1
|
Ali AAH, von Gall C. Adult Neurogenesis under Control of the Circadian System. Cells 2022; 11:cells11050764. [PMID: 35269386 PMCID: PMC8909047 DOI: 10.3390/cells11050764] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
The mammalian circadian system is a hierarchically organized system, which controls a 24-h periodicity in a wide variety of body and brain functions and physiological processes. There is increasing evidence that the circadian system modulates the complex multistep process of adult neurogenesis, which is crucial for brain plasticity. This modulatory effect may be exercised via rhythmic systemic factors including neurotransmitters, hormones and neurotrophic factors as well as rhythmic behavior and physiology or via intrinsic factors within the neural progenitor cells such as the redox state and clock genes/molecular clockwork. In this review, we discuss the role of the circadian system for adult neurogenesis at both the systemic and the cellular levels. Better understanding of the role of the circadian system in modulation of adult neurogenesis can help develop new treatment strategies to improve the cognitive deterioration associated with chronodisruption due to detrimental light regimes or neurodegenerative diseases.
Collapse
|
2
|
Bombardi C, Grandis A, Pivac N, Sagud M, Lucas G, Chagraoui A, Lemaire-Mayo V, De Deurwaerdère P, Di Giovanni G. Serotonin modulation of hippocampal functions: From anatomy to neurotherapeutics. PROGRESS IN BRAIN RESEARCH 2021; 261:83-158. [PMID: 33785139 DOI: 10.1016/bs.pbr.2021.01.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampal region receives a dense serotoninergic innervation originating from both medial and dorsal raphe nuclei. This innervation regulates hippocampal activity through the activation of distinct receptor families that are expressed in excitatory and inhibitory neurons, terminals of several afferent neurotransmitter systems, and glial cells. Preclinical and clinical studies indicate that hippocampal dysfunctions are involved in learning and memory deficits, dementia, Alzheimer's disease, epilepsy and mood disorders such as anxiety, depression and post-traumatic syndrome disorder, whereas the hippocampus participates also in the therapeutic mechanisms of numerous medicines. Not surprisingly, several drugs acting via 5-HT mechanisms are efficacious to some extent in some diseases and the link between 5-HT and the hippocampus although clear remains difficult to untangle. For this reason, we review reported data concerning the distribution and the functional roles of the 5-HT receptors in the hippocampal region in health and disease. The impact of the 5-HT systems on the hippocampal function is such that the research of new 5-HT mechanisms and drugs is still very active. It concerns notably drugs acting at the 5-HT1A,2A,2C,4,6 receptor subtypes, in addition to the already existing drugs including the selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Nela Pivac
- Division of Molecular Medicine, Rudier Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Clinical Hospital Center Zagreb and School of Medicine University of Zagreb, Zagreb, Croatia
| | - Guillaume Lucas
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Valérie Lemaire-Mayo
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Affiliation(s)
- S Yeap
- Neuroscience Center, St. Vincent's Hospital, Richmond Road, Dublin 3, Ireland
| | | |
Collapse
|
4
|
Wang L, He Z, Zhu Z, Yuan W, Cai W, Li L, Zhang J, Hou W, Yang Y, Zhang X, Guo Q, Wang X, Lian Z, Tai F. The serotonin system in the hippocampus CA3 involves in effects of CSDS on social recognition in adult female mandarin voles (Microtus mandarinus). Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109704. [PMID: 31330217 DOI: 10.1016/j.pnpbp.2019.109704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Chronic social defeat stress (CSDS) exacerbated the development of stress-related psychiatric disorders, and the social recognition dysfunction is the core feature of many psychiatric disorders. However, the effects of CSDS on female social recognition and the underlying neural mechanisms remain unclear. Using highly aggressive adult female mandarin voles (Microtus mandarinus) as animal model, the aim of this work is to investigate the effects of CSDS on social recognition in adult female rodents and the neurobiological mechanisms underlying these effects. Our results indicate the CSDS disrupted the normal social recognition in adult female voles. Meanwhile, defeated voles exhibited increased neural activity in the DG, CA1 and CA3 of the hippocampus. Furthermore, CSDS reduced levels of serotonin (5-HT) and serotonin 1A receptors (5-HT1AR) in the CA3. We also discovered that microinjection of 8-OH-DPAT into the CA3 effectively reversed the social recognition deficits induced by CSDS, and an infusion of WAY-100635 into the CA3 of control female voles impaired social recognition. Moreover, targeted activation of the 5-HT neuron projection from the DRN to CA3 by long-term administration of CNO significantly prevented the CSDS induced social recognition deficits. Taken together, our study demonstrated that CSDS induced social recognition deficits in adult female voles, and these effects were mediated by the action of 5-HT on the 5-HT1AR in the hippocampus CA3. The projection from the DRN to CA3 may be involved in social recognition deficits induced by CSDS.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenxiang Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xia Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenmin Lian
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
5
|
Tamvacakis AN, Senatore A, Katz PS. Single neuron serotonin receptor subtype gene expression correlates with behaviour within and across three molluscan species. Proc Biol Sci 2018; 285:rspb.2018.0791. [PMID: 30135151 DOI: 10.1098/rspb.2018.0791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022] Open
Abstract
The marine mollusc, Pleurobranchaea californica varies daily in whether it swims and this correlates with whether serotonin (5-HT) enhances the strength of synapses made by the swim central pattern generator neuron, A1/C2. Another species, Tritonia diomedea, reliably swims and does not vary in serotonergic neuromodulation. A third species, Hermissenda crassicornis, never produces this behaviour and lacks the neuromodulation. We found that expression of particular 5-HT receptor subtype (5-HTR) genes in single neurons correlates with swimming. Orthologues to seven 5-HTR genes were identified from whole-brain transcriptomes. We isolated individual A1/C2 neurons and sequenced their RNA or measured 5-HTR gene expression using absolute quantitative PCR. A1/C2 neurons isolated from Pleurobranchaea that produced a swim motor pattern just prior to isolation expressed 5-HT2a and 5-HT7 receptor genes, as did all Tritonia samples. These subtypes were absent from A1/C2 isolated from Pleurobranchaea that did not swim on that day and from Hermissenda A1/C2 neurons. Expression of other receptors was not correlated with swimming. This suggests that these 5-HTRs may mediate the modulation of A1/C2 synaptic strength and play an important role in swimming. Furthermore, it suggests that regulation of receptor expression could underlie daily changes in behaviour as well as evolution of behaviour.
Collapse
Affiliation(s)
- A N Tamvacakis
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - A Senatore
- Biology Department, University of Toronto, Mississauga, Toronto, Ontario, Canada
| | - P S Katz
- Biology Department, University of Massachusetts at Amherst, Amherst, MA, USA
| |
Collapse
|
6
|
Astiz M, Oster H. Perinatal Programming of Circadian Clock-Stress Crosstalk. Neural Plast 2018; 2018:5689165. [PMID: 29593783 PMCID: PMC5822916 DOI: 10.1155/2018/5689165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/26/2017] [Indexed: 02/07/2023] Open
Abstract
An intact communication between circadian clocks and the stress system is important for maintaining physiological homeostasis under resting conditions and in response to external stimuli. There is accumulating evidence for a reciprocal interaction between both-from the systemic to the molecular level. Disruption of this interaction by external factors such as shiftwork, jetlag, or chronic stress increases the risk of developing metabolic, immune, or mood disorders. From experiments in rodents, we know that both systems maturate during the perinatal period. During that time, exogenous factors such as stress or alterations in the external photoperiod may critically affect-or program-physiological functions later in life. This developmental programming process has been attributed to maternal stress signals reaching the embryo, which lastingly change gene expression through the induction of epigenetic mechanisms. Despite the well-known function of the adult circadian system in temporal coordination of physiology and behavior, the role of maternal and embryonic circadian clocks during pregnancy and postnatal development is still poorly defined. A better understanding of the circadian-stress crosstalk at different periods of development may help to improve stress resistance and devise preventive and therapeutic strategies against chronic stress-associated disorders.
Collapse
Affiliation(s)
- Mariana Astiz
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Marie-Curie Street, 23562 Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Marie-Curie Street, 23562 Lübeck, Germany
| |
Collapse
|
7
|
Coleman G, Canal MM. Postnatal Light Effects on Pup Stress Axis Development Are Independent of Maternal Behavior. Front Neurosci 2017; 11:46. [PMID: 28239333 PMCID: PMC5300984 DOI: 10.3389/fnins.2017.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 01/03/2023] Open
Abstract
Postnatal environment shapes brain development during key critical periods. We have recently found that postnatal light environment has long-term effects on the stress and circadian systems, which can lead to altered stress responses, circadian behavior and a depressive phenotype in adulthood. However, it is still unclear how light experience affects the postnatal development of specific stress markers in the pup brain and the role played by maternal behavior and stress. To test this, we raised mice under either light-dark cycles (LD), constant light (LL) or constant darkness (DD) during the suckling stage. After weaning, all mice were exposed to LD until adulthood. Results show that postnatal light environment does not have any significant effects on dam stress levels (plasma corticosterone concentration, Arginine-vasopressin and Glucocorticoid receptor (GR) protein expression in the brain) or maternal behavior, including licking and grooming. Light environment does not have a major effect on litter characteristics or pup growth either. Interestingly, light environment during the suckling stage significantly impacted Corticotrophin-releasing hormone (CRH) and Gr mRNA expression in pup brain during development. Furthermore, a difference in Crh mRNA expression between LL- and DD-raised mice was still observed in adulthood, long after the exposure to abnormal light environments had stopped. Taken together, these data suggest that the long-term effects of postnatal light environment on the pups' stress system cannot be attributed to alterations in either maternal behavior and/or stress axis function. Instead, postnatal light experience may act directly on the pup stress axis and/or indirectly via circadian system alterations.
Collapse
Affiliation(s)
- Georgia Coleman
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre Manchester, UK
| | - Maria M Canal
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre Manchester, UK
| |
Collapse
|
8
|
Leakey JEA, Seng JE, Barnas CR, Baker VM, Hart RW. A Mechanistic Basis for the Beneficial Effects of Caloric Restriction On Longevity and Disease: Consequences for the Interpretation of Rodent Toxicity Studies. Int J Toxicol 2016. [DOI: 10.1177/109158189801700203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caloric restriction in rodents has been repeatedly shown to increase life span while reducing the severity and retarding the onset of both spontaneous and chemically induced neoplasms. These effects of caloric restriction are associated with a spectrum of biochemical and physiological changes that characterize the organism's adaptation to reduced caloric intake and provide the mechanistic basis for caloric restriction's effect on longevity. Here, we review evidence suggesting that the primary adaptation appears to be a rhythmic hypercorticism in the absence of elevated adrenocorticotropin (ACTH) levels. This characteristic hypercorticism evokes a spectrum of responses, including reduced body temperature and increased metabolic efficiency, decreased mitogenic response coupled with increased rates of apoptosis, reduced inflammatory response, reduced oxidative damage to proteins and DNA, reduced reproductive capacity, and altered drug-metabolizing enzyme expression. The net effect of these changes is to (1) decrease growth and metabolism in peripheral tissues to spare energy for central functions, and (2) increase the organism's capacity to withstand stress and chemical toxicity. Thus, caloric restriction research has uncovered an evolutionary mechanism that provides rodents with an adaptive advantage in conditions of fluctuating food supply. During periods of abundance, body growth and fecundity are favored over endurance and longevity. Conversely, during periods of famine, reproductive performance and growth are sacrificed to ensure survival of individuals to breed in better times. This phenomena can be observed in rodent populations that are used in toxicity testing. Improvements over the last 30 years in animal husbandry and nutrition, coupled with selective breeding for growth and fecundity, have resulted in several strains now exhibiting larger animals with reduced survival and increased incidence of background lesions. The mechanistic data from caloric restriction studies suggest that these large animals will also be more susceptible to chemically induced toxicity. This creates a problem in comparing tests performed on animals of different weights and comparing data generated today with the historical database. The rational use of caloric restriction to control body weight to within preset guidelines is a possible way of alleviating this problem.
Collapse
Affiliation(s)
- Julian E. A. Leakey
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA
| | - John E. Seng
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA
| | - Crissy R. Barnas
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA, Department of Clinical Pharmacology and Geriatrics,
Northwestern University, 303 E. Superior St., Chicago, IL 60611, USA
| | - Vanessa M. Baker
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA
| | - Ronald W. Hart
- Office of Research, National Center for Toxicological
Research, Jefferson, Arkansas, USA
| |
Collapse
|
9
|
Valentinuzzi VS, Menna-Barreto L, Xavier GF. Effect of Circadian Phase on Performance of Rats in the Morris Water Maze Task. J Biol Rhythms 2016; 19:312-24. [PMID: 15245650 DOI: 10.1177/0748730404265688] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors examined spatial working memory in the Morris water maze during the activity and rest periods ofWistar rats. Wheel-running activity was measured continuously as a marker of circadian phase. To minimize possible masking effects on performance, animals were placed in constant dim light the day before testing and tested in similar light conditions. Three experiments were run, each of them using animals varying in their previous experience in the water maze. Half of the animals of each experiment were tested 2 to 3 h after activity onset (active group), and the other half were tested 14 to 15 h after activity onset (inactive group). In the three experiments, a significant phase effect was observed in the animals’ performance in the water maze; animals tested in the active phase showed steeper acquisition curves. These phase effects on performance are due to the animals’ search pattern and not to a better acquisition and maintenance of spatial information; rats tested in the inactive phase found the platform faster on the first trial of the test, when the information on the location of the platform had not been presented to the animals. This effect vanished as the amount of training in the pool increased. Finally, swimming speed also showed a temporal effect, suggesting the existence of a phase effect for motivation to escape from the water; rats tested during their inactive phase tended to swim faster. All together, the data suggest a modulating effect of the biological clock on performance in the water maze, particularly when the animals are less experienced.
Collapse
Affiliation(s)
- Verónica S Valentinuzzi
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
10
|
Corticosterone exposure augments sensitivity to the behavioral and neuroplastic effects of fluoxetine in C57BL/6 mice. Neurobiol Stress 2016; 3:34-42. [PMID: 26844246 PMCID: PMC4730790 DOI: 10.1016/j.ynstr.2015.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/29/2015] [Indexed: 11/24/2022] Open
Abstract
Both genetic background and pre-existing stress play critical roles in the effects of antidepressant drugs. The current studies showed this principal by demonstrating that exposure to the stress hormone corticosterone (CORT) allowed behavioral and neurogenic effects to emerge following chronic treatment with fluoxetine of C57BL/6 mice, a strain ordinarily resistant to these effects. Adult male mice were implanted subcutaneously with 21-day slow-release CORT pellets (10 mg) or placebo and then co-treated with 5 mg/kg fluoxetine (b.i.d., i.p.) or saline for 14 days. Animals were then assessed for approach behavior in the novelty-induced hypophagia (NIH) test, hippocampal cell proliferation, corticosteroid receptor expression, and CORT plasma levels. Co-treatment of CORT with fluoxetine significantly reduced approach behavior in the novel environment of the NIH test and increased hippocampal cell proliferation whereas fluoxetine given alone was ineffective. CORT given alone did not alter approach behavior in the novel environment and caused a smaller increase of cell proliferation. The CORT effect was blocked by adrenalectomy and was likely due to increased adrenal feedback. Cell proliferation in CORT-treated animals was associated with reduced mineralocorticoid, but not glucocorticoid, receptor mRNA expression. Although the pellets were advertised to release CORT for 21 days, plasma CORT levels were increased at 1 day after implantation but were not sustained when measured at 7 days or longer intervals. Nevertheless, the transient CORT increase was sufficient to induce long-lasting behavioral and molecular changes when followed by fluoxetine treatment. These studies warrant further investigation into the role of glucocorticoids and environmental stress as adjunctive facilitators of the response to antidepressants, especially for treatment-resistant patients. C57BL/6J mice are not responsive to behavioral and neurogenic effects of chronic fluoxetine. CORT reduced anxiogenic behavior, increased hippocampal neurogenesis in response to fluoxetine. CORT pellets are not effective in sustaining elevated plasma CORT levels.
Collapse
|
11
|
Larsen K, Momeni J, Farajzadeh L, Bendixen C. Differential A-to-I RNA editing of the serotonin-2C receptor G-protein-coupled, HTR2C, in porcine brain tissues. Biochimie 2015; 121:189-96. [PMID: 26707647 DOI: 10.1016/j.biochi.2015.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/13/2015] [Indexed: 02/07/2023]
Abstract
The HTR2C gene encodes the 5-Hydroxytryptamine (serotonin) receptor 2C, G-protein-coupled protein which functions as a serotonin receptor. The HTR2C mRNA is subject to A-to-I RNA editing mediated by adenosine deaminases acting on RNA 1 and 2 (ADAR1 and ADAR2). In the current study we examined the molecular characteristics of the porcine HTR2C gene and determined the mRNA editing of the HTR2C transcript in different tissues. The A-to-I RNA editing of HTR2C was shown to be conserved in the porcine homologue with five nucleotides edited in exon 5. A differential editing was demonstrated with a high editing frequency in the frontal cortex, parietal cortex, occipital cortex, hypothalamus, brain stem and spinal cord and significantly lower in the cerebellum. No editing was seen in the liver and kidney. The porcine HTR2C gene was found to be exclusively expressed in brain tissues. The HTR2C gene was mapped to pig chromosome X. The methylation status of the HTR2C gene was examined in brain and liver by bisulfate sequencing and a high degree of methylation was found in the two tissues, at 89 and 72%, respectively. Our data describe differences in RNA editing in various regions of the porcine brain. The differences might reflect functional differences. Similarities between pigs and humans in differential RNA editing support the use of the pig as a model organism for the study of neurological diseases.
Collapse
Affiliation(s)
- Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Jamal Momeni
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Leila Farajzadeh
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| |
Collapse
|
12
|
Zaniewska M, Alenina N, Wydra K, Fröhler S, Kuśmider M, McCreary AC, Chen W, Bader M, Filip M. Discovering the mechanisms underlying serotonin (5-HT)2A and 5-HT2C receptor regulation following nicotine withdrawal in rats. J Neurochem 2015; 134:704-16. [PMID: 26031442 DOI: 10.1111/jnc.13192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5-HT, serotonin; 5-HT2A R, 5-HT2A receptor; 5-HT2C R, 5-HT2C receptor.
Collapse
Affiliation(s)
- Magdalena Zaniewska
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.,Molecular Biology of Peptide Hormones, Department of Cardiovascular Research, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Natalia Alenina
- Molecular Biology of Peptide Hormones, Department of Cardiovascular Research, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Sebastian Fröhler
- Laboratory for New Sequencing Technology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Maciej Kuśmider
- Laboratory of Biochemical Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | - Wei Chen
- Laboratory for New Sequencing Technology, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Molecular Biology of Peptide Hormones, Department of Cardiovascular Research, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
13
|
Estrogens protect male mice from obesity complications and influence glucocorticoid metabolism. Int J Obes (Lond) 2015; 39:1539-47. [PMID: 26032810 PMCID: PMC4564952 DOI: 10.1038/ijo.2015.102] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/06/2015] [Accepted: 05/06/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although the prevalence of obesity is higher among women than men, they are somewhat protected from the associated cardiometabolic consequences. The increase in cardiovascular disease risk seen after the menopause suggests a role for estrogens. There is also growing evidence for the importance of estrogen on body fat and metabolism in males. We hypothesized that that estrogen administration would ameliorate the adverse effects of obesity on metabolic parameters in males. METHODS Male and female C57Bl/6 mice were fed control or obesogenic (DIO) diets from 5 weeks of age until adulthood. Glucose tolerance testing was performed at 13 weeks of age. Mice were killed at 15 weeks of age and liver and adipose tissue were collected for analysis of gene expression. A second cohort of male mice underwent the same experimental design with the addition of estradiol pellet implantation or sham surgery at 6 weeks. RESULTS DIO males had greater mesenteric adipose deposition and more severe increases in plasma glucose, insulin and lipids than females. Treatment of males with estradiol from 6 weeks of age prevented DIO-induced increases in adipose tissue mass and alterations in glucose-insulin homeostasis. We also identified sex differences in the transcript levels and activity of hepatic and adipose glucocorticoid metabolizing enzymes. Estrogen treatment feminized the pattern of DIO-induced changes in glucocorticoid metabolism, rendering males similar to females. CONCLUSIONS Thus, DIO induces sex-specific changes in glucose-insulin homeostasis, which are ameliorated in males treated with estrogen, highlighting the importance of sex steroids in metabolism. Given that altered peripheral glucocorticoid metabolism has been observed in rodent and human obesity, our results also suggest that sexually dimorphic expression and activity of glucocorticoid metabolizing enzymes may have a role in the differential metabolic responses to obesity in males and females.
Collapse
|
14
|
Livingstone DEW, Barat P, Di Rollo EM, Rees GA, Weldin BA, Rog-Zielinska EA, MacFarlane DP, Walker BR, Andrew R. 5α-Reductase type 1 deficiency or inhibition predisposes to insulin resistance, hepatic steatosis, and liver fibrosis in rodents. Diabetes 2015; 64:447-58. [PMID: 25239636 DOI: 10.2337/db14-0249] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
5α-Reductase type 1 (5αR1) catalyses A-ring reduction of androgens and glucocorticoids in liver, potentially influencing hepatic manifestations of the metabolic syndrome. Male mice, homozygous for a disrupted 5αR1 allele (5αR1 knockout [KO] mice), were studied after metabolic (high-fat diet) and fibrotic (carbon tetrachloride [CCl4]) challenge. The effect of the 5α-reductase inhibitor finasteride on metabolism was investigated in male obese Zucker rats. While eating a high-fat diet, male 5αR1-KO mice demonstrated greater mean weight gain (21.6 ± 1.4 vs 16.2 ± 2.4 g), hyperinsulinemia (insulin area under the curve during glucose tolerance test 609 ± 103 vs. 313 ± 66 ng ⋅ mL(-1) ⋅ min), and hepatic steatosis (liver triglycerides 136.1 ± 17.0 vs. 89.3 ± 12.1 μmol ⋅ g(-1)). mRNA transcript profiles in liver were consistent with decreased fatty acid β-oxidation and increased triglyceride storage. 5αR1-KO male mice were more susceptible to fibrosis after CCl4 administration (37% increase in collagen staining). The nonselective 5α-reductase inhibitor finasteride induced hyperinsulinemia and hepatic steatosis (10.6 ± 1.2 vs. 7.0 ± 1.0 μmol ⋅ g(-1)) in obese male Zucker rats, both intact and castrated. 5αR1 deficiency induces insulin resistance and hepatic steatosis, consistent with the intrahepatic accumulation of glucocorticoids, and predisposes to hepatic fibrosis. Hepatic steatosis is independent of androgens in rats. Variations in 5αR1 activity in obesity and with nonselective 5α-reductase inhibition in men with prostate disease may have important consequences for the onset and progression of metabolic liver disease.
Collapse
Affiliation(s)
- Dawn E W Livingstone
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, U.K.
| | - Pascal Barat
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Emma M Di Rollo
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Georgina A Rees
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Benjamin A Weldin
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Eva A Rog-Zielinska
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - David P MacFarlane
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Brian R Walker
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
15
|
Cohen S, Vainer E, Matar MA, Kozlovsky N, Kaplan Z, Zohar J, Mathé AA, Cohen H. Diurnal fluctuations in HPA and neuropeptide Y-ergic systems underlie differences in vulnerability to traumatic stress responses at different zeitgeber times. Neuropsychopharmacology 2015; 40:774-90. [PMID: 25241802 PMCID: PMC4289967 DOI: 10.1038/npp.2014.257] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 11/09/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis displays a characteristic circadian pattern of corticosterone release, with higher levels at the onset of the active phase and lower levels at the onset of the inactive phase. As corticosterone levels modify the response to stress and influence the susceptibility to and/or severity of stress-related sequelae, we examined the effects of an acute psychological trauma applied at different zeitgeber times (ZTs) on behavioral stress responses. Rats were exposed to stress either at the onset of the inactive-(light) phase (ZT=0) or at the onset of the active-(dark) phase (ZT=12). Their behavior in the elevated plus-maze and acoustic startle response paradigms were assessed 7 days post exposure for retrospective classification into behavioral response groups. Serum corticosterone levels and the dexamethasone suppression test were used to assess the stress response and feedback inhibition of the HPA axis. Immunoreactivity for neuropeptide Y (NPY) and NPY-Y1 receptor (Y1R) in the paraventricular (PVN) and arcuate (ARC) hypothalamic nuclei, hippocampus, and basolateral amygdala were measured. The behavioral effects of NPY/Y1R antagonist microinfused into the PVN 30 min before stress exposure during the inactive or active phase, respectively, were evaluated. PVN immunoreactivity for NPY and Y1R was measured 1 day after the behavioral tests. The time of day of the traumatic exposure markedly affected the pattern of the behavioral stress response and the prevalence of rats showing an extreme behavioral response. Rats exposed to the stressor at the onset of their inactive phase displayed a more traumatic behavioral response, faster post-exposure corticosterone decay, and a more pronounced stress-induced decline in NPY and Y1R expression in the PVN and arcuate hypothalamic nuclei. Blocking PVN Y1R before stress applied in the active phase, or administering NPY to the PVN before stress applied in the inactive phase, had a resounding behavioral effect. The time at which stress occurred significantly affected the behavioral stress response. Diurnal variations in HPA and NPY/Y1R significantly affect the behavioral response, conferring more resilience at the onset of the active phase and more vulnerability at the onset of the inactive phase, implying that NPY has a significant role in conferring resilience to stress-related psychopathology.
Collapse
Affiliation(s)
- Shlomi Cohen
- Faculty of Health Sciences, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ella Vainer
- Faculty of Health Sciences, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael A Matar
- Faculty of Health Sciences, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nitsan Kozlovsky
- Faculty of Health Sciences, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zeev Kaplan
- Faculty of Health Sciences, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Zohar
- Division of Psychiatry, State of Israel Ministry of Health, Chaim Sheba Medical Center, Sackler Medical School, Tel-Aviv University, Ramat-Gan, Israel
| | - Aleksander A Mathé
- Department of Neuroscience, Karolinska Institutet—Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Hagit Cohen
- Faculty of Health Sciences, Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Ministry of Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
16
|
Bombail V, Qing W, Chapman KE, Holmes MC. Prevention of 5-hydroxytryptamine2C receptor RNA editing and alternate splicing in C57BL/6 mice activates the hypothalamic-pituitary-adrenal axis and alters mood. Eur J Neurosci 2014; 40:3663-73. [PMID: 25257581 PMCID: PMC4282755 DOI: 10.1111/ejn.12727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 08/06/2014] [Accepted: 08/20/2014] [Indexed: 11/26/2022]
Abstract
The 5-hydroxytryptamine2C (5-HT)2C receptor is widely implicated in the aetiology of affective and eating disorders as well as regulation of the hypothalamo-pituitary-adrenal axis. Signalling through this receptor is regulated by A-to-I RNA editing, affecting three amino acids in the protein sequence, with unedited transcripts encoding a receptor (INI) that, in vitro, is hyperactive compared with edited isoforms. Targeted alteration (knock-in) of the Htr2c gene to generate 'INI' mice with no alternate splicing, solely expressing the full-length unedited isoform, did not produce an overt metabolic phenotype or altered anxiety behaviour, but did display reduced depressive-like and fear-associated behaviours. INI mice exhibited a hyperactive hypothalamo-pituitary-adrenal axis, with increased nadir plasma corticosterone and corticotrophin-releasing hormone expression in the hypothalamus but responded normally to chronic stress and showed normal circadian activity and activity in a novel environment. The circadian patterns of 5-HT2C receptor mRNA and mbii52, a snoRNA known to regulate RNA editing and RNA splicing of 5-HT2C receptor pre-mRNA, were altered in INI mice compared with wild-type control mice. Moreover, levels of 5-HT1A receptor mRNA were increased in the hippocampus of INI mice. These gene expression changes may underpin the neuroendocrine and behavioural changes observed in INI mice. However, the phenotype of INI mice was not consistent with a globally hyperactive INI receptor encoded by the unedited transcript in the absence of alternate splicing. Hence, the in vivo outcome of RNA editing may be neuronal cell type specific.
Collapse
Affiliation(s)
- Vincent Bombail
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
17
|
Michel M, Lyons LC. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research. Front Syst Neurosci 2014; 8:133. [PMID: 25136297 PMCID: PMC4120776 DOI: 10.3389/fnsys.2014.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/07/2014] [Indexed: 12/14/2022] Open
Abstract
Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry.
Collapse
Affiliation(s)
- Maximilian Michel
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine Nashville, TN, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University Tallahassee, FL, USA
| |
Collapse
|
18
|
Livingstone DEW, Di Rollo EM, Yang C, Codrington LE, Mathews JA, Kara M, Hughes KA, Kenyon CJ, Walker BR, Andrew R. Relative adrenal insufficiency in mice deficient in 5α-reductase 1. J Endocrinol 2014; 222:257-66. [PMID: 24872577 PMCID: PMC4104038 DOI: 10.1530/joe-13-0563] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Patients with critical illness or hepatic failure exhibit impaired cortisol responses to ACTH, a phenomenon known as 'relative adrenal insufficiency'. A putative mechanism is that elevated bile acids inhibit inactivation of cortisol in liver by 5α-reductases type 1 and type 2 and 5β-reductase, resulting in compensatory downregulation of the hypothalamic-pituitary-adrenal axis and adrenocortical atrophy. To test the hypothesis that impaired glucocorticoid clearance can cause relative adrenal insufficiency, we investigated the consequences of 5α-reductase type 1 deficiency in mice. In adrenalectomised male mice with targeted disruption of 5α-reductase type 1, clearance of corticosterone was lower after acute or chronic (eightfold, P<0.05) administration, compared with WT control mice. In intact 5α-reductase-deficient male mice, although resting plasma corticosterone levels were maintained, corticosterone responses were impaired after ACTH administration (26% lower, P<0.05), handling stress (2.5-fold lower, P<0.05) and restraint stress (43% lower, P<0.05) compared with WT mice. mRNA levels of Nr3c1 (glucocorticoid receptor), Crh and Avp in pituitary or hypothalamus were altered, consistent with enhanced negative feedback. These findings confirm that impaired peripheral clearance of glucocorticoids can cause 'relative adrenal insufficiency' in mice, an observation with important implications for patients with critical illness or hepatic failure, and for patients receiving 5α-reductase inhibitors for prostatic disease.
Collapse
Affiliation(s)
- Dawn E W Livingstone
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Emma M Di Rollo
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Chenjing Yang
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Lucy E Codrington
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John A Mathews
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Madina Kara
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Katherine A Hughes
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Christopher J Kenyon
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Brian R Walker
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ruth Andrew
- EndocrinologyQueen's Medical Research Institute, University and British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
19
|
Orozco-Solis R, Sassone-Corsi P. Epigenetic control and the circadian clock: linking metabolism to neuronal responses. Neuroscience 2014; 264:76-87. [PMID: 24486964 DOI: 10.1016/j.neuroscience.2014.01.043] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 01/01/2023]
Abstract
Experimental and epidemiological evidence reveal the profound influence that industrialized modern society has imposed on human social habits and physiology during the past 50 years. This drastic change in life-style is thought to be one of the main causes of modern diseases including obesity, type 2 diabetes, mental illness such as depression, sleep disorders, and certain types of cancer. These disorders have been associated to disruption of the circadian clock, an intrinsic time-keeper molecular system present in virtually all cells and tissues. The circadian clock is a key element in homeostatic regulation by controlling a large array of genes implicated in cellular metabolism. Importantly, intimate links between epigenetic regulation and the circadian clock exist and are likely to prominently contribute to the plasticity of the response to the environment. In this review, we summarize some experimental and epidemiological evidence showing how environmental factors such as stress, drugs of abuse and changes in circadian habits, interact through different brain areas to modulate the endogenous clock. Furthermore we point out the pivotal role of the deacetylase silent mating-type information regulation 2 homolog 1 (SIRT1) as a molecular effector of the environment in shaping the circadian epigenetic landscape.
Collapse
Affiliation(s)
- R Orozco-Solis
- Center for Epigenetics and Metabolism, Unite 904 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, United States
| | - P Sassone-Corsi
- Center for Epigenetics and Metabolism, Unite 904 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
20
|
Issler O, Carter RN, Paul ED, Kelly PA, Olverman HJ, Neufeld-Cohen A, Kuperman Y, Lowry CA, Seckl JR, Chen A, Jamieson PM. Increased anxiety in corticotropin-releasing factor type 2 receptor-null mice requires recent acute stress exposure and is associated with dysregulated serotonergic activity in limbic brain areas. BIOLOGY OF MOOD & ANXIETY DISORDERS 2014; 4:1. [PMID: 24447313 PMCID: PMC4029322 DOI: 10.1186/2045-5380-4-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/11/2013] [Indexed: 11/28/2022]
Abstract
Background Corticotropin-releasing factor type 2 receptors (CRFR2) are suggested to facilitate successful recovery from stress to maintain mental health. They are abundant in the midbrain raphe nuclei, where they regulate serotonergic neuronal activity and have been demonstrated to mediate behavioural consequences of stress. Here, we describe behavioural and serotonergic responses consistent with maladaptive recovery from stressful challenge in CRFR2-null mice. Results CRFR2-null mice showed similar anxiety levels to control mice before and immediately after acute restraint stress, and also after cessation of chronic stress. However, they showed increased anxiety by 24 hours after restraint, whether or not they had been chronically stressed. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents were quantified and the level of 5-HIAA in the caudal dorsal raphe nucleus (DRN) was increased under basal conditions in CRFR2-null mice, indicating increased 5-HT turnover. Twenty-four hours following restraint, 5-HIAA was decreased only in CRFR2-null mice, suggesting that they had not fully recovered from the challenge. In efferent limbic structures, CRFR2-null mice showed lower levels of basal 5-HT in the lateral septum and subiculum, and again showed a differential response to restraint stress from controls. Local cerebral glucose utilization (LCMRglu) revealed decreased neuronal activity in the DRN of CRFR2-null mice under basal conditions. Following 5-HT receptor agonist challenge, LCMRglu responses indicated that 5-HT1A receptor responses in the DRN were attenuated in CRFR2-null mice. However, postsynaptic 5-HT receptor responses in forebrain regions were intact. Conclusions These results suggest that CRFR2 are required for proper functionality of 5-HT1A receptors in the raphe nuclei, and are key to successful recovery from stress. This disrupted serotonergic function in CRFR2-null mice likely contributes to their stress-sensitive phenotype. The 5-HT content in lateral septum and subiculum was notably altered. These areas are important for anxiety, and are also implicated in reward and the pathophysiology of addiction. The role of CRFR2 in stress-related psychopathologies deserves further consideration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Pauline M Jamieson
- Centre for Cardiovascular Science, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
21
|
Jiang WG, Li SX, Liu JF, Sun Y, Zhou SJ, Zhu WL, Shi J, Lu L. Hippocampal CLOCK protein participates in the persistence of depressive-like behavior induced by chronic unpredictable stress. Psychopharmacology (Berl) 2013; 227:79-92. [PMID: 23263459 DOI: 10.1007/s00213-012-2941-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/26/2012] [Indexed: 01/07/2023]
Abstract
RATIONALE Circadian disturbances are strongly linked with major depression. The circadian proteins CLOCK and BMAL1 are abundantly expressed but function differently in the suprachiasmatic nucleus (SCN) and hippocampus. However, their roles in depressive-like behavior are still poorly understood. OBJECTIVES To investigate the alterations of CLOCK and BMAL1 in the SCN and hippocampus in rats subjected to chronic unpredictable stress (CUS) and to explore the relationship of circadian protein and the depressive-like behavior. RESULTS Together with depressive-like behavior induced by CUS, CLOCK and BMAL1 in the SC were inhibited during the light period, and the peak expression of CLOCK in the hippocampus was shifted from the dark to light period. BMAL1 expression in the hippocampus was not significantly changed. Two weeks after the termination of CUS, abnormalities of CLOCK in the CA1 and CA3 endured, with unchanged depressive-like behavior, but the expression of CLOCK and BMAL1 in the SCN recovered to control levels. Knockdown of the Clock gene in CA1 induced depressive-like behavior in normal rats. CLOCK in the SCN and hippocampus may participate in the development of depressive-like behavior. However, CLOCK in the hippocampus but not SCN was involved in the long-lasting effects of CUS on depressive-like behavior. BMAL1 in the hippocampus appeared to be unrelated to the effects of CUS on depressive-like behavior. CONCLUSION CLOCK protein in the hippocampus but not SCN play an important role in the long-lasting depressive-like behavior induced by CUS. These findings suggest a novel therapeutic target in the development of new antidepressants focusing on the regulation of circadian rhythm.
Collapse
Affiliation(s)
- Wen-Gao Jiang
- National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Beijing, 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Saenz del Burgo L, Cortés R, Mengod G, Montaña M, García del Caño G, Sallés J. Chronic effects of corticosterone on GIRK1-3 subunits and 5-HT1A receptor expression in rat brain and their reversal by concurrent fluoxetine treatment. Eur Neuropsychopharmacol 2013; 23:229-39. [PMID: 22591911 DOI: 10.1016/j.euroneuro.2012.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/09/2012] [Accepted: 04/14/2012] [Indexed: 11/17/2022]
Abstract
Dysregulation of the serotonergic system and abnormalities of the hypothalamic-pituitary-adrenal axis have been demonstrated in major depression. Animal studies indicate that 5-HT1A receptor expression may be reduced by long-term administration of corticosterone. However, similar studies on the regulation of GIRK channels, one of the most important effectors of the neuronal 5-HT1A receptor, are limited. In order to address these issues, slow-release corticosterone pellets were implanted subcutaneously to adrenal intact male rats (200mg pellets, 35 days release). Starting on day 15, animals were treated for 21 days with fluoxetine (5mg/kg/day, i.p.), or vehicle. Using in situ hybridization histochemistry and receptor autoradiography, we found that chronic corticosterone treatment was accompanied by a significant decrease on the mRNAs coding for mineralocorticoid receptors in hippocampal areas. Under these conditions, 5-HT1A receptor mRNA expression decreased in dorsal raphe nucleus and dentate gyrus. However, 5-HT1A receptor levels, as measured by [(3)H]-8-OH-DPAT binding, diminished significantly only in dentate gyrus. It is noteworthy that chronic treatment with fluoxetine reversed the alterations on 5-HT1A receptor mRNA levels only in dorsal raphe. Finally, chronic corticosterone treatment produced an increase on the mRNA coding for the GIRK2 subunit in several hypothalamic and thalamic areas, which was reversed by fluoxetine. Measurements of cell density and volume of the granular layer of the dentate gyrus did not reveal significant changes after corticosterone or corticosterone plus fluoxetine treatments. These data are relevant for a better understanding of the differential regulation of pre- and postsynaptic 5-HT1A receptors by corticosterone flattened rhythm.
Collapse
MESH Headings
- Animals
- Autoradiography
- Corticosterone/pharmacology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Depressive Disorder, Major/metabolism
- Fluoxetine/pharmacology
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/drug effects
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism
- Gene Expression/drug effects
- Gene Expression Profiling
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hypothalamo-Hypophyseal System/metabolism
- Male
- Pituitary-Adrenal System/metabolism
- Raphe Nuclei/drug effects
- Raphe Nuclei/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/drug effects
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Selective Serotonin Reuptake Inhibitors/pharmacology
- Thalamus/drug effects
- Thalamus/metabolism
Collapse
Affiliation(s)
- Laura Saenz del Burgo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Mutlu O, Gumuslu E, Ulak G, Celikyurt IK, Akar F, Bektas E, Demirtas T, Kır HM, Musul MM, Erden F. Antidepressant-Like Activity of Agomelatine in the Mouse Unpredictable Chronic Mild Stress Model. Drug Dev Res 2013. [DOI: 10.1002/ddr.21064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oguz Mutlu
- Department of Pharmacology; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Esen Gumuslu
- Department of Medical Genetics; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Guner Ulak
- Department of Pharmacology; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | | | - Furuzan Akar
- Department of Pharmacology; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Emine Bektas
- Department of Pharmacology; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Tugce Demirtas
- Department of Pharmacology; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Hale Maral Kır
- Department of Biochemistry; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Mahmut Mert Musul
- Department of Biochemistry; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Faruk Erden
- Department of Pharmacology; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| |
Collapse
|
24
|
Wang J, Shen RY, Haj-Dahmane S. Endocannabinoids mediate the glucocorticoid-induced inhibition of excitatory synaptic transmission to dorsal raphe serotonin neurons. J Physiol 2012; 590:5795-808. [PMID: 22946098 DOI: 10.1113/jphysiol.2012.238659] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids play a critical role in the modulation of stress responses by controlling the function of the serotonin (5-HT) system. However, the precise effects of glucocorticoids on the excitability of dorsal raphe (DR) 5-HT neurons remain unknown. In this study, we investigated the effects of glucocorticoids on excitatory synaptic transmission to putative DR 5-HT neurons. We found that corticosterone or the synthetic glucocorticoid agonist dexamethasone rapidly suppressed glutamatergic synaptic transmission to DR 5-HT neurons by inhibiting glutamate release in the DR. This inhibitory effect was mimicked by membrane-impermeable glucocorticoids, indicating the involvement of membrane-located corticosteroid receptors. The glucocorticoid-induced inhibition of glutamatergic transmission was mediated by the activation of postsynaptic G-protein-coupled receptors and signalled by retrograde endocannabinoid (eCB) messengers. Examination of the downstream mechanisms revealed that glucocorticoids enhance eCB signalling via an inhibition of cyclooxygenase-2. Together, these findings unravel a novel mechanism by which glucocorticoids control the excitability of DR 5-HT neurons and provide new insight into the rapid effects of stress hormones on the function of the 5-HT system.
Collapse
Affiliation(s)
- Jue Wang
- Research Institute on Addictions, University at Buffalo, 1021 Main Street, Buffalo, NY 14203, USA
| | | | | |
Collapse
|
25
|
Unno K, Iguchi K, Tanida N, Fujitani K, Takamori N, Yamamoto H, Ishii N, Nagano H, Nagashima T, Hara A, Shimoi K, Hoshino M. Ingestion of theanine, an amino acid in tea, suppresses psychosocial stress in mice. Exp Physiol 2012; 98:290-303. [PMID: 22707502 DOI: 10.1113/expphysiol.2012.065532] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The antistress effect of theanine (γ-glutamylethylamide), an amino acid in tea, was investigated using mice that were psychosocially stressed from a conflict among male mice in conditions of confrontational housing. Two male mice were housed in the same cage separated by a partition to establish a territorial imperative. When the partition was removed, the mice were co-housed confrontationally. As a marker for the stress response, changes in the adrenal gland were studied in comparison to group-housed control mice (six mice in a cage). Significant adrenal hypertrophy was observed in mice during confrontational housing, which was developed within 24 h and persisted for at least 1 week. The size of cells in the zona fasciculata of the adrenal gland, from which glucocorticoid is mainly secreted, increased (∼1.11-fold) in mice during confrontational housing, which was accompanied by a flattened diurnal rhythm of corticosterone and ACTH in blood. The ingestion of theanine (>5 μg ml(-1)) prior to confrontational housing significantly suppressed adrenal hypertrophy. An antidepressant, paroxetin, suppressed adrenal hypertrophy in a similar manner in mice during confrontational housing. In mice that ingested theanine, behavioural depression was also suppressed, and a diurnal rhythm of corticosterone and ACTH was observed, even in mice that were undergoing confrontational housing. Furthermore, the daily dose of theanine (40 μg ml(-1)) blocked the counteracting effects of caffeine (30 μg ml(-1)) and catechin (200 μg ml(-1)). The present study demonstrated that theanine prevents and relieves psychosocial stress through the modulation of hypothalamic-pituitary-adrenal axis activity.
Collapse
Affiliation(s)
- Keiko Unno
- Laboratory of Bioorganic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Beneficial behavioural and neurogenic effects of agomelatine in a model of depression/anxiety. Int J Neuropsychopharmacol 2012; 15:321-35. [PMID: 21473810 DOI: 10.1017/s1461145711000356] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Agomelatine (S20098) is a novel antidepressant drug with melatonergic agonist and 5-HT2C receptor antagonist properties, displaying antidepressant/anxiolytic-like properties in animal models and in humans. In a depression/anxiety-like mouse model in which the response of the HPA axis is blunted, we investigated whether agomelatine could reverse behavioural deficits related to depression/anxiety compared to the classical selective serotonin reuptake inhibitor, fluoxetine. Adult mice were treated for 8 wk with either vehicle or corticosterone (35 μg/ml.d) via drinking water. During the final 4 wk, animals were treated with vehicle, agomelatine (10 or 40 mg/kg i.p.) or fluoxetine (18 mg/kg i.p.) and tested in several behavioural paradigms and also evaluated for home-cage activity. Our results showed that the depressive/anxiety-like phenotype induced by corticosterone treatment is reversed by either chronic agomelatine or fluoxetine treatment. Moreover, agomelatine increased the dark/light ratio of home-cage activity in vehicle-treated mice and reversed the alterations in this ratio induced by chronic corticosterone, suggesting a normalization of disturbed circadian rhythms. Finally, we investigated the effects of this new antidepressant on neurogenesis. Agomelatine reversed the decreased cell proliferation in the whole hippocampus in corticosterone-treated mice and increased maturation of newborn neurons in both vehicle- and corticosterone-treated mice. Overall, the present study suggests that agomelatine, with its distinct mechanism of action based on the synergy between the melatonergic agonist and 5-HT2C antagonist properties, provides a distinct antidepressant/anxiolytic spectrum including circadian rhythm normalization.
Collapse
|
27
|
Ferreira FR, Oliveira AM, Dinarte AR, Pinheiro DG, Greene LJ, Silva WA, Joca SR, Guimarães FS. Changes in hippocampal gene expression by 7-nitroindazole in rats submitted to forced swimming stress. GENES BRAIN AND BEHAVIOR 2012; 11:303-13. [DOI: 10.1111/j.1601-183x.2011.00757.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Racagni G, Riva MA, Molteni R, Musazzi L, Calabrese F, Popoli M, Tardito D. Mode of action of agomelatine: synergy between melatonergic and 5-HT2C receptors. World J Biol Psychiatry 2011; 12:574-87. [PMID: 21999473 DOI: 10.3109/15622975.2011.595823] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The association between depression and circadian rhythm disturbances is well established and successful treatment of depressed patients is accompanied by restoration of circadian rhythms. The new antidepressant agomelatine is an agonist of melatonergic MT₁/MT₂ receptors as well as an antagonist of serotonergic 5-HT2C receptors. Animal studies showed that agomelatine resynchronizes disturbed circadian rhythms and reduces depression-like behaviour. METHODS This review analyzes results from different experimental studies. RESULTS Recent data on the effects of agomelatine on cellular processes involved in antidepressant mechanisms have shown that the drug is able to increase the expression of brain-derived neurotrophic factor in prefrontal cortex and hippocampus, as well as the expression of activity-regulated cytoskeleton associated protein (Arc) in the prefrontal cortex. In line with this, prolonged treatment with agomelatine increases neurogenesis within the hippocampus, particularly via enhancement of neuronal cell survival. Agomelatine attenuates stress-induced glutamate release in the prefrontal/frontal cortex. Treatment with 5-HT2C antagonists or melatonin alone failed to reproduce these effects. CONCLUSIONS The unique mode of action of agomelatine may improve the management of major depression by counteracting the pathogenesis of depression at cellular level, thereby relieving the symptoms of depression. These effects are suggested to be due to a synergistic action on MT₁/MT₂ and 5-HT2C receptors.
Collapse
Affiliation(s)
- Giorgio Racagni
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Son GH, Chung S, Kim K. The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol 2011; 32:451-65. [PMID: 21802440 DOI: 10.1016/j.yfrne.2011.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/25/2011] [Accepted: 07/06/2011] [Indexed: 12/27/2022]
Abstract
The mammalian circadian timing system is organized in a hierarchy, with the master clock residing in the suprachiasmatic nucleus (SCN) of the hypothalamus and subsidiary peripheral clocks in other brain regions as well as peripheral tissues. Since the local oscillators in most cells contain a similar molecular makeup to that in the central pacemaker, determining the role of the peripheral clocks in the regulation of rhythmic physiology and behavior is an important issue. Glucocorticoids (GCs) are a class of multi-functional adrenal steroid hormones, which exhibit a robust circadian rhythm, with a peak linked with the onset of the daily activity phase. It has long been believed that the production and secretion of GC is primarily governed through the hypothalamus-pituitary-adrenal (HPA) neuroendocrine axis in mammals. Growing evidence, however, strongly supports the notion that the periodicity of GC involves the integrated activity of multiple regulatory mechanisms related to circadian timing system along with the classical HPA neuroendocrine regulation. The adrenal-intrinsic oscillator as well as the central pacemaker plays a pivotal role in its rhythmicity. GC influences numerous biological processes, such as metabolic, cardiovascular, immune and even higher brain functions, and also acts as a resetting signal for the ubiquitous peripheral clocks, suggesting its importance in harmonizing circadian physiology and behavior. In this review, we will therefore focus on the recent advances in our understanding of the circadian regulation of adrenal GC and its functional relevance.
Collapse
Affiliation(s)
- Gi Hoon Son
- Department of Biological Sciences, Seoul National University, Brain Research Center for the 21st Century Frontier Program in Neuroscience, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
30
|
Hammack SE, Guo J, Hazra R, Dabrowska J, Myers KM, Rainnie DG. The response of neurons in the bed nucleus of the stria terminalis to serotonin: implications for anxiety. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1309-20. [PMID: 19467288 PMCID: PMC2793530 DOI: 10.1016/j.pnpbp.2009.05.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 11/30/2022]
Abstract
Substantial evidence has suggested that the activity of the bed nucleus of the stria terminalis (BNST) mediates many forms of anxiety-like behavior in human and non-human animals. These data have led many investigators to suggest that abnormal processing within this nucleus may underlie anxiety disorders in humans, and effective anxiety treatments may restore normal BNST functioning. Currently some of the most effective treatments for anxiety disorders are drugs that modulate serotonin (5-HT) systems, and several decades of research have suggested that the activation of 5-HT can modulate anxiety-like behavior. Despite these facts, relatively few studies have examined how activity within the BNST is modulated by 5-HT. Here we review our own investigations using in vitro whole-cell patch-clamp electrophysiological methods on brain sections containing the BNST to determine the response of BNST neurons to exogenous 5-HT application. Our data suggest that the response of BNST neurons to 5-HT is complex, displaying both inhibitory and excitatory components, which are mediated by 5-HT(1A), 5-HT(2A), 5-HT(2C) and 5-HT(7) receptors. Moreover, we have shown that the selective activation of the inhibitory response to 5-HT reduces anxiety-like behavior, and we describe data suggesting that the activation of the excitatory response to 5-HT may be anxiogenic. We propose that in the normal state, the function of 5-HT is to dampen activity within the BNST (and consequent anxiety-like behavior) during exposure to threatening stimuli; however, we suggest that changes in the balance of the function of BNST 5-HT receptor subtypes could alter the response of BNST neurons to favor excitation and produce a pathological state of increased anxiety.
Collapse
Affiliation(s)
| | - JiDong Guo
- Departments of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Rimi Hazra
- Departments of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Joanna Dabrowska
- Departments of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Karyn M. Myers
- Department of Psychiatry, Harvard Medical School, McClean Hospital, Boston, MA, USA
| | - Donald G. Rainnie
- Departments of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
31
|
Trajkovska V, Kirkegaard L, Krey G, Marcussen AB, Thomsen MS, Chourbaji S, Brandwein C, Ridder S, Halldin C, Gass P, Knudsen GM, Aznar S. Activation of glucocorticoid receptors increases 5-HT2A receptor levels. Exp Neurol 2009; 218:83-91. [DOI: 10.1016/j.expneurol.2009.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 04/02/2009] [Accepted: 04/07/2009] [Indexed: 11/29/2022]
|
32
|
Kimura A, Stevenson PL, Carter RN, Maccoll G, French KL, Simons JP, Al-Shawi R, Kelly V, Chapman KE, Holmes MC. Overexpression of 5-HT2C receptors in forebrain leads to elevated anxiety and hypoactivity. Eur J Neurosci 2009; 30:299-306. [PMID: 19614978 PMCID: PMC2777260 DOI: 10.1111/j.1460-9568.2009.06831.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/08/2009] [Accepted: 06/04/2009] [Indexed: 01/13/2023]
Abstract
The 5-HT(2C) receptor has been implicated in mood and eating disorders. In general, it is accepted that 5-HT(2C) receptor agonists increase anxiety behaviours and induce hypophagia. However, pharmacological analysis of the roles of these receptors is hampered by the lack of selective ligands and the complex regulation of receptor isoforms and expression levels. Therefore, the exact role of 5-HT(2C) receptors in mood disorders remain controversial, some suggesting agonists and others suggesting antagonists may be efficacious antidepressants, while there is general agreement that antagonists are beneficial anxiolytics. In order to test the hypothesis that increased 5-HT(2C) receptor expression, and thus increased 5-HT(2C) receptor signalling, is causative in mood disorders, we have undertaken a transgenic approach, directly altering the 5-HT(2C) receptor number in the forebrain and evaluating the consequences on behaviour. Transgenic mice overexpressing 5-HT(2C) receptors under the control of the CaMKIIalpha promoter (C2CR mice) have elevated 5-HT(2C) receptor mRNA levels in cerebral cortex and limbic areas (including the hippocampus and amygdala), but normal levels in the hypothalamus, resulting in > 100% increase in the number of 5-HT(2C) ligand binding sites in the forebrain. The C2CR mice show increased anxiety-like behaviour in the elevated plus-maze, decreased wheel-running behaviour and reduced activity in a novel environment. These behaviours were observed in the C2CR mice without stimulation by exogenous ligands. Our findings support a role for 5-HT(2C) receptor signalling in anxiety disorders. The C2CR mouse model offers a novel and effective approach for studying disorders associated with 5-HT(2C) receptors.
Collapse
Affiliation(s)
- Atsuko Kimura
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, Scotland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Livingstone DEW, Grassick SL, Currie GL, Walker BR, Andrew R. Dysregulation of glucocorticoid metabolism in murine obesity: comparable effects of leptin resistance and deficiency. J Endocrinol 2009; 201:211-8. [PMID: 19223399 PMCID: PMC2674682 DOI: 10.1677/joe-09-0003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In obese humans, metabolism of glucocorticoids by 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) and A-ring reduction (by 5 alpha- and 5 beta-reductases) is dysregulated in a tissue specific manner. These changes have been recapitulated in leptin resistant obese Zucker rats but were not observed in high-fat fed Wistar rats. Recent data from mouse models suggest that such discrepancies may reflect differences in leptin signalling. We therefore compared glucocorticoid metabolism in murine models of leptin deficiency and resistance. Male ob/ob and db/db mice and their respective littermate controls (n=10-12/group) were studied at the age of 12 weeks. Enzyme activities and mRNA expression were quantified in snap-frozen tissues. The patterns of altered pathways of steroid metabolism in obesity were similar in ob/ob and db/db mice. In liver, 5 beta-reductase activity and mRNA were increased and 11 beta-HSD1 decreased in obese mice, whereas 5 alpha-reductase 1 (5 alpha R1) mRNA was not altered. In visceral adipose depots, 5 beta-reductase was not expressed, 11 beta-HSD1 activity was increased and 5 alpha R1 mRNA was not altered in obesity. By contrast, in subcutaneous adipose tissue 11 beta-HSD1 and 5 alpha R1 mRNA were decreased. Systematic differences were not found between ob/ob and db/db murine models of obesity, suggesting that variations in leptin signalling through the short splice variant of the Ob receptor do not contribute to dysregulation of glucocorticoid metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Ruth Andrew
- (Correspondence should be addressed to R Andrew; )
| |
Collapse
|
34
|
Briones-Aranda A, Castillo-Salazar M, Picazo O. Adrenalectomy modifies the hippocampal 5-HT1A receptors and the anxiolytic-like effect of 8-OH-DPAT in rats. Pharmacol Biochem Behav 2009; 92:182-9. [DOI: 10.1016/j.pbb.2008.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 11/15/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
35
|
Abstract
Desynchronisation of normal circadian rhythms, including the sleep-wake rhythm, is common in major depressive disorder (MDD). The association between sleep disturbances and depression has long been recognised. Disturbed sleep is a diagnostic criterion for MDD, and insomnia commonly precedes the onset of symptomatic mood disorders. Disruptions of the sleep-wake cycle (sleep architecture and timing) are residual symptoms that may prevent the attainment of high-quality remission and delay recovery from MDD. Therefore, early recognition and treatment of sleep disturbances may be important for the treatment and prevention of recurrent depression. Evidence suggests that melatonergic (MT(1) and MT(2)) and the 5-HT(2C) serotonergic receptor subtypes are important modulators of circadian rhythmicity. Agomelatine is the first melatonergic antidepressant; an agonist of melatonin MT(1) and MT(2) receptors, with additional antagonist properties at the 5-HT(2C) receptors. Agomelatine combines antidepressant efficacy including quality and efficiency of sleep, with a more favourable side-effect profile than current antidepressant treatments, including neutral effects on sexual function, bodyweight and the absence of discontinuation symptoms. These positive features provide a novel approach to the treatment of depression and the attainment of high-quality remission in MDD.
Collapse
Affiliation(s)
- R W Lam
- Division of Clinical Neuroscience, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
36
|
Lanfumey L, Mongeau R, Cohen-Salmon C, Hamon M. Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Biobehav Rev 2008; 32:1174-84. [PMID: 18534678 DOI: 10.1016/j.neubiorev.2008.04.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
Among psychiatric disorders, depression and generalized anxiety are probably the most common stress-related illnesses. These diseases are underlain, at least partly, by dysfunctions of neurotransmitters and neurohormones, especially within the serotoninergic (5-HT) system and the hypothalamo-pituitary-adrenal (HPA) axis, which are also the targets of drugs used for their treatment. This review focuses on the nature of the interactions between central 5-HT and corticotrope systems in animal models, in particular those allowing the assessment of serotoninergic function following experimental manipulation of the HPA axis. The review provides an overview of the HPA axis and the 5-HT system organization, focusing on the 5-HT(1A) receptors, which play a pivotal role in the 5-HT system regulation and its response to stress. Both molecular and functional aspects of 5-HT/HPA interactions are then analyzed in the frame of psychoaffective disorders. The review finally examines the hippocampal neurogenesis response to experimental paradigms of stress and antidepressant treatment, in which neurotrophic factors are considered to play key roles according to the current views on the pathophysiology of depressive disorders.
Collapse
|
37
|
The modulatory influence of polymorphism of the serotonin transporter gene on characteristics of mental maladaptation in relatives of patients with endogenous psychoses. ACTA ACUST UNITED AC 2008; 38:253-8. [DOI: 10.1007/s11055-008-0037-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Yi LT, Li YC, Pan Y, Li JM, Xu Q, Mo SF, Qiao CF, Jiang FX, Xu HX, Lu XB, Kong LD, Kung HF. Antidepressant-like effects of psoralidin isolated from the seeds of Psoralea Corylifolia in the forced swimming test in mice. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:510-9. [PMID: 18006202 DOI: 10.1016/j.pnpbp.2007.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
The antidepressant-like effects of psoralidin isolated from the seeds of Psoralea corylifolia were investigated in the forced swimming test (FST) in ICR strain of male mice. Psoralidin significantly decreased immobility time and increased swimming behavior without altering climbing behavior in the mouse FST after oral administration for 1 h or 3 consecutive days. Psoralidin did not affect locomotor activity in the open-field test. After a 3-day treatment, psoralidin significantly increased 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in various brain regions, as well as, changed dopamine (DA) levels in striatum in mice exposed to FST. Psoralidin also ameliorated the elevations in serum corticotropin-releasing factor (CRF), adrenal corticotropin-releasing hormone (ACTH) and corticosterone concentrations induced by swimming stress in mice. These results suggested that psoralidin possessed potent antidepressant-like properties that were mediated via the monoamine neurotransmitter and the hypothalamic-pituitary-adrenal (HPA) axis systems.
Collapse
Affiliation(s)
- Li-Tao Yi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jahng JW, Kim NY, Ryu V, Yoo SB, Kim BT, Kang DW, Lee JH. Dexamethasone reduces food intake, weight gain and the hypothalamic 5-HT concentration and increases plasma leptin in rats. Eur J Pharmacol 2007; 581:64-70. [PMID: 18164702 DOI: 10.1016/j.ejphar.2007.11.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 10/18/2007] [Accepted: 11/15/2007] [Indexed: 12/27/2022]
Abstract
This study was conducted to define the regulatory mechanisms underlying stress-induced decreases in food intake and weight gain. Rats received a single or 4 daily injections of dexamethasone (0.1 or 1 mg/kg). Food intake and weight gain were recorded, and plasma leptin, brain contents of serotonin (5-hydroxytryptamine; 5-HT), 5-hydroxy-indole-acetic acid (5-HIAA) and the raphe expression of tryptophan hydroxylase (TPH), monoamine oxidase A (MAO-A) and 5-HT reuptake transporter (5-HTT) genes were examined. A single injection of dexamethasone did not acutely affect food intake, but cumulative food intake and weight gain were suppressed dose-dependently by daily injections of dexamethasone. Both a single and repeated injections of dexamethasone elevated plasma leptin in a dose dependent manner. 5-HT contents in the hypothalamus was decreased, but 5-HIAA increased, both by a single and repeated dexamethasone. A single injection of dexamethasone did not affect mRNA expressions of TPH, MAO-A and 5-HTT genes, but repeated dexamethasone increased them in the dorsal raphe nucleus. These results suggest that plasma leptin may play a role in dexamethasone-induced anorexia. Additionally, increased expression of MAO-A and 5-HTT genes by repeated dexamethasone appears to be implicated in decreases of the brain 5-HT contents.
Collapse
Affiliation(s)
- Jeong Won Jahng
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, 110-744, South Korea.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Sleep disturbances are often associated with depression and mood disorders, and certain manipulations of the sleep-wake cycle are effective as therapeutic interventions in the treatment of depression. Dysregulated circadian rhythms are thereby considered as causal. Circadian rhythms in mammals are mainly regulated by a core biological clock, located in the hypothalamic suprachiasmatic nucleus; its pacemaker activity is regulated by light and nonphotic modulatory pathways, and the driving mechanisms are serotonergic input from the raphe and the hormone melatonin originating from the pineal gland. In line, the concentration of brain serotonin and the levels of 5-HT2C receptors are high and highly expressed there. Agomelatine, a novel antidepressant drug with proven clinical efficacy in major depressive disorder, has a unique mechanism of action; it acts as an agonist at melatonergic MT1 and MT2 receptors and as an antagonist at 5-HT2C receptors. In animals, agomelatine was shown to increase noradrenaline and dopamine (but not serotonin) in the frontal cortex, to resynchronize the sleep-wake cycle in models with disrupted circadian rhythms, and to exhibit a clear antidepressant effect in various animal models of depression. On the basis of the functional relationship between melatonergic and serotonergic signaling in the suprachiasmatic nucleus, and given agomelatine's affinity at melatonergic and 5-HT2C receptors, the therapeutic efficacy of the drug may be due to the potential synergy of its action at these different receptors.
Collapse
|
41
|
Yoshimura A, Masui A, Jinde S, Kanai H, Kato N, Okawa M. Influence of age or circadian time on bcl-2 and bax mRNA expression in the rat hippocampus after corticosterone exposure. Brain Res Bull 2007; 73:254-8. [PMID: 17562391 DOI: 10.1016/j.brainresbull.2007.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/19/2007] [Accepted: 03/19/2007] [Indexed: 11/18/2022]
Abstract
A rapid elevation in the level of endogenous corticosterone (CORT) functions in the stress response associated with the hypothalamus-pituitary-adrenal axis, and it has been well documented that high levels of CORT play neurotoxic roles in the hippocampus. Both aging and the circadian rhythm possibly affect the sensitivity to CORT, although their endogenous modifications in the CORT-mediated events remain unclear. To explore the influence of age or circadian time on hippocampal vulnerability to excess CORT, we examined the relative mRNA expression of bcl-2 and bax in the dentate gyrus (DG) and the CA1 subfield, compared with the CA3 as an internal standard, after acute CORT administration using in situ RT-PCR. Male rats aged 10 weeks (young) or 6 months (adult) were treated with CORT at 0800 or 2000 h. The bcl-2 to bax mRNA ratio in the dentate gyrus (DG) was significantly decreased 2h after CORT exposure in the young rats treated at 0800 or 2000 h. In the adult rats, the treatment with CORT at 0800 h significantly decreased the bcl-2 to bax ratio, whereas the treatment at 2000 h was ineffective; the discrepancy between the treatment time points was apparent in adult rats, but not in young rats. Our results emphasize the importance of circadian time as well as age as a factor influencing the stress paradigm.
Collapse
Affiliation(s)
- Atsushi Yoshimura
- Department of Psychiatry, Shiga University of Medical Science, Otsu, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Pang KCH, Miller JP, Fortress A, McAuley JD. Age-related disruptions of circadian rhythm and memory in the senescence-accelerated mouse (SAMP8). AGE (DORDRECHT, NETHERLANDS) 2006; 28:283-296. [PMID: 22253495 PMCID: PMC3259149 DOI: 10.1007/s11357-006-9013-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 07/05/2006] [Accepted: 08/10/2006] [Indexed: 05/31/2023]
Abstract
Common complaints of the elderly involve impaired cognitive abilities, such as loss of memory and inability to attend. Although much research has been devoted to these cognitive impairments, other factors such as disrupted sleep patterns and increased daytime drowsiness may contribute indirectly to impaired cognitive abilities. Disrupted sleep-wake cycles may be the result of age-related changes to the internal (circadian) clock. In this article, we review recent research on aging and circadian rhythms with a focus on the senescence-accelerated mouse (SAM) as a model of aging. We explore some of the neurobiological mechanisms that appear to be responsible for our aging clock, and consider implications of this work for age-related changes in cognition.
Collapse
Affiliation(s)
- Kevin C. H. Pang
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green State University, Bowling Green, OH 43403 USA
- Stress & Motivated Behavior Institute, NeuroBehavioral Research Laboratory, VA Medical Center, 385 Tremont Avenue, Mailstop 129, East Orange, NJ 07018 USA
| | - Jonathan P. Miller
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green State University, Bowling Green, OH 43403 USA
| | - Ashley Fortress
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green State University, Bowling Green, OH 43403 USA
| | - J. Devin McAuley
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green State University, Bowling Green, OH 43403 USA
| |
Collapse
|
43
|
Furay AR, Murphy EK, Mattson MP, Guo Z, Herman JP. Region-specific regulation of glucocorticoid receptor/HSP90 expression and interaction in brain. J Neurochem 2006; 98:1176-84. [PMID: 16895583 DOI: 10.1111/j.1471-4159.2006.03953.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hippocampal glucocorticoid receptor (GR) is involved in negative feedback regulation of the hypothalamo-pituitary-adrenal axis and is believed to transduce the deleterious effects of glucocorticoids in depression and age-related memory loss. Regulation and intracellular trafficking of the GR are critical determinants of GR action in both health and disease. Here, we show dynamic regulation of GR and its interaction with its principal intracellular chaperone, heat-shock protein (HSP) 90, across the circadian cycle. Our initial experiments indicate that cytosolic hippocampal GR protein is elevated in the evening (PM), whereas nuclear GR and cytosolic HSP90, HSP70 and heat-shock cognate 70 (HSC70), are unchanged. In contrast, there are no changes in examined proteins in the hypothalamus. Immunoprecipitation experiments reveal increased GR-HSP90 associations in the hippocampus in the PM, whereas binding in the hypothalamus is decreased in the PM. Given that GR requires HSP90 for ligand binding, the data suggest that circadian GR signaling capacity is regulated in a region-specific pattern.
Collapse
Affiliation(s)
- A R Furay
- Department of Psychiatry, University of Cincinnati, College of Medicine, Ohio 45237-0506, USA.
| | | | | | | | | |
Collapse
|
44
|
Charlier TD, Ball GF, Balthazart J. Plasticity in the expression of the steroid receptor coactivator 1 in the Japanese quail brain: effect of sex, testosterone, stress and time of the day. Neuroscience 2006; 140:1381-94. [PMID: 16650617 DOI: 10.1016/j.neuroscience.2006.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 02/26/2006] [Accepted: 03/01/2006] [Indexed: 11/27/2022]
Abstract
Analysis of nuclear receptor action on the eukaryotic genome highlights the importance of coactivators on gene transcription. The steroid receptor coactivator-1 in particular is the focus of an intense research and physiological or behavioral studies have confirmed that it plays a major role in the modulation of steroid and thyroid receptors activity. However, little is known about the regulation of steroid receptor coactivator-1 expression the brain. The goal of this study was to determine the potential factors modulating steroid receptor coactivator-1 synthesis in Japanese quail by quantification of its mRNA with real time quantitative polymerase chain reaction and of the corresponding protein via Western blotting. Contrary to previously published results from our laboratory [Charlier TD, Lakaye B, Ball GF, Balthazart J (2002) The steroid receptor coactivator SRC-1 exhibits high expression in steroid-sensitive brain areas regulating reproductive behaviors in the quail brain. Neuroendocrinology 76:297-315], we found here that sexually mature females had a higher concentration of steroid receptor coactivator-1 in the preoptic area/hypothalamus compared with males. Steroid receptor coactivator-1 expression in the male preoptic area/hypothalamus was up-regulated by testosterone and tended to be decreased by stress. We also identified a significant correlation between the time of the day and the expression of the coactivator in the optic lobes, hippocampus, telencephalon and hindbrain but the pattern of changes in expression as a function of the time of the day varied from one brain area to another. Together, these data support the idea that steroid receptor coactivator-1 is not constitutively expressed but rather is finely regulated by steroids, stress and possibly other unidentified factors.
Collapse
Affiliation(s)
- T D Charlier
- University of Liège, Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, Liège, Belgium.
| | | | | |
Collapse
|
45
|
Keeney A, Jessop DS, Harbuz MS, Marsden CA, Hogg S, Blackburn-Munro RE. Differential effects of acute and chronic social defeat stress on hypothalamic-pituitary-adrenal axis function and hippocampal serotonin release in mice. J Neuroendocrinol 2006; 18:330-8. [PMID: 16629831 DOI: 10.1111/j.1365-2826.2006.01422.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) stress axis and disturbances in serotonin (5-HT) neurotransmission have been implicated in the pathogenesis of depressive disorder. Repeated social defeat of male NMRI mice has been shown to induce increases in core body temperature and corticosterone, indicative of a state of chronic stress in subordinate animals. The present study further characterised the HPA axis response to social defeat stress, and also examined hippocampal extracellular 5-HT release during the stress. Exposure to an acute social defeat elicits increases in plasma adrenocorticotrophic hormone and corticosterone levels, peaking at 15 and 30 min, respectively, and enhances corticotrophin-releasing factor (CRF) mRNA, but not arginine vasopressin (AVP) mRNA within the medial parvocellular division of the hypothalamic paraventricular nucleus. A concomitant increase in hippocampal corticosterone and 5-HT levels is observed. By contrast, although chronic social defeat is associated with greatly elevated corticosterone levels, the predominant drive appears to be via parvocellular AVP rather than CRF. Furthermore, subordinate animals allowed to recover for 9 days after chronic social defeat display an increase in immobility in the forced swimming model of depression, indicating that animals previously exposed to the homotypic defeat stress are sensitised to the behavioural effects of a novel stressor. These results demonstrate that social defeat induces prolonged activation of the HPA axis and alterations in 5-HT neurotransmission that could be of relevance to some of the pathological abnormalities observed in clinical depression.
Collapse
Affiliation(s)
- A Keeney
- Psychopharmacological Research, H. Lundbeck A/S, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
46
|
Marini F, Pozzato C, Andreetta V, Jansson B, Arban R, Domenici E, Carboni L. Single exposure to social defeat increases corticotropin-releasing factor and glucocorticoid receptor mRNA expression in rat hippocampus. Brain Res 2005; 1067:25-35. [PMID: 16360122 DOI: 10.1016/j.brainres.2005.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 09/27/2005] [Accepted: 10/02/2005] [Indexed: 11/30/2022]
Abstract
Stressful life events are able to induce long-term modifications in physiological and neuroendocrine parameters that are related to the onset of several psychiatric disorders. To gain information on molecular modifications involved in long-term changes triggered by stress, we evaluated gene expression in the hippocampus of rats exposed to a single social defeat session. In the social defeat model, the experimental animal is defeated by a dominant male. The defeat induced an increase in body temperature, in distress vocalisations, in serum corticosterone levels and in anxiety-related behaviour measured with an open field test applied 6 h after the exposure to the dominant rat. In the open field test, anxiety-related behaviours were not detectable anymore 30 h after the exposure to the dominant rat and mRNA levels were evaluated at this time-point. The mRNA levels of genes modulated by stress (corticotropin-releasing factor; corticotropin-releasing factor receptor 1; corticotropin-releasing factor binding protein; mineralocorticoid and glucocorticoid receptors; Ca2+/calmodulin-dependent protein kinase-like kinase; Krox20; Bcl-2) and control genes (glyceraldehyde-3-phosphate dehydrogenase; beta-actin and cyclophilin A) were measured with real-time reverse transcription polymerase chain reaction. Corticotropin-releasing factor and glucocorticoid receptor mRNA levels were significantly modulated by the stress procedure, both genes showing an increase in rats exposed to a social defeat. No expression level differences were detected for the other genes. In conclusion, we report that 30 h after an acute social stress, a modification in mRNA levels can be detected in rat hippocampus, thus suggesting potential candidate genes involved in mediating long-term responses.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Medicine and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Vafopoulou X, Steel CGH. hormone nuclear receptor (EcR) exhibits circadian cycling in certain tissues, but not others, during development in Rhodnius prolixus (Hemiptera). Cell Tissue Res 2005; 323:443-55. [PMID: 16323012 DOI: 10.1007/s00441-005-0076-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 08/02/2005] [Indexed: 10/25/2022]
Abstract
The insect moulting hormones, viz. the ecdysteroids, regulate gene expression during development by binding to an intracellular protein, the ecdysteroid receptor (EcR). In the insect Rhodnius prolixus, circulating levels of ecdysteroids exhibit a robust circadian rhythm. This paper demonstrates associated circadian rhythms in the abundance and distribution of EcR in several major target tissues of ecdysteroids, but not in others. Quantitative analysis of immunofluorescence images obtained by confocal laser-scanning microscopy following the use of anti-EcR has revealed a marked daily rhythm in the nuclear abundance of EcR in cells of the abdominal epidermis, brain, fat body, oenocytes and rectal epithelium of Rhodnius. This EcR rhythm is synchronous with the rhythm of circulating hormone levels. It free-runs in continuous darkness for several cycles, showing that EcR nuclear abundance is under circadian control. Circadian control of a nuclear receptor has not been shown previously in any animal. We infer that the above cell types detect and respond to the temporal signals in the rhythmic ecdysteroid titre. In several cell types, the rhythm in cytoplasmic EcR peaks several hours prior to the EcR peak in the nucleus each day, thereby implying a daily migration of EcR from the cytoplasm to the nucleus. This finding shows that EcR is not a constitutive nuclear receptor, as has previously been assumed. In the brain, rhythmic nuclear EcR has been found in peptidergic neurosecretory cells, indicating a potential pathway for feedback regulation of the neuroendocrine system by ecdysteroids, and also in regions containing circadian clock neurons, suggesting that the circadian timing system in the brain is also sensitive to rhythmic ecdysteroid signals.
Collapse
Affiliation(s)
- Xanthe Vafopoulou
- Department of Biology, York University, 4700 Keele St, Toronto, Ontario, M3J 1P3, Canada.
| | | |
Collapse
|
48
|
Huang GJ, Herbert J. The role of 5-HT1A receptors in the proliferation and survival of progenitor cells in the dentate gyrus of the adult hippocampus and their regulation by corticoids. Neuroscience 2005; 135:803-13. [PMID: 16129565 DOI: 10.1016/j.neuroscience.2005.05.056] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 05/10/2005] [Accepted: 05/12/2005] [Indexed: 11/21/2022]
Abstract
These experiments explore the role of 5-HT1A receptors in the regulation of cell proliferation in the dentate gyrus of the intact and adrenalectomized adult rat. Depleting 5-HT with p-chlorophenylalanine (300 mg/kg initially followed by 100 mg/kg/day) or stimulating 5-HT1A receptors with 8-OH-DPAT (1 mg/kg or 2 mg/kg, s.c. injections twice daily) for 14 days had no effect on cell proliferation as measured by Ki-67 or BrdU (5-bromo-3-deoxyuridine) immunocytochemistry in the dentate gyrus. However, combined treatment with p-chlorophenylalanine followed by 8-OH-DPAT significantly increased cell proliferation compared with p-chlorophenylalanine alone. Micro-injection of the 5-HT neurotoxin 5,7-dihydroxytryptamine into the fimbria-fornix (3.0 microg/side) and the cingulate bundle (1.8 microg/side) depleted hippocampal 5-HT locally but did not change cell proliferation 3 weeks after the surgery. However, 8-OH-DPAT (1 mg/kg, twice daily) stimulated cell proliferation in the dentate gyrus of hippocampal 5-HT-depleted rats compared with controls. These results suggest that 5-HT(1A) modulates cell proliferation in the hippocampus by a direct post-synaptic effect. Previous studies demonstrate that adrenalectomy increases hippocampal 5-HT1A receptor expression and binding, and thus we investigated whether the effect of adrenalectomy on cell proliferation and survival was dependent on the activity of the 5-HT1A receptors. In contrast to the null effect following twice-daily s.c. injection, 8-OH-DPAT (2.0 mg/kg/day) delivered by s.c. osmotic pumps increased proliferation in intact rats. The 5-HT1A antagonist WAY-100635 (1.5 mg/kg/day also delivered by osmotic pump) by itself did not alter cell proliferation, confirming that reduced serotonin activity does not change proliferation, but blocked the effect of 8-OH-DPAT. However, WAY-100635 could not block the stimulating action of adrenalectomy cell proliferation. 5-HT1A mRNA expression was not altered in the hippocampus by adrenalectomy. Thus, the effect of adrenalectomy on cell proliferation and survival is not 5-HT1A dependent, despite the interaction between 5-HT1A and corticosterone.
Collapse
Affiliation(s)
- G-J Huang
- Department of Anatomy and Cambridge Centre for Brain Repair, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| | | |
Collapse
|
49
|
Bekris S, Antoniou K, Daskas S, Papadopoulou-Daifoti Z. Behavioural and neurochemical effects induced by chronic mild stress applied to two different rat strains. Behav Brain Res 2005; 161:45-59. [PMID: 15904709 DOI: 10.1016/j.bbr.2005.01.005] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 12/22/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
Chronic mild stress (CMS) has been reported to induce an anhedonic-like state in rats that resembles some of the symptoms of endogenous depression in humans. In the present study, CMS-induced behavioural responses along with neurochemical alterations in dopaminergic and serotonergic function in prefrontal cortex, striatum, hypothalamus and hippocampus were examined following treatment with imipramine in Wistar and Sprague-Dawley rats. The CMS procedure lasted 7 weeks in total. Once per week, a 1-h preference test for 1% sucrose solution was conducted. Treatment with imipramine (10mg/kg i.p., once daily) commenced after experimental week 3. CMS induced significant reductions in absolute and relative sucrose intake and sucrose preference in both rat strains but their temporal pattern was different especially during the weeks 0-3. These effects were reversed by IMI. An increase in the dopaminergic and a decrease in the serotonergic activity were observed in the prefrontal cortex in both rat strains following CMS. A decrease in the striatal dopaminergic activity and an increased hippocampal serotonergic activity were also seen in both rat strains following CMS. In Wistar rats, dopaminergic and serotonergic activities were enhanced in the hypothalamus whereas in Sprague-Dawley rats no such stress-induced changes were observed. Notably, the clear decrease in sucrose consumption observed in stressed Wistar rats could be directly associated with a respective increase in the dopaminergic hypothalamic activity. Chronic treatment with imipramine normalized all neurochemical alterations induced by CMS. Our results suggest that a specific and regionally differentiated serotonin-dopamine interaction is directly related to the observed stress-induced anhedonia.
Collapse
Affiliation(s)
- Stathis Bekris
- Department of Experimental Pharmacology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens, Greece
| | | | | | | |
Collapse
|
50
|
Drossopoulou G, Antoniou K, Kitraki E, Papathanasiou G, Papalexi E, Dalla C, Papadopoulou-Daifoti Z. Sex differences in behavioral, neurochemical and neuroendocrine effects induced by the forced swim test in rats. Neuroscience 2004; 126:849-57. [PMID: 15207320 DOI: 10.1016/j.neuroscience.2004.04.044] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2004] [Revised: 04/22/2004] [Accepted: 04/30/2004] [Indexed: 12/28/2022]
Abstract
The forced swim test (FST) has been considered as a pharmacologically valid test of the depressive syndrome in rodents. However, few studies have focused on neurochemical and behavioral responses during FST in both male and female rats. Thus, we investigated certain behavioral and neuroendocrine responses as well as the serotonergic activity after the application of FST in both sexes. Our data show that the duration of immobility was increased in both male and female rats during the 2nd session of the FST. Sex differences are observed in some behavioral responses, such as head swinging that is mostly present in male rats. In female rats FST induced a decrease in serotonergic activity in hippocampus and hypothalamus while in male rats it induced an increase in serotonergic activity in hypothalamus. Corticosterone serum levels were elevated in both sexes. However, hippocampal GR mRNA levels tended to be increased in males and females respectively. Moreover, hypothalamic serotonin (5-HT)1A mRNA levels were decreased in female rats while in male rats hippocampal 5-HT1A mRNA levels were increased. These data have shown that FST induces "depressive like symptoms" in both sexes and provide evidence that sex differences characterize certain behavioral aspects in the FST. Notably, hippocampal and hypothalamic serotonergic activity has been differentially modified in male rats compared with female rats and these neurochemical findings could be relevant to the differentiated expression of 5-HT1A receptor. Hypothalamic-pituitary-adrenal axis activity was also affected by FST application in a sex specific manner. The present results support that FST induced behavioral, neurochemical and neurobiological alterations, which are sex dependent.
Collapse
Affiliation(s)
- G Drossopoulou
- Department of Experimental Pharmacology, Medical School, University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|