1
|
Tomczyk MD, Matczak K, Denel-Bobrowska M, Dzido G, Kubicka A, Gendosz de Carrillo D, Cichoń T, Golec M, Powieczko B, Rzetelny W, Olejniczak AB, Pérez-Sánchez H. Combining Sulfonylureas with Anticancer Drugs: Evidence of Synergistic Efficacy with Doxorubicin In Vitro and In Vivo. Int J Mol Sci 2025; 26:1429. [PMID: 40003896 PMCID: PMC11855866 DOI: 10.3390/ijms26041429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Sulfonylureas (SUs)-a class of drugs primarily used to treat type 2 diabetes-have recently attracted interest for their potential anticancer properties. While some studies have explored the chemical modification or design of new SU derivatives, our work instead centers on biological evaluations of all commercially available SUs in combination with doxorubicin (DOXO). These antidiabetic agents act by stimulating insulin secretion via KATP channel inhibition, and because KATP channels share structural features with ATP-binding cassette (ABC) transporters involved in multidrug resistance (e.g., P-glycoprotein, MRP1, and MRP2), SUs may also reduce cancer cell drug efflux. In this study, we systematically examined each commercially available SU for potential synergy with DOXO in a panel of human cancer cell lines. Notably, combining DOXO with glimepiride (GLIM), the newest SU, results in a 4.4-fold increase in cytotoxicity against MCF-7 breast cancer cells relative to DOXO alone. Mechanistic studies suggest that the observed synergy may arise from increased intracellular accumulation of DOXO. Preliminary in vivo experiments support these findings, showing that DOXO (5 mg/kg, i.v.) plus GLIM (4 mg/kg, i.p.) is more effective at inhibiting 4T1 tumor growth in mice than DOXO alone. Additionally, we show that adding a small amount of the surfactant Tween-80 to culture media affects SU binding to bovine serum albumin (BSA), potentially unmasking anticancer effects of SUs that strongly bind to proteins. Overall, these results underscore the potential of repurposing existing SUs to enhance standard chemotherapy regimens.
Collapse
Affiliation(s)
- Mateusz D. Tomczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143, 90-236 Łódź, Poland; (K.M.); (A.K.)
| | - Marta Denel-Bobrowska
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland; (M.D.-B.); (A.B.O.)
| | - Grzegorz Dzido
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland;
| | - Anna Kubicka
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143, 90-236 Łódź, Poland; (K.M.); (A.K.)
| | - Daria Gendosz de Carrillo
- Department of Physiology, Faculty of Medical Sciences, Medical University of Silesia, Medyków 18, 40-055 Katowice, Poland;
- Department of Histology and Cell Pathology, Faculty of Medical Sciences, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102 Gliwice, Poland;
| | - Marlena Golec
- Department of Radiopharmacy and Preclinical PET Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102 Gliwice, Poland;
| | - Beata Powieczko
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Waldemar Rzetelny
- Department of Chemotherapy, Hospital of the Ministry of Interior and Administration in Łódź, Północna 42, 91-425 Łódź, Poland;
| | - Agnieszka B. Olejniczak
- Screening Laboratory, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland; (M.D.-B.); (A.B.O.)
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Murcia, Spain;
| |
Collapse
|
2
|
Hegazi OE, Alalalmeh SO, Shahwan M, Jairoun AA, Alourfi MM, Bokhari GA, Alkhattabi A, Alsharif S, Aljehani MA, Alsabban AM, Almtrafi M, Zakri YA, AlMahmoud A, Alghamdi KM, Ashour AM, Alorfi NM. Exploring Promising Therapies for Non-Alcoholic Fatty Liver Disease: A ClinicalTrials.gov Analysis. Diabetes Metab Syndr Obes 2024; 17:545-561. [PMID: 38327733 PMCID: PMC10847589 DOI: 10.2147/dmso.s448476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common disease and has been increasing in recent years. To date, no FDA-approved drug specifically targets NAFLD. Methods The terms "Non-alcoholic Fatty Liver Disease" and "NAFLD" were used in a search of ClinicalTrials.gov on August 24, 2023. Two evaluators independently examined the trials using predetermined eligibility criteria. Studies had to be interventional, NAFLD focused, in Phase IV, and completed to be eligible for this review. Results The ClinicalTrials.gov database was searched for trials examining pharmacotherapeutics in NAFLD. The search revealed 1364 trials, with 31 meeting the inclusion criteria. Out of these, 19 were finalized for evaluation. The dominant intervention model was Parallel. The most prevalent studies were in Korea (26.3%) and China (21.1%). The most common intervention was metformin (12.1%), with others like Exenatide and Pioglitazone accounting for 9.1%. Conclusion Therapeutics used to manage NAFLD are limited. However, various medications offer potential benefits. Further investigations are definitely warranted.
Collapse
Affiliation(s)
- Omar E Hegazi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Samer O Alalalmeh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai, United Arab Emirates
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mansour M Alourfi
- Internal medicine Department, King Faisal Medical City for Southern Region, Abha, Saudi Arabia
- Department of gastroenterology, East Jeddah hospital, Jeddah, Saudi Arabia
| | | | | | - Saeed Alsharif
- Gastroenterology Department, Armed force Hospital of southern region, Khamis Mushait, Saudi Arabia
| | - Mohannad Abdulrahman Aljehani
- Division of Gastroenterology, Department of Medicine, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | | | - Mohammad Almtrafi
- Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Ysear Abdulaziz Zakri
- Gastroenterology Section, Department of Medicine, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Abdullah AlMahmoud
- Gastroenterology Section, Internal Medicine Department, King Fahad Hospital, Jeddah, Saudi Arabia
| | - Khalid Mohammed Alghamdi
- Gastroenterology Section, Internal Medicine Department, King Fahad Hospital, Jeddah, Saudi Arabia
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Tomlinson B, Li YH, Chan P. Evaluating gliclazide for the treatment of type 2 diabetes mellitus. Expert Opin Pharmacother 2022; 23:1869-1877. [DOI: 10.1080/14656566.2022.2141108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yan-hong Li
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
4
|
Ekong MB, Odinukaeze FN, Nwonu AC, Mbadugha CC, Nwakanma AA. BRAIN ACTIVITIES OF STREPTOZOTOCIN-INDUCED DIABETIC WISTAR RATS TREATED WITH GLICLAZIDE: BEHAVIOURAL, BIOCHEMICAL AND HISTOMORPHOLOGY STUDIES. IBRO Neurosci Rep 2022; 12:271-279. [PMID: 35746981 PMCID: PMC9210456 DOI: 10.1016/j.ibneur.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Gliclazide (GLD), a sulphonylurea is efficacious in the treatment of diabetes type-2. However, there is limited information on its activity in the brain, especially in diabetics. This research investigated the brain activities of GLD following streptozotocin-induced diabetes in Wistar rats. Twenty five adult male Wistar rats (200–250 g) were grouped (n = 5) as: Control (distilled water, 5 mL/kg) and GLD (150 mg/kg) groups; and the diabetic groups, untreated streptozotocin (STZ, 35 mg/kg), and STZ (35 mg/kg) treated with GLD (150 mg/kg) for two and four weeks, and already on high fat diet. The animals’ body weights and blood glucose levels were checked weekly. After the experimental duration, spontaneous alternation and novel object recognition tests were carried out and the animals sacrificed. Perfusion with phosphate buffered saline preceded brain excision for biochemical analyses, with halves fixed in 10% neutral buffered formalin for histology. Compared with the control, results showed (p < 0.05) declined spontaneous alternation and exploratory activities with no preference for familiar or novel objects, body weights loss, raised blood glucose, increased malondialdehyde with decreased superoxide dismutase concentrations, and no apparent adverse effect on hippocampal and prefrontal cortical Nissl substance in the untreated diabetic group. The adverse observations were attenuated in the GLD treated diabetic groups; although the spontaneous alternation in the four weeks GLD treated diabetic group improved (p < 0.05), exploration of objects increased (p < 0.05) without preference. The present results showed that treatment with GLD for two and four weeks mitigated STZ activities, even though there was less improvement in neurocognitive activities.
Collapse
Affiliation(s)
- Moses B. Ekong
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
- Corresponding author.
| | - Francis N. Odinukaeze
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Amaobi C. Nwonu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | | | - Agnes A. Nwakanma
- Department of Anatomy, Faculty of Basic Medical Sciences, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
| |
Collapse
|
5
|
Structural Insights and Supramolecular Description of Gliclazide and its Impurity F. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Wang K, Yang A, Shi M, Tam CCH, Lau ESH, Fan B, Lim CKP, Lee HM, Kong APS, Luk AOY, Tomlinson B, Ma RCW, Chan JCN, Chow E. CYP2C19 Loss-of-function Polymorphisms are Associated with Reduced Risk of Sulfonylurea Treatment Failure in Chinese Patients with Type 2 Diabetes. Clin Pharmacol Ther 2021; 111:461-469. [PMID: 34656068 PMCID: PMC9297921 DOI: 10.1002/cpt.2446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/08/2021] [Indexed: 01/14/2023]
Abstract
Sulfonylureas (SUs) are predominantly metabolized by cytochrome p450 2C9 (CYP2C9) and cytochrome p450 2C19 (CYP2C19) enzymes. CYP2C9 polymorphisms are associated with greater treatment response and hypoglycemic risk in SU users. However, there are no large scale pharmacogenetic studies investigating the effect of loss‐of‐function alleles CYP2C19*2 and CYP2C19*3, which occur frequently in East Asians. Retrospective pharmacogenetic analysis was performed in 11,495 genotyped patients who were enrolled in the Hong Kong Diabetes Register between 1995 and 2017, with follow‐up to December 31, 2019. The associations of CYP2C19 polymorphisms with SU treatment failure, early HbA1c response, and severe hypoglycemia were analyzed by Cox regression or logistic regression assuming an additive genetic model. There were 2341 incident SU users that were identified (mean age 59 years, median diabetes duration 9 years), of which 324 were CYP2C19 poor metabolizers (CYP2C19 *2/*2 or *2/*3 or *3/*3). CYP2C19 poor metabolizers had lower risk of SU treatment failure (hazard ratio 0.83, 95% confidence interval (CI) 0.72–0.97, P = 0.018) and were more likely to reach the HbA1c treatment target < 7% (odds ratio 1.52, 95% CI 1.02–2.27, P = 0.039) than wild‐type carriers (CYP2C19 *1/*1) following adjustment for multiple covariates. There were no significant differences in severe hypoglycemia rates among different CYP2C19 genotype groups. CYP2C19 polymorphisms should be considered during personalization of SU therapy.
Collapse
Affiliation(s)
- Ke Wang
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aimin Yang
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Mai Shi
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Claudia C H Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Eric S H Lau
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baoqi Fan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Cadmon K P Lim
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Heung Man Lee
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Alice P S Kong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Andrea O Y Luk
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| |
Collapse
|
7
|
Ezzat SM, Abdallah HMI, Yassen NN, Radwan RA, Mostafa ES, Salama MM, Salem MA. Phenolics from Physalis peruviana fruits ameliorate streptozotocin-induced diabetes and diabetic nephropathy in rats via induction of autophagy and apoptosis regression. Biomed Pharmacother 2021; 142:111948. [PMID: 34385108 DOI: 10.1016/j.biopha.2021.111948] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022] Open
Abstract
The objective of our study was to evaluate the effect of Physalis peruviana L. fruits in the management of diabetes and diabetic nephropathy in relation to its metabolic profile. In-vitro α-amylase, β-glucosidase, and lipase inhibition activities were assessed for the ethanolic extract (EtOH) and its subfractions. Ethyl acetate (EtOAc) fraction showed the highest α-amylase, β-glucosidase, and lipase inhibition effect. In vivo antihyperglycemic testing of EtOAc in streptozotocin (STZ)-induced diabetic rats showed that it decreased the blood glucose level, prevented the reduction in body weight, improved serum indicators of kidney injury (urea, uric acid, creatinine), and function (albumin and total protein). EtOAc increased autophagic parameters (LC3B, AMPK) and depressed mTOR contents. Histopathology revealed that EtOAc ameliorated the pathological features and decreased the glycogen content induced by STZ. The immunohistochemical analysis showed that EtOAc reduced P53 expression as compared to the STZ-diabetic group. UPLC-ESI-MS/MS metabolite profiling of EtOAc allowed the identification of several phenolic compounds. Among the isolated compounds, gallic acid, its methylated dimer and the glycosides of quercetin had promising α-amylase and β-glucosidase inhibition activity. The results suggest that the phenolic-rich fraction has a protective effects against diabetic nephropathy presumably via enhancing autophagy (AMPK/mTOR pathway) and prevention of apoptosis (P53 suppression).
Collapse
Affiliation(s)
- Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt.
| | - Heba M I Abdallah
- Department of Pharmacology, Medical Research Division, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Cairo, Egypt.
| | - Noha N Yassen
- Department of Pathology, Medical Research Division, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Cairo, Egypt.
| | - Rasha A Radwan
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, East Kantara Branch, New City El Ismailia 41611, Egypt.
| | - Eman S Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt.
| | - Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt.
| | - Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom 32511, Menoufia, Egypt.
| |
Collapse
|
8
|
Nasr M, Almawash S, Al Saqr A, Bazeed AY, Saber S, Elagamy HI. Bioavailability and Antidiabetic Activity of Gliclazide-Loaded Cubosomal Nanoparticles. Pharmaceuticals (Basel) 2021; 14:786. [PMID: 34451883 PMCID: PMC8398842 DOI: 10.3390/ph14080786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/01/2023] Open
Abstract
In this study, gliclazide-loaded cubosomal particles were prepared for improving the oral bioavailability and antidiabetic activity of gliclazide. Four formulations of gliclazide-loaded cubosomal nanoparticles dispersions were prepared by the emulsification method using four different concentrations of glyceryl monooleate (GMO) and poloxamer 407 (P407) as the stabilizer. The prepared formulations were in vitro and in vivo evaluated. In vitro, the prepared gliclazide-loaded cubosomal dispersions exhibited disaggregated regular poly-angular particles with a nanometer-sized particle range from 220.60 ± 1.39 to 234.00 ± 2.90 nm and entrapped 73.84 ± 3.03 to 88.81 ± 0.94 of gliclazide. In vitro gliclazide release from cubosomal nanoparticles revealed an initially higher drug release during the first 2 h in acidic pH medium; subsequently, a comparatively higher drug release in alkaline medium relative to gliclazide suspension was observed. An in vivo absorption study in rats revealed a two-fold increase in the bioavailability of gliclazide cubosomal formulation relative to plain gliclazide suspension. Moreover, the study of in vivo hypoglycemic activity indicated that a higher percentage reduction in glucose level was observed after the administration of gliclazide cubosomal nanoparticles to rats. In conclusion, gliclazide-loaded cubosomal nanoparticles could be a promising delivery system for improving the oral absorption and antidiabetic activity of gliclazide.
Collapse
Affiliation(s)
- Mohamed Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt; (A.Y.B.); (H.I.E.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 15581, Saudi Arabia;
| | - Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Alaa Y. Bazeed
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt; (A.Y.B.); (H.I.E.)
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Heba I. Elagamy
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt; (A.Y.B.); (H.I.E.)
| |
Collapse
|
9
|
Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021; 334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
Amphiphilic block copolymers are widely utilized in the design of formulations owing to their unique physicochemical properties, flexible structures and functional chemistry. Amphiphilic polymeric micelles (APMs) formed from such copolymers have gained attention of the drug delivery scientists in past few decades for enhancing the bioavailability of lipophilic drugs, molecular targeting, sustained release, stimuli-responsive properties, enhanced therapeutic efficacy and reducing drug associated toxicity. Their properties including ease of surface modification, high surface area, small size, and enhanced permeation as well as retention (EPR) effect are mainly responsible for their utilization in the diagnosis and therapy of various diseases. However, some of the challenges associated with their use are premature drug release, low drug loading capacity, scale-up issues and their poor stability that need to be addressed for their wider clinical utility and commercialization. This review describes comprehensively their physicochemical properties, various methods of preparation, limitations followed by approaches employed for the development of optimized APMs, the impact of each preparation technique on the physicochemical properties of the resulting APMs as well as various biomedical applications of APMs. Based on the current scenario of their use in treatment and diagnosis of diseases, the directions in which future studies need to be carried out to explore their full potential are also discussed.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | | | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, Jaipur, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gopal L Khatik
- National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi road, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India; Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
10
|
Modulating Gliclazide Release and Bioavailability Utilizing Multiparticulate Drug Delivery Systems. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09542-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Al-Kassas R, Madni A, Buchanan C, Shelling AN. pH-Sensitive Nanoparticles Developed and Optimized Using Factorial Design for Oral Delivery of Gliclazide. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09536-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Cardiovascular Safety and Benefits of Noninsulin Antihyperglycemic Drugs for the Treatment of Type 2 Diabetes Mellitus-Part 1. Cardiol Rev 2021; 28:177-189. [PMID: 32282393 DOI: 10.1097/crd.0000000000000308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is a major contributor to the morbidity and mortality associated with type 2 diabetes mellitus (T2DM). With T2DM growing in pandemic proportions, there will be profound healthcare implications of CVD in person with diabetes. The ideal drugs to improve outcomes in T2DM are those having antiglycemic efficacy in addition to cardiovascular (CV) safety, which has to be determined in appropriately designed CV outcome trials as mandated by regulatory agencies. Available evidence is largely supportive of metformin's CV safety and potential CVD risk reduction effects, whereas sulfonylureas are either CV risk neutral or are associated with variable CVD risk. Pioglitazone was also associated with improved CVD risk in patients with diabetes. The more recent antihyperglycemic medications have shown promise with regards to CVD risk reduction in T2DM patients at a high CV risk. Glucagon-like peptide-1 receptor agonists, a type of incretin-based therapy, were associated with better CV outcomes and mortality in T2DM patients, leading to the Food and Drug Administration approval of liraglutide to reduce CVD risk in high-risk T2DM patients. Ongoing and planned randomized controlled trials of the newer drugs should clarify the possibility of class effects, and of CVD risk reduction benefits in low-moderate CV risk patients. While metformin remains the first-line antiglycemic therapy in T2DM, glucagon-like peptide-1 receptor agonists should be appropriately prescribed in T2DM patients with baseline CVD or in those at a high CVD risk to improve CV outcomes. Dipeptidyl peptidase-4 inhibitors and sodium-glucose cotransporter-2 inhibitors are discussed in the second part of this review.
Collapse
|
13
|
H. Al-Nada A. Effect of Lipase Inhibitor (Orlistat) on Gliclazide and Metformin in Response to High-Fat Meal in Rat’s Gastrointestinal Tract. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.416.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Patel H, Pandey N, Patel B, Ranch K, Bodiwala K, Vyas B. Enhancement of in vivo hypoglycemic effect of gliclazide by developing self-microemulsifying pellet dosage form. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00034-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The present research was aimed to develop a self-microemulsifying drug delivery system (SMEDDS) pellet to increase the dissolution rate and in vivo hypoglycemic effect of gliclazide. Gliclazide belongs to BCS class 2 and it exhibits dissolution rate-limited absorption. Thus, dissolution enhancement of gliclazide from its dosage form is a prime requirement to achieve a better therapeutic effect. The solubility of gliclazide was estimated in oils, surfactants, and co-surfactants. A most effective self-emulsification region was identified using pseudoternary phase diagrams. The optimized liquid SMEDDS gliclazide formulation was converted to SMEDDS pellets using the extrusion-spheronization technique. The in vitro release and hypoglycemic effect of SMEDDS was compared with the marketed product.
Results
The optimized liquid gliclazide SMEDDS formulations contained mixtures of Tween 80 and PEG 400 and Capmul MCM C8. The gliclazide SMEDDS in liquid preparation quickly formed a fine oil-in-water microemulsion having a globule size of 31.50 nm. In vitro release of gliclazide from SMEDDS pellets was 100.9% within 20 min. SMEDDS pellets exhibited a significant reduction in plasma glucose levels in albino mice compared to the marketed product.
Conclusion
The results indicated that SMEDDS pellets could be effectively used to improve the oral delivery of gliclazide.
Collapse
|
15
|
Positive interaction of mangiferin with selected oral hypoglycemic drugs: a therapeutic strategy to alleviate diabetic nephropathy in experimental rats. Mol Biol Rep 2020; 47:4465-4475. [PMID: 32451927 DOI: 10.1007/s11033-020-05517-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is one of the notorious diabetes associated complications. Despite many therapeutic strategies available, metabolic control of DN continues to poses a challenge. In this study, the interactions of mangiferin with selected oral hypoglycemic drugs, metformin and gliclazide to effectively alleviate the symptoms of renal injury in DN are evaluated. Male Sprague Dawley rats were used as experimental model and type II diabetes was induced by administration of high fat diet and low dose streptozotocin. Oral intervention of mangiferin with metformin and gliclazide for a period of 28 days was given to diabetic rats. At the end of the treatment period, biochemical parameters, kidney function markers, anti-oxidant enzymes levels, oxidative stress mediated gene expression and histology were analysed. Significant reduction in the serum biochemical markers (glucose, urea and creatinine) were observed in the groups treated with combination drugs. Marked improvement in the combination treated groups in terms of inflammation and oxidative damage in the gene (TNFα, NFκB, TGFβ, VEGF, PKC) and protein expression (NFκB, VEGF) were noted in the kidney tissue alleviating the symptoms of DN. These results were further corroborated with histopathological results. Scientific data in the present study reveals that the combinations of mangiferin with the oral hypoglycemic drugs have been favorable in alleviating renal injury. Hence, a combination therapy to alleviate the vascular complication, diabetic nephropathy may be considered as a possible therapeutic strategy by including natural phytocompounds as an add on therapy to conventional oral hypoglycemic drugs.
Collapse
|
16
|
Panda BP, Krishnamoorthy R, Bhattamisra SK, Shivashekaregowda NKH, Seng LB, Patnaik S. Fabrication of Second Generation Smarter PLGA Based Nanocrystal Carriers for Improvement of Drug Delivery and Therapeutic Efficacy of Gliclazide in Type-2 Diabetes Rat Model. Sci Rep 2019; 9:17331. [PMID: 31758056 PMCID: PMC6874704 DOI: 10.1038/s41598-019-53996-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/05/2019] [Indexed: 12/31/2022] Open
Abstract
Drug delivery and therapeutic challenges of gliclazide, a BCS class II drug used in type 2 diabetes mellitus (T2DM) can be overcome by exploring smarter carriers of second-generation nanocrystals (SGNCs). A combined method of emulsion diffusion, high-pressure homogenization and solvent evaporation method were employed in the preparation of gliclazide loaded poly (D, L-lactide-co-glycolide) (PLGA) SGNCs. Taguchi experimental design was adopted in fabrication of Gliclazide SGNc using Gliclazide -PLGA ratio at 1:0.5, 1:0.75, 1:1 with stabilizer (Poloxamer-188, PEG 4000, HPMC E15 at 0.5, 0.75, 1% w/v). The formulated gliclazide of SGNCs were investigated for physicochemical properties, in vitro drug release, and in vivo performance studies using type-2 diabetes rat model. The formulation (SGNCF1) with Drug: PLGA 1: 0.5 ratio with 0.5% w/v Poloxamer-188 produced optimized gliclazide SGNCs. SGNCF1 showed spherical shape, small particle size (106.3 ± 2.69 nm), good zeta potential (−18.2 ± 1.30 mV), small PDI (0.222 ± 0.104) and high entrapment efficiency (86.27 ± 0.222%). The solubility, dissolution rate and bioavailability of gliclazide SGNCs were significantly improved compared to pure gliclazide. The findings emphasize gliclazide SGNCs produce faster release initially, followed by delayed release with improved bioavailability, facilitate efficient delivery of gliclazide in T2DM with better therapeutic effect.
Collapse
Affiliation(s)
- Bibhu Prasad Panda
- Department of Pharmaceutical Technology, School of Pharmacy, Taylor's University, Lakeside Campus, No 1, Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Rachna Krishnamoorthy
- Department of Pharmaceutical Technology, School of Pharmacy, Taylor's University, Lakeside Campus, No 1, Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | | | - Low Bin Seng
- School of Medicine, Taylor's University, Lakeside Campus, No 1, Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia
| | - Sujata Patnaik
- University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, India
| |
Collapse
|
17
|
Potential Applications of Gliclazide in Treating Type 1 Diabetes Mellitus: Formulation with Bile Acids and Probiotics. Eur J Drug Metab Pharmacokinet 2018; 43:269-280. [PMID: 29039071 DOI: 10.1007/s13318-017-0441-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A major advancement in therapy of type 1 diabetes mellitus (T1DM) is the discovery of new treatment which avoids and even replaces the absolute requirement for injected insulin. The need for multiple drug therapy of comorbidities associated with T1DM increases demand for developing novel therapeutic alternatives with new mechanisms of actions. Compared to other sulphonylurea drugs used in the treatment of type 2 diabetes mellitus, gliclazide exhibits a pleiotropic action outside pancreatic β cells, the so-called extrapancreatic effects, such as antiinflammatory and cellular protective effects, which might be beneficial in the treatment of T1DM. Results from in vivo experiments confirmed the positive effects of gliclazide in T1DM that are even more pronounced when combined with other hypoglycaemic agents such as probiotics and bile acids. Even though the exact mechanism of interaction at the molecular level is still unknown, there is a clear synergistic effect between gliclazide, bile acids and probiotics illustrated by the reduction of blood glucose levels and improvement of diabetic complications. Therefore, the manipulation of bile acid pool and intestinal microbiota composition in combination with old drug gliclazide could be a novel therapeutic approach for patients with T1DM.
Collapse
|
18
|
Bezerra KDC, Pinto EC, Cabral LM, de Sousa VP. Development of a Dissolution Method for Gliclazide Modified-Release Tablets Using USP Apparatus 3 with in Vitro-in Vivo Correlation. Chem Pharm Bull (Tokyo) 2018; 66:701-707. [PMID: 29962453 DOI: 10.1248/cpb.c17-00933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gliclazide (GLZ) is a second generation hypoglycemic drug used for the treatment of Type 2 diabetes mellitus. The low solubility of GLZ has been described as the rate limiting step for drug dissolution and absorption, thus a prediction of its in vivo behavior based on a discriminative dissolution test should lead to a relevant in vitro-in vivo correlation (IVIVC). The aim of this study was to develop a dissolution method for GLZ modified-release (MR) tablets using an United States Pharmacopeia (USP) apparatus 3 through its evaluation by an IVIVC analysis. Various dissolution parameters were evaluated to establish an in vitro method for GLZ tablets. The final dissolution conditions, referred to as method 3, utilized a 400 µm mesh and 30 dips per minute over a total period of 10 h that included 1h in HCl media (pH 1.2), 2h in acetate buffer solution (pH 4.5), 1 h in phosphate buffer solution (PBS; pH 5.8), 5h in PBS (pH 6.8) and finally 1h in PBS (pH 7.2). The calculated point-to-point IVIVC (R2=0.9970) was significantly greater than other methods. The robustness of method 3 suggests it could be applied to pharmaceutical equivalence studies and for quality control analyses of GLZ.
Collapse
Affiliation(s)
| | - Eduardo Costa Pinto
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | - Lucio Mendes Cabral
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | | |
Collapse
|
19
|
High-Loading Dose of Microencapsulated Gliclazide Formulation Exerted a Hypoglycaemic Effect on Type 1 Diabetic Rats and Incorporation of a Primary Deconjugated Bile Acid, Diminished the Hypoglycaemic Antidiabetic Effect. Eur J Drug Metab Pharmacokinet 2018; 42:1005-1011. [PMID: 28547295 DOI: 10.1007/s13318-017-0415-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Gliclazide is a drug commonly used in type 2 diabetes mellitus. Recently, gliclazide has shown desirable pharmacological effects such as immunoregulatory and anti-clotting effects, which suggests potential applications in type 1 diabetes mellitus (T1DM). Gliclazide has variable absorption after oral administration, and thus using targeted-delivery techniques, such as microencapsulation, may optimise gliclazide absorption and potential applications in T1DM. Bile acids such as cholic acid have shown microcapsule-stabilising and controlled-release effects, and thus their incorporation into gliclazide microcapsules may further optimise gliclazide release, absorption and antidiabetic effects. Accordingly, this study aimed to examine the hypoglycaemic effects of gliclazide microcapsules with and without cholic acid, in a rat model of T1DM. METHODS Thirty-five alloxan-induced T1DM rats were randomly divided into five equal groups and gavaged a single dose of empty microcapsules, gliclazide, gliclazide microcapsules, gliclazide-cholic acid or gliclazide-cholic acid microcapsules. Blood samples were collected over 10 h post-dose and analysed for blood glucose and gliclazide serum concentrations. RESULTS Gliclazide microcapsules exerted a hypoglycaemic effect in the diabetic rats, and cholic acid incorporation diminished the hypoglycaemic effects, which suggests the lack of synergistic effects between gliclazide and cholic acid. In addition, neither microencapsulation nor cholic acid incorporation optimised gliclazide absorption which suggests that hypoglycaemic effects of gliclazide are independent of its absorption and serum concentrations. This also suggests that hypoglycaemic effects of gliclazide may be associated with gut-metabolic activation rather than gut-targeted delivery and systemic absorption. CONCLUSION Gliclazide microcapsules exerted hypoglycaemic effects in T1DM rats independent of insulin and thus may have potentials in treatment of T1DM.
Collapse
|
20
|
Danafar H, Jaberizadeh H, Andalib S. In vitro and in vivo delivery of gliclazide loaded mPEG-PCL micelles and its kinetic release and solubility study. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1625-1636. [DOI: 10.1080/21691401.2017.1386191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hossein Danafar
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hoda Jaberizadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Andalib
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
21
|
Yandrapalli S, Jolly G, Horblitt A, Sanaani A, Aronow WS. Cardiovascular benefits and safety of non-insulin medications used in the treatment of type 2 diabetes mellitus. Postgrad Med 2017; 129:811-821. [PMID: 28749197 DOI: 10.1080/00325481.2017.1358064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a growing in exponential proportions. If the current growth trend continues, it may result in every third adult in the United States having diabetes mellitus by 2050, and every 10th adult worldwide. Type 2 diabetes mellitus (T2DM) confers a 2- to 3-fold increased risk of cardiovascular (CV) events compared with non-diabetic patients, and CV mortality is responsible for around 80% mortality in this population. Patients with T2DM can have other features of insulin resistance-metabolic syndrome like hypertension, lipid abnormalities, and obesity which are all associated with increased CV disease and stroke risk even in the absence of T2DM. The management of a T2DM calls for employing a holistic risk factor control approach. Metformin is the first line therapy for T2DM and has been shown to have cardiovascular beneficial effects. Intense debate regarding the risk of myocardial infarction with rosiglitazone led to regulatory agencies necessitating cardiovascular outcome trials with upcoming anti-diabetic medications. Glucagon like peptide-1 agonists and sodium glucose co-transporter-2 inhibitors have shown promising CV safety and additional CV benefit in recent clinical trials. These drugs have favorable effects on traditional CV risk factors. The findings from these studies further support that fact that CV risk factor control plays an important role in reducing morbidity and mortality in T2DM patients. This review article will discuss briefly the cardiovascular safety and benefits of the oral medications which are currently being used for T2DM and will then discuss in detail about the newer medications being investigated for the treatment of T2DM.
Collapse
Affiliation(s)
- Srikanth Yandrapalli
- a Cardiology Division, Department of Medicine , Westchester Medical Center /New York Medical College , Valhalla , NY , USA
| | - George Jolly
- a Cardiology Division, Department of Medicine , Westchester Medical Center /New York Medical College , Valhalla , NY , USA
| | - Adam Horblitt
- a Cardiology Division, Department of Medicine , Westchester Medical Center /New York Medical College , Valhalla , NY , USA
| | - Abdallah Sanaani
- a Cardiology Division, Department of Medicine , Westchester Medical Center /New York Medical College , Valhalla , NY , USA
| | - Wilbert S Aronow
- a Cardiology Division, Department of Medicine , Westchester Medical Center /New York Medical College , Valhalla , NY , USA
| |
Collapse
|
22
|
Bajpai S, Chand N, Tiwari S, Soni S. Swelling behavior of cross-linked dextran hydrogels and preliminary Gliclazide release behavior. Int J Biol Macromol 2016; 93:978-987. [DOI: 10.1016/j.ijbiomac.2016.09.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/25/2016] [Accepted: 09/20/2016] [Indexed: 01/27/2023]
|
23
|
Hays R, Esterman A, McDermott R. Type 2 Diabetes Mellitus Is Associated with Strongyloides stercoralis Treatment Failure in Australian Aboriginals. PLoS Negl Trop Dis 2015; 9:e0003976. [PMID: 26295162 PMCID: PMC4546619 DOI: 10.1371/journal.pntd.0003976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/12/2015] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To explore the efficacy of ivermectin in the treatment of serologically diagnosed cases of Strongyloides stercoralis (S. stercoralis) infection in an Aboriginal community and to describe factors that may influence the outcome of treatment. METHODS Longitudinal study of a group of 92 individuals with serologically diagnosed S. stercoralis treated with ivermectin and followed up over a period of approximately 6 months. Main outcomes were serological titers pre and post treatment, diabetic status, and duration of follow up. FINDINGS Treatment success was achieved in 62% to 79% of cases dependent on the methods employed for the diagnosis of infection and assessment of treatment outcome. Type 2 Diabetes Mellitus (T2DM) was found to be significantly associated with treatment failure in this group for two of the three methods employed. INTERPRETATION Ivermectin has been confirmed as an effective treatment for S stercoralis infection in this setting. T2DM appears to be an independent risk factor for treatment failure in this population, and plausible mechanisms to explain this observation are presented.
Collapse
Affiliation(s)
- Russell Hays
- Kimberley Aboriginal Medical Council, Broome, Western Australia, Australia
- James Cook University, Cairns Campus, Smithfield, Queensland, Australia
| | - Adrian Esterman
- Centre for Research Excellence in Chronic Disease Prevention, The Cairns Institute, James Cook University, Cairns Campus, Smithfield, Queensland, Australia
- Sansom Institute of Health Service Research and School of Nursing and Midwifery, University of South Australia City East Campus, Adelaide, South Australia, Australia
| | - Robyn McDermott
- Centre for Chronic Disease Prevention, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
- School of Population Health, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Nakamura Y, Hasegawa H, Tsuji M, Udaka Y, Mihara M, Shimizu T, Inoue M, Goto Y, Gotoh H, Inagaki M, Oguchi K. Diabetes therapies in hemodialysis patients: Dipeptidase-4 inhibitors. World J Diabetes 2015; 6:840-9. [PMID: 26131325 PMCID: PMC4478579 DOI: 10.4239/wjd.v6.i6.840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/16/2015] [Accepted: 04/01/2015] [Indexed: 02/05/2023] Open
Abstract
Although several previous studies have been published on the effects of dipeptidase-4 (DPP-4) inhibitors in diabetic hemodialysis (HD) patients, the findings have yet to be reviewed comprehensively. Eyesight failure caused by diabetic retinopathy and aging-related dementia make multiple daily insulin injections difficult for HD patients. Therefore, we reviewed the effects of DPP-4 inhibitors with a focus on oral antidiabetic drugs as a new treatment strategy in HD patients with diabetes. The following 7 DPP-4 inhibitors are available worldwide: sitagliptin, vildagliptin, alogliptin, linagliptin, teneligliptin, anagliptin, and saxagliptin. All of these are administered once daily with dose adjustments in HD patients. Four types of oral antidiabetic drugs can be administered for combination oral therapy with DPP-4 inhibitors, including sulfonylureas, meglitinide, thiazolidinediones, and alpha-glucosidase inhibitor. Nine studies examined the antidiabetic effects in HD patients. Treatments decreased hemoglobin A1c and glycated albumin levels by 0.3% to 1.3% and 1.7% to 4.9%, respectively. The efficacy of DPP-4 inhibitor treatment is high among HD patients, and no patients exhibited significant severe adverse effects such as hypoglycemia and liver dysfunction. DPP-4 inhibitors are key drugs in new treatment strategies for HD patients with diabetes and with limited choices for diabetes treatment.
Collapse
|
25
|
Reddy S, Ahmed I, Ahmad I, Mukhopadhyay A, Thangam S. Development and Validation of a Method for Simultaneous Estimation of Metformin and Sitagliptin in Human Plasma by LC–MS-MS and Its Application in a Bioequivalence Study. J Chromatogr Sci 2015; 53:1549-56. [DOI: 10.1093/chromsci/bmv055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 11/14/2022]
|
26
|
Kumar R, Arora V, Ram V, Bhandari A, Vyas P. Hypoglycemic and hypolipidemic effect of Allopolyherbal formulations in streptozotocin induced diabetes mellitus in rats. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ijdm.2011.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Schönherr D, Wollatz U, Haznar-Garbacz D, Hanke U, Box KJ, Taylor R, Ruiz R, Beato S, Becker D, Weitschies W. Characterisation of selected active agents regarding pKa values, solubility concentrations and pH profiles by SiriusT3. Eur J Pharm Biopharm 2015; 92:155-70. [PMID: 25758123 DOI: 10.1016/j.ejpb.2015.02.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/18/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
The aim of this work was to determine pKa values and solubility properties of 34active agents using the SiriusT3 apparatus. The selected drug substances belong to the groups of ACE-inhibitors, β-blockers, antidiabetics and lipid lowering substances. Experimentally obtained pKa and intrinsic solubility values were compared to calculated values (program ACD/ChemSketch) and pKa values to published data as well. Solubility-pH profiles were generated to visualise the substance solubility over the gastrointestinal pH range. The relationship between the solubility characteristic of a substance, its bioavailability and categorisation according to the Biopharmaceutics Classification System (BCS) was examined as well. The results showed a good agreement between experimentally obtained, calculated and published pKa values. The measured and calculated intrinsic solubility values indicated several major deviations. All solubility-pH profiles showed the expected shape and appearance for acids, bases or zwitterionic substances. The obtained results for the pKa and solubility measurements of the examined active agents may help to predict their physicochemical behaviour in vivo, and to understand the bioavailability of the substances according to their BCS categorisation. The easy and reproducible determination of pKa and solubility values makes the SiriusT3 apparatus a useful tool in early stages of drug and formulation development.
Collapse
Affiliation(s)
- D Schönherr
- University of Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacy, 17487 Greifswald, Germany
| | - U Wollatz
- University of Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacy, 17487 Greifswald, Germany
| | - D Haznar-Garbacz
- University of Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacy, 17487 Greifswald, Germany
| | - U Hanke
- University of Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacy, 17487 Greifswald, Germany
| | - K J Box
- Sirius Analytical Ltd., Forest Row, East Sussex RH18 5DW, UK
| | - R Taylor
- Sirius Analytical Ltd., Forest Row, East Sussex RH18 5DW, UK
| | - R Ruiz
- Sirius Analytical Ltd., Forest Row, East Sussex RH18 5DW, UK
| | - S Beato
- Novartis Pharma AG, Technical Research & Development, 4056 Basel, Switzerland
| | - D Becker
- Vivo Drug Delivery GmbH, 8832 Wollerau, Switzerland
| | - W Weitschies
- University of Greifswald, Center of Drug Absorption and Transport, Institute of Pharmacy, 17487 Greifswald, Germany.
| |
Collapse
|
28
|
Sahoo S, Haraldsdóttir HS, Fleming RMT, Thiele I. Modeling the effects of commonly used drugs on human metabolism. FEBS J 2014; 282:297-317. [PMID: 25345908 DOI: 10.1111/febs.13128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 09/21/2014] [Accepted: 10/13/2014] [Indexed: 02/02/2023]
Abstract
Metabolism contributes significantly to the pharmacokinetics and pharmacodynamics of a drug. In addition, diet and genetics have a profound effect on cellular metabolism with respect to both health and disease. In the present study, we assembled a comprehensive, literature-based drug metabolic reconstruction of the 18 most highly prescribed drug groups, including statins, anti-hypertensives, immunosuppressants and analgesics. This reconstruction captures in detail our current understanding of their absorption, intracellular distribution, metabolism and elimination. We combined this drug module with the most comprehensive reconstruction of human metabolism, Recon 2, yielding Recon2_DM1796, which accounts for 2803 metabolites and 8161 reactions. By defining 50 specific drug objectives that captured the overall drug metabolism of these compounds, we investigated the effects of dietary composition and inherited metabolic disorders on drug metabolism and drug-drug interactions. Our main findings include: (a) a shift in dietary patterns significantly affects statins and acetaminophen metabolism; (b) disturbed statin metabolism contributes to the clinical phenotype of mitochondrial energy disorders; and (c) the interaction between statins and cyclosporine can be explained by several common metabolic and transport pathways other than the previously established CYP3A4 connection. This work holds the potential for studying adverse drug reactions and designing patient-specific therapies.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | | | | | | |
Collapse
|
29
|
Mooranian A, Negrulj R, Mathavan S, Martinez J, Sciarretta J, Chen-Tan N, Mukkur T, Mikov M, Lalic-Popovic M, Stojančević M, Golocorbin-Kon S, Al-Salami H. Stability and Release Kinetics of an Advanced Gliclazide-Cholic Acid Formulation: The Use of Artificial-Cell Microencapsulation in Slow Release Targeted Oral Delivery of Antidiabetics. J Pharm Innov 2014; 9:150-157. [PMID: 24829616 PMCID: PMC4013442 DOI: 10.1007/s12247-014-9182-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction In previous studies carried out in our laboratory, a bile acid (BA) formulation exerted a hypoglycaemic effect in a rat model of type-1 diabetes (T1D). When the antidiabetic drug gliclazide (G) was added to the bile acid, it augmented the hypoglycaemic effect. In a recent study, we designed a new formulation of gliclazide-cholic acid (G-CA), with good structural properties, excipient compatibility and exhibits pseudoplastic-thixotropic characteristics. The aim of this study is to test the slow release and pH-controlled properties of this new formulation. The aim is also to examine the effect of CA on G release kinetics at various pH values and different temperatures. Method Microencapsulation was carried out using our Buchi-based microencapsulating system developed in our laboratory. Using sodium alginate (SA) polymer, both formulations were prepared: G-SA (control) and G-CA-SA (test) at a constant ratio (1:3:30), respectively. Microcapsules were examined for efficiency, size, release kinetics, stability and swelling studies at pH 1.5, pH 3, pH 7.4 and pH 7.8 and temperatures of 20 and 30 °C. Results The new formulation is further optimised by the addition of CA. CA reduced microcapsule swelling of the microcapsules at pH 7.8 and pH 3 at 30 °C and pH 3 at 20 °C, and, even though microcapsule size remains similar after CA addition, percent G release was enhanced at high pH values (pH 7.4 and pH 7.8, p < 0.01). Conclusion The new formulation exhibits colon-targeted delivery and the addition of CA prolonged G release suggesting its suitability for the sustained and targeted delivery of G and CA to the lower intestine.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, WA Australia
| | - Rebecca Negrulj
- Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, WA Australia
| | - Sangeetha Mathavan
- Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, WA Australia
| | - Jorge Martinez
- Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Science, Curtin University, Perth, WA Australia
| | - Jessica Sciarretta
- Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, WA Australia
| | - Nigel Chen-Tan
- Faculty of Science & Engineering, Curtin University, Perth, WA Australia
| | - Tk Mukkur
- Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Science, Curtin University, Perth, WA Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia ; Faculty of Pharmacy, University of Montenegro Podgorica, 8100 Podgorica, Montenegro
| | - Mladena Lalic-Popovic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Maja Stojančević
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Svetlana Golocorbin-Kon
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia ; Faculty of Pharmacy, University of Montenegro Podgorica, 8100 Podgorica, Montenegro
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, WA Australia
| |
Collapse
|
30
|
Cieniak C, Liu R, Fottinger A, Smiley SAM, Guerrero-Analco JA, Bennett SAL, Haddad PS, Cuerrier A, Saleem A, Arnason JT, Foster BC. In vitro inhibition of metabolism but not transport of gliclazide and repaglinide by Cree medicinal plant extracts. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:1087-1095. [PMID: 24184081 DOI: 10.1016/j.jep.2013.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Interactions between conventional drug and traditional medicine therapies may potentially affect drug efficacy and increase the potential for adverse reactions. Cree traditional healing is holistic and patients may use medicinal plants simultaneously with the conventional drugs. However, there is limited information that these medicinal plants may interact with drugs and additional mechanistic information is required. In this study, extracts from traditionally used Cree botanicals were assessed for their potential interaction that could alter the disposition of two blood glucose lowering drugs, gliclazide (Diamicron) and repaglinide (Gluconorm) though inhibition of either metabolism or transport across cell membranes. MATERIALS AND METHODS The effect of 17 extracts on metabolism was examined in a human liver microsome assay by HPLC and individual cytochrome P450s 2C9, 2C19, 2C8 and 3A4 in a microplate fluorometric assay. Gliclazide, rhaponticin and its aglycone derivative, rhapontigenin were also examined in the fluorometric assay. The effect on transport was examined with 11 extracts using the intestinal epithelial Caco-2 differentiated cell monolayer model at times up to 180 min. RESULTS Both blood glucose lowering medications, gliclazide and repaglinide traversed the Caco-2 monolayer in a time-dependent manner that was not affected by the Cree plant extracts. Incubation of the Cree plant extracts inhibited CYP2C9, 2C19, 2C8 and 3A4-mediated metabolism, and the formation of four repaglinide metabolites: M4, m/z 451-A, m/z 451-B and the glucuronide of repaglinide in the human liver microsome assay. Gliclazide caused no significant inhibition. Likewise, rhaponticin had little effect on the enzymes causing changes of less than 10% with an exception of 17% inhibition of CYP2C19. By contrast, the aglycone rhapontigenin showed the greatest effects on all CYP-mediated metabolism. Its inhibition ranged from a mean of 58% CYP3A4 inhibition to 89% inhibition of CYP2C9. While rhaponticin and the aglycone did not show significant effects on repaglinide metabolism, they demonstrated inhibition of gliclazide metabolism. The aglycone significantly affected levels of gliclazide and its metabolites. CONCLUSION These studies demonstrate that the Cree plant extracts examined have the potential in vitro to cause drug interactions through effects on key metabolic enzymes.
Collapse
Affiliation(s)
- Carolina Cieniak
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Arnouts P, Bolignano D, Nistor I, Bilo H, Gnudi L, Heaf J, van Biesen W. Glucose-lowering drugs in patients with chronic kidney disease: a narrative review on pharmacokinetic properties. Nephrol Dial Transplant 2013; 29:1284-300. [PMID: 24322578 DOI: 10.1093/ndt/gft462] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The achievement of a good glycaemic control is one of the cornerstones for preventing and delaying progression of microvascular and macrovascular complications in patients with both diabetes and chronic kidney disease (CKD). As for other drugs, the presence of an impaired renal function may significantly affect pharmacokinetics of the majority of glucose-lowering agents, thus exposing diabetic CKD patients to a higher risk of side effects, mainly hypoglycaemic episodes. As a consequence, a reduction in dosing and/or frequency of administration is necessary to keep a satisfactory efficacy/safety profile. In this review, we aim to summarize the pharmacology of the most widely used glucose-lowering agents, discuss whether and how it is altered by a reduced renal function, and the recommendations that can be made for their use in patients with different degrees of CKD.
Collapse
Affiliation(s)
- Paul Arnouts
- Nephrology-Diabetology Department, AZ Turnhout, Belgium
| | - Davide Bolignano
- European Renal Best Practice Methods Support Team, Ghent University Hospital, Ghent, Belgium CNR-IBIM, Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, Calabria, Italy
| | - Ionut Nistor
- European Renal Best Practice Methods Support Team, Ghent University Hospital, Ghent, Belgium Nephrology Department, Gr. T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Henk Bilo
- Departments of Internal Medicine, Isala Clinics, Zwolle, the Netherlands University Medical Center, Groningen, the Netherlands
| | - Luigi Gnudi
- Unit For Metabolic Medicine, Department Diabetes and Endocrinology, Cardiovascular Division, Guy's and St Thomas Hospital, King's College London, London SE1 9NH, UK
| | - James Heaf
- Department of Nephrology B, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Wim van Biesen
- European Renal Best Practice Methods Support Team, Ghent University Hospital, Ghent, Belgium Renal Division, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
32
|
Bhaskar R, Bhaskar R, Sagar MK, Saini V. Multivariate chemometric assisted analysis of metformin hydrochloride, gliclazide and pioglitazone hydrochloride in bulk drug and dosage forms. Adv Pharm Bull 2013; 3:79-84. [PMID: 24312816 DOI: 10.5681/apb.2013.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/11/2012] [Accepted: 10/20/2012] [Indexed: 11/17/2022] Open
Abstract
PURPOSE In this work a numerical method, based on the use of spectrophotometric data coupled to partial least squares (PLS) regression and net analyte preprocessing combined with classical least square (NAP/CLS) multivariate calibration, is reported for the simultaneous determination of metformin hydrochloride (MET), gliclazide (GLZ) and pioglitazone hydrochloride (PIO) in synthetic samples and combined commercial tablets. METHODS Spectra of MET, GLZ and PIO were recorded at concentrations within their linear ranges (5-25 µg/ml, 0.5-8 µg/ml and 0.5-3 µg/ml respectively) and were used to compute a total of 25 synthetic mixtures involving 15 calibration and 10 validation sets between wavelength range of 200 and 400 nm in 0.1N HCl. The suitability of the models was decided on the basis of root mean square error (RMSE) values of calibration and validation data. RESULTS The analytical performances of these chemometric methods were characterized by relative prediction errors and recovery studies (%) and were compared with each other. These two methods were successfully applied to pharmaceutical formulation, tablet, with no interference with excipients as indicated by the recovery study results. Mean recoveries of the commercial formulation set together with the figures of merit (calibration sensitivity, selectivity, limit of detection, limit of quantification etc.) were estimated. CONCLUSION The proposed methods are simple, rapid and can be easily used as an alternative analysis tool in the quality control of drugs and formulation.
Collapse
Affiliation(s)
- Radhika Bhaskar
- Department of Pharmacy, Mahatma Jyoti Rao Phoole University, Jaipur, India
| | | | | | | |
Collapse
|
33
|
Development of modified release gliclazide biological macromolecules using natural biodegradable polymers. Int J Biol Macromol 2013; 55:6-14. [DOI: 10.1016/j.ijbiomac.2012.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 12/03/2012] [Indexed: 11/22/2022]
|
34
|
Rojanasthien N, Autsavakitipong T, Kumsorn B, Manorot M, Teekachunhatean S. Bioequivalence Study of Modified-Release Gliclazide Tablets in Healthy Volunteers. ISRN PHARMACOLOGY 2012; 2012:375134. [PMID: 23029622 PMCID: PMC3458286 DOI: 10.5402/2012/375134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/16/2012] [Indexed: 11/25/2022]
Abstract
This study was aimed to investigate bioequivalence of modified-release 30 mg gliclazide tablets in 18 healthy Thai volunteers. A test product, Glycon MR (Siam Bheasach, TH), was compared with a reference product, Diamicron MR (Servier, France). The study was performed under a single-dose, two-treatment, two-period, and two-sequence crossover design in fasted and fed conditions with a washout period of 2 weeks. Blood samples were collected for 72 h after drug administration. Drug plasma concentrations were determined by HPLC with a UV detector. Analysis of pharmacokinetic characteristics was based on a non-compartmental model. The logarithmically transformed data of Cmax and AUCs were analyzed for 90% confidence intervals using ANOVA. The test product gave slightly higher Cmax in both conditions and shorter Tmax in the fed condition. However, there is no significant difference in pharmacokinetic characteristics between both products under fasted and fed conditions. Effect of food was not significantly observed. The 90% confidence intervals were within the acceptance criteria of 0.80–1.25 regardless of the food effect, indicating bioequivalence between the two products on the rate and extent of gliclazide MR absorption without regard to meals.
Collapse
Affiliation(s)
- Noppamas Rojanasthien
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thatree Autsavakitipong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Boonyium Kumsorn
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Maleeya Manorot
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | |
Collapse
|
35
|
Barakat NS, Shazly GA, Almedany AH. Influence of polymer blends on the characterization of gliclazide – encapsulated into poly (Æ-caprolactone) microparticles. Drug Dev Ind Pharm 2012; 39:352-62. [DOI: 10.3109/03639045.2012.681383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenomics of oral antidiabetic medications: current data and pharmacoepigenomic perspective. Pharmacogenomics 2011; 12:1161-91. [PMID: 21843065 DOI: 10.2217/pgs.11.65] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an increasingly prevalent disease. Several classes of drugs are currently available to treat T2DM patients; however, clinical response to these drugs often exhibits significant variation among individuals. For the oral antidiabetic drug classes of sulfonylureas, nonsulfonylurea insulin secretagogs, biguanides and thiazolidinediones, pharmacogenomic evidence has accumulated demonstrating an association between specific gene polymorphisms and interindividual variability in their therapeutic and adverse reaction effects. These polymorphisms are in genes of molecules involved in metabolism, transport and therapeutic mechanisms of the aforementioned drugs. Overall, it appears that pharmacogenomics has the potential to improve the management of T2DM and help clinicians in the effective prescribing of oral antidiabetic medications. Although pharmacogenomics can explain some of the heterogeneity in dose requirements, response and incidence of adverse effects of drugs between individuals, it is now clearly understood that much of the diversity in drug effects cannot be solely explained by studying the genomic diversity. Epigenomics, the field that focuses on nongenomic modifications that influence gene expression, may expand the scope of pharmacogenomics towards optimization of drug therapy. Therefore, pharmacoepigenomics, the combined analysis of genetic variations and epigenetic modifications, holds promise for the realization of personalized medicine. Although pharmacoepigenomics has so far been evaluated mainly in cancer pharmacotherapy, studies on epigenomic modifications during T2DM development provide useful data on the potential of pharmacoepigenomics to elucidate the mechanisms underlying interindividual response to oral antidiabetic treatment. In summary, the present article focuses on available data from pharmacogenomic studies of oral antidiabetic drugs and also provides an overview of T2DM epigenomic research, which has the potential to boost the development of pharmacoepigenomics in antidiabetic treatment.
Collapse
Affiliation(s)
- Vangelis G Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, 68100 Alexandroupolis, Greece.
| | | | | |
Collapse
|
37
|
Matsuda R, Anguizola J, Joseph K, Hage DS. High-performance affinity chromatography and the analysis of drug interactions with modified proteins: binding of gliclazide with glycated human serum albumin. Anal Bioanal Chem 2011; 401:2811-9. [PMID: 21922305 PMCID: PMC3205319 DOI: 10.1007/s00216-011-5382-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 11/25/2022]
Abstract
This study used high-performance affinity chromatography (HPAC) to examine the binding of gliclazide (i.e., a sulfonylurea drug used to treat diabetes) with the protein human serum albumin (HSA) at various stages of modification due to glycation. Frontal analysis conducted with small HPAC columns was first used to estimate the number of binding sites and association equilibrium constants (K(a)) for gliclazide with normal HSA and glycated HSA. Both normal and glycated HSA interacted with gliclazide according to a two-site model, with a class of high-affinity sites (average K(a), 7.1-10 × 10(4) M(-1)) and a group of lower-affinity sites (average K(a), 5.7-8.9 × 10(3) M(-1)) at pH 7.4 and 37 °C. Competition experiments indicated that Sudlow sites I and II of HSA were both involved in these interactions, with the K(a) values for gliclazide at these sites being 1.9 × 10(4) and 6.0 × 10(4) M(-1), respectively, for normal HSA. Two samples of glycated HSA had similar affinities to normal HSA for gliclazide at Sudlow site I, but one sample had a 1.9-fold increase in affinity at this site. All three glycated HSA samples differed from normal HSA in their affinity for gliclazide at Sudlow site II. This work illustrated how HPAC can be used to examine both the overall binding of a drug with normal or modified proteins and the site-specific changes that can occur in these interactions as a result of protein modification.
Collapse
Affiliation(s)
- Ryan Matsuda
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Jeanethe Anguizola
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - K.S. Joseph
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - David S. Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| |
Collapse
|
38
|
Al-Salami H, Butt G, Tucker I, Golocorbin-Kon S, Mikov M. Probiotics decreased the bioavailability of the bile acid analog, monoketocholic acid, when coadministered with gliclazide, in healthy but not diabetic rats. Eur J Drug Metab Pharmacokinet 2011; 37:99-108. [PMID: 21874525 DOI: 10.1007/s13318-011-0060-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
In recent studies we showed that gliclazide has no hypoglycemic effect on type 1 diabetic (T1D) rats while MKC does, and their combination exerted a better hypoglycemic effect than MKC alone. We also showed that the most hypoglycemic effect was noticed when T1D rats were treated with probiotics then gavaged with MKC + gliclazide (blood glucose decreased from 24 ± 3 to 10 ± 2 mmol/l). The aim of this study is to investigate the influence of probiotics on MKC pharmacokinetics when coadministered with gliclazide, in T1D rats. 80 male Wistar rats (weight 350 ± 50 g) were randomly allocated into 8 groups (10 rats/group), 4 of which were injected with alloxan (30 mg/kg) to induce T1D. Group 1 was healthy and group 2 was diabetic. Groups 3 (healthy) and 4 (diabetic) were gavaged with probiotics (75 mg/kg) every 12 h for 3 days and 12 h later all groups received a single oral dose of MKC + gliclazide (4 and 20 mg/kg respectively). The remaining 4 groups were treated in the same way but administered MKC + gliclazide via the i.v. route. Blood samples collected from T1D rats prior to MKC + gliclazide revealed that probiotic treatment alone reduced blood glucose levels twofold. When coadministered with gliclazide, the bioavailability of MKC was reduced in healthy rats treated with probiotics but remained the same in diabetic pretreated rats. The decrease in MKC bioavailability, when administered with gliclazide, caused by probiotic treatment in healthy but not diabetic rats suggests that probiotic treatment induced MKC metabolism or impaired its absorption, only in healthy animals. The different MKC bioavailability in healthy and diabetic rats could be explained by different induction of presystemic elimination of MKC in the gut by probiotic treatment.
Collapse
Affiliation(s)
- Hani Al-Salami
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
39
|
Sultanpur C, Satyanarayana S, Reddy N, Kumar K, Kumar S. Drug-drug Interaction between Pravastatin and Gemfibrozil (Antihyperlipidemic) with Gliclazide (Antidiabetic) in Rats. J Young Pharm 2011; 2:152-5. [PMID: 21264118 PMCID: PMC3021690 DOI: 10.4103/0975-1483.63157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Diabetes mellitus is a condition of increased blood glucose level in the body. Antihyperlipidemic drugs like statins and fibrates are widely used for prophylactic treatment in dyslipideamia and atherosclerosis. Diabetic dislipidemia exists with increased triglycerides, low HDL and high LDL levels. Hence, with oral hypoglycemic drugs, the addition of a lipid-lowering drug is necessary for controlling dislipidemia. In such a situation, there may be chances of drug–drug interactions between antidiabetic and antihyperlipidemic drugs. The present study is planned to evaluate the safety of gliclazide (antidiabetic) in the presence of pravastatin and gemfibrozil (antihyperlpidemic) in rats. Studies in normal and alloxan-induced diabetic rats were conducted with oral doses of gliclazide and their combination with pravastatin and gemfibrozil, with an adequate washout period in between the treatments. Blood samples were collected in rats by retroorbital puncture at 0, 1, 2, 3, 4, 6, 8, 10 and 12 h. All the blood samples were analyzed for glucose by GOD –POD. Gliclazide (½ TD) produced hypoglycemic activity in normal and diabetic rats, with peak activity at 2 and 8 h. Pravastatin (TD) + gemfibrozil (TD) combination treatment increased the hypoglycemic effect of gliclazide in normal rats or diabetic rats when administered together. The interaction observed due to inhibition of both the enzymes (CYP 450 2C9 and CYP 450 3A4) responsible for the metabolism of gliclazide showed increased half-life, which was seen in the present study. Because concomitant administration of gliclazide with provastatin and gemfibrozil in diabetes is associated with atherosclerosis, it should be contraindicated or used with caution.
Collapse
Affiliation(s)
- Cm Sultanpur
- Pharmacology Division, Government College of Pharmacy, Bangalore - 560 027, India
| | | | | | | | | |
Collapse
|
40
|
Barakat NS, Almurshedi AS. Design and development of gliclazide-loaded chitosan microparticles for oral sustained drug delivery: in-vitro/in-vivo evaluation. J Pharm Pharmacol 2011; 63:169-78. [DOI: 10.1111/j.2042-7158.2010.01214.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
The objective of this study was to prepare gliclazide–chitosan microparticles with tripolyphosphate by ionic crosslinking.
Methods
Chitosan microparticles were produced by emulsification and ionotropic gelation. The effects of process variables including chitosan concentration, pH of tripolyphosphate solution, glutaraldehyde volume and release modifier agent such as pectin added to the tripolyphosphate crosslinking solution were evaluated. The microparticles were examined with scanning electron microscopy, infrared spectroscopy and differential scanning colorimetry. The serum glucose lowering effect of gliclazide microparticles was studied in streptozotocin-diabetic rabbits compared with the effect of pure gliclazide powder and gliclazide commercial tablets.
Key findings
The particle sizes of tripolyphosphate–chitosan microparticles were over the range 675–887 µm and the loading efficiency of drug was greater than 94.0%. In-vivo testing of the gliclazide–chitosan microparticles in diabetic rabbits demonstrated a significant antidiabetic effect of gliclazide–chitosan microparticles after 8 h that lasted for 18 h compared with gliclazide powder, which produced a maximum hypoglycaemic effect after 4 h.
Conclusions
The results suggests that gliclazide–chitosan microparticles are a valuable system for the sustained delivery of gliclazide.
Collapse
Affiliation(s)
- Nahla S Barakat
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Barakat NS, Almurshedi AS. Design and development of gliclazide-loaded chitosan for oral sustained drug delivery:In vitro/in vivoevaluation. J Microencapsul 2010; 28:122-33. [DOI: 10.3109/02652048.2010.535621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Barakat NS, Almurshedi AS. Preparation and characterization of chitosan microparticles for oral sustained delivery of gliclazide: in vitro/in vivo evaluation. Drug Dev Res 2010. [DOI: 10.1002/ddr.20389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Influence of atazanavir on the pharmacodynamics and pharmacokinetics of gliclazide in animal models. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.ijdm.2009.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Mastan SK, Kumar KE. Influence of non-nucleoside reverse transcriptase inhibitors (efavirenz and nevirapine) on the pharmacodynamic activity of gliclazide in animal models. Diabetol Metab Syndr 2009; 1:15. [PMID: 19825151 PMCID: PMC2765430 DOI: 10.1186/1758-5996-1-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type 2 diabetes may occur as a result of HIV infection and/or its treatment. Gliclazide is a widely used drug for the treatment of type 2 diabetes. Efavirenz and nevirapine are widely used non-nucleoside reverse transcriptase inhibitors for the treatment of HIV infection. The role of Efavirenz and nevirapine on the pharmacodynamic activity of gliclazide is not currently known. The objective of this study was to examine the effect of oral administration of efavirenz and nevirapine on blood glucose and investigate their effect on the activity of gliclazide in rats (normal and diabetic) and rabbits to evaluate the safety and effectiveness of the combination. METHODS Studies in normal and alloxan induced diabetic rats were conducted with oral doses of 2 mg/kg bd. wt. of gliclazide, 54 mg/kg bd. wt. of efavirenz or 18 mg/kg bd. wt. of nevirapine and their combination with adequate washout periods in between treatments. Studies in normal rabbits were conducted with 5.6 mg/1.5 kg bd. wt. of gliclazide, 42 mg/1.5 kg bd. wt. of efavirenz or 14 mg/1.5 kg bd. wt. of nevirapine and their combination given orally. Blood samples were collected at regular time intervals in rats from retro orbital puncture and by marginal ear vein puncture in rabbits. All the blood samples were analysed for blood glucose by GOD/POD method. RESULTS Efavirenz and nevirapine alone have no significant effect on the blood glucose level in rats and rabbits. Gliclazide produced hypoglycaemic/antidiabetic activity in normal and diabetic rats with peak activity at 2 h and 8 h and hypoglycaemic activity in normal rabbits at 3 h. In combination, efavirenz reduced the effect of gliclazide in rats and rabbits, and the reduction was more significant with the single dose administration of efavirenz than multiple dose administration. In combination, nevirapine has no effect on the activity of gliclazide in rats and rabbits. CONCLUSION Thus, it can be concluded that the combination of efavirenz and gliclazide may need dose adjustment and care should be taken when the combination is prescribed for their clinical benefit in diabetic patients. The combination of nevirapine and gliclazide was safe. However, further studies are warranted.
Collapse
Affiliation(s)
- SK Mastan
- Pharmacology Division, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam-530 003, Andhra Pradesh, India
- Department of Pharmacology, Vignan Institute of Pharmaceutical Technology, Duvvada, Gajuwaka, Visakhapatnam-530 046, Andhra Pradesh, India
| | - K Eswar Kumar
- Pharmacology Division, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam-530 003, Andhra Pradesh, India
| |
Collapse
|
45
|
Al-Salami H, Butt G, Tucker I, Fawcett PJ, Golo-Corbin-Kon S, Mikov I, Mikov M. Gliclazide reduces MKC intestinal transport in healthy but not diabetic rats. Eur J Drug Metab Pharmacokinet 2009; 34:43-50. [DOI: 10.1007/bf03191383] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Probiotic treatment reduces blood glucose levels and increases systemic absorption of gliclazide in diabetic rats. Eur J Drug Metab Pharmacokinet 2008; 33:101-6. [PMID: 18777945 DOI: 10.1007/bf03191026] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The action of gliclazide, a sulphonylurea with beneficial extrapancreatic effects in diabetes, may be enhanced by administering probiotics. The aim of this study was to investigate the influence of probiotics on gliclazide pharmacokinetics and the effect of both probiotics and gliclazide on blood glucose levels in healthy and diabetic rats. Male Wistar rats (2 to 3 months, weight 350 +/- 50 g) were randomly allocated to 4 groups (n =10), two of which were treated with alloxan i.v. 30 mg/kg to induce diabetes. One group of healthy and one group of diabetic rats were then gavaged with probiotics (75 mg/kg) for three days after which a gliclazide suspension (20 mg/kg) was administered by gavage to all groups. Blood samples were collected from the tail vein at various time points for 10 hours post-administration for the determination of blood glucose and gliclazide serum concentrations. It was found that probiotic treatment had no effect on blood glucose levels in healthy rats, but it reduced them (up to 2-fold; p < 0.01) in diabetic rats. Probiotic treatment reduced gliclazide bioavailability in healthy rats (3-fold) whereas it increased gliclazide bioavailability in diabetic rats (2-fold; p < 0.01). Gliclazide had no effect on blood glucose levels in either healthy or diabetic rats despite the changes in its bioavailability. In conclusion, the probiotic treatment of diabetic rats increases gliclazide bioavailability and lowers blood glucose levels by insulin-independent mechanisms, suggesting that the administration of probiotics may be beneficial as adjunct therapy in the treatment of diabetes.
Collapse
|
47
|
Devarajan PV, Sonavane GS. Preparation and In Vitro/In Vivo Evaluation of Gliclazide Loaded Eudragit Nanoparticles as a Sustained Release Carriers. Drug Dev Ind Pharm 2008; 33:101-11. [PMID: 17454041 DOI: 10.1080/03639040601096695] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to formulate and optimize gliclazide-loaded Eudragit nanoparticles (Eudragit L100 and Eudragit RS) as a sustained release carrier with enhanced efficacy. Eudragit L 100 nanoparticles (ELNP) were prepared by controlled precipitation method whereas Eudragit RSPO nanoparticles (ERSNP) were prepared by solvent evaporation method. The influence of various formulation factors (stirring speed, drug:polymer ratio, homogenization, and addition of surfactants) on particle size, drug loading, and encapsulation efficiency were investigated. The developed Eudragit nanoparticles (L100 and RS) showed high drug loading and encapsulation efficiencies with nanosize. Mean particle size altered by changing the drug:polymer ratio and stirring speed. Addition of surfactants showed a promise to increase drug loading, encapsulation efficiency, and decreased particle size of ELNP as well as ERSNP. Dissolution study revealed sustained release of gliclazide from Eudragit L100 as well as Eudragit RSPO NP. SEM study revealed spherical morphology of the developed Eudragit (L100 and RS) NP. FT-IR and DSC studies showed no interaction of gliclazide with polymers. Stability studies revealed that the gliclazide-loaded nanoparticles were stable at the end of 6 months. Developed Eudragit NPs revealed a decreased t(min) (ELNP), and enhanced bioavailability and sustained activity (ELNP and ERSNP) and hence superior activity as compared to plain gliclazide in streptozotocin induced diabetic rat model and glucose-loaded diabetic rat model. The developed Eudragit (L100 and RSPO) NP could reduce dose frequency, decrease side effects, and improve patient compliance.
Collapse
Affiliation(s)
- Padma V Devarajan
- Pharmaceutical Division, Institute of Chemical Technology, University of Mumbai, Matunga, Mumbai, India.
| | | |
Collapse
|
48
|
The influence of 3α,7α-dihydroxy-12-keto-5β-cholanate on gliclazide pharmacokinetics and glucose levels in a rat model of diabetes. Eur J Drug Metab Pharmacokinet 2008; 33:137-42. [DOI: 10.1007/bf03191110] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Al-Salami H, Butt G, Tucker I, Skrbic R, Golocorbin-Kon S, Mikov M. Probiotic Pre-treatment Reduces Gliclazide Permeation (ex vivo) in Healthy Rats but Increases It in Diabetic Rats to the Level Seen in Untreated Healthy Rats. ACTA ACUST UNITED AC 2008; 1:35-41. [PMID: 20157366 PMCID: PMC2817444 DOI: 10.1111/j.1753-5174.2008.00006.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aim To investigate the influence of probiotic pre-treatment on the permeation of the antidiabetic drug gliclazide in healthy and diabetic rats. Methods Wistar rats (age 2–3 months, weight 350 ± 50 g) were randomly allocated into one of 4 groups (N = 16 each group): healthy control, healthy probiotic, diabetic control, and diabetic probiotic. Probiotics (75 mg/kg, equal quantities of Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus rhamnosus) were administered twice a day for three days to the appropriate groups after diabetes had been induced with alloxan i.v. 30 mg/kg. Rats were sacrificed, ileal tissues mounted in Ussing chambers and gliclazide (200 µg/mL) was administered for the measurement of the mucosal to serosal absorption Jss(MtoS) and serosal to mucosal secretion Jss(StoM) of gliclazide. Results Treatment of healthy rats with probiotics reduced Jss(MtoS) of gliclazide from 1.2 ± 0.3 to 0.3 ± 0.1 µg/min/cm2 (P < 0.01) and increased Jss(StoM)from 0.6 ± 0.1 to 1.4 ± 0.3 (P < 0.01) resulting in net secretion while, in diabetic tissues, treatment with probiotics increased both Jss(MtoS) and Jss(StoM)fluxes of gliclazide to the comparable levels of healthy tissues resulting in net absorption. Discussion In healthy rats, the reduction in Jss(MtoS) after probiotics administration could be explained by the production of bacterial metabolites that upregulate the mucosal efflux drug transporters Mrp2 that control gliclazide transport. In diabetic rats, the restored fluxes of gliclazide after probiotic treatment, suggests the normalization of the functionality of the drug transporters resulting in a net absorption. Conclusion Probiotics may alter gliclazide transport across rat ileal tissue studied ex vivo.
Collapse
Affiliation(s)
- Hani Al-Salami
- School of Pharmacy, University of OtagoDunedin, New Zealand
| | - Grant Butt
- Department of Physiology, University of OtagoDunedin, New Zealand
| | - Ian Tucker
- School of Pharmacy, University of OtagoDunedin, New Zealand
| | - Ranko Skrbic
- Department of Pharmacology, Medical Faculty, University of Banja Luka, Save Mrkalja Banja LukaBosnia and Herzegovina
| | - Svetlana Golocorbin-Kon
- Department of Pharmacology, Medical Faculty, University of Banja Luka, Save Mrkalja Banja LukaBosnia and Herzegovina
| | - Momir Mikov
- School of Pharmacy, University of OtagoDunedin, New Zealand
| |
Collapse
|
50
|
Vijayalakshmi P, Devi VK, Narendra C, Srinagesh S. Development of extended zero-order release gliclazide tablets by central composite design. Drug Dev Ind Pharm 2008; 34:33-45. [PMID: 18214753 DOI: 10.1080/03639040701386129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to develop an extended release tablet formulation containing gliclazide as a model drug by optimization technique. A central composite design was employed with pH-dependent matrix forming polymers like keltone-HVCR (X1) and eudragit-EPO (X2) as independent variables. Five dependent variables were considered: hardness, percent drug release after 1 hr, percent drug release after 6 hr, diffusion exponent and time required for 50% of drug release. Response surface methodology and multiple response optimization utilizing a quadratic polynomial equation were used to obtain an optimal formulation. The results indicate that Factor X1 along its interaction with Factor X2 was found to be significantly affecting the studied response variables. An optimized formulation, containing 8 mg of keltone-HVCR and 14.10mg of eudragit-EPO, provides a sufficient hardness (> 4.5 kg/cm2) and optimal release properties. The desirability function was used to optimize the response variables, each having a different target and the observed responses were highly agreed with experimental values. The release kinetics of gliclazide from optimized formulation followed zero-order release pattern. The dissolution profiles of optimized formulation before and after stability studies were evaluated by using similarity factor (f2) and were found to be similar. The results demonstrate the feasibility of the model in the development of extended release dosage form.
Collapse
Affiliation(s)
- P Vijayalakshmi
- Department of Pharmaceutics, Al-Ameen College of Pharmacy, Bangalore, India.
| | | | | | | |
Collapse
|