triggering. PDCs express specific surface regulatory receptors involved in negative regulation of IFNα secretion. These receptors use the γ-chain of high-affinity Fc receptor (FcR) for IgE, FcɛRI. We undertook this study to test our hypothesis that IgE engagement of FcɛRI on PDCs may impact IFNα production in SLE patients. METHODS Serum levels of total IgE were measured in healthy volunteers, SLE patients, and patients with IgE-dependent allergic disorders. FcɛRI expression on PDCs from SLE patients was evaluated by flow cytometry. Purified PDCs were incubated with monoclonal IgE for 24 hours, then stimulated for 18 hours with TLR agonists or immune complexes (ICs). IFNα production by PDCs was detected by quantitative real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay. Expression of TLR-7, TLR-9, and IFN regulatory factor 7 (IRF-7) in PDCs was quantified by quantitative real-time PCR. RESULTS We observed significantly higher IgE levels in SLE patients with quiescent disease than in those with active disease. In SLE patients, IgE levels correlated inversely with disease activity. IgE levels were not associated with the presence of antinuclear IgE. Purified PDCs treated for 24 hours with monoclonal IgE up-regulated FcɛRI expression in an IgE dose-dependent manner. IgE-treated PDCs significantly decreased IFNα secretion and down-regulated CCR7 expression upon stimulation with TLR-7 and TLR-9 ligands and ICs from lupus patients. IgE treatment down-regulated expression of TLR-9 and IRF-7. CONCLUSION Our results support the notion that IgE plays a protective role in SLE pathogenesis through the modulation of inflammatory response by PDCs.
Collapse
Affiliation(s)
- Liliane Khoryati
- Université de Bordeaux and Immuno ConcEpT, CNRS-UMR 5164, Bordeaux, France
| | | | - Emilie Shipley
- Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Cécile Contin-Bordes
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | | | - Stéphane Mitrovic
- Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marie-Elise Truchetet
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Estibaliz Lazaro
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Pierre Duffau
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Lionel Couzi
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Clément Jacquemin
- Université de Bordeaux and Immuno ConcEpT, CNRS-UMR 5164, Bordeaux, France
| | | | - Pierre Vacher
- Université de Bordeaux and INSERM U916, Institut Bergonié, Bordeaux, France
| | - Thierry Schaeverbeke
- Université de Bordeaux and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Patrick Blanco
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Christophe Richez
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | | |
Collapse
|
19
|
Shim SY, Lee KD, Lee M. Vaccinium angustifolium Root Extract Suppresses FcɛRI Expression in Human Basophilic KU812F Cells. Prev Nutr Food Sci 2017; 22:9-15. [PMID: 28401082 PMCID: PMC5383136 DOI: 10.3746/pnf.2017.22.1.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
Vaccinium angustifolium, commonly known as the lowbush blueberry, is a rich source of flavonoids, with which various human physiological activities have been associated. The present study focuses on the investigation of the effect of the methanolic extract of V. angustifolium root extract (VAE) on high affinity immunoglobulin E receptor (FcɛRI) α chain antibody (CRA-1)-induced allergic reaction in human basophilic KU812F cells. The total phenolic content of VAE was found to be 170±1.9 mg gallic acid equivalents/g. Flow cytometry analysis revealed that the cell surface expression of FcɛRI was suppressed in a concentration-dependent manner upon culture with VAE. Reverse-transcriptase polymerase chain reaction analysis showed that the mRNA level of the FcɛRI α chain was reduced in a concentration-dependent manner as a result of VAE treatment. Western blot analysis revealed that the protein expression of FcɛRI and the phosphorylation of extracellular signal-regulated kinases (ERK) 1/2 were concentration-dependently inhibited by VAE. We determined that VAE inhibited anti-CRA-1-induced histamine release, in addition to the elevation of intracellular calcium concentration ([Ca2+]i), in a concentration-dependent manner. These results indicate that VAE may exert an anti-allergic effect via the inhibition of calcium influx and histamine release, which occurs as a result of the down-regulation of FcɛRI expression through inhibition of ERK 1/2 activation.
Collapse
Affiliation(s)
- Sun Yup Shim
- College of Pharmacy, Sunchon National University, Jeonnam 57922,
Korea
| | - Kyung Dong Lee
- Department of Oriental Medicine Materials, Dongsin University, Jeonnam 58245,
Korea
| | - Mina Lee
- College of Pharmacy, Sunchon National University, Jeonnam 57922,
Korea
| |
Collapse
|
20
|
Chauhan P, Hu S, Sheng WS, Prasad S, Lokensgard JR. Modulation of Microglial Cell Fcγ Receptor Expression Following Viral Brain Infection. Sci Rep 2017; 7:41889. [PMID: 28165503 PMCID: PMC5292951 DOI: 10.1038/srep41889] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
Abstract
Fcγ receptors (FcγRs) for IgG couple innate and adaptive immunity through activation of effector cells by antigen-antibody complexes. We investigated relative levels of activating and inhibitory FcγRs on brain-resident microglia following murine cytomegalovirus (MCMV) infection. Flow cytometric analysis of microglial cells obtained from infected brain tissue demonstrated that activating FcγRs were expressed maximally at 5 d post-infection (dpi), while the inhibitory receptor (FcγRIIB) remained highly elevated during both acute and chronic phases of infection. The highly induced expression of activating FcγRIV during the acute phase of infection was also noteworthy. Furthermore, in vitro analysis using cultured primary microglia demonstrated the role of interferon (IFN)γ and interleukin (IL)-4 in polarizing these cells towards a M1 or M2 phenotype, respectively. Microglial cell-polarization correlated with maximal expression of either FcγRIV or FcγRIIB following stimulation with IFNγ or IL-4, respectively. Finally, we observed a significant delay in polarization of microglia towards an M2 phenotype in the absence of FcγRs in MCMV-infected Fcer1g and FcgR2b knockout mice. These studies demonstrate that neuro-inflammation following viral infection increases expression of activating FcγRs on M1-polarized microglia. In contrast, expression of the inhibitory FcγRIIB receptor promotes M2-polarization in order to shut-down deleterious immune responses and limit bystander brain damage.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Neurovirology Laboratory, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Shuxian Hu
- Neurovirology Laboratory, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Wen S Sheng
- Neurovirology Laboratory, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Sujata Prasad
- Neurovirology Laboratory, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - James R Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
21
|
Li L, Zhang XH, Liu GR, Liu C, Dong YM. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells. Chin J Nat Med 2017; 14:407-12. [PMID: 27473957 DOI: 10.1016/s1875-5364(16)30036-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 12/14/2022]
Abstract
Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm. Both cell types are involved in a variety of inflammatory and immune events, producing an array of inflammatory mediators, such as cytokines. The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI). The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays. Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels. Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α. The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK), revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition. Furthermore, isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells. In conclusion, the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions.
Collapse
Affiliation(s)
- Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Xiao-Hui Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | | | - Chang Liu
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Yin-Mao Dong
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
22
|
Shim SY, Lee M, Lee KD. Achyranthes japonica Nakai Water Extract Suppresses Binding of IgE Antibody to Cell Surface FcɛRI. Prev Nutr Food Sci 2016; 21:323-329. [PMID: 28078254 PMCID: PMC5216883 DOI: 10.3746/pnf.2016.21.4.323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/13/2016] [Indexed: 12/23/2022] Open
Abstract
Achyranthes japonica Nakai (AJN) water extract has a variety of physiological properties, including anti-diabetic, anti-cancer, anti-inflammatory, anti-microbial, and anti-oxidative activities. In the present study, the inhibitory effects of AJN extract were investigated in high affinity immunoglobulin E receptor (FcɛRI)-mediated KU812F cells activation. AJN extract showed suppressive effects on histamine release and intracellular calcium [Ca2+]i elevation from anti-FcɛRI antibody (CRA-1)-stimulated cells in a dose-dependent manner. Flow cytometric analysis showed that AJN extract treatment caused a dose-dependent decrease in the cell surface FcɛRI expression and the binding between the cell surface FcɛRI and the IgE antibody. Moreover, reverse transcription-polymerase chain reaction analysis showed that levels of the mRNA for the FcɛRI α chain was decreased by treatment with AJN extract. These results indicate that AJN extract may exert anti-allergic effects via the inhibition of calcium influx and histamine release, which occurs as a result from the down-regulation of the binding of IgE antibody to cell surface FcɛRI. This mechanism may occur through FcɛRI expression inhibition.
Collapse
Affiliation(s)
- Sun Yup Shim
- College of Pharmacy, Sunchon National University, Jeonnam 57922, Korea
| | - Mina Lee
- College of Pharmacy, Sunchon National University, Jeonnam 57922, Korea
| | - Kyung Dong Lee
- Department of Oriental Medicine Materials, Dongshin University, Jeonnam 58245, Korea
| |
Collapse
|
23
|
Kim SH, Choi CH, Kim SY, Eun JS, Shin TY. Anti-Allergic Effects of Artemisia iwayomogi on Mast Cell-Mediated Allergy Model. Exp Biol Med (Maywood) 2016; 230:82-8. [PMID: 15618130 DOI: 10.1177/153537020523000111] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The discovery of drugs for the treatment of allergic disease is an important subject in human health. The Artemisia iwayomogi (Compositae) (AIE) has been used as a traditional medicine in Korea and is known to have an anti-inflammatory effect. However, its specific mechanism of action is still unknown. In this report, we investigated the effect of AIE on the mast cell-mediated allergy model and studied the possible mechanism of action. AIE inhibited compound 48/80–induced systemic reactions and plasma histamine release in mice. AIE decreased immunoglobulin E (lgE)–mediated local allergic reaction, passive cutaneous anaphylaxis (PCA) reaction. AIE dose dependency attenuated histamine release from rat peritoneal mast cells activated by compound 48/80 or IgE. AIE decreased the compound 48/80-induced intracellular Ca2+. Furthermore, AIE decreased the phorbol 12-myristate 13-acetate (PMA) plus calcium lonophore A23187-stimulated tumor necrosis factor-α and interleukin-6 gene expression and production in human mast cells. The inhibitory effect of AIE on the proinflammatory cytokine was p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) dependent. AIE attenuated PMA plus A23187-lnduced degradation of licBa and nuclear translocation of NF-κB and specifically blocked activation of p38 MAPK but not that of c-jun N-terminal kinase and extracellular signal-regulated kinase. Our findings provide evidence that AIE inhibits mast cell-derived immediate-type allergic reactions and involvement of Intracellular Ca2+, proinflammatory cytokines, p38 MAPK, and NF-κB in these effects.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- College of Pharmacy, Woosuk University, Jeonju, Jeonbuk, 565-701, South Korea
| | | | | | | | | |
Collapse
|
24
|
Itoh T, Fujiwara A, Ninomiya M, Maeda T, Ando M, Tsukamasa Y, Koketsu M. Inhibitory Effects of Echinochrome A, Isolated from Shell of the Sea Urchin Anthocidaris crassispina, on Antigen-Stimulated Degranulation in Rat Basophilic Leukemia RBL-2H3 Cells through Suppression of Lyn Activation. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Echinochrome A (Echi-A) was isolated from the sea urchin Anthocidaris crassispina and its structure determined using 1D and 2D-NMR. In the present study, we examined the inhibitory effect of Echi-A on antigen-stimulated degranulation in rat basophilic leukemia RBL-2H3 cells, which were suppressed in a dose dependent manner. The antigens bind to the high affinity immunoglobulin E receptor, which is expressed on the surface of mast cells and basophils and activate intracellular signal transduction, resulting in the release of biologically active mediators such as histamine. In order to disclose the inhibitory mechanisms of degranulation by Echi-A, we examined the elevation in intracellular Ca2+ concentration ([Ca2+]i), production levels of intracellular reactive oxygen species (ROS) and early intracellular signaling events. Both elevation of [Ca2+]i and intracellular ROS production were markedly suppressed in cells treated with Echi-A. Echi-A also suppressed the activation of Lyn, Syk, and PLCγ1/2 in antigen-stimulated cells. These results indicated that inhibition of antigen-stimulated degranulation in RBL-2H3 cells by Echi-A is mainly due to the inactivation of Lyn/Syk/PLCγ signaling pathways. Our findings suggest that Echi-A could be a beneficial agent for alleviating the symptoms of type I allergy.
Collapse
Affiliation(s)
- Tomohiro Itoh
- Laboratory for Molecular Chemistry of Aquatic Materials, Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Azusa Fujiwara
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshimichi Maeda
- Graduate School of Fisheries Science, Food Science and Technology, National Fisheries University, 2-7-1 Nagata-Honmachi, Shimonoseki, Yamaguchi 759-6595, Japan
| | - Masashi Ando
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Yasuyuki Tsukamasa
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
25
|
Ishimata N, Ito H, Tai A. Structure-activity relationships of vanillic acid ester analogs in inhibitory effect of antigen-mediated degranulation in rat basophilic leukemia RBL-2H3 cells. Bioorg Med Chem Lett 2016; 26:3533-6. [PMID: 27324979 DOI: 10.1016/j.bmcl.2016.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/18/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023]
Abstract
Methyl vanillate (1) showed strong degranulation inhibitory activity among vanillin derivatives tested. In order to find structure-activity relationships for developing anti-allergic agents with simple structures and potent activity, we synthesized several vanillic acid (VA) ester derivatives with C1-C4 and C8 alkyl chains and evaluated their degranulation inhibitory activities. The most active compound of VA ester derivatives was derivative 5 with a C4 straight alkyl chain, and derivative 5 exhibited approximately three-fold greater inhibitory activity than that of 1. Moreover, we designed 8 types of analogs based on 5, and we found that the minimum structure for potent degranulation inhibitory activity requires direct connection of the butyl ester moiety on the benzene ring and at least one hydroxyl group on the benzene ring. Butyl meta or para hydroxyl benzoate (10 or 11) has a simpler structure than that of 5 and exhibited more potent degranulation inhibitory activity than that of 5.
Collapse
Affiliation(s)
- Nao Ishimata
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-cho, Shobara, Hiroshima 727-0023, Japan
| | - Hideyuki Ito
- Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Akihiro Tai
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-cho, Shobara, Hiroshima 727-0023, Japan.
| |
Collapse
|
26
|
Shim J, Kennedy RH, Weatherly LM, Hutchinson LM, Pelletier JH, Hashmi HN, Blais K, Velez A, Gosse JA. Arsenic inhibits mast cell degranulation via suppression of early tyrosine phosphorylation events. J Appl Toxicol 2016; 36:1446-59. [PMID: 27018130 DOI: 10.1002/jat.3300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022]
Abstract
Exposure to arsenic is a global health concern. We previously documented an inhibitory effect of inorganic Arsenite on IgE-mediated degranulation of RBL-2H3 mast cells (Hutchinson et al., 2011; J. Appl. Toxicol. 31: 231-241). Mast cells are tissue-resident cells that are positioned at the host-environment interface, thereby serving vital roles in many physiological processes and disease states, in addition to their well-known roles in allergy and asthma. Upon activation, mast cells secrete several mediators from cytoplasmic granules, in degranulation. The present study is an investigation of Arsenite's molecular target(s) in the degranulation pathway. Here, we report that arsenic does not affect degranulation stimulated by either the Ca(2) (+) ionophore A23187 or thapsigargin, which both bypass early signaling events. Arsenic also does not alter degranulation initiated by another non-IgE-mediated mast cell stimulant, the G-protein activator compound 48/80. However, arsenic inhibits Ca(2) (+) influx into antigen-activated mast cells. These results indicate that the target of arsenic in the degranulation pathway is upstream of the Ca(2) (+) influx. Phospho-Syk and phospho-p85 phosphoinositide 3-kinase enzyme-linked immunosorbent assays data show that arsenic inhibits early phosphorylation events. Taken together, this evidence indicates that the mechanism underlying arsenic inhibition of mast cell degranulation occurs at the early tyrosine phosphorylation steps in the degranulation pathway. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Juyoung Shim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Rachel H Kennedy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, 04469, USA
| | - Lisa M Weatherly
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, 04469, USA
| | - Lee M Hutchinson
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Jonathan H Pelletier
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Hina N Hashmi
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Kayla Blais
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Alejandro Velez
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Julie A Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA. .,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, 04469, USA.
| |
Collapse
|
27
|
Li L, Jin G, Jiang J, Zheng M, Jin Y, Lin Z, Li G, Choi Y, Yan G. Cornuside inhibits mast cell-mediated allergic response by down-regulating MAPK and NF-κB signaling pathways. Biochem Biophys Res Commun 2016; 473:408-14. [PMID: 26972254 DOI: 10.1016/j.bbrc.2016.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
Abstract
AIMS The present study is to investigate the effect of cornuside on mast cell-mediated allergic response, as well as its possible mechanisms of action. METHODS To test the anti-allergic effects of cornuside in vivo, local extravasation was induced by local injection of anti-dinitrophenyl immunoglobulin E (IgE) followed by intravenous antigenic challenge in passive cutaneous anaphylaxis model rats. Mast cell viability was determined using MTT assay. Histamine content from rat peritoneal mast cells was measured by the radioenzymatic method. To investigate the mechanisms by which cornuside affects the reduction of histamine release, the levels of calcium uptake were measured. To examine whether cornuside affects the expression of pro-inflammatory cytokines, Western blotting and ELISA were carried out. RESULTS Oral administration of cornuside inhibited passive cutaneous anaphylaxis in rats. Presence of cornuside attenuated IgE-induced histamine release from rat peritoneal mast cells. The inhibitory effect of cornuside on histamine release was mediated by the modulation of intracellular calcium. In addition, cornuside decreased phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-stimulated production and secretion of pro-inflammatory cytokines such as TNF-α and IL-6 in human mast cells. The inhibitory effect of cornuside on pro-inflammatory cytokines was dependent on nuclear factor-κB and p38 mitogen-activated protein kinase. CONCLUSIONS The present study provides evidence that cornuside inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. Furthermore, in vivo and in vitro anti-allergic effects of cornuside suggest a possible therapeutic application of this agent in inflammatory allergic diseases.
Collapse
Affiliation(s)
- Liangchang Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Yanbian University, Yanji, 133002, PR China
| | - Guangyu Jin
- Yanbian University Hospital, Medicine College, Yanbian University, Yanji, 133000, PR China
| | - Jingzhi Jiang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Yanbian University, Yanji, 133002, PR China
| | - Mingyu Zheng
- College of Pharmacy, Yanbian University, Yanji, 133002, PR China
| | - Yan Jin
- College of Pharmacy, Yanbian University, Yanji, 133002, PR China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, 133002, PR China
| | - Guangzhao Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Yanbian University, Yanji, 133002, PR China
| | - Yunho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Guanghai Yan
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Yanbian University, Yanji, 133002, PR China.
| |
Collapse
|
28
|
Lim SJ, Kim M, Randy A, Nho CW. Inhibitory effect of the branches of Hovenia dulcis Thunb. and its constituent pinosylvin on the activities of IgE-mediated mast cells and passive cutaneous anaphylaxis in mice. Food Funct 2016; 6:1361-70. [PMID: 25804702 DOI: 10.1039/c4fo01203h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hovenia dulcis Thunb. (Rhamnaceae) is a hardy tree native to Europe, the Middle East, and North Africa, and it is also grown in parts of Asia and has been used in traditional medicine to treat liver toxicity, stomach disorders, and inflammation. This study investigated the anti-allergy potential of an extract of the branches of H. dulcis (HDB) using the antigen-stimulated mast cell-like cell line rat basophilic leukemia (RBL)-2H3 and a passive cutaneous anaphylaxis (PCA) mouse model. Degranulation assay, reverse transcription PCR, enzyme-lined immunosorbent assays, western blot analyses, and PCA were performed to measure allergic responses and proinflammatory mediators in antigen-stimulated rat basophilic leukemia (RBL)-2H3 mast cells and the PCA mouse model. In antigen-stimulated RBL-2H3 cells, HDB inhibited the secretion of β-hexosaminidase (indicating the inhibition of degranulation) and histamine release; decreased expression and production of the inflammatory mediators, cyclooxygenase-2 and prostaglandin E2, and cytokines interleukin-4 and tumor necrosis factor-α; and suppressed activation of nuclear factor κB, a transcription factor involved in the response to cytokines. HDB attenuated phosphorylation of the mast cell downstream effectors Lyn, Syk, phospholipase Cγ, protein kinase Cμ, extracellular signal-regulated kinase and p38. In IgE-sensitized mice, HDB inhibited mast cell-dependent PCA. Furthermore, HDB contained pinosylvin and possessed significant anti-allergic activities. These results suggest that HDB would be of value in the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Sue Ji Lim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangwon 210-340, Korea.
| | | | | | | |
Collapse
|
29
|
LI LIANGCHANG, PIAO HONGMEI, ZHENG MINGYU, LIN ZHENHUA, LI GUANGZHAO, YAN GUANGHAI. Sesamin attenuates mast cell-mediated allergic responses by suppressing the activation of p38 and nuclear factor-κB. Mol Med Rep 2015; 13:536-42. [DOI: 10.3892/mmr.2015.4546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 09/22/2015] [Indexed: 11/06/2022] Open
|
30
|
Kim M, Lim SJ, Lee HJ, Nho CW. Cassia tora Seed Extract and Its Active Compound Aurantio-obtusin Inhibit Allergic Responses in IgE-Mediated Mast Cells and Anaphylactic Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9037-46. [PMID: 26434611 DOI: 10.1021/acs.jafc.5b03836] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cassia tora seed is widely used due to its various biological properties including anticancer, antidiabetic, and anti-inflammatory effects. However, there has been no report of the effects of C. tora seed extract (CTE) on immunoglobulin E (IgE)-mediated allergic responses. In this research, we demonstrated the effects of CTE and its active compound aurantio-obtusin on IgE-sensitized allergic reactions in mast cells and passive cutaneous anaphylaxis (PCA). CTE and aurantio-obtusin suppressed degranulation, histamine production, and reactive oxygen species generation and inhibited the production and mRNA expression of tumor necrosis factor-α and interleukin-4. CTE and aurantio-obtusin also suppressed the prostaglandin E2 production and expression of cyclooxygenase 2. Furthermore, CTE and aurantio-obtusin suppressed IgE-mediated FcεRI signaling such as phosphorylation of Syk, protein kinase Cμ, phospholipase Cγ, and extracellular signal-regulated kinases. CTE and aurantio-obtusin blocked mast cell-dependent PCA in IgE-mediated mice. These results suggest that CTE and aurantio-obtusin are a beneficial treatment for allergy-related diseases.
Collapse
Affiliation(s)
- Myungsuk Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon, Korea
| | - Sue Ji Lim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon, Korea
| | - Hee-Ju Lee
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon, Korea
| | - Chu Won Nho
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute , Gangwon, Korea
| |
Collapse
|
31
|
Itoh T, Miyake Y, Kasashima T, Shimomiya Y, Nakamura Y, Ando M, Tsukamasa Y, Takahata M. OM-X ®, Fermented Vegetables Extract Suppresses Antigen-Stimulated Degranulation in Rat Basophilic Leukemia RBL-2H3 Cells and Passive Cutaneous Anaphylaxis Reaction in Mice. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OM-X® is a hand-made and naturally manufactured probiotic supplement. This fermented food product is made from vegetables, fruits, seaweeds and mushrooms, using 12 strains of lactic acid bacteria and bifidobacteria. OM-X® is also known to have beneficial health properties, and some of its components show effects on antigen (Ag)-stimulated degranulation activity, indicating that OM-X® may be useful in the treatment of allergy responses and symptoms. In this study, we evaluated the inhibitory effects of OM-X® on Ag-stimulated degranulation in rat basophilic leukemia RBL-2H3 cells, clarified the underlying mechanisms, and determined the active compounds in OM-X® for suppression of degranulation. Treatment with OM-X® gradually suppressed Ag-stimulated degranulation throughout the maturation period. OM-X® also gradually produced melanoidins by lactic acid bacterial fermentation during the maturation process. There was a high correlation between the suppression levels of Ag-stimulated degranulation and the browning of OM-X®. Furthermore, the inhibition of Ag-stimulated degranulation by OM-X® was found to be partially due to the direct inactivation of NADPH oxidase. To elucidate the in vivo effects of OM-X®, type I allergy model mice were orally administered with OM-X®, and the passive cutaneous anaphylaxis (PCA) reaction was measured. OM-X® intake remarkably suppressed the PCA reaction. Taken together, our findings suggest that OM-X® could be a beneficial food to ameliorate allergic reactions.
Collapse
Affiliation(s)
- Tomohiro Itoh
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | - Takuya Kasashima
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | - Yuki Nakamura
- BIOBANK Co., Ltd., 388-1 Kita-ku, Okayama 700-0952, Japan
| | - Masashi Ando
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Yasuyuki Tsukamasa
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | |
Collapse
|
32
|
Shim SY, Park JR, Byun DS. Kaempferol isolated from Nelumbo nucifera stamens inhibits phosphorylation of ERK 1/2, Syk, and Lyn in FcεRI-mediated allergic reaction. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0190-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
33
|
Abstract
The fate of T and B lymphocytes, the key cells that direct the adaptive immune response, is regulated by a diverse network of signal transduction pathways. The T- and B-cell antigen receptors are coupled to intracellular tyrosine kinases and adaptor molecules to control the metabolism of inositol phospholipids and calcium release. The production of inositol polyphosphates and lipid second messengers directs the activity of downstream guanine-nucleotide-binding proteins and protein and lipid kinases/phosphatases that control lymphocyte transcriptional and metabolic programs. Lymphocyte activation is modulated by costimulatory molecules and cytokines that elicit intracellular signaling that is integrated with the antigen-receptor-controlled pathways.
Collapse
Affiliation(s)
- Doreen Cantrell
- College of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
34
|
Graham AC, Temple RM, Obar JJ. Mast cells and influenza a virus: association with allergic responses and beyond. Front Immunol 2015; 6:238. [PMID: 26042121 PMCID: PMC4435071 DOI: 10.3389/fimmu.2015.00238] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/01/2015] [Indexed: 12/07/2022] Open
Abstract
Influenza A virus (IAV) is a widespread infectious agent commonly found in mammalian and avian species. In humans, IAV is a respiratory pathogen that causes seasonal infections associated with significant morbidity in young and elderly populations, and has a large economic impact. Moreover, IAV has the potential to cause both zoonotic spillover infection and global pandemics, which have significantly greater morbidity and mortality across all ages. The pathology associated with these pandemic and spillover infections appear to be the result of an excessive inflammatory response leading to severe lung damage, which likely predisposes the lungs for secondary bacterial infections. The lung is protected from pathogens by alveolar epithelial cells, endothelial cells, tissue resident alveolar macrophages, dendritic cells, and mast cells. The importance of mast cells during bacterial and parasitic infections has been extensively studied; yet, the role of these hematopoietic cells during viral infections is only beginning to emerge. Recently, it has been shown that mast cells can be directly activated in response to IAV, releasing mediators such histamine, proteases, leukotrienes, inflammatory cytokines, and antiviral chemokines, which participate in the excessive inflammatory and pathological response observed during IAV infections. In this review, we will examine the relationship between mast cells and IAV, and discuss the role of mast cells as a potential drug target during highly pathological IAV infections. Finally, we proposed an emerging role for mast cells in other viral infections associated with significant host pathology.
Collapse
Affiliation(s)
- Amy C Graham
- Department of Microbiology and Immunology, Montana State University , Bozeman, MT , USA
| | - Rachel M Temple
- Department of Microbiology and Immunology, Montana State University , Bozeman, MT , USA
| | - Joshua J Obar
- Department of Microbiology and Immunology, Montana State University , Bozeman, MT , USA
| |
Collapse
|
35
|
Kim M, Lim SJ, Oidovsambuu S, Nho CW. Gnetin H isolated from Paeonia anomala inhibits FcεRI-mediated mast cell signaling and degranulation. JOURNAL OF ETHNOPHARMACOLOGY 2014; 154:798-806. [PMID: 24832111 DOI: 10.1016/j.jep.2014.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia anomala L. is used in Mongolian traditional medicine to treat various diseases including indigestion, abdominal pain, kidney disorders, inflammation, and female diseases. In this study we examined the effects of Paeonia anomala extract (PAE) and compounds derived from Paeonia anomala on immunoglobulin E (IgE)-mediated type I hypersensitivity responses in vitro. MATERIALS AND METHODS Degranulation assay, reverse transcription PCR, enzyme-lined immunosorbent assays, western blot analyses were performed to measure allergic and proinflammatory mediators in IgE-stimulated rat basophilic leukemia (RBL)-2H3 mast cells treated with or without PAE or gnetin H. RESULTS Seventeen compounds were isolated, and β-hexosaminidase release from IgE-stimulated RBL-2H3 mast cells was measured. Of the seventeen isolated compounds, gnetin H, a resveratrol derivative, significantly inhibited β-hexosaminidase release from RBL-2H3 cells with an IC50 value of 0.3 μM. Notably, Gnetin H reduced β-hexosaminidase release at lower concentrations than resveratrol. Furthermore, PAE and gnetin H inhibited histamine secretion, decreased the production and mRNA expression of tumor necrosis factor-α and interleukin-4 and suppressed translocation of nuclear factor κB. PAE and gnetin H also reduced the expression of cyclooxygenase-2 and production of prostaglandin E2. PAE and gnetin H suppressed the phosphorylation of Syk, protein kinase C (PKC)μ, phospholipase Cγ, and the mitogen-activated protein kinases, c-Jun N-terminal kinase, p38, and extracellular signal-regulated kinase. CONCLUSIONS These results suggest that PAE and its active compound gnetin H could be promising therapeutic agents for allergic disorders.
Collapse
Affiliation(s)
- Myungsuk Kim
- Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangwon, Korea
| | - Sue Ji Lim
- Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangwon, Korea; Department of chemistry, Gangneung-Wonju National University, Gangneung, Gangwon-do 210-702, Korea
| | - Sarangerel Oidovsambuu
- Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangwon, Korea
| | - Chu Won Nho
- Functional Food Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangwon, Korea.
| |
Collapse
|
36
|
Kim M, Lim SJ, Kang SW, Um BH, Nho CW. Aceriphyllum rossii extract and its active compounds, quercetin and kaempferol inhibit IgE-mediated mast cell activation and passive cutaneous anaphylaxis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3750-3758. [PMID: 24702030 DOI: 10.1021/jf405486c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aceriphyllum rossii contains an abundant source of natural flavonoids with potential antioxidant, anticancer and anti-inflammatory properties. However, the effect of A. rossii extract (ARE) on immunoglobulin E(IgE)-mediated allergic responses remains unknown. In the present study, the effects of ARE and its active compounds, quercetin and kaempferol, on IgE-mediated rat basophilic leukemia mast cell activation and passive cutaneous anaphylaxis (PCA) were investigated. ARE, quercetin, and kaempferol inhibited secretion of β-hexosaminidase and histamine, and reduced the production and mRNA expression of interleukin-4 and tumor necrosis factor-α. ARE also decreased the production of prostaglandin E2 and leukotriene B4 and expression of cyclooxygenase 2 and 5-lipoxygenase. Furthermore, ARE, quercetin, and kaempferol inhibited IgE-mediated phosphorylation of Syk, phospholipase Cγ, protein kinase C (PKC)μ, and the mitogen-activated protein kinases, extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase. ARE, quercetin, and kaempferol markedly suppressed mast cell-dependent PCA in IgE-sensitized mice. These results indicate that ARE and its active constituents, quercetin and kaempferol, may be a useful therapy for immediate-type hypersensitivity.
Collapse
Affiliation(s)
- Myungsuk Kim
- Functional Food Center, Korea Institute of Science and Technology (KIST), Gangneung Institute , Gangwon Korea
| | | | | | | | | |
Collapse
|
37
|
Choi HW, Abraham SN. Mast cell mediator responses and their suppression by pathogenic and commensal microorganisms. Mol Immunol 2014; 63:74-9. [PMID: 24636146 DOI: 10.1016/j.molimm.2014.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Mast cells (MCs) are selectively found at the host environment interface and are capable of secreting a wide array of pharmacologically active mediators, many of which are prepackaged in granules. Over the past two decades, it has become clear that these cells have the capacity to recognize a range of infectious agents allowing them to play a key role in initiating and modulating early immune responses to infectious agents. However, a number of pathogenic and commensal microbes appear to have evolved distinct mechanisms to suppress MC mediator release to avoid elimination in the host. Understanding how these microbes suppress MC functions may have significant therapeutic value to relieve inflammatory disorders mediated by MCs.
Collapse
Affiliation(s)
- Hae Woong Choi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore.
| |
Collapse
|
38
|
Park JW, Jeon YJ, Lee JC, Ahn SR, Ha SW, Bang SY, Park EK, Yi SA, Lee MG, Han JW. Destabilization of TNF-α mRNA by Rapamycin. Biomol Ther (Seoul) 2013; 20:43-9. [PMID: 24116273 PMCID: PMC3792200 DOI: 10.4062/biomolther.2012.20.1.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 11/24/2022] Open
Abstract
Stimulation of mast cells through the high affinity IgE receptor (FcεRI) induces degranulation, lipid mediator release, and cytokine secretion leading to allergic reactions. Although various signaling pathways have been characterized to be involved in the FcεRI-mediated responses, little is known about the precious mechanism for the expression of tumor necrosis factor-α (TNF-α) in mast cells. Here, we report that rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), reduces the expression of TNF-α in rat basophilic leukemia (RBL-2H3) cells. IgE or specific antigen stimulation of RBL-2H3 cells increases the expression of TNF-α and activates various signaling molecules including S6K1, Akt and p38 MAPK. Rapamycin specifically inhibits antigen-induced TNF-α mRNA level, while other kinase inhibitors have no effect on TNF-α mRNA level. These data indicate that mTOR signaling pathway is the main regulation mechanism for antigen-induced TNF-α expression. TNF-α mRNA stability analysis using reporter construct containing TNF-α adenylate/uridylate-rich elements (AREs) shows that rapamycin destabilizes TNF-α mRNA via regulating the AU-rich element of TNF-α mRNA. The antigen-induced activation of S6K1 is inhibited by specific kinase inhibitors including mTOR, PI3K, PKC and Ca2+chelator inhibitor, while TNF-α mRNA level is reduced only by rapamycin treatment. These data suggest that the effects of rapamycin on the expression of TNF-α mRNA are not mediated by S6K1 but regulated by mTOR. Taken together, our results reveal that mTOR signaling pathway is a novel regulation mechanism for antigen-induced TNF-α expression in RBL-2H3 cells.
Collapse
Affiliation(s)
- Jong-Woo Park
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Givi ME, Blokhuis BR, Da Silva CA, Adcock I, Garssen J, Folkerts G, Redegeld FA, Mortaz E. Cigarette smoke suppresses the surface expression of c-kit and FcεRI on mast cells. Mediators Inflamm 2013; 2013:813091. [PMID: 23476107 PMCID: PMC3583132 DOI: 10.1155/2013/813091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/01/2013] [Accepted: 01/02/2013] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multicomponent disease characterized by emphysema and/or chronic bronchitis. COPD is mostly associated with cigarette smoking. Cigarette smoke contains over 4,700 chemical compounds, including free radicals and LPS (a Toll-Like Receptor 4 agonist) at concentrations which may contribute to the pathogenesis of diseases like COPD. We have previously shown that short-term exposure to cigarette smoke medium (CSM) can stimulate several inflammatory cells via TLR4 and that CSM reduces the degranulation of bone-marrow-derived mast cells (BMMCs). In the current study, the effect of CSM on mast cells maturation and function was investigated. Coculturing of BMMC with CSM during the development of bone marrow progenitor cells suppressed the granularity and the surface expression of c-kit and Fc ε RI receptors. Stimulation with IgE/antigen resulted in decreased degranulation and release of Th1 and Th2 cytokines. The effects of CSM exposure could not be mimicked by the addition of LPS to the culture medium. In conclusion, this study shows that CSM may affect mast cell development and subsequent response to allergic activation in a TLR4-independent manner.
Collapse
Affiliation(s)
- M. E. Givi
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - B. R. Blokhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - C. A. Da Silva
- Integrative Pharmacology, Department of Biosciences, AstraZeneca R&D Lund Respiratory and Inflammation Research Area, 22 187 Lund, 43183 Mölndal, Sweden
| | - I. Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - J. Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Research-Centre for Specialised Nutrition, P.O. Box 7005, 6700 CA Wageningen, The Netherlands
| | - G. Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - F. A. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - E. Mortaz
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Immunology, Chronic Respiratory Disease Research Center and National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, P.O. Box 19575/154, Tehran, Iran
| |
Collapse
|
40
|
Yamada P, Hatta T, Du M, Wakimizu K, Han J, Maki T, Isoda H. Inflammatory and degranulation effect of yellow sand on RBL-2H3 cells in relation to chemical and biological constituents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:9-17. [PMID: 22835726 DOI: 10.1016/j.ecoenv.2012.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 05/26/2023]
Abstract
Recent studie pointed out that allergic diseases have increased during the Asian dust storm event (ADSE) in Japan. Daily observations and the atmospheric concentrations of yellow sand (YS) aerosol have been increasing. In this study, YS samples collected from three sites of Japan during ADSE in 2009-2010 were used. The particles were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence-energy dispersive spectrometer (XRF-EDS). We investigate ability of YS extract on enhancing the chemical mediator release and cytokine production from rat basophilic leukemia (RBL-2H3) cells. The dust particles at Fukuoka and Tsukuba were abundant in aluminum (Al), iron (Fe), potassium (K) and titan (Ti) than those at Naha. Concentration of the trace endotoxin and Cryptomeria japonica pollen allergen (Cry j 1) were measured in YS extract. After exposure of RBL-2H3 cells to YS extract, the β-hexosaminidase (β-hex) release, tumor necrosis factor-alpha (TNF-α) production were enhanced in RBL-2H3 cells. This process depends on endotoxin, Cry j 1 and other allergen present in the YS extract. YS water extract also show a strong cytotoxic effect on the cells. This data suggest that low levels of endotoxin and Cry j 1 in YS may cause allergy during the ADSE.
Collapse
Affiliation(s)
- Parida Yamada
- Alliance for Research on North Africa, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Li JR, Shi L, Deng Z, Lo SH, Liu GY. Nanostructures of designed geometry and functionality enable regulation of cellular signaling processes. Biochemistry 2012; 51:5876-93. [PMID: 22783801 PMCID: PMC4041195 DOI: 10.1021/bi200880p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Extracellular matrices (ECM) triggered cellular signaling processes often begin with the clustering of the cellular receptors such as integrin and FcεRI. The sizes of these initial protein complexes or clusters are tens to 100 nm in dimension; therefore, engineered nanostructures could provide effective mimics of ECM for investigation and control of the initial and downstream specific signaling processes. This current topic discusses recent advances in nanotechnology in the context of design and production of matching chemical functionality and geometry for control of specific cellular signaling processes. Two investigations are reported to demonstrate this concept: (a) how the presentation of antigen at the nanometer scale would influence the aggregation of FcεRI, which would impact the formation of activation complexes, leading to the rearrangement of actin in cytoskeleton and degranulation or activation of mast cells; (b) how the engineered nanostructure could guide the initial integrin clustering, which would impact the formation of focal adhesion and downstream cell signaling cascades, leading to polarization, migration, and morphological changes. Complementary to engineered ECMs using synthetic ligands or peptides, or topographic control at the micrometer scale, nanostructures of designed geometry and chemical functionality provide new and effective biochemical cues for regulation of cellular signaling processes and downstream behaviors.
Collapse
Affiliation(s)
- Jie-Ren Li
- Department of Chemistry, University of California, Davis, California 95616
| | - Lifang Shi
- Department of Chemistry, University of California, Davis, California 95616
| | - Zhao Deng
- Department of Chemistry, University of California, Davis, California 95616
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, Center for Tissue Regeneration and Repair, University of California-Davis, Medical Center, Sacramento, California 95817
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, California 95616
| |
Collapse
|
42
|
Vo TS, Ngo DH, Kim SK. Gallic acid-grafted chitooligosaccharides suppress antigen-induced allergic reactions in RBL-2H3 mast cells. Eur J Pharm Sci 2012; 47:527-33. [PMID: 22820028 DOI: 10.1016/j.ejps.2012.07.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 01/05/2023]
Abstract
In this study, a bioactive derivative of chitooligosaccharides (3-5 kDa) was synthesized via grafting of gallic acid onto chitooligosaccharides (G-COS) to enhance anti-allergic activity. Hence, G-COS was evaluated for its capabilities against allergic reactions in RBL-2H3 mast cells sensitized with dinitrophenyl-specific immunoglobulin E antibody and stimulated by antigen dinitrophenyl-bovine serum albumin. It was revealed that G-COS exhibited significant inhibition on histamine release and production as well as intracellular Ca(2+) elevation at the concentration of 200μg/ml. Likewise, the suppressive effects of G-COS on expression and production of interleukin (IL)-4 and tumor necrosis factor (TNF)-α were evidenced. Moreover, G-COS treatment caused a remarkable blockade on degradation of inhibitory κB-α (IκB-α) protein, translocation of nuclear factor (NF)-κB, and phosphorylation of mitogen-activated protein kinases (MAPKs). Notably, the inhibitory activities of G-COS on allergic reactions were found as a consequence of suppression of FcεRI expression in antigen-stimulated cells. Accordingly, G-COS was suggested to be a promising candidate of novel inhibitors against allergic reactions.
Collapse
Affiliation(s)
- Thanh-Sang Vo
- Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | |
Collapse
|
43
|
Kashiwakura JI, Okayama Y, Furue M, Kabashima K, Shimada S, Ra C, Siraganian RP, Kawakami Y, Kawakami T. Most Highly Cytokinergic IgEs Have Polyreactivity to Autoantigens. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2012; 4:332-40. [PMID: 23115729 PMCID: PMC3479226 DOI: 10.4168/aair.2012.4.6.332] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/13/2012] [Accepted: 05/02/2012] [Indexed: 12/02/2022]
Abstract
Purpose Monomeric IgE molecules, when bound to the high-affinity receptor, exhibit a vast heterogeneity in their ability to induce survival promotion and cytokine production in mast cells. At one end of this spectrum, highly cytokinergic (HC) IgEs can induce potent survival promotion, degranulation, cytokine production, migration, etc., whereas at the other end, poorly cytokinergic (PC) IgEs can do so inefficiently. In this study, we investigated whether IgEs recognize autoantigens and whether IgEs' binding of autoantigens correlates with difference s in HC versus PC properties. Methods Enzyme-linked immunosorbent assays were performed to test whether IgEs bind antigens. Histamine-releasing factor in human sera was quantified by western blotting. Cultured mast cells derived from human cord blood were used to test the effects of human sera on cytokine production. Results Most (7/8) of mouse monoclonal HC IgEs exhibited polyreactivity to double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), β-galactosidase, thyroglobulin and/or histamine-releasing factor. By contrast, mouse PC IgEs failed to react with these antigens. A human monoclonal HC IgE also showed polyreactivity to histamine-releasing factor, dsDNA and ssDNA. Interestingly, sera from atopic dermatitis patients showed increased reactivity to ssDNA and β-galactosidase and increased levels of histamine-releasing factor. Some atopic dermatitis patients, but not healthy individuals, had substantial serum levels of HRF-reactive IgE. Sera from atopic dermatitis patients with high titers of DNA-reactive IgE could induce several fold more IL-8 secretion in human mast cells than sera from healthy individuals. Conclusions The results show that most HC, but not PC, IgEs exhibit polyreactivity to autoantigens, supporting the autoimmune mechanism in the pathogenesis of atopic dermatitis.
Collapse
Affiliation(s)
- Jun-Ichi Kashiwakura
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA. ; Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Science, Itabashi-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Inhibitory effect of tannins from galls of Carpinus tschonoskii on the degranulation of RBL-2H3 Cells. Cytotechnology 2012; 64:349-56. [PMID: 22669603 DOI: 10.1007/s10616-012-9457-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 04/06/2012] [Indexed: 12/20/2022] Open
Abstract
In this study, the anti-allergy potency of thirteen tannins isolated from the galls on buds of Carpinus tschonoskii (including two tannin derivatives) was investigated. RBL-2H3 (rat basophilic leukemia) cells were incubated with these compounds, and the release of β-hexosaminidase and cytotoxicity were measured. Of the thirteen tannins, tetragalloylglucose (2), pentagalloylglucose (3), casuarictin (4), and casuarinin (9) were the most potent inhibitors, and all the tannins showed no cytotoxic effect after 24 h of incubation. The results obtained suggest that tannins from C. tschonoskii are capable of inhibiting allergic reactions and may be useful for the treatment or prevention of type I allergic diseases.
Collapse
|
45
|
Manikandan J, Kothandaraman N, Hande MP, Pushparaj PN. Deciphering the structure and function of FcεRI/mast cell axis in the regulation of allergy and anaphylaxis: a functional genomics paradigm. Cell Mol Life Sci 2012; 69:1917-29. [PMID: 22146792 PMCID: PMC11114762 DOI: 10.1007/s00018-011-0886-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 10/27/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
Allergy and anaphylaxis are inflammatory disorders caused by immune reactions mainly induced by immunoglobulin-E that signal through the high-affinity FcεRI receptor to release the inflammatory mediators from innate immune cells. The FcεRI/mast cell axis is potently involved in triggering various intracellular signaling molecules to induce calcium release from the internal stores, induction of transcription factors such as NF-kB, secretion of various cytokines as well as lipid mediators, and degranulation, resulting in the induction of allergy and anaphylaxis. In this review, we discuss various cellular and molecular mechanisms triggered through FcεRI/mast cell axis in allergy and anaphylaxis with a special emphasis on the functional genomics paradigm.
Collapse
Affiliation(s)
- Jayapal Manikandan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
46
|
Caffeic acid phenethyl ester attenuates IgE-induced immediate allergic reaction. Inflammopharmacology 2012; 21:169-76. [PMID: 22610380 DOI: 10.1007/s10787-012-0138-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Caffeic acid phenethyl ester (CAPE) is the active component of honey bee propolis extracts. The results of the current study demonstrate that CAPE attenuated immunoglobulin (Ig)E-mediated allergic response in mast cells. Oral administration of CAPE inhibited IgE-mediated passive cutaneous anaphylaxis. CAPE effectively reduced both histamine and serotonin (5-HT)-induced vascular permeability in rats. CAPE also reduced histamine and leukotrienes (LTs) release from isolated rat peritoneal mast cells. Moreover, CAPE suppressed contraction induced by histamine (3 × 10(-8)-3 × 10(-5) M), 5-HT (3 × 10(-9)-10(-6) M) and adenosine (3 × 10(-8)-10(-5) M) in guinea pig tracheal zigzag. These findings provide evidence that CAPE may serve as an effective therapeutic agent for allergic diseases.
Collapse
|
47
|
Isolation and identification of flavonoids from Gujeolcho (Chrysanthemum zawadskii var. latilobum) as inhibitor of histamine release. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0079-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
48
|
Park DK, Choi WS, Park HJ. Antiallergic activity of novel isoflavone methyl-glycosides from Cordyceps militaris grown on germinated soybeans in antigen-stimulated mast cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2309-15. [PMID: 22296272 DOI: 10.1021/jf205199j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Isoflavones are known to possess immunomodulating and antiallergic activities. Previously we identified novel isoflavone methyl-glycosides (daidzein 7-O-β-d-glucoside 4″-O-methylate (CDGM), glycitein 7-O-β-D-glucoside 4″-O-methylate (CGLM), genistein 7-O-β-D-glucoside 4″-O-methylate (CGNMI) and genistein 4'-O-β-D-glucoside 4″-O-methylate (CGNMII)) from Cordyceps militaris grown on germinated soybeans (GSC). The biological activity of novel isoflavone methyl-glycosides, however, remains unknown. In this study, CGNMII showed the strongest inhibition of degranulation. Additionally, the release of interleukin (IL)-4 and tumor necrosis factor (TNF)-α was decreased by CGNMII in antigen-stimulated RBL-2H3 cells. To elucidate the antiallergic mechanism of CGNMII, we examined whether it affected levels of signaling molecules responsible for degranulation. The levels of activated Lyn, Syk, PLCγ1 and LAT proteins were reduced in CGNMII treated RBL-2H3 cells. CGNMII also inhibited the activation of AKT and ERK1/2 proteins. These results suggest that CGNMII might be used as a therapeutic agent for allergic diseases.
Collapse
Affiliation(s)
- Dong Ki Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | | | | |
Collapse
|
49
|
Maeda-Yamamoto M, Ema K, Monobe M, Tokuda Y, Tachibana H. Epicatechin-3-O-(3″-O-methyl)-gallate content in various tea cultivars (Camellia sinensis L.) and its in vitro inhibitory effect on histamine release. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2165-2170. [PMID: 22339247 DOI: 10.1021/jf204497b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It has been reported that epigallocatechin-3-O-(3″-O-methyl)-gallate (EGCG3″Me) and the EGCG3″Me-rich green tea ( Camellia sinensis L.) cultivar 'Benifuuki' exhibit antiallergic effects. The objective of this study was to investigate the effect of various tea leaf catechins on histamine release from murine bone marrow mast cells (BMMC). At a dose of 50 μg/mL, the rank order of histamine release inhibition was observed to be epicatechin-3-O-(3″-O-methyl)-gallate (ECG3″Me) > gallocatechin-3-O-(3″-O-methyl)-gallate (GCG3″Me) > EGCG3″Me > gallocatechin-gallate (GCG) > catechin-gallate (CG) > EGCG > epicatechin-gallate (ECG) > epigallocatechin (EGC) > gallocatechin (GC). Of the various tea cultivars analyzed by HPLC, the greatest content of ECG3″Me was found in the third crop of 'Benifuuki' (1.05% dry weight). Moreover, ECG3″Me content was positively correlated with EGCG3″Me content in 'Benifuuki' tea leaves. In an assay of mixtures of ECG3″Me and EGCG3″Me, inhibitory activity (50 μg/mL in total) was increased as the content of ECG3″Me increased. This suggests that ECG3″Me might link to the antiallergic effect of 'Benifuuki' tea, as has been reported for EGCG3″Me.
Collapse
Affiliation(s)
- Mari Maeda-Yamamoto
- National Institute of Vegetable and Tea Science, National Agriculture and Food Research Organization, Kanaya, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
50
|
Abstract
The concentration of nerve growth factor (NGF) is elevated in a number of inflammatory and autoimmune states in conjunction with increased accumulation of mast cells. Mast cells, which are of hematopoietic lineage, and NGF appear to be involved in neuroimmune interactions and tissue inflammation. Mast cells themselves are capable of producing and responding to NGF. Here we describe a protocol for the isolation and culture of peritoneal-derived rat mast cells, together with a [(3)H]serotonin release assay which is useful in assessing the effects of antigens and neurotrophic factors on mast-cell activation.
Collapse
|