1
|
Choi JI, Song WS, Koh DH, Kim EY. In Silico and In Vitro multiple analysis approach for screening naturally derived ligands for red seabream aryl hydrocarbon receptor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116262. [PMID: 38569320 DOI: 10.1016/j.ecoenv.2024.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is a key ligand-dependent transcription factor that mediates the toxic effects of compounds such as dioxin. Recently, natural ligands of AHR, including flavonoids, have been attracting physiological and toxicological attention as they have been reported to regulate major biological functions such as inflammation and anti-cancer by reducing the toxic effects of dioxin. Additionally, it is known that natural AHR ligands can accumulate in wildlife tissues, such as fish. However, studies in fish have investigated only a few ligands in experimental fish species, and the AHR response of marine fish to natural AHR ligands of various other structures has not been thoroughly investigated. To explore various natural AHR ligands in marine fish, which make up the most fish, it is necessary to develop new screening methods that consider the specificity of marine fish. In this study, we investigated the response of natural ligands by constructing in vitro and in silico experimental systems using red seabream as a model species. We attempted to develop a new predictive model to screen potential ligands that can induce transcriptional activation of red seabream AHR1 and AHR2 (rsAHR1 and rsAHR2). This was achieved through multiple analyses using in silico/ in vitro data and Tox21 big data. First, we constructed an in vitro reporter gene assay of rsAHR1 and rsAHR2 and measured the response of 10 representatives natural AHR ligands in COS-7 cells. The results showed that FICZ, Genistein, Daidzein, I3C, DIM, Quercetin and Baicalin induced the transcriptional activity of rsAHR1 and rsAHR2, while Resveratrol and Retinol did not induce the transcriptional activity of rsAHR isoforms. Comparing the EC50 values of the respective compounds in rsAHR1 and rsAHR2, FICZ, Genistein, and Daidzein exhibited similar isoform responses, but I3C, Baicalin, DIM and Quercetin show the isoform-specific responses. These results suggest that natural AHR ligands have specific profiling and transcriptional activity for each rsAHR isoform. In silico analysis, we constructed homology models of the ligand binding domains (LBDs) of rsAHR1 and rsAHR2 and calculated the docking energies (U_dock values) of natural ligands with measured in vitro transcriptional activity and dioxins reported in previous studies. The results showed a significant correlation (R2=0.74(rsAHR1), R2=0.83(rsAHR2)) between docking energy and transcriptional activity (EC50) value, suggesting that the homology model of rsAHR1 and rsAHR2 can be utilized to predict the potential transactivation of ligands. To broaden the applicability of the homology model to diverse compound structures and validate the correlation with transcriptional activity, we conducted additional analyses utilizing Tox21 big data. We calculated the docking energy values for 1860 chemicals in both rsAHR1 and rsAHR2, which were tested for transcriptional activation in Tox21 data against human AHR. By comparing the U_dock energy values between 775 active compounds and 1085 inactive compounds, a significant difference (p<0.001) was observed between the U_dock energy values in the two groups, suggesting that the U_dock value can be applied to distinguish the activation of compounds. Furthermore, we observed a significant correlation (R2=0.45) between the AC50 of Tox21 database and U_dock values of human AHR model. In conclusion, we calculated equations to translate the results of an in silico prediction model for ligand screening of rsAHR1 and rsAHR2 transactivation. This ligand screening model can be a powerful tool to quantitatively estimate AHR transactivation of major marine agents to which red seabream may be exposed. The study introduces a new screening approach for potential natural AHR ligands in marine fish, based on homology model-docking energy values of rsAHR1 and rsAHR2, with implications for future agonist development and applications bridging in silico and in vitro data.
Collapse
Affiliation(s)
- Jong-In Choi
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Woo-Seon Song
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Hee Koh
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Young Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Guo Q, Deng WF, Xiao JL, Shi PC, Lan LJ, Zhou ZX, Ji C. Synthesis, single crystal X-ray analysis and vibrational spectral studies of 3,4-di(1H-indol-3-yl)-1H-pyrrole-2,5-dione. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
3
|
Vermillion Maier ML, Siddens LK, Uesugi SL, Choi J, Leonard SW, Pennington JM, Tilton SC, Smith JN, Ho E, Chow HHS, Nguyen BD, Kolluri SK, Williams DE. 3,3'-Diindolylmethane Exhibits Significant Metabolism after Oral Dosing in Humans. Drug Metab Dispos 2021; 49:694-705. [PMID: 34035125 PMCID: PMC8407664 DOI: 10.1124/dmd.120.000346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/07/2021] [Indexed: 01/07/2023] Open
Abstract
3,3'-Diindolylmethane (DIM), a major phytochemical derived from ingestion of cruciferous vegetables, is also a dietary supplement. In preclinical models, DIM is an effective cancer chemopreventive agent and has been studied in a number of clinical trials. Previous pharmacokinetic studies in preclinical and clinical models have not reported DIM metabolites in plasma or urine after oral dosing, and the pharmacological actions of DIM on target tissues is assumed to be solely via the parent compound. Seven subjects (6 males and 1 female) ranging from 26-65 years of age, on a cruciferous vegetable-restricted diet prior to and during the study, took 2 BioResponse DIM 150-mg capsules (45.3 mg DIM/capsule) every evening for one week with a final dose the morning of the first blood draw. A complete time course was performed with plasma and urine collected over 48 hours and analyzed by UPLC-MS/MS. In addition to parent DIM, two monohydroxylated metabolites and 1 dihydroxylated metabolite, along with their sulfate and glucuronide conjugates, were present in both plasma and urine. Results reported here are indicative of significant phase 1 and phase 2 metabolism and differ from previous pharmacokinetic studies in rodents and humans, which reported only parent DIM present after oral administration. 3-((1H-indole-3-yl)methyl)indolin-2-one, identified as one of the monohydroxylated products, exhibited greater potency and efficacy as an aryl hydrocarbon receptor agonist when tested in a xenobiotic response element-luciferase reporter assay using Hepa1 cells. In addition to competitive phytochemical-drug adverse reactions, additional metabolites may exhibit pharmacological activity highlighting the importance of further characterization of DIM metabolism in humans. SIGNIFICANCE STATEMENT: 3,3'-Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, is an effective cancer chemopreventive agent in preclinical models and a popular dietary supplement currently in clinical trials. Pharmacokinetic studies to date have found little or no metabolites of DIM in plasma or urine. In marked contrast, we demonstrate rapid appearance of mono- and dihydroxylated metabolites in human plasma and urine as well as their sulfate and glucuronide conjugates. The 3-((1H-indole-3-yl)methyl)indolin-2-one metabolite exhibited significant aryl hydrocarbon receptor agonist activity, emphasizing the need for further characterization of the pharmacological properties of DIM metabolites.
Collapse
Affiliation(s)
- Monica L Vermillion Maier
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Lisbeth K Siddens
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Sandra L Uesugi
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Jaewoo Choi
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Scott W Leonard
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Jamie M Pennington
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Jordan N Smith
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Emily Ho
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - H H Sherry Chow
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Bach D Nguyen
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Siva K Kolluri
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - David E Williams
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| |
Collapse
|
4
|
Chen L, Au DWT, Hu C, Zhang W, Zhou B, Cai L, Giesy JP, Qian PY. Linking genomic responses of gonads with reproductive impairment in marine medaka (Oryzias melastigma) exposed chronically to the chemopreventive and antifouling agent, 3,3'-diindolylmethane (DIM). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:135-143. [PMID: 28063342 DOI: 10.1016/j.aquatox.2016.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
3,3'-Diindolylmethane (DIM) has been promoted as an effective chemopreventive and antifouling additive. However, the concurrent risks or side effects of DIM are not fully understood, especially on tissues responsive to estrogen. Therefore, this study employed marine medaka (Oryzias melastigma) as a test model to evaluate relative safety and explore mechanisms of toxic action of DIM on development and function of gonad after chronic (28days) aqueous exposure to relatively low doses (0μg/L or 8.5μg/L). Integration of comprehensive toxicogenomic analysis at the transcriptome and proteome levels with apical endpoints, such as production of eggs and swimming performance of larvae, elucidated the molecular linkage in gonad from bottom up along the reproductive adverse outcome pathway. A series of sequential changes at the transcript and protein levels were linked to lesser fecundity and viability of larvae exposed to DIM. Anomalous production of vitellogenin (VTG) and eggshell proteins in testis confirmed the estrogenic potency of DIM. In the ovary, although storage of VTG was greater, lesser expressions of cathepsin enzymes blocked cleavage and incorporation of VTG into oocytes as yolk, which acted together with lower eggshell proteins to inhibit maturation of primary oocyte and thus contributed to impairment of fecundity. Overall, this study demonstrated that exposure to DIM impaired reproductive fitness. Diverse molecular initiating changes in gonads were linked to apical endpoints that could be used in assessment of risks posed by DIM on gametogenesis. In combination with chemical stability and potent endocrine disruption, the results of this study can inform decisions about the use of DIM either as chemopreventive or antifouling agent.
Collapse
Affiliation(s)
- Lianguo Chen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Weipeng Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lin Cai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; Department of Zoology, and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| |
Collapse
|
5
|
Zlabek V, Burkina V, Borrisser-Pairó F, Sakalli S, Zamaratskaia G. Phase I metabolism of 3-methylindole, an environmental pollutant, by hepatic microsomes from carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss). CHEMOSPHERE 2016; 150:304-310. [PMID: 26915592 DOI: 10.1016/j.chemosphere.2016.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
We studied the in vitro metabolism of 3-methylindole (3MI) in hepatic microsomes from fish. Hepatic microsomes from juvenile and adult carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) were included in the study. Incubation of 3MI with hepatic microsomes revealed the time-dependent formation of two major metabolites, 3-methyloxindole (3MOI) and indole-3-carbinol (I3C). The rate of 3MOI production was similar in both species at both ages. No differences in kinetic parameters were observed (p = 0.799 for Vmax, and p = 0.809 for Km). Production of I3C was detected only in the microsomes from rainbow trout. Km values were similar in juvenile and adult fish (p = 0.957); Vmax was higher in juvenile rainbow trout compared with adults (p = 0.044). In rainbow trout and carp, ellipticine reduced formation of 3MOI up to 53.2% and 81.9% and ketoconazole up to 65.8% and 91.3%, respectively. The formation of I3C was reduced by 53.7% and 51.5% in the presence of the inhibitors ellipticine and ketoconazole, respectively. These findings suggest that the CYP450 isoforms CYP1A and CYP3A are at least partly responsible for 3MI metabolism. In summary, 3MI is metabolised in fish liver to 3MOI and I3C by CYP450, and formation of these metabolites might be species-dependent.
Collapse
Affiliation(s)
- Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic.
| | - Viktoriia Burkina
- University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic.
| | | | - Sidika Sakalli
- University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic.
| | - Galia Zamaratskaia
- University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
6
|
Santacroce MP, Iaffaldano N, Zacchino V, Rosato MP, Casalino E, Centoducati G. Effects of Aflatoxin Bi on liver phase I and phase II enzymes inducedin vitroon Sparus aurata hepatocytes primary culture. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2012.e60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Mehrim AI, Refaey MM, Elmeleigy KM. Glutathione-Enhancer™ Against Foodborne Aflatoxicosis of Oreochromis niloticus (Linnaeus, 1758). ACTA ACUST UNITED AC 2016. [DOI: 10.3923/jfas.2016.131.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Liu Y, She W, Wang F, Li J, Wang J, Jiang W. 3, 3'-Diindolylmethane alleviates steatosis and the progression of NASH partly through shifting the imbalance of Treg/Th17 cells to Treg dominance. Int Immunopharmacol 2014; 23:489-498. [PMID: 25281898 DOI: 10.1016/j.intimp.2014.09.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
This study was designed to discuss the effects of 3, 3'-diindolylmethane (DIM) on methionine-choline-deficient (MCD)-diet induced mouse nonalcoholic steatohepatitis (NASH) and the potential mechanisms. NASH mice were administrated with or without DIM at different concentrations for 8 weeks. Both the in-vivo and in-vitro effects of DIM on Treg/Th17 imbalance during NASH progression were analyzed. The in-vivo blocking of CD25 or IL-17 was performed to respectively deplete respective function of Treg or Th17 subset. Besides, with the assistance of AhR antagonist CH223191 and anti-TLR4 neutralizing antibody, we designed the in-vitro DIM-incubation experiments to discuss the roles of aryl hydrocarbon receptor (AhR) (CYP1A1, CYP1B1) and toll-like receptor 4 (TLR4) on DIM's effects when shifting Treg/Th17 imbalance. Notably, in NASH mouse models, DIM alleviated hepatic steatosis and inflammation, and shifted the Treg/Th17 imbalance from MCD diet-induced Th17 dominance to Treg dominance. In-vitro, DIM not only significantly up-regulated the mRNAs of Foxp3 (Treg-specific) in purified spleen CD4(+) T cells, but also enhanced the immunosuppressive function of these Treg cells. Besides, DIM significantly up-regulated the proteins of CYP1A1 and CYP1B1 whereas down-regulated those of TLR4 on CD4(+) T cells from MCD-diet mice. Moreover, blocking AhR attenuated while blocking TLR4 enhanced the effects of DIM when regulating Treg/Th17 imbalance. Conclusively, DIM could be used as a potential therapeutic candidate to treat NASH based on its dramatic induction of Treg dominance to alleviate intra-hepatic inflammation, suggesting us a clue that the dietary cruciferous vegetables (containing abundant DIM) might exist as a protective factor for patients with NASH-related liver diseases.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weimin She
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fuping Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Li
- Department of Gastroenterology, Tongji Hospital Tongji University, Shanghai China
| | - Jiyao Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Wang Q, He J, Yan J, Wu D, Li H. Spectroscopy and docking simulations of the interaction between lochnericine and bovine serum albumin. LUMINESCENCE 2014; 30:240-6. [DOI: 10.1002/bio.2724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Qing Wang
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Jiawei He
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Jin Yan
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Di Wu
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| | - Hui Li
- College of Chemical Engineering; Sichuan University; Chengdu 610065 People's Republic of China
| |
Collapse
|
10
|
Wang Q, He J, Yan J, Wu D, Bai K, Li H. WITHDRAWN: Assessment of the interaction between lochnericine and bovine serum albumin by multispectroscopic methods. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Zeng RS, Wen Z, Niu G, Schuler MA, Berenbaum MR. Allelochemical induction of cytochrome P450 monooxygenases and amelioration of xenobiotic toxicity in Helicoverpa zea. J Chem Ecol 2007; 33:449-61. [PMID: 17216359 DOI: 10.1007/s10886-006-9238-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 12/04/2006] [Indexed: 11/29/2022]
Abstract
Polyphagous herbivores encounter allelochemicals as complex mixtures in their host plants, and the toxicity of an individual compound may be influenced by the chemical matrix in which it is encountered. Certain plant constituents may reduce toxicity of cooccurring compounds by inducing detoxification systems, including cytochrome P450s, which can metabolize a broad range of substances. The polyphagous corn earworm Helicoverpa zea encounters a diversity of plant allelochemicals in its many host plants and, as well, can encounter aflatoxins, mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus that infect damaged grains. Dietary supplementation of each of three plant allelochemicals that are frequently (coumarin, COU), occasionally (indole-3-carbinol, 13C), or rarely (xanthotoxin, XAN) encountered by H. zea larvae substantially reduced the toxicity of aflatoxin B1 (AFB1) to H. zea. Compared to fourth instars on diets containing 1 microg/g AFB1 that failed to develop and pupate, fourth instars on diets containing I3C and XAN increased in mass by 216.1 and 700% after 6 days, and pupated at rates of 40 and 88%, respectively. Diets containing COU or XAN also significantly reduced the mortality rates of caterpillars exposed to the insecticides, diazinon and carbaryl. Diets containing COU and XAN increased CYP6B8 transcripts 2.6-fold; CYP321A1 transcripts increased 20.7, 8.3, and 10.6-fold in response to COU, I3C, and XAN, respectively. These results indicate that consumption of plant allelochemicals can ameliorate toxicity of natural and synthetic toxins encountered by insects, and they suggest that P450s induced by these allelochemicals contribute to detoxification of these chemicals in H. zea.
Collapse
Affiliation(s)
- Ren Sen Zeng
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | | | | | | | | |
Collapse
|
12
|
Pappa G, Strathmann J, Löwinger M, Bartsch H, Gerhäuser C. Quantitative combination effects between sulforaphane and 3,3'-diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis 2007; 28:1471-7. [PMID: 17331956 DOI: 10.1093/carcin/bgm044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Isothiocyanates (ITCs) and indoles derived from cruciferous vegetables possess growth-inhibiting and apoptosis-inducing activities in cancer cell lines in vitro. ITCs like sulforaphane (SFN) are cytotoxic, whereas indoles including indole-3-carbinol or its condensation product 3,3'-diindolylmethane (DIM) are acting by cytostatic mechanisms in human colon cancer cell lines. In the present study, we have investigated the impact of defined combinations of SFN and DIM (ratio 1:4, 1:2, 1:1, 2:1 and 4:1) on cell proliferation, cell-cycle progression and apoptosis induction in cultured 40-16 colon carcinoma cells. Calculations of combination effects were based on the method of Chou et al. (1984) Adv. Enzyme Regul., 22, 27-55, and were expressed as a combination index (CI) with CI < 1, CI = 1 or CI > 1 representing synergism, additivity or antagonism, respectively. Interestingly, at a total drug concentration of 2.5 microM, all combinations of SFN and DIM were antagonistic. With increasing concentrations, the antagonistic effect gradually turned into a synergistic interaction at the highest combined cytotoxic concentration of 40 microM. Cell-cycle analyses with SFN:DIM ratios of 1:1, 1:2 and 1:4 and total concentrations between 10 and 25 microM confirmed antagonism at low and additive effects at higher doses. SFN (10 microM) in combination with DIM (10 microM) resulted in strong G(2)/M cell-cycle arrest, which was not observed with either compound alone. Our results indicate that cytotoxic concentrations of SFN:DIM combinations affect cell proliferation synergistically. At low total concentrations (below 20 microM), which are physiologically more relevant, the combined broccoli compounds showed antagonistic interactions in terms of cell growth inhibition. These data stress the need for elucidating mechanistic interactions for better predicting beneficial health effects of bioactive food components.
Collapse
Affiliation(s)
- Gerlinde Pappa
- Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), C010-2 Chemoprevention, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
13
|
Guo X, Hu W, Cheng S, Wang L, Chang J. Synthesis of Novel Murrapanine Analogues by Microwave Irradiation. SYNTHETIC COMMUN 2006. [DOI: 10.1080/00397910500451159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xiaohe Guo
- a Department of Chemistry , University of Science and Technology of China , Hefei , China
| | - Weidong Hu
- b Henan Key Laboratory of Fine Chemicals , Zhengzhou , China
| | - Senxiang Cheng
- b Henan Key Laboratory of Fine Chemicals , Zhengzhou , China
| | - Limin Wang
- b Henan Key Laboratory of Fine Chemicals , Zhengzhou , China
| | - Junbiao Chang
- a Department of Chemistry , University of Science and Technology of China , Hefei , China
- b Henan Key Laboratory of Fine Chemicals , Zhengzhou , China
| |
Collapse
|
14
|
Pappa G, Lichtenberg M, Iori R, Barillari J, Bartsch H, Gerhäuser C. Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat Res 2006; 599:76-87. [PMID: 16500682 DOI: 10.1016/j.mrfmmm.2006.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 01/04/2006] [Accepted: 01/23/2006] [Indexed: 05/06/2023]
Abstract
The isothiocyanates sulforaphane and PEITC (beta-phenethyl isothiocyanate) as well as the indoles indole-3-carbinol and its condensation product 3,3'-diindolylmethane are known to inhibit cancer cell proliferation and induce apoptosis. In this study, we compared the cell growth inhibitory potential of the four compounds on the p53 wild type human colon cancer cell line 40-16 (p53(+/+)) and its p53 knockout derivative 379.2 (p53(-/-)) (both derived from HCT116). Using sulforhodamin B staining to assess cell proliferation, we found that the isothiocyanates were strongly cytotoxic, whereas the indoles inhibited cell growth in a cytostatic manner. Half-maximal inhibitory concentrations of all four compounds in both cell lines ranged from 5-15 microM after 24, 48 and 72 h of treatment. Apoptosis induction was analyzed by immunoblotting of poly(ADP-ribose)polymerase (PARP). Treatment with sulforaphane (15 microM), PEITC (10 microM), indole-3-carbinol (10 microM) and 3,3'-diindolylmethane (10 microM) induced PARP cleavage after 24 and 48 h in both 40-16 and the 379.2 cell lines, suggestive of a p53-independent mechanism of apoptosis induction. In cultured 40-16 cells, activation of caspase-9 and -7 detected by Western blotting indicated involvement of the mitochondrial pathway. We detected time- and concentration-dependent changes in protein expression of anti-apoptotic Bcl-x(L) as well as pro-apoptotic Bax and Bak proteins. Of note is that for sulforaphane only, ratios of pro- to anti-apoptotic Bcl-2 family protein levels directly correlated with apoptosis induction measured by PARP cleavage. Taken together, we demonstrated that the glucosinolate breakdown products investigated in this study have distinct profiles of cell growth inhibition, potential to induce p53-independent apoptosis and to modulate Bcl-2 family protein expression in human colon cancer cell lines.
Collapse
Affiliation(s)
- Gerlinde Pappa
- Division of Toxicology and Cancer Risk Factors, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Dashwood RH, Xu M. The disposition and metabolism of 2-amino-3-methylimidazo-[4,5-f]quinoline in the F344 rat at high versus low doses of indole-3-carbinol. Food Chem Toxicol 2003; 41:1185-92. [PMID: 12842187 DOI: 10.1016/s0278-6915(03)00110-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Indole-3-carbinol (I3C), a compound found in cruciferous vegetables, inhibits the formation of DNA adducts, colonic aberrant crypts, and tumors in rats given heterocyclic amines, such as 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). Previous mechanism studies indicated that I3C induces cytochromes P4501A1 (CYP1A1) and CYP1A2, as well as phase 2 pathways, leading to enhanced metabolism and excretion of IQ. However, the chemopreventive activity is dependent on the dose of I3C, and at low doses which do not induce CYP1A activity, there is evidence for increased IQ-DNA adduct formation in vivo. The present study examined the fate of IQ in the rat and the profile of urinary metabolites across a broad range of I3C doses. Male F344 rats were given a single injection of I3C by oral gavage, at a dose equivalent to that received from a single daily exposure to 0, 5, 10, 25, 50, 100, 200, 500 or 1000 ppm I3C in the diet, or they were given the 1000-ppm-equivalent dose of I3C for 14 consecutive days. Subsequently, each rat was given 14C-labeled IQ (5 mg/kg; 0.1 mCi/kg) and the animal was sacrificed 8 h later. With increasing I3C, there was a dose-dependent decrease in IQ-associated radiolabel in several systemic tissues, and an increase in the radiolabel eliminated via the feces. In the urine, there was a dose-dependent increase in IQ-5-O-glucuronide and IQ-5-O-sulfate metabolites, and a concomitant decrease in the IQ-sulfamate at intermediate and high doses of I3C. However, 5- and 10 ppm-equivalent doses of I3C enhanced the levels of IQ-sulfamate compared with controls, possibly due to the high ratio of hepatic CYP1A2 versus CYP1A1 activities at these I3C doses. The possible significance of the low versus high dose effects are discussed in the context of ongoing clinical trials with I3C and the reported chemopreventive mechanisms in vivo.
Collapse
Affiliation(s)
- R H Dashwood
- Linus Pauling Institute, and Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331-6512, USA.
| | | |
Collapse
|
16
|
Hong C, Kim HA, Firestone GL, Bjeldanes LF. 3,3'-Diindolylmethane (DIM) induces a G(1) cell cycle arrest in human breast cancer cells that is accompanied by Sp1-mediated activation of p21(WAF1/CIP1) expression. Carcinogenesis 2002; 23:1297-305. [PMID: 12151347 DOI: 10.1093/carcin/23.8.1297] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
3,3'-Diindolylmethane (DIM) is a promising cancer chemopreventive agent derived from Brassica food plants. To determine whether this natural indole has a direct growth inhibitory effect on human breast cancer cells, we examined the cell cycle regulatory effects of DIM in estrogen-dependent (MCF-7) and estrogen-independent (MDA-MB-231) human breast cancer cell lines. Results of flow cytometry studies showed that DIM treatment produced a marked increase (from 51 to 79%) in the proportion of cells in the G(1) phase of the cell cycle, regardless of estrogen-receptor status. Analyses of G(1)-acting cell cycle components indicated that the enzymatic activity of cyclin-dependent kinase (CDK) 2 was also strongly reduced. Western blot analyses showed that, concurrent with the DIM-induced cell cycle arrest, DIM stimulated a rapid and pronounced increase in levels of the CDK inhibitor, p21(WAF1/CIP1) (p21). Northern blot analysis demonstrated that DIM increased p21 mRNA expression with a maximal 6-7-fold induction, and exposure to cycloheximide did not block the response. Similar increases in expression of p21 protein and mRNA were observed in both MCF-7 and MDA-MB-231 human breast cancer cells, suggesting that DIM induction of p21 expression is independent of estrogen-receptor signaling and p53. Transient transfection of 5'-deletion constructs of the p21 promoter demonstrated that the first 291 bp segment of the proximal promoter, which contains six promoter specific transcription factor 1 (Sp1) elements, maintained DIM responsiveness. Consistent with a role for Sp1 in this response, a reporter construct driven by three consensus Sp1 binding sites was responsive to DIM. In addition, electrophoretic mobility shift assays showed that DIM induced the binding of Sp1 and Sp3 to the consensus Sp1 responsive element. Thus, our observations have uncovered an antiproliferative pathway for DIM that implicates Sp1/Sp3-induced expression of p21 as a target for cell cycle control in human breast cancer cells.
Collapse
Affiliation(s)
- Chibo Hong
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
17
|
Hong C, Firestone GL, Bjeldanes LF. Bcl-2 family-mediated apoptotic effects of 3,3'-diindolylmethane (DIM) in human breast cancer cells. Biochem Pharmacol 2002; 63:1085-97. [PMID: 11931841 DOI: 10.1016/s0006-2952(02)00856-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
3,3'-Diindolylmethane (DIM) is a major in vivo derivative of the putative anticancer agent indole-3-carbinol (I3C), which is present in vegetables of the Brassica genus. At concentrations above 10 microM, DIM inhibited DNA synthesis and cell proliferation in both estrogen receptor replete (MCF-7) and deficient (MDA-MB-231) human breast cancer cells in a concentration- and time-dependent manner. These antiproliferative effects were accompanied by characteristic indications of programmed cell death in both cell lines, including externalization of phosphatidylserine, chromatin condensation, and DNA fragmentation. Furthermore, Western and Northern blot analyses, as well as coimmunoprecipitation assays, revealed that in both MCF-7 and MDA-MB-231 cells, DIM treatment decreased total transcript and protein levels of the apoptosis inhibitory protein Bcl-2, and the amount of Bcl-2 bound to the pro-apoptotic protein Bax. DIM treatment also caused an increase in Bax protein levels, but did not affect the level of Bax that was bound to Bcl-2. As a functional test of the role of Bcl-2 down-regulation in the DIM-induced apoptotic response, ectopic expression of Bcl-2 in MCF-7 cells was shown to attenuate the apoptotic effect of DIM. These results demonstrate that DIM can induce apoptosis in breast cancer cells independent of estrogen receptor status by a process that is mediated by the modulated expression of the Bax/Bcl-2 family of apoptotic regulatory factors.
Collapse
Affiliation(s)
- Chibo Hong
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley 94720-3200, USA
| | | | | |
Collapse
|
18
|
|
19
|
Shertzer HG, Senft AP. The micronutrient indole-3-carbinol: implications for disease and chemoprevention. DRUG METABOLISM AND DRUG INTERACTIONS 2001; 17:159-88. [PMID: 11201294 DOI: 10.1515/dmdi.2000.17.1-4.159] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review provides a historical perspective for the development of indole-3-carbinol (I-3-C) as a chemopreventive or therapeutic agent. Early experiments in animal models clearly showed that feeding cruciferous vegetables reduced the incidence of chemical carcinogenesis. Excitement was generated by the finding that these vegetables contained a high content of indole-containing compounds, and I-3-C could by itself inhibit neoplasia. The mechanism of action was linked primarily to the ability of I-3-C and derived substances to induce mixed-function oxidases and phase II antioxidant enzymes by binding and activating the aryl hydrocarbon receptor. Most of the literature on chemoprotection by dietary indole compounds relates to this mechanism of action. Other mechanisms, however, are notable for this class of compounds, including their ability to act as radical and electrophile scavengers; the various ascorbate conjugates of I-3-C (ascorbigens) may be important in this regard. Exciting recent findings have demonstrated that I-3-C and its reaction products can affect cellular signaling pathways, regulate the cell cycle, and decrease tumor cell properties related to metastasis. It does not appear that I-3-C per se is the primary active compound in chemoprotection or chemoprevention. Rather, I-3-C and ascorbate provide the parent compounds for the formation of a myriad of nonenzymatic reaction products that have strong biological potency. We conclude with our thoughts regarding the current status and future directions for the use of I-3-C and related compounds.
Collapse
Affiliation(s)
- H G Shertzer
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, OH 45267-0056, USA.
| | | |
Collapse
|
20
|
Shilling AD, Carlson DB, Katchamart S, Williams DE. 3,3'-diindolylmethane, a major condensation product of indole-3-carbinol, is a potent estrogen in the rainbow trout. Toxicol Appl Pharmacol 2001; 170:191-200. [PMID: 11162784 DOI: 10.1006/taap.2000.9100] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Indole-3-carbinol (I3C), a compound found in Brassica vegetables has been widely studied for its chemopreventive properties. I3C has been shown to block tumor initiation and promotion; however, it also acts as a tumor promoter. I3C and some of its acid condensation products, particularly 3,3'-diindolylmethane (I33'), have exhibited antiestrogenic properties. We report that I33' acts as an estrogen in the rainbow trout liver in vitro and in vivo by inducing vitellogenin (Vg), a well-characterized biomarker for estrogens. Precision-cut liver slices from male rainbow trout, Oncorhynchus mykiss, were incubated at 14 degrees C for 96 h in media containing I3C, I33', or a mixture of I3C acid condensation products (RXN) (0-250 microM). I33' and RXN increased Vg levels in rainbow trout liver slices by over 300- and 20-fold, respectively, vs vehicle. The efficacy of I33' induction of Vg was comparable to 17 beta-estradiol (E(2)) with 2500-fold less potency. I33' and E(2) cotreatment resulted in additive Vg induction. Tamoxifen completely inhibited I33'-induced Vg induction, suggesting that Vg induction by I33' is entirely through the estrogen receptor. In vivo, juvenile male rainbow trout were fed I3C, RXN (0-2000 mg/kg), or I33' (0-250 mg/kg) for 2 weeks. At 2000 mg/kg, I3C induced Vg by over 100,000-fold compared to controls, which was comparable to 5 mg/kg 17 beta-estradiol (the dose resulting in maximum induction). I33' was five times as potent as I3C with equal efficacy. The potency of RXN was only 5% of I3C. Again, I33' and E(2) cotreatment resulted in additive Vg induction. I33' may have accounted for Vg increases observed in trout fed I3C as it is present in liver after oral dosing at concentrations (70 microM) expected to maximally induce Vg. In trout, results in vitro and in vivo document that I33' is estrogenic, consistent with our hypothesis that I3C promotes liver cancer in trout by estrogenic pathways.
Collapse
Affiliation(s)
- A D Shilling
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-7301, USA
| | | | | | | |
Collapse
|
21
|
Buhler DR, Miranda CL, Henderson MC, Yang YH, Lee SJ, Wang-Buhler JL. Effects of 17beta-estradiol and testosterone on hepatic mRNA/protein levels and catalytic activities of CYP2M1, CYP2K1, and CYP3A27 in rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol 2000; 168:91-101. [PMID: 11032764 DOI: 10.1006/taap.1999.9016] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is growing concern that exposure to chemicals in the environment can disrupt the endocrine systems of wildlife and humans, causing reproductive problems or other adverse effects. The expression of many cytochrome P450s (CYPs) is under hormonal control, hence, levels of these enzymes can be affected by exposure to endocrine-disrupting chemicals. Previous research has reported that treatment of fish and other animals with the estrogenic and androgenic hormones 17beta-estradiol (E2) and testosterone (T) alters the P450 content or enzyme activities in the treated animals. However, the results of many of these studies are either incomplete or in disagreement and in most cases the effect on specific P450 forms has not been determined. Therefore, to better understand the effects of gonadal hormones on the expression of P450s and their associated enzyme activities, it was of interest to undertake a comprehensive investigation of the transcriptional and translational expression of three constitutive hepatic P450s in the rainbow trout (Oncorhynchus mykiss) following hormone exposure. Accordingly, juvenile trout were injected intraperitoneally with propylene glycol vehicle and the most active estrogenic and androgenic hormones E2 (3 mg/kg) or T (3 mg/kg) on days 1, 4, 7, 13, and 15 and euthanized on day 19. After treatment with E2, hepatic microsomes showed significantly lower levels (percentage of control) in total P450 contents (52%), lauric acid hydroxylase (32%), and 6beta-progesterone hydroxylase activities (27%), [(3)H]aflatoxin-DNA binding (31%), and the protein levels of individual cytochrome P450s (CYPs) LMC1 (CYP2M1), LMC2, (CYP2K1), and LMC5 (CYP3A27) (average for three isoforms a reduction to 29% of control values) with only minor differences between sexes. Treatment with T had either no effect or resulted in small increases in total P450 in males (42%), in lauric acid hydroxylase in females (24%), and in 6beta-progesterone hydroxylase activity in males (21%). Biological variabilities among fish were high and a polymorphic or new LMC2-like form was detected at about 52 kDa in some liver microsomal samples after exposure of fish to either hormone. Female liver RNAs were analyzed through Northern blots and an average decrease of 94% in CYP2 M1, CYP2K1, and CYP3A27 mRNA levels occurred in the E2-treated trout. In livers from T-treated trout, the changes of mRNA levels of CYP2M1 and CYP3A27 were negligible, but CYP2K1 mRNA level decreased by about 60%. Additional CYP2K1 cDNA hybridizable mRNAs were seen in some fish as faint bands at about 2.8 kb for both hormone treatments. Results of this study, therefore, indicated that E2 down-regulated while T produced small but variable effects on the hepatic mRNA/protein levels of CYP2K1, CYP2M1, and CYP3A27 in juvenile rainbow trout. This study, therefore, suggests that exposure of fish and other wildlife to environmental endocrine disruptors, especially estrogen mimics, can adversely affect a number of physiological processes through mechanisms involving altered levels of expression of specific P450 isozymes.
Collapse
Affiliation(s)
- D R Buhler
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, USA
| | | | | | | | | | | |
Collapse
|
22
|
Bell MC, Crowley-Nowick P, Bradlow HL, Sepkovic DW, Schmidt-Grimminger D, Howell P, Mayeaux EJ, Tucker A, Turbat-Herrera EA, Mathis JM. Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecol Oncol 2000; 78:123-9. [PMID: 10926790 DOI: 10.1006/gyno.2000.5847] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Most precancerous lesions of the cervix are treated with surgery or ablative therapy. Chemoprevention, using natural and synthetic compounds, may intervene in the early precancerous stages of carcinogenesis and prevent the development of invasive disease. Our trial used indole-3-carbinol (I-3-C) administered orally to treat women with CIN as a therapeutic for cervical CIN. METHODS Thirty patients with biopsy proven CIN II-III were randomized to receive placebo or 200, or 400 mg/day I-3-C administered orally for 12 weeks. If persistent CIN was diagnosed by cervical biopsy at the end of the trial, loop electrocautery excision procedure of the transformation zone was performed. HPV status was assessed in all patients. RESULTS None (0 of 10) of the patients in the placebo group had complete regression of CIN. In contrast 4 of 8 patients in the 200 mg/day arm and 4 of 9 patients in the 400 mg/day arm had complete regression based on their 12-week biopsy. This protective effect of I-3-C is shown by a relative risk (RR) of 0.50 ((95% CI, 0. 25 to 0.99) P = 0.023) for the 200 mg/day group and a RR of 0.55 ((95% CI, 0.31 to 0.99) P = 0.032) for the 400 mg/day group. HPV was detected in 7 of 10 placebo patients, in 7 of 8 in the 200 mg/day group, and in 8 of 9 in the 400 mg/day group. CONCLUSIONS There was a statistically significant regression of CIN in patients treated with I-3-C orally compared with placebo. The 2/16 alpha-hydroxyestrone ratio changed in a dose-dependent fashion.
Collapse
Affiliation(s)
- M C Bell
- Department of Obstetrics and Gynecology, Louisiana State University Medical Center-Shreveport, 1501 Kings Highway, Shreveport, Louisiana, 71130-3932, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Whyte JJ, Jung RE, Schmitt CJ, Tillitt DE. Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit Rev Toxicol 2000; 30:347-570. [PMID: 10955715 DOI: 10.1080/10408440091159239] [Citation(s) in RCA: 485] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This review compiles and evaluates existing scientific information on the use, limitations, and procedural considerations for EROD activity (a catalytic measurement of cytochrome P4501A induction) as a biomarker in fish. A multitude of chemicals induce EROD activity in a variety of fish species, the most potent inducers being structural analogs of 2,3,7,8-tetracholordibenzo-p-dioxin. Although certain chemicals may inhibit EROD induction/activity, this interference is generally not a drawback to the use of EROD induction as a biomarker. The various methods of EROD analysis currently in use yield comparable results, particularly when data are expressed as relative rates of EROD activity. EROD induction in fish is well characterized, the most important modifying factors being fish species, reproductive status and age, all of which can be controlled through proper study design. Good candidate species for biomonitoring should have a wide range between basal and induced EROD activity (e.g., common carp, channel catfish, and mummichog). EROD activity has proven value as a biomarker in a number of field investigations of bleached kraft mill and industrial effluents, contaminated sediments, and chemical spills. Research on mechanisms of CYP1A-induced toxicity suggests that EROD activity may not only indicate chemical exposure, but also may also precede effects at various levels of biological organization. A current research need is the development of chemical exposure-response relationships for EROD activity in fish. In addition, routine reporting in the literature of EROD activity in standard positive and negative control material will enhance confidence in comparing results from different studies using this biomarker.
Collapse
Affiliation(s)
- J J Whyte
- U.S. Geological Survey (USGS) Cooperative Fish and Wildlife Research Unit, University of Missouri-Columbia, Columbia Environmetal Research Center (CERC), 65201, USA
| | | | | | | |
Collapse
|
24
|
Surh YJ, Kim SG, Liem A, Lee JW, Miller JA. Inhibitory effects of isopropyl-2-(1,3-dithietane-2-ylidene)-2- [N-(4-methylthiazol-2-yl)carbamoyl]acetate (YH439) on benzo[a]pyrene-induced skin carcinogenesis and micronucleated reticulocyte formation in mice. Mutat Res 1999; 423:149-53. [PMID: 10029692 DOI: 10.1016/s0027-5107(98)00236-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, a great deal of attention has been devoted to organosulfur compounds with potential cancer chemopreventive properties. Many sulfur-containing substances present in Brassica plants have been reported to possess striking anticarcinogenic and antimutagenic activities. Besides naturally occurring organosulfur compounds, certain synthetic sulfur-containing pharmaceuticals, such as oltipraz and sulindac, are known to exert substantial chemopreventive or chemoprotective effects. Isopropyl-2-(1, 3-dithietane-2-ylidene)-2-[N-(4-methylthiazol-2-yl)carbamoyl ]acetate (YH439) was initially developed for its possible use as a hepatoprotectant. The compound has been found to up-regulate the expression of cytochrome P-450 IA1 [I.J. Lee, K.S. Jeong, B.J. Roberts, A.T. Kallarakal, P. Fernandez-Salguero, F.J. Gonzalez, B.J. Song, Transcriptional induction of the cytochrome P-450 1A1 gene by a thiazolium compound YH439, Mol. Pharmacol. 49 (1996) 980-988.] which plays a pivotal role in metabolism of the majority of polycyclic aromatic carcinogens and mutagens, such as benzo[a]pyrene (B[a]P). In the present study, we found that oral administration of YH439 to CD-1 mice significantly suppressed B[a]P-initiated skin tumorigenesis. B[a]P-induced formation of micronuclei in mouse peripheral reticulocytes was also attenuated by YH439 pretreatment. Likewise, diallyl sulfide, a major volatile thioether present in garlic, also protected against B[a]P-induced skin tumorigenesis and micronucleated reticulocyte formation in mice.
Collapse
Affiliation(s)
- Y J Surh
- College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-gu, Seoul 151-742, South Korea.
| | | | | | | | | |
Collapse
|
25
|
Williams DE, Lech JJ, Buhler DR. Xenobiotics and xenoestrogens in fish: modulation of cytochrome P450 and carcinogenesis. Mutat Res 1998; 399:179-92. [PMID: 9672659 DOI: 10.1016/s0027-5107(97)00255-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As is the case with mammals, an ever-increasing number of cytochromes P450 (CYPs) are being characterized from fish. The focus of work on fish CYPs has been primarily on environmental induction of CYP1A by pollutants such as the polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxins and dibenzofurans. This response has been the basis for a sensitive biomonitoring tool of ecosystem health for a number of years. Studies have documented a correlation between CYP1A induction, pollutant levels and tumor incidence, especially in bottom-dwelling species. The rainbow trout has been utilized as a tumor model to document the role of CYP1A modulation in the inhibition or promotion of cancer. Fish are also very responsive to the class of chemicals known as xenoestrogens. Recent evidence is presented documenting the modulation of CYPs by xenoestrogens and their potential role as modulators of the tumor response. In this paper, we summarize the current knowledge concerning the occurrence of CYPs in fish and focus on the role of CYP1A induction in environmental monitoring of various genotoxic carcinogens and in the modulation of cancer in the trout model. Finally, the important class of aquatic pollutants known as xenoestrogens have now been shown to modulate CYP levels perhaps leading to alterations in tumor response or other adverse effects.
Collapse
Affiliation(s)
- D E Williams
- Marine/Freshwater Biomedical Sciences Center, Oregon State University, Corvallis 97331-6602, USA.
| | | | | |
Collapse
|
26
|
Verhoeven DT, Verhagen H, Goldbohm RA, van den Brandt PA, van Poppel G. A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chem Biol Interact 1997; 103:79-129. [PMID: 9055870 DOI: 10.1016/s0009-2797(96)03745-3] [Citation(s) in RCA: 339] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mechanisms by which brassica vegetables might decrease the risk of cancer are reviewed in this paper. Brassicas, including all types of cabbages, broccoli, cauliflower and Brussels sprouts, may be protective against cancer due to their relatively high glucosinolate content. Glucosinolates are usually broken down through hydrolysis catalyzed by myrosinase, an enzyme that is released from damaged plant cells. Some of the hydrolysis products, viz. indoles and isothiocyanates, are able to influence phase 1 and phase 2 biotransformation enzyme activities, thereby possibly influencing several processes related to chemical carcinogenesis, e.g. the metabolism, DNA-binding and mutagenic activity of promutagens. A reducing effect on tumor formation has been shown in rats and mice. The anticarcinogenic action of isothiocyanates and indoles depends upon many factors, such as the test system, the target tissue, the type of carcinogen challenge and the anticarcinogenic compound, their dosage, as well as the timing of the treatment. Most evidence concerning anticarcinogenic effects of glucosinolate hydrolysis products and brassica vegetables has come from studies in animals. Animal studies are invaluable in identifying and testing potential anticarcinogens. In addition, studies carried out in humans using high but still realistic human consumption levels of indoles and brassica vegetables have shown putative positive effects on health.
Collapse
Affiliation(s)
- D T Verhoeven
- TNO Nutrition and Food Research Institute, Zeist, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Takahashi N, Dashwood RH, Bjeldanes LF, Williams DE, Bailey GS. Mechanisms of indole-3-carbinol (I3C) anticarcinogenesis: inhibition of aflatoxin B1-DNA adduction and mutagenesis by I3C acid condensation products. Food Chem Toxicol 1995; 33:851-7. [PMID: 7590529 DOI: 10.1016/0278-6915(95)00054-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Possible inhibitory mechanisms of indole-3-carbinol (I3C) against aflatoxin B1 (AFB1), a potent hepatocarcinogen, were examined in rainbow trout. In the Salmonella assay using a trout post-mitochondrial activation system, I3C itself was not an antimutagen against AFB1. The study also evaluated: the antimutagenic ability of I3C oligomers; an acid reaction mixture (RXM) of I3C, generated at low pH to simulate I3C products formed under acidic conditions of the stomach; 3,3-diindolylmethane (I33'), the major derivative of I3C found in trout liver; and 5,6,11,12,17,18- hexahydrocyclononal [1,2-b:4,5-b':7,8-b"]triindole , the cyclic trimer of I3C (CT), a derivative of I3C in liver and one of the major components of RXM. Concentrations of 3.5 microM and greater of I33', CT or RXM showed about 80% inhibition compared with the control. Higher concentrations (70 microM) of the various I3C oligomers also inhibited (to a maximum of 55%) mutagenesis of synthetic AFB1-8,9-epoxide added to the Salmonella assay, in the absence of activating enzymes. I33' inhibited total microsome catalysed AFB1-DNA binding in vitro in an apparently non-competitive manner (Kis = 27.6 +/- 9.4 microM, Kii = 37.5 +/- 32.2 microM). These results suggest that the anticarcinogenic effect of I3C against AFB1 in rainbow trout, and perhaps other species, is due in part to inhibition of AFB1 bioactivation enzymes and to scavenging of the activated AFB1-8,9-epoxide.
Collapse
Affiliation(s)
- N Takahashi
- Department of Food Science & Technology, Oregon State University, Corvallis 97331, USA
| | | | | | | | | |
Collapse
|