1
|
Tavvabi-Kashani N, Hasanpour M, Baradaran Rahimi V, Vahdati-Mashhadian N, Askari VR. Pharmacodynamic, pharmacokinetic, toxicity, and recent advances in Eugenol's potential benefits against natural and chemical noxious agents: A mechanistic review. Toxicon 2024; 238:107607. [PMID: 38191032 DOI: 10.1016/j.toxicon.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
The active biological phytochemicals, crucial compounds employed in creating hundreds of medications, are derived from valuable and medicinally significant plants. These phytochemicals offer excellent protection from various illnesses, including inflammatory disorders and chronic conditions caused by oxidative stress. A phenolic monoterpenoid known as eugenol (EUG), it is typically found in the essential oils of many plant species from the Myristicaceae, Myrtaceae, Lamiaceae, and Lauraceae families. One of the main ingredients of clove oil (Syzygium aromaticum (L.), Myrtaceae), it has several applications in industry, including flavoring food, pharmaceutics, dentistry, agriculture, and cosmeceuticals. Due to its excellent potential for avoiding many chronic illnesses, it has lately attracted attention. EUG has been classified as a nonmutant, generally acknowledged as a safe (GRAS) chemical by the World Health Organization (WHO). According to the existing research, EUG possesses notable anti-inflammatory, antioxidant, analgesic, antibacterial, antispasmodic, and apoptosis-promoting properties, which have lately gained attention for its ability to control chronic inflammation, oxidative stress, and mitochondrial malfunction and dramatically impact human wellness. The purpose of this review is to evaluate the scientific evidence from the most significant research studies that have been published regarding the protective role and detoxifying effects of EUG against a wide range of toxins, including biological and chemical toxins, as well as different drugs and pesticides that produce a variety of toxicities, throughout view of the possible advantages of EUG.
Collapse
Affiliation(s)
- Negin Tavvabi-Kashani
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Department of Pharmacognosy and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Vahdati-Mashhadian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Fenech MF, Bull CF, Van Klinken BJW. Protective Effects of Micronutrient Supplements, Phytochemicals and Phytochemical-Rich Beverages and Foods Against DNA Damage in Humans: A Systematic Review of Randomized Controlled Trials and Prospective Studies. Adv Nutr 2023; 14:1337-1358. [PMID: 37573943 PMCID: PMC10721466 DOI: 10.1016/j.advnut.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Accumulation of deoxyribonucleic acid (DNA) damage diminishes cellular health, increases risk of developmental and degenerative diseases, and accelerates aging. Optimizing nutrient intake can minimize accrual of DNA damage. The objectives of this review are to: 1) assemble and systematically analyze high-level evidence for the effect of supplementation with micronutrients and phytochemicals on baseline levels of DNA damage in humans, and 2) use this knowledge to identify which of these essential micronutrients or nonessential phytochemicals promote DNA integrity in vivo in humans. We conducted systematic literature searches of the PubMed database to identify interventional, prospective, cross-sectional, or in vitro studies that explored the association between nutrients and established biomarkers of DNA damage associated with developmental and degenerative disease risk. Biomarkers included lymphocyte chromosome aberrations, lymphocyte and buccal cell micronuclei, DNA methylation, lymphocyte/leukocyte DNA strand breaks, DNA oxidation, telomere length, telomerase activity, and mitochondrial DNA mutations. Only randomized, controlled interventions and uncontrolled longitudinal intervention studies conducted in humans were selected for evaluation and data extraction. These studies were ranked for the quality of their study design. In all, 96 of the 124 articles identified reported studies that achieved a quality assessment score ≥ 5 (from a maximum score of 7) and were included in the final review. Based on these studies, nutrients associated with protective effects included vitamin A and its precursor β-carotene, vitamins C, E, B1, B12, folate, minerals selenium and zinc, and phytochemicals such as curcumin (with piperine), lycopene, and proanthocyanidins. These findings highlight the importance of nutrients involved in (i) DNA metabolism and repair (folate, vitamin B12, and zinc) and (ii) prevention of oxidative stress and inflammation (vitamins A, C, E, lycopene, curcumin, proanthocyanidins, selenium, and zinc). Supplementation with certain micronutrients and their combinations may reduce DNA damage and promote cellular health by improving the maintenance of genome integrity.
Collapse
Affiliation(s)
- Michael F Fenech
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia; Genome Health Foundation, North Brighton, South Australia, Australia.
| | - Caroline F Bull
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | - B Jan-Willem Van Klinken
- GSK Consumer Healthcare (now named Haleon), Warren, New Jersey, USA; Brightseed, San Francisco, CA, United States.
| |
Collapse
|
3
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, 2-methoxy-4-vinylphenol, CAS Registry Number 7786-61-0. Food Chem Toxicol 2022; 161 Suppl 1:112872. [PMID: 35183652 DOI: 10.1016/j.fct.2022.112872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/30/2021] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE, 20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP, 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
4
|
Salah A, Bouaziz C, Amara I, Abid-Essefi S, Bacha H. Eugenol protects against citrinin-induced cytotoxicity and oxidative damages in cultured human colorectal HCT116 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31374-31383. [PMID: 31473926 DOI: 10.1007/s11356-019-06212-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the protective effects of Eugenol (EUG), an effective antioxidant phenolic compound with a radical scavenging activity against citrinin (CTN)-induced toxicity in vitro using HCT116 cells. CTN is a well-known mycotoxin found in different constituents of the food chain. This environmental contaminant produces free radicals which interacts with cellular macromolecules and produces oxidation of protein, lipid, and DNA. The cytotoxic effects were monitored by measuring cell viability, reactive oxygen species (ROS) generation, antioxidant enzyme activities, malondialdehyde (MDA) production, protein oxidation, and DNA fragmentation. Our results have shown that the pretreatment of HCT116 cells with EUG, 2 h prior to citrinin (CTN) exposure, significantly decreased CTN-induced cell death, inhibited ROS generation, modulated activities of both catalase (CAT) and superoxide dismutase (SOD), and reduced MDA production. Level of protein-bound sulfhydryls and DNA fragmentation were also declined as compared with CTN-treated cells. These findings suggest that EUG would be an effective protective agent against CTN-induced oxidative stress, and thereby, it may complement and add to the functions of antioxidant vitamins and enzymes as a protection against the cytotoxicity of this mycotoxin.
Collapse
Affiliation(s)
- Amal Salah
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, rue Avicenne, 5019, Monastir, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia
| | - Chayma Bouaziz
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, rue Avicenne, 5019, Monastir, Tunisia.
| | - Ines Amara
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, rue Avicenne, 5019, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, rue Avicenne, 5019, Monastir, Tunisia
| | - Hassen Bacha
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Monastir University, rue Avicenne, 5019, Monastir, Tunisia
| |
Collapse
|
5
|
Cox JA, Zwart EP, Luijten M, White PA. The development and prevalidation of an in vitro mutagenicity assay based on MutaMouse primary hepatocytes, Part II: Assay performance for the identification of mutagenic chemicals. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:348-360. [PMID: 30714215 PMCID: PMC6593967 DOI: 10.1002/em.22277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
As demonstrated in Part I, cultured MutaMouse primary hepatocytes (PHs) are suitable cells for use in an in vitro gene mutation assay due to their metabolic competence, their "normal" phenotype, and the presence of the MutaMouse transgene for reliable mutation scoring. The performance of these cells in an in vitro gene mutation assay is evaluated in this study, Part II. A panel of 13 mutagenic and nonmutagenic compounds was selected to investigate the performance of the MutaMouse PH in vitro gene mutation assay. The nine mutagens represent a range of classes of chemicals and include mutagens that are both direct-acting and requiring metabolic activation. All the mutagens tested, except for ICR 191, elicited significant, concentration-dependent increases in mutant frequency (MF) ranging from 2.6- to 14.4-fold over the control. None of the four nonmutagens, including two misleading, or "false," positives (i.e., tertiary butylhydroquinone [TBHQ] and eugenol), yielded any significant increases in MF. The benchmark dose covariate approach facilitated ranking of the positive chemicals from most (i.e., 3-nitrobenzanthrone [3-NBA], benzo[a]pyrene [BaP], and aflatoxin B1 [AFB1]) to least (i.e., N-ethyl-N-nitrosourea [ENU]) potent. Overall, the results of this preliminary validation study suggest that this assay may serve as a complimentary tool alongside the standard genotoxicity test battery. This study, alongside Part I, illustrates the promise of MutaMouse PHs for use in an in vitro gene mutation assay, particularly for chemicals requiring metabolic activation. Environ. Mol. Mutagen. 60:348-360, 2019. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Julie A. Cox
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Edwin P. Zwart
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Paul A. White
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
6
|
Validation of the 3D Skin Comet assay using full thickness skin models: Transferability and reproducibility. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 827:27-41. [DOI: 10.1016/j.mrgentox.2018.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
|
7
|
Bezerra DP, Militão GCG, de Morais MC, de Sousa DP. The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment. Nutrients 2017; 9:nu9121367. [PMID: 29258206 PMCID: PMC5748817 DOI: 10.3390/nu9121367] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022] Open
Abstract
The formation of reactive oxygen species (ROS) during metabolism is a normal process usually compensated for by the antioxidant defense system of an organism. However, ROS can cause oxidative damage and have been proposed to be the main cause of age-related clinical complications and diseases such as cancer. In recent decades, the relationship between diet and cancer has been more studied, especially with foods containing antioxidant compounds. Eugenol is a natural compound widely found in many aromatic plant species, spices and foods and is used in cosmetics and pharmaceutical products. Eugenol has a dual effect on oxidative stress, which can action as an antioxidant or prooxidant agent. In addition, it has anti-carcinogenic, cytotoxic and antitumor properties. Considering the importance of eugenol in the area of food and human health, in this review, we discuss the role of eugenol on redox status and its potential use in the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Daniel Pereira Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil.
| | | | - Mayara Castro de Morais
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa 58051-970, Paraíba, Brazil.
| | - Damião Pergentino de Sousa
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa 58051-970, Paraíba, Brazil.
| |
Collapse
|
8
|
Studies on curative efficacy of monoterpene eugenol on anti- leukemic drug arsenic trioxide induced cardiotoxicity. Biomed Pharmacother 2017; 91:559-566. [PMID: 28494415 DOI: 10.1016/j.biopha.2017.04.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Arsenic trioxide (As2O3) is emerging as a frontline agent for the treatment of acute promyelocytic leukemia (APL) but the therapeutic application is limited by its toxicity. QT prolongation, torsades de pointes and sudden cardiac death have been implicated in the As2O3 therapy. So eugenol is a monoterpene compound is well known for its antioxidant properties and protective effect on the cardiovascular system. OBJECTIVE In this study, the cardioprotective effect of eugenol on cardiac electrical conductivity, tissue electrolytes, myocardial markers, antioxidant system, lipid peroxidation and nitric oxide production was investigated in male Wistar rats treated with arsenic trioxide. RESULTS The Inductively coupled plasma emission spectroscopic (ICP-OES) analysis pointed out the accumulation of arsenic in heart tissue. The rats administered with arsenic trioxide (4mg/kg body wt) exhibited myocardial damage that was manifested by the elevation of cardiac markers (LDH, CK-MB) enzymes and deterioration in the antioxidant enzymes (GSH, GST, GPx). Combination treatment with eugenol (5mg/kg of body wt) upholds the tissue antioxidant level, Na+/K+ - ATPase and Ca2+- ATPase activity and brings the cytosolic Ca2+, K+ and Na + levels near to normal value. Conjoined therapy with eugenol ameliorated the membrane peroxidation, restored the normal heart rate and rectified the prolongation of QT interval in the electrocardiogram. Histological examination of cardiac segments also supported the beneficial role of eugenol against arsenic-induced oxidative damages. CONCLUSION Our in vivo experimental findings suggest that monoterpenoid eugenol could be a potent and novel cytoprotective agent of clinical application against As2O3 induced cardiotoxicity.
Collapse
|
9
|
Al Wafai R, El-Rabih W, Katerji M, Safi R, El Sabban M, El-Rifai O, Usta J. Chemosensitivity of MCF-7 cells to eugenol: release of cytochrome-c and lactate dehydrogenase. Sci Rep 2017; 7:43730. [PMID: 28272477 PMCID: PMC5341120 DOI: 10.1038/srep43730] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/27/2017] [Indexed: 11/18/2022] Open
Abstract
Phytochemicals have been extensively researched for their potential anticancer effects. In previous study, direct exposure of rat liver mitochondria to eugenol main ingredient of clove, uncoupled mitochondria and increased F0F1ATPase activity. In the present study, we further investigated the effects of eugenol on MCF-7 cells in culture. Eugenol demonstrated: a dose-dependent decrease in viability (MTT assay), and proliferation (real time cell analysis) of MCF-7 cells, (EC50: 0.9 mM); an increase in reactive oxygen species; a decrease in ATP level and mitochondrial membrane potential (MitoPT JC-1 assay); and a release of cytochrome-c and lactate dehydrogenase (Cytotoxicity Detection Kit PLUS) into culture media at eugenol concentration >EC50. Pretreatment with the antioxidants Trolox and N-acetyl cysteine partially restored cell viability and decreased ROS, with Trolox being more potent. Expression levels of both anti- and pro-apoptotic markers (Bcl-2 and Bax, respectively) decreased with increasing eugenol concentration, with no variation in their relative ratios. Eugenol-treated MCF-7 cells overexpressing Bcl-2 exhibited results similar to those of MCF-7. Our findings indicate that eugenol toxicity is non-apoptotic Bcl-2 independent, affecting mitochondrial function and plasma membrane integrity with no effect on migration or invasion. We report here the chemo-sensitivity of MCF-7 cells to eugenol, a phytochemical with anticancer potential.
Collapse
Affiliation(s)
- Rana Al Wafai
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Warde El-Rabih
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Meghri Katerji
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Remi Safi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Omar El-Rifai
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Julnar Usta
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
10
|
Abstract
Polyphenols are a widely used class of compounds in dermatology. While phenol itself, the most basic member of the phenol family, is chemically synthesized, most polyphenolic compounds are found in plants and form part of their defense mechanism against decomposition. Polyphenolic compounds, which include phenolic acids, flavonoids, stilbenes, and lignans, play an integral role in preventing the attack on plants by bacteria and fungi, as well as serving as cross-links in plant polymers. There is also mounting evidence that polyphenolic compounds play an important role in human health as well. One of the most important benefits, which puts them in the spotlight of current studies, is their antitumor profile. Some of these polyphenolic compounds have already presented promising results in either in vitro or in vivo studies for non-melanoma skin cancer and melanoma. These compounds act on several biomolecular pathways including cell division cycle arrest, autophagy, and apoptosis. Indeed, such natural compounds may be of potential for both preventive and therapeutic fields of cancer. This review evaluates the existing scientific literature in order to provide support for new research opportunities using polyphenolic compounds in oncodermatology.
Collapse
Affiliation(s)
- Adilson Costa
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Michael Yi Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Kirkland D, Kasper P, Martus HJ, Müller L, van Benthem J, Madia F, Corvi R. Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 795:7-30. [DOI: 10.1016/j.mrgentox.2015.10.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
|
12
|
Api AM, Belsito D, Bhatia S, Bruze M, Calow P, Dagli ML, Dekant W, Fryer AD, Kromidas L, La Cava S, Lalko JF, Lapczynski A, Liebler DC, Miyachi Y, Politano VT, Ritacco G, Salvito D, Schultz TW, Shen J, Sipes IG, Wall B, Wilcox DK. RIFM fragrance ingredient safety assessment, Eugenol, CAS Registry Number 97-53-0. Food Chem Toxicol 2015; 97S:S25-S37. [PMID: 26702986 DOI: 10.1016/j.fct.2015.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022]
Abstract
The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Reproductive toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 230 mg/kg/day. A gavage multigenerational continuous breeding study conducted in rats on a suitable read across analog resulted in a MOE of 12,105 while considering 22.6% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable.
Collapse
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA.
| | - D Belsito
- Member RIFM Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY 10032, USA
| | - S Bhatia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - M Bruze
- Member RIFM Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden
| | - P Calow
- Member RIFM Expert Panel, Humphrey School of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455, USA
| | - M L Dagli
- Member RIFM Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo CEP 05508-900, Brazil
| | - W Dekant
- Member RIFM Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany
| | - A D Fryer
- Member RIFM Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - L Kromidas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - S La Cava
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - J F Lalko
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D C Liebler
- Member RIFM Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232-0146, USA
| | - Y Miyachi
- Member RIFM Expert Panel, Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - V T Politano
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - T W Schultz
- Member RIFM Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN 37996-4500, USA
| | - J Shen
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - I G Sipes
- Member RIFM Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA
| | - B Wall
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D K Wilcox
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| |
Collapse
|
13
|
Porto MDP, da Silva GN, Luperini BCO, Bachiega TF, de Castro Marcondes JP, Sforcin JM, Salvadori DMF. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages. Mol Biol Rep 2015; 41:7043-51. [PMID: 25103019 DOI: 10.1007/s11033-014-3657-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.
Collapse
Affiliation(s)
- Marilia de Paula Porto
- Departamento de Patologia, Faculdade de Medicina de Botucatu, UNESP - Universidade Estadual Paulista, Botucatu, SP, 18618-000, Brazil,
| | | | | | | | | | | | | |
Collapse
|
14
|
Hégarat LL, Mourot A, Huet S, Vasseur L, Camus S, Chesné C, Fessard V. Performance of Comet and Micronucleus Assays in Metabolic Competent HepaRG Cells to Predict In Vivo Genotoxicity. Toxicol Sci 2014; 138:300-9. [DOI: 10.1093/toxsci/kfu004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
|
16
|
Basch E, Gasparyan A, Giese N, Hashmi S, Miranda M, Sollars D, Seamon E, Tanguay-Colucci S, Ulbricht C, Varghese M, Vora M, Weissner W. Clove (Eugenia aromatica) and clove oil (eugenol). Natural standard monograph (www.naturalstandard.com) copyright © 2008. J Diet Suppl 2013; 5:117-46. [PMID: 22432430 DOI: 10.1080/19390210802335391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
|
18
|
Kamatou GP, Vermaak I, Viljoen AM. Eugenol--from the remote Maluku Islands to the international market place: a review of a remarkable and versatile molecule. Molecules 2012; 17:6953-81. [PMID: 22728369 PMCID: PMC6268661 DOI: 10.3390/molecules17066953] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 05/18/2012] [Accepted: 05/30/2012] [Indexed: 11/16/2022] Open
Abstract
Eugenol is a major volatile constituent of clove essential oil obtained through hydrodistillation of mainly Eugenia caryophyllata (=Syzygium aromaticum) buds and leaves. It is a remarkably versatile molecule incorporated as a functional ingredient in numerous products and has found application in the pharmaceutical, agricultural, fragrance, flavour, cosmetic and various other industries. Its vast range of pharmacological activities has been well-researched and includes antimicrobial, anti-inflammatory, analgesic, anti-oxidant and anticancer activities, amongst others. In addition, it is widely used in agricultural applications to protect foods from micro-organisms during storage, which might have an effect on human health, and as a pesticide and fumigant. As a functional ingredient, it is included in many dental preparations and it has also been shown to enhance skin permeation of various drugs. Eugenol is considered safe as a food additive but due to the wide range of different applications, extensive use and availability of clove oil, it is pertinent to discuss the general toxicity with special reference to contact dermatitis. This review summarises the pharmacological, agricultural and other applications of eugenol with specific emphasis on mechanism of action as well as toxicity data.
Collapse
Affiliation(s)
| | | | - Alvaro M. Viljoen
- Author to whom correspondence should be addressed; ; Tel.: +27-12-382-6360; Fax: +27-12-382-6243
| |
Collapse
|
19
|
Horchani H, Aissa I, Ouertani S, Zarai Z, Gargouri Y, Sayari A. Staphylococcal lipases: Biotechnological applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2011.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Gülçin İ. Antioxidant Activity of Eugenol: A Structure–Activity Relationship Study. J Med Food 2011; 14:975-85. [DOI: 10.1089/jmf.2010.0197] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
- School of Health Services, İbrahim Cecen University, Agri, Turkey
| |
Collapse
|
21
|
|
22
|
Kirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res 2011; 721:27-73. [PMID: 21238603 DOI: 10.1016/j.mrgentox.2010.12.015] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 01/27/2023]
Abstract
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster LS24 0AS, United Kingdom.
| | | | | | | |
Collapse
|
23
|
Pal D, Banerjee S, Mukherjee S, Roy A, Panda CK, Das S. Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: Downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway. J Dermatol Sci 2010; 59:31-9. [DOI: 10.1016/j.jdermsci.2010.04.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/19/2010] [Accepted: 04/26/2010] [Indexed: 02/02/2023]
|
24
|
Kar Mahapatra S, Chakraborty SP, Majumdar S, Bag BG, Roy S. Eugenol protects nicotine-induced superoxide mediated oxidative damage in murine peritoneal macrophages in vitro. Eur J Pharmacol 2009; 623:132-40. [DOI: 10.1016/j.ejphar.2009.09.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/15/2009] [Accepted: 09/08/2009] [Indexed: 11/30/2022]
|
25
|
Huang TH, Hung CJ, Chen YJ, Chien HC, Kao CT. Cytologic effects of primary tooth endodontic filling materials. J Dent Sci 2009. [DOI: 10.1016/s1991-7902(09)60004-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Flavouring Group Evaluation 60 (FGE.60): Consideration of eugenol and related hydroxyallylbenzene derivatives evaluated by JECFA (65th meeting) structurally related to ring- substituted phenolic substances evaluated by EFSA in FGE.22 (2006). EFSA J 2009. [DOI: 10.2903/j.efsa.2009.965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
dos Santos PE, Egito LCM, de Medeiros SRB, Agnez-Lima LF. Genotoxicity induced by Eugenia caryophyllata infusion. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:439-444. [PMID: 18306091 DOI: 10.1080/15287390701839232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Several therapeutic properties have been described for Eugenia caryophyllata (clove). In the present study the infusion of E. caryophyllata was evaluated in a series of bacterial and cell-free assays in order to determine genotoxic potential. Negative results were obtained in the SOS chromotest and in the Salmonella reversion assay using strains TA97a, TA98, TA100, and TA102. However, in a forward mutagenesis assay an increase in mutagenesis and high cytotoxicity was observed with the CC104 mutMmutY strain, suggesting that oxidative DNA damage occurred. The treatment of plasmid with clove infusion showed that DNA strand breaks and sites recognized by formamidopyrimidine-DNA-glycosylase (FPG/MutM) were generated. Data suggest that the occurrence of oxidative DNA damage, with low mutagenic potential, may also be involved in the cytotoxicity attributed to clove infusion.
Collapse
Affiliation(s)
- Patrícia Estevam dos Santos
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | | |
Collapse
|
28
|
Nangia-Makker P, Tait L, Shekhar MPV, Palomino E, Hogan V, Piechocki MP, Funasaka T, Raz A. Inhibition of breast tumor growth and angiogenesis by a medicinal herb: Ocimum gratissimum. Int J Cancer 2007; 121:884-94. [PMID: 17437270 PMCID: PMC3613994 DOI: 10.1002/ijc.22733] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ocimum sp. is a traditionally used medicinal herb, which shows anti-oxidant, anti-carcinogenic, radio-protective and free radical scavenging properties. So far no detailed studies have been reported on its effects on human cancers. Thus, we analyzed its effects on human breast cancer utilizing in vitro and in vivo methodologies. Aqueous extracts were prepared from the mature leaves of Ocimum gratissimum (OG) cultivated devoid of pesticides. Tumor progression and angiogenesis related processes like chemotaxis, proliferation, apoptosis, 3D growth and morphogenesis, angiogenesis and tumor growth were studied in the presence or absence of the extract, and in some experiments a comparison was made with purified commercially available eugenol, apigenin and ursolic acid. Aqueous OG leaf extract inhibits proliferation, migration, anchorage independent growth, 3D growth and morphogenesis and induction of COX-2 protein in breast cancer cells. A comparative analysis with eugenol, apigenin and ursolic acid showed that the inhibitory effects on chemotaxis and 3D morphogenesis of breast cancer cells were specific to OG extract. In addition, OG extracts reduced tumor size and neoangiogenesis in a MCF10 DCIS.com xenograft model of human DCIS. This is the first detailed report showing that OG leaf extract may be of value as a breast cancer preventive and therapeutic agent and might be considered as additional additive in the arsenal of components aimed at combating breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Pratima Nangia-Makker
- Tumor Progression and Metastasis, Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Park KR, Lee JH, Choi C, Liu KH, Seog DH, Kim YH, Kim DE, Yun CH, Yea SS. Suppression of interleukin-2 gene expression by isoeugenol is mediated through down-regulation of NF-AT and NF-κB. Int Immunopharmacol 2007; 7:1251-8. [PMID: 17630204 DOI: 10.1016/j.intimp.2007.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 05/21/2007] [Accepted: 05/24/2007] [Indexed: 11/17/2022]
Abstract
Isoeugenol is a naturally occurring methoxyphenol found in a variety of foods and essential oils. We investigated the effect of isoeugenol on T-cell function and the regulatory mechanism underlying its effect. Isoeugenol and its structural analog eugenol suppressed the lymphoproliferative response to concanavalin A stimulation in B6C3F1 mouse splenocyte cultures. Isoeugenol inhibited phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io)-induced IL-2 mRNA expression and protein secretion in B6C3F1 mouse splenocytes, and in EL4.IL-2 mouse T-cells, as determined by real-time RT-PCR and ELISA, respectively. To further characterize the inhibitory mechanism of isoeugenol at the transcriptional level, we examined the DNA binding activity of the transcription factors for IL-2 using an electrophoretic mobility shift assay. Isoeugenol decreased the binding activity of NF-AT and NF-kappaB in PMA/Io-stimulated EL4.IL-2 cells, but no significant effect was observed for AP-1 or Oct binding activity. Western blot analysis showed that isoeugenol also decreased the nuclear translocation of cytoplasmic NF-AT and NF-kappaB. These results suggest that isoeugenol suppresses IL-2 production through a decrease of IL-2 mRNA expression and that the inhibition is mediated, at least in part, through the down-regulation of NF-AT and NF-kappaB.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Department of Biochemistry, College of Medicine, Inje University, 633-165 Gaegum-dong, Busanjin-gu, Busan 614-735, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abdel-Wahhab MA, Aly SE. Antioxidant property of Nigella sativa (black cumin) and Syzygium aromaticum (clove) in rats during aflatoxicosis. J Appl Toxicol 2005; 25:218-223. [PMID: 15856529 DOI: 10.1002/jat.1057] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aflatoxins, a group of closely related, extremely toxic mycotoxins produced by Aspergillus flavus and A. parasiticus, can occur as natural contaminants of foods and feeds. Aflatoxins have been shown to be hepatotoxic, carcinogenic, mutagenic and teratogenic to different animal species. Nigella sativa (black cumin) and Syzygium aromaticum (clove) oil are used for the treatment of inflammatory diseases and have antioxidant properties. The aim of this study was to investigate the ability of these volatile oils to scavenge free radicals generated during aflatoxicosis. Sixty male rats were divided into six treatment groups, including a control group, and the groups were treated for 30 days with Nigella sativa and Syzygium aromaticum oils with or without aflatoxin. Blood samples were collected at the end of the experimental period for haematological and biochemical analysis. The results indicated that exposure to aflatoxins resulted in haematological and biochemical changes typical for aflatoxicosis. Treatment with Nigella sativa and Syzygium aromaticum oil of rats fed an aflatoxin-contaminated diet resulted in significant protection against aflatoxicosis. Moreover, Nigella sativa oil was found to be more effective than Syzygium aromaticum oil in restoring the parameters that were altered by aflatoxin in rats.
Collapse
Affiliation(s)
- M A Abdel-Wahhab
- Food Toxicology and Contaminants Dept., National Research Centre, Dokki, Cairo, Egypt.
| | | |
Collapse
|
31
|
Murakami Y, Shoji M, Hanazawa S, Tanaka S, Fujisawa S. Preventive effect of bis-eugenol, a eugenol ortho dimer, on lipopolysaccharide-stimulated nuclear factor kappa B activation and inflammatory cytokine expression in macrophages. Biochem Pharmacol 2003; 66:1061-6. [PMID: 12963494 DOI: 10.1016/s0006-2952(03)00419-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eugenol exhibits antioxidant and anti-inflammatory activities, but at higher concentrations acts as an oxidant and potent allergen. It was earlier shown that bis-eugenol synthesized by the oxidation of eugenol was less cytotoxic and more highly antioxidative than eugenol. But its anti-inflammatory mechanism remains yet unclear. Since nuclear factor-kappa B (NF-kappa B) is a key transcriptional factor in the expression of inflammatory cytokines, we examined whether eugenol and bis-eugenol are inhibitors of NF-kappa B activation. We observed that bis-eugenol, but not eugenol, clearly inhibited the degradation of inhibitory kappa B-alpha in RAW264.7 murine macrophages stimulated with lipopolysaccharide and, consequently, the transcriptional activity of the stimulated NF-kappa B in the cells. In addition, bis-eugenol actually inhibited LPS-stimulated expression of inflammatory cytokines at both gene and protein levels. These findings suggest that bis-eugenol acts as a potent inhibitor of NF-kappa B.
Collapse
Affiliation(s)
- Yukio Murakami
- Department of Oral Diagnosis, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado City, Saitama 350-0283, Japan
| | | | | | | | | |
Collapse
|
32
|
Usta J, Kreydiyyeh S, Bajakian K, Nakkash-Chmaisse H. In vitro effect of eugenol and cinnamaldehyde on membrane potential and respiratory chain complexes in isolated rat liver mitochondria. Food Chem Toxicol 2002; 40:935-40. [PMID: 12065215 DOI: 10.1016/s0278-6915(02)00071-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of water extracts of cinnamon and clove on rat mitochondrial F(0)F1ATPase was investigated. Both spices stimulated ATP hydrolysis. Gas chromatography analysis of the water extracts, confirmed the presence of eugenol and cinnamaldehyde as major components in clove and cinnamon, respectively. Both components (1) stimulated ATPase significantly at concentrations equal or greater then 0.3 mM; (2) reduced mitochondrial membrane potential: a 50% decrease in Deltapsi was obtained at 7.56 and 11.6 micromoles/mg protein for eugenol and cinnmaldehyde, respectively; (3) inhibited NADH oxidase or complex I of the respiratory chain with a 50% inhibition at 15 and 20 micromoles/mg protein for eugenol and cinnamaldehyde respectively; (4) had no effect on succinate dehydrogenase activity. The study proposes the mitochondria as a target for the action of the spices resulting in derangement of mitochondrial functions, particularly at proton transferring sites.
Collapse
Affiliation(s)
- J Usta
- American University of Beirut, Department of Biochemistry, Faculty of Medicine, Lebanon.
| | | | | | | |
Collapse
|
33
|
Sharma N, Trikha P, Athar M, Raisuddin S. Inhibition of benzo[a]pyrene- and cyclophoshamide-induced mutagenicity by Cinnamomum cassia. Mutat Res 2001; 480-481:179-88. [PMID: 11506812 DOI: 10.1016/s0027-5107(01)00198-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cinnamomum cassia is used as a flavoring spice with some established medicinal properties. In this study, we evaluated the antimutagenic effect of C. cassia against two mutagens, viz. benzo[a]pyrene (B[a]P) and cyclophosphamide (CP). The antimutagenic properties of C. cassia were examined by the Ames test. In vivo chromosomal aberration (CA) and micronuclei tests were also employed to assess the antimutagenic effect of C. cassia in mice after pretreatment with the extract orally for seven consecutive days. To elucidate the mechanism by which C. cassia exerts its antimutagenic effect, certain key enzymes involved in bioactivation and detoxification processes were also investigated. Changes in liver cytochrome P450 (Cyt P450), glutathione content (GSH), glutathione S-transferase (GST), glutathione reductase (GR), and glutathione peroxidase (GPX) were evaluated in pretreated animals. It was observed in the Ames test, bone marrow chromosomal aberration assay, and micronucleus test that C. cassia exerted significant antimutagenic effects against B[a]P and CP in animals treated with the plant extract. C. cassia pretreatment decreased Cyt P450 content but increased GSH content and the activity of glutathione-dependent antioxidant enzymes, viz. GST, GR, and GPX. The present findings demonstrate that the antimutagenic potential of C. cassia could be attributed to its modulatory effect on the xenobiotic bioactivation and detoxification processes.
Collapse
Affiliation(s)
- N Sharma
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard University, New Delhi 110062, India
| | | | | | | |
Collapse
|
34
|
Abstract
The naturally occurring flavouring agents trans-anethole and eugenol were evaluated for antigenotoxic effects in mice. The test doses of trans-anethole (40-400 mg/kg body weight) and eugenol (50-500 mg/kg weight) were administered by gavage 2 and 20 h before the genotoxins were injected intraperitoneally. Anti-genotoxic effects were assessed in the mouse bone marrow micronucleus test. Pretreatment with trans-anethole and eugenol led to significant antigenotoxic effects against cyclophosphamide (CPH), procarbazine (PCB), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and urethane (URE). In addition, trans-anethole inhibited the genotoxicity of ethyl methane sulfonate (EMS). Both trans-anethole and eugenol exerted dose-related antigenotoxic effects against PCB and URE. There was no significant increase in genotoxicity when trans-anethole (40-400 mg/kg body weight) and eugenol (50-500 mg/kg body weight) were administered alone.
Collapse
Affiliation(s)
- S K Abraham
- School of Life Sciences, Jawaharlal Nehru University, -110067, New Delhi, India.
| |
Collapse
|
35
|
Galvano F, Piva A, Ritieni A, Galvano G. Dietary strategies to counteract the effects of mycotoxins: a review. J Food Prot 2001; 64:120-31. [PMID: 11198434 DOI: 10.4315/0362-028x-64.1.120] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We reviewed various dietary strategies to contain the toxic effects of mycotoxins using antioxidant compounds (selenium, vitamins, provitamins), food components (phenolic compounds, coumarin, chlorophyll and its derivatives, fructose, aspartame), medicinal herbs and plant extracts, and mineral and biological binding agents (hydrated sodium calcium aluminosilicate, bentonites, zeolites, activated carbons, bacteria, and yeast). Available data are primarily from in vitro studies and mainly focus on aflatoxin B1, whereas much less information is available about other mycotoxins. Compounds with antioxidant properties are potentially very efficacious because of their ability to act as superoxide anion scavengers. Interesting results have been obtained by food components contained in coffee, strawberries, tea, pepper, grapes, turmeric, Fava tonka, garlic, cabbage, and onions. Additionally, some medicinal herbs and plant extracts could potentially provide protection against aflatoxin B1 and fumonisin B1. Activated carbons, hydrated sodium calcium aluminosilicate, and bacteria seem to effectively act as binders. We conclude that dietary strategies are the most promising approach to the problem, considering their limited or nil interference in the food production process. Nevertheless, a great research effort is necessary to verify the in vivo detoxification ability of the purposed agents, their mode of action, possible long-term drawbacks of these detoxification-decontamination procedures, and their economical and technical feasibility.
Collapse
Affiliation(s)
- F Galvano
- Dipartimento di Scienze e Tecnologie Agroforestali ed Ambientali, Universita di Reggio, Gallina di Reggio Calabria, Italy.
| | | | | | | |
Collapse
|
36
|
Singh A, Singh SP, Bamezai R. Direct and translactational effect of arecoline alkaloid on the clocimum oil-modulated hepatic drug metabolizing enzymes in mice. Food Chem Toxicol 2000; 38:627-35. [PMID: 10942324 DOI: 10.1016/s0278-6915(00)00045-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study assesses the potential of arecoline alkaloid, by direct exposure in lactating dams and translactational exposure in neonates, to modulate the efficacy of clocimum oil as a blocking agent in chemopreventive pathway. Clocimum oil (25 or 50 microl/dam/day) induced a significant increase in the hepatic levels of phase II glutathione S-transferase (GST) and acid-soluble sulfhydryl in lactating dams and suckling neonates while the elevated levels of hepatic phase I cytochrome b5 (Cyt. b5) and cytochrome P-450 (P450) were observed only in the dams. Arecoline (0.6 mg/dam/day) alone did not modulate the hepatic GST and sulfhydryl levels in either dams or pups, although significant induction was observed in the hepatic levels of Cyt. b5, P450 and malondialdehyde (MDA) in lactating dams and suckling neonates. Clocimum oil-modulated hepatic levels of phase II components were depressed whereas phase I enzymes and lipid peroxides levels were further elevated by clocimum oil-plus-arecoline treatment. The direct or translactationally augmented levels of bioactivated species of the administered compounds, via enhanced phase I oxidative catalysis and less efficient GST/GSH conjugational detoxication, may suggest the antagonistic influence of arecoline on chemopreventive efficacy of clocimum oil.
Collapse
Affiliation(s)
- A Singh
- Human Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
37
|
Singh A, Singh SP, Bamezai R. Modulatory potential of clocimum oil on mouse skin papillomagenesis and the xenobiotic detoxication system. Food Chem Toxicol 1999; 37:663-70. [PMID: 10478835 DOI: 10.1016/s0278-6915(99)00040-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was designed to elucidate the mechanistic inhibitory efficacy of clocimum (an eugenol rich variety of Ocimum gratissimum; Labiatae) oil on murine skin papillomagensis. Topical application of clocimum oil (50 microl/animal/day) during peri-initiation stage (1 week before and 2 weeks after initiation) of 7,12-dimethylbenz[a]anthracene (DMBA)-induced papillomagenesis and/or during the tumour promotion stage reduced (P < 0.05) the (i) tumour burden to 5.00, 4.41 and 4.50 (positive control value 5.27); (ii) cumulative number of papillomas to 85, 75 and 72 (positive control value : 95); and (iii) percent incidence of mice bearing papillomas to 94, 89 and 88, respectively (positive control value 94). Significant (P < 0.01) elevation in the hepatic levels of glutathione S-transferase (GST), sulfhydryl (-SH) and cytochrome b5 (Cyt. b5) was observed by the respective topical treatment of clocimum oil. Even in the skin tissue of the mouse, the topical treatment of clocimum oil enhanced (P < 0.05) the -SH content. The results suggest the modest chemopreventive potential of clocimum oil against the murine skin papillomagenesis, and such effects may be partly due to the modulated xenobiotic detoxication system enzymes.
Collapse
Affiliation(s)
- A Singh
- Human Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
38
|
Uhl M, Helma C, Knasmüller S. Single-cell gel electrophoresis assays with human-derived hepatoma (Hep G2) cells. Mutat Res 1999; 441:215-24. [PMID: 10333535 DOI: 10.1016/s1383-5718(99)00050-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of the present study was the development of a protocol for detecting chemically-induced DNA damage, using the alkaline single-cell gel electrophoresis (SCGE) assay with human-derived, metabolically competent hepatoma (Hep G2) cells. Previous studies indicated that Hep G2 cells have retained the activities of certain phase I and phase II enzymes and reflect the metabolism of genotoxins in mammals better than other in vitro models which require addition of exogenous activation mixtures. The optimal trypsin concentration for the removal of the cells from the plates were found to be 0.1%. Dimethylsulfoxide, at concentrations up to 2%, was an appropriate solvent for water-insoluble compounds. To determine the optimal exposure periods for mutagen treatment, the time kinetics of comet formation was investigated with genotoxic chemicals representing various classes of promutagens namely benzo[a]pyrene (B[a]P), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and N-nitrosodimethylamine (NDMA) and with N-nitrosomethylurea (NMU). All compounds caused a statistically significant induction in DNA damage. With the promutagens, comet formation increased gradually as a function of the exposure duration, and reached maximum values between 20-24 h. With NMU, comet induction maximized already after a short exposure (1 h) and remained at a constant level for up to 24 h. Based on these results, the Hep G2/SCGE assay appears to be a suitable approach for investigating DNA damaging potential of chemicals. Further experiments with IQ and B[a]P showed that the assays are highly reproducible. Comparisons of the present results with those from earlier experiments in which other endpoints (induction of sister chromatid exchanges, micronuclei and chromosomal aberrations) were measured in Hep G2 cells, indicated that the sensitivity of the SCGE assays is more or less identical. Since the SCGE assay is less time consuming than other genotoxicity assays we anticipate that it might be a suitable approach to investigate DNA damaging effects of chemicals in the human-derived, metabolically competent cell line.
Collapse
Affiliation(s)
- M Uhl
- Institute of Tumor Biology and Cancer Research, University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | | | | |
Collapse
|
39
|
Knasmüller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, Mersch-Sundermann V, Williamson G, Hietsch G, Langer T, Darroudi F, Natarajan AT. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 1998; 402:185-202. [PMID: 9675276 DOI: 10.1016/s0027-5107(97)00297-2] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human hepatoma line (Hep G2) has retained the activities of various phase I and phase II enzymes which play a crucial role in the activation/detoxification of genotoxic procarcinogens and reflect the metabolism of such compounds in vivo better than experimental models with metabolically incompetent cells and exogenous activation mixtures. In the last years, methodologies have been developed which enable the detection of genotoxic effects in Hep G2 cells. Appropriate endpoints are the induction of 6-TGr mutants, of micronuclei and of comets (single cell gel electrophoresis assay). It has been demonstrated that various classes of environmental carcinogens such as nitrosamines, aflatoxins, aromatic and heterocyclic amines and polycyclic aromatic hydrocarbons can be detected in genotoxicity assays with Hep G2 cells. Furthermore, it has been shown that these assays can distinguish between structurally related carcinogens and non-carcinogens, and positive results have been obtained with rodent carcinogens (such as safrole and hexamethylphosphoramide) which give false negative results in conventional in vitro assays with rat liver homogenates. Hep G2 cells have also been used in antimutagenicity studies and can identify mechanisms not detected in conventional in vitro systems such as induction of detoxifying enzymes, inactivation of endogenously formed DNA-reactive metabolites and intracellular inhibition of activating enzymes.
Collapse
Affiliation(s)
- S Knasmüller
- Institute of Tumor Biology and Cancer Research, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rompelberg CJ, Ploemen JH, Jespersen S, van der Greef J, Verhagen H, van Bladeren PJ. Inhibition of rat, mouse, and human glutathione S-transferase by eugenol and its oxidation products. Chem Biol Interact 1996; 99:85-97. [PMID: 8620581 DOI: 10.1016/0009-2797(95)03662-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The irreversible and reversible inhibition of glutathione S-transferases (GSTs) by eugenol was studied in rat, mouse and man. Using liver cytosol of human, rat and mouse, species differences were found in the rate of irreversible inhibition of GSTs by eugenol in the presence of the enzyme tyrosinase. Tyrosinase was used to oxidize eugenol. No inhibition was observed in the absence of tyrosinase. The rate of irreversible inhibition of GSTs was highest in mouse cytosol, and lowest in rat cytosol. In addition, the irreversible inhibition of human and rat GSTs by eugenol was studied using purified isoenzymes of man and rat. The human GST isoenzymes A1-1, M1a-1a and P1-1 and the rat GST isoenzymes 1-1, 2-2, 3-3, 4-4 and 7-7 were irreversibly inhibited by eugenol in the presence of tyrosinase. In this respect human GST P1-1 and rat GST 7-7 were by far the most sensitive enzymes; human GST A2-2 was not inhibited. Indications were found that human GST P1-1 may be inhibited via three mechanisms: in addition to the well documentated nucleophilic addition of quinones and oxidation of cysteine residues, a covalent subunit cross-linking was also observed. The reversible inhibition of human and rat GST by eugenol, eugenol methyl ether, isoeugenol methyl ether, 2-allylphenol and 4-propylphenol was also studied using purified isoenzymes. The reversible inhibition of human and rat GSTs, using 1-chloro-2,4-dinitrobenzene as substrate, was expressed as I25. All compounds caused moderate reversible inhibition (I25 ranged from 0.2 to 5.4 mM for human GSTs and from 0.4 to 4.9 mM for rat GSTs). In rat, eugenol methyl ether was the strongest inhibitor. In human, the overall inhibiting capacities of eugenol, eugenol methyl ether, isoeugenol methyl ether and 4-propyl phenol were more or less similar; 2-allylphenol was the poorest inhibitor.
Collapse
Affiliation(s)
- C J Rompelberg
- TNO Nutrition and Food Research Institute, Zeist, The Netherlands
| | | | | | | | | | | |
Collapse
|