1
|
Eisenberg AR, Higdon AL, Hollerer I, Fields AP, Jungreis I, Diamond PD, Kellis M, Jovanovic M, Brar GA. Translation Initiation Site Profiling Reveals Widespread Synthesis of Non-AUG-Initiated Protein Isoforms in Yeast. Cell Syst 2020; 11:145-160.e5. [PMID: 32710835 PMCID: PMC7508262 DOI: 10.1016/j.cels.2020.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
Genomic analyses in budding yeast have helped define the foundational principles of eukaryotic gene expression. However, in the absence of empirical methods for defining coding regions, these analyses have historically excluded specific classes of possible coding regions, such as those initiating at non-AUG start codons. Here, we applied an experimental approach to globally annotate translation initiation sites in yeast and identified 149 genes with alternative N-terminally extended protein isoforms initiating from near-cognate codons upstream of annotated AUG start codons. These isoforms are produced in concert with canonical isoforms and translated with high specificity, resulting from initiation at only a small subset of possible start codons. The non-AUG initiation driving their production is enriched during meiosis and induced by low eIF5A, which is seen in this context. These findings reveal widespread production of non-canonical protein isoforms and unexpected complexity to the rules by which even a simple eukaryotic genome is decoded.
Collapse
Affiliation(s)
- Amy R Eisenberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrea L Higdon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ina Hollerer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexander P Fields
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paige D Diamond
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Khalique A, Mattijssen S, Haddad AF, Chaudhry S, Maraia RJ. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genet 2020; 16:e1008330. [PMID: 32324744 PMCID: PMC7200024 DOI: 10.1371/journal.pgen.1008330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 05/05/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022] Open
Abstract
The tRNA isopentenyltransferases (IPTases), which add an isopentenyl group to N6 of A37 (i6A37) of certain tRNAs, are among a minority of enzymes that modify cytosolic and mitochondrial tRNAs. Pathogenic mutations to the human IPTase, TRIT1, that decrease i6A37 levels, cause mitochondrial insufficiency that leads to neurodevelopmental disease. We show that TRIT1 encodes an amino-terminal mitochondrial targeting sequence (MTS) that directs mitochondrial import and modification of mitochondrial-tRNAs. Full understanding of IPTase function must consider the tRNAs selected for modification, which vary among species, and in their cytosol and mitochondria. Selection is principally via recognition of the tRNA A36-A37-A38 sequence. An exception is unmodified tRNATrpCCA-A37-A38 in Saccharomyces cerevisiae, whereas tRNATrpCCA is readily modified in Schizosaccharomyces pombe, indicating variable IPTase recognition systems and suggesting that additional exceptions may account for some of the tRNA-i6A37 paucity in higher eukaryotes. Yet TRIT1 had not been characterized for restrictive type substrate-specific recognition. We used i6A37-dependent tRNA-mediated suppression and i6A37-sensitive northern blotting to examine IPTase activities in S. pombe and S. cerevisiae lacking endogenous IPTases on a diversity of tRNA-A36-A37-A38 substrates. Point mutations to the TRIT1 MTS that decrease human mitochondrial import, decrease modification of mitochondrial but not cytosolic tRNAs in both yeasts. TRIT1 exhibits clear substrate-specific restriction against a cytosolic-tRNATrpCCA-A37-A38. Additional data suggest that position 32 of tRNATrpCCA is a conditional determinant for substrate-specific i6A37 modification by the restrictive IPTases, Mod5 and TRIT1. The cumulative biochemical and phylogenetic sequence analyses provide new insights into IPTase activities and determinants of tRNA-i6A37 profiles in cytosol and mitochondria.
Collapse
Affiliation(s)
- Abdul Khalique
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sandy Mattijssen
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander F. Haddad
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shereen Chaudhry
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
- Commissioned Corps, United States Public Health Service, Rockville, Maryland, United States of America
| |
Collapse
|
3
|
Nishimura A, Nasuno R, Yoshikawa Y, Jung M, Ida T, Matsunaga T, Morita M, Takagi H, Motohashi H, Akaike T. Mitochondrial cysteinyl-tRNA synthetase is expressed via alternative transcriptional initiation regulated by energy metabolism in yeast cells. J Biol Chem 2019; 294:13781-13788. [PMID: 31350340 DOI: 10.1074/jbc.ra119.009203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/23/2019] [Indexed: 11/06/2022] Open
Abstract
Eukaryotes typically utilize two distinct aminoacyl-tRNA synthetase isoforms, one for cytosolic and one for mitochondrial protein synthesis. However, the genome of budding yeast (Saccharomyces cerevisiae) contains only one cysteinyl-tRNA synthetase gene (YNL247W, also known as CRS1). In this study, we report that CRS1 encodes both cytosolic and mitochondrial isoforms. The 5' complementary DNA end method and GFP reporter gene analyses indicated that yeast CRS1 expression yields two classes of mRNAs through alternative transcription starts: a long mRNA containing a mitochondrial targeting sequence and a short mRNA lacking this targeting sequence. We found that the mitochondrial Crs1 is the product of translation from the first initiation AUG codon on the long mRNA, whereas the cytosolic Crs1 is produced from the second in-frame AUG codon on the short mRNA. Genetic analysis and a ChIP assay revealed that the transcription factor heme activator protein (Hap) complex, which is involved in mitochondrial biogenesis, determines the transcription start sites of the CRS1 gene. We also noted that Hap complex-dependent initiation is regulated according to the needs of mitochondrial energy production. The results of our study indicate energy-dependent initiation of alternative transcription of CRS1 that results in production of two Crs1 isoforms, a finding that suggests Crs1's potential involvement in mitochondrial energy metabolism in yeast.
Collapse
Affiliation(s)
- Akira Nishimura
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ryo Nasuno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yuki Yoshikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
4
|
Hopper AK, Nostramo RT. tRNA Processing and Subcellular Trafficking Proteins Multitask in Pathways for Other RNAs. Front Genet 2019; 10:96. [PMID: 30842788 PMCID: PMC6391926 DOI: 10.3389/fgene.2019.00096] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/29/2019] [Indexed: 01/28/2023] Open
Abstract
This article focuses upon gene products that are involved in tRNA biology, with particular emphasis upon post-transcriptional RNA processing and nuclear-cytoplasmic subcellular trafficking. Rather than analyzing these proteins solely from a tRNA perspective, we explore the many overlapping functions of the processing enzymes and proteins involved in subcellular traffic. Remarkably, there are numerous examples of conserved gene products and RNP complexes involved in tRNA biology that multitask in a similar fashion in the production and/or subcellular trafficking of other RNAs, including small structured RNAs such as snRNA, snoRNA, 5S RNA, telomerase RNA, and SRP RNA as well as larger unstructured RNAs such as mRNAs and RNA-protein complexes such as ribosomes. Here, we provide examples of steps in tRNA biology that are shared with other RNAs including those catalyzed by enzymes functioning in 5' end-processing, pseudoU nucleoside modification, and intron splicing as well as steps regulated by proteins functioning in subcellular trafficking. Such multitasking highlights the clever mechanisms cells employ for maximizing their genomes.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| | - Regina T Nostramo
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Dewe JM, Fuller BL, Lentini JM, Kellner SM, Fu D. TRMT1-Catalyzed tRNA Modifications Are Required for Redox Homeostasis To Ensure Proper Cellular Proliferation and Oxidative Stress Survival. Mol Cell Biol 2017; 37:e00214-17. [PMID: 28784718 PMCID: PMC5640816 DOI: 10.1128/mcb.00214-17] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/17/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in the tRNA methyltransferase 1 (TRMT1) gene have been identified as the cause of certain forms of autosomal-recessive intellectual disability (ID). However, the molecular pathology underlying ID-associated TRMT1 mutations is unknown, since the biological role of the encoded TRMT1 protein remains to be determined. Here, we have elucidated the molecular targets and function of TRMT1 to uncover the cellular effects of ID-causing TRMT1 mutations. Using human cells that have been rendered deficient in TRMT1, we show that TRMT1 is responsible for catalyzing the dimethylguanosine (m2,2G) base modification in both nucleus- and mitochondrion-encoded tRNAs. TRMT1-deficient cells exhibit decreased proliferation rates, alterations in global protein synthesis, and perturbations in redox homeostasis, including increased endogenous ROS levels and hypersensitivity to oxidizing agents. Notably, ID-causing TRMT1 variants are unable to catalyze the formation of m2,2G due to defects in RNA binding and cannot rescue oxidative stress sensitivity. Our results uncover a biological role for TRMT1-catalyzed tRNA modification in redox metabolism and show that individuals with TRMT1-associated ID are likely to have major perturbations in cellular homeostasis due to the lack of m2,2G modifications.
Collapse
Affiliation(s)
- Joshua M Dewe
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Benjamin L Fuller
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| | | | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
6
|
Lamichhane TN, Arimbasseri AG, Rijal K, Iben JR, Wei FY, Tomizawa K, Maraia RJ. Lack of tRNA-i6A modification causes mitochondrial-like metabolic deficiency in S. pombe by limiting activity of cytosolic tRNATyr, not mito-tRNA. RNA (NEW YORK, N.Y.) 2016; 22:583-96. [PMID: 26857223 PMCID: PMC4793213 DOI: 10.1261/rna.054064.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/28/2015] [Indexed: 05/17/2023]
Abstract
tRNA-isopentenyl transferases (IPTases) are highly conserved enzymes that form isopentenyl-N(6)-A37 (i6A37) on subsets of tRNAs, enhancing their translation activity. Nuclear-encoded IPTases modify select cytosolic (cy-) and mitochondrial (mt-) tRNAs. Mutation in human IPTase, TRIT1, causes disease phenotypes characteristic of mitochondrial translation deficiency due to mt-tRNA dysfunction. Deletion of the Schizosaccharomyces pombe IPTase (tit1-Δ) causes slow growth in glycerol, as well as in rapamycin, an inhibitor of TOR kinase that maintains metabolic homeostasis. Schizosaccharomyces pombe IPTase modifies three different cy-tRNAs(Ser) as well as cy-tRNA(Tyr), cy-tRNA(Trp), and mt-tRNA(Trp). We show that lower ATP levels in tit1-Δ relative to tit1(+) cells are also more decreased by an inhibitor of oxidative phosphorylation, indicative of mitochondrial dysfunction. Here we asked if the tit1-Δ phenotypes are due to hypomodification of cy-tRNA or mt-tRNA. A cytosol-specific IPTase that modifies cy-tRNA, but not mt-tRNA, fully rescues the tit1-Δ phenotypes. Moreover, overexpression of cy-tRNAs also rescues the phenotypes, and cy-tRNA(Tyr) alone substantially does so. Bioinformatics indicate that cy-tRNA(Tyr) is most limiting for codon demand in tit1-Δ cells and that the cytosolic mRNAs most loaded with Tyr codons encode carbon metabolilizing enzymes, many of which are known to localize to mitochondria. Thus, S. pombe i6A37 hypomodification-associated metabolic deficiency results from hypoactivity of cy-tRNA, mostly tRNA(Tyr), and unlike human TRIT1-deficiency does not impair mitochondrial translation due to mt-tRNA hypomodification. We discuss species-specific aspects of i6A37. Specifically relevant to mitochondria, we show that its hypermodified version, ms2i6A37 (2-methylthiolated), which occurs on certain mammalian mt-tRNAs (but not cy-tRNAs), is not found in yeast.
Collapse
Affiliation(s)
- Tek N Lamichhane
- Section on Molecular and Cell Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Aneeshkumar G Arimbasseri
- Section on Molecular and Cell Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Keshab Rijal
- Section on Molecular and Cell Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James R Iben
- Molecular Genetics Laboratory, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Fan Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 860-0862 Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 860-0862 Kumamoto, Japan
| | - Richard J Maraia
- Section on Molecular and Cell Biology, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA Commissioned Corps, US Public Health Service, Rockville, Maryland 20016, USA
| |
Collapse
|
7
|
Huang HY, Hopper AK. Multiple Layers of Stress-Induced Regulation in tRNA Biology. Life (Basel) 2016; 6:life6020016. [PMID: 27023616 PMCID: PMC4931453 DOI: 10.3390/life6020016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
tRNAs are the fundamental components of the translation machinery as they deliver amino acids to the ribosomes during protein synthesis. Beyond their essential function in translation, tRNAs also function in regulating gene expression, modulating apoptosis and several other biological processes. There are multiple layers of regulatory mechanisms in each step of tRNA biogenesis. For example, tRNA 3′ trailer processing is altered upon nutrient stress; tRNA modification is reprogrammed under various stresses; nuclear accumulation of tRNAs occurs upon nutrient deprivation; tRNA halves accumulate upon oxidative stress. Here we address how environmental stresses can affect nearly every step of tRNA biology and we describe the possible regulatory mechanisms that influence the function or expression of tRNAs under stress conditions.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Biology, Indiana University, 915 E third St., Myers 300, Bloomington, IN 47405, USA.
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Quality Control Pathways for Nucleus-Encoded Eukaryotic tRNA Biosynthesis and Subcellular Trafficking. Mol Cell Biol 2015; 35:2052-8. [PMID: 25848089 DOI: 10.1128/mcb.00131-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
tRNAs perform an essential role in translating the genetic code. They are long-lived RNAs that are generated via numerous posttranscriptional steps. Eukaryotic cells have evolved numerous layers of quality control mechanisms to ensure that the tRNAs are appropriately structured, processed, and modified. We describe the known tRNA quality control processes that check tRNAs and correct or destroy aberrant tRNAs. These mechanisms employ two types of exonucleases, CCA end addition, tRNA nuclear aminoacylation, and tRNA subcellular traffic. We arrange these processes in order of the steps that occur from generation of precursor tRNAs by RNA polymerase (Pol) III transcription to end maturation and modification in the nucleus to splicing and additional modifications in the cytoplasm. Finally, we discuss the tRNA retrograde pathway, which allows tRNA reimport into the nucleus for degradation or repair.
Collapse
|
9
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
10
|
Skowronek E, Grzechnik P, Späth B, Marchfelder A, Kufel J. tRNA 3' processing in yeast involves tRNase Z, Rex1, and Rrp6. RNA (NEW YORK, N.Y.) 2014; 20:115-30. [PMID: 24249226 PMCID: PMC3866640 DOI: 10.1261/rna.041467.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/24/2013] [Indexed: 05/20/2023]
Abstract
Mature tRNA 3' ends in the yeast Saccharomyces cerevisiae are generated by two pathways: endonucleolytic and exonucleolytic. Although two exonucleases, Rex1 and Rrp6, have been shown to be responsible for the exonucleolytic trimming, the identity of the endonuclease has been inferred from other systems but not confirmed in vivo. Here, we show that the yeast tRNA 3' endonuclease tRNase Z, Trz1, is catalyzing endonucleolytic tRNA 3' processing. The majority of analyzed tRNAs utilize both pathways, with a preference for the endonucleolytic one. However, 3'-end processing of precursors with long 3' trailers depends to a greater extent on Trz1. In addition to its function in the nucleus, Trz1 processes the 3' ends of mitochondrial tRNAs, contributing to the general RNA metabolism in this organelle.
Collapse
Affiliation(s)
- Ewa Skowronek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Pawel Grzechnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Bettina Späth
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Corresponding authorE-mail
| |
Collapse
|
11
|
Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 2013; 194:43-67. [PMID: 23633143 DOI: 10.1534/genetics.112.147470] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3' mature sequence and, for tRNA(His), addition of a 5' G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain.
Collapse
|
12
|
The folding capacity of the mature domain of the dual-targeted plant tRNA nucleotidyltransferase influences organelle selection. Biochem J 2013; 453:401-12. [DOI: 10.1042/bj20121577] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
tRNA-NTs (tRNA nucleotidyltransferases) are required for the maturation or repair of tRNAs by ensuring that they have an intact cytidine-cytidine-adenosine sequence at their 3′-termini. Therefore this enzymatic activity is found in all cellular compartments, namely the nucleus, cytoplasm, plastids and mitochondria, in which tRNA synthesis or translation occurs. A single gene codes for tRNA-NT in plants, suggesting a complex targeting mechanism. Consistent with this, distinct signals have been proposed for plastidic, mitochondrial and nuclear targeting. Our previous research has shown that in addition to N-terminal targeting information, the mature domain of the protein itself modifies targeting to mitochondria and plastids. This suggests the existence of an as yet unknown determinate for the distribution of dual-targeted proteins between these two organelles. In the present study, we explore the enzymatic and physicochemical properties of tRNA-NT variants to correlate the properties of the enzyme with the intracellular distribution of the protein. We show that alteration of tRNA-NT stability influences its intracellular distribution due to variations in organelle import capacities. Hence the fate of the protein is determined not only by the transit peptide sequence, but also by the physicochemical properties of the mature protein.
Collapse
|
13
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
14
|
Phizicky EM, Alfonzo JD. Do all modifications benefit all tRNAs? FEBS Lett 2009; 584:265-71. [PMID: 19931536 DOI: 10.1016/j.febslet.2009.11.049] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Despite the universality of tRNA modifications, some tRNAs lacking specific modifications are subject to degradation pathways, while other tRNAs lacking the same modifications are resistant. Here, we suggest a model in which some modifications have minor, possibly redundant, roles in specific tRNAs. This model is consistent with the low specificity of some modification enzymes. Limitations of this model include the limited assays and growth conditions on which these conclusions are based, as well as the high specificity exhibited by many modification enzymes with important roles in translation. The specificity of these enzymes is often enhanced by complex substrate recognition patterns and sub-cellular compartmentalization.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | |
Collapse
|
15
|
Hopper AK, Pai DA, Engelke DR. Cellular dynamics of tRNAs and their genes. FEBS Lett 2009; 584:310-7. [PMID: 19931532 DOI: 10.1016/j.febslet.2009.11.053] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
This discussion focuses on the cellular dynamics of tRNA transcription, processing, and turnover. Early tRNA biosynthesis steps are shared among most tRNAs, while later ones are often individualized for specific tRNAs. In yeast, tRNA transcription and early processing occur coordinately in the nucleolus, requiring topological arrangement of approximately 300 tRNA genes and early processing enzymes to this site; later processing events occur in the nucleoplasm or cytoplasm. tRNA nuclear export requires multiple exporters which function in parallel and the export process is coupled with other cellular events. Nuclear-cytoplasmic tRNA subcellular movement is not unidirectional as a retrograde pathway delivers mature cytoplasmic tRNAs to the nucleus. Despite the long half-lives, there are multiple pathways to turnover damaged tRNAs or normal tRNAs upon cellular stress.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, 484 W. 12th Ave., Room Riffe 800, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
16
|
Lai TP, Stauffer KA, Murthi A, Shaheen HH, Peng G, Martin NC, Hopper AK. Mechanism and a peptide motif for targeting peripheral proteins to the yeast inner nuclear membrane. Traffic 2009; 10:1243-56. [PMID: 19602197 DOI: 10.1111/j.1600-0854.2009.00956.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Trm1 is a tRNA specific m(2)(2)G methyltransferase shared by nuclei and mitochondria in Saccharomyces cerevisiae. In nuclei, Trm1 is peripherally associated with the inner nuclear membrane (INM). We investigated the mechanism delivering/tethering Trm1 to the INM. Analyses of mutations of the Ran pathway and nuclear pore components showed that Trm1 accesses the nucleoplasm via the classical nuclear import pathway. We identified a Trm1 cis-acting sequence sufficient to target passenger proteins to the INM. Detailed mutagenesis of this region uncovered specific amino acids necessary for authentic Trm1 to locate at the INM. The INM information is contained within a sequence of less than 20 amino acids, defining the first motif for addressing a peripheral protein to this important subnuclear location. The combined studies provide a multi-step process to direct Trm1 to the INM: (i) translation in the cytoplasm; (ii) Ran-dependent import into the nucleoplasm; and (iii) redistribution from the nucleoplasm to the INM via the INM motif. Furthermore, we demonstrate that the Trm1 mitochondrial targeting and nuclear localization signals are in competition with each other, as Trm1 becomes mitochondrial if prevented from entering the nucleus.
Collapse
Affiliation(s)
- Tsung-Po Lai
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Behm-Ansmant I, Branlant C, Motorin Y. The Saccharomyces cerevisiae Pus2 protein encoded by YGL063w ORF is a mitochondrial tRNA:Psi27/28-synthase. RNA (NEW YORK, N.Y.) 2007; 13:1641-7. [PMID: 17684231 PMCID: PMC1986808 DOI: 10.1261/rna.605607] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The RNA:pseudouridine (Psi)-synthase family is one of the most complex families of RNA modification enzymes. Ten genes encoding putative RNA:Psi-synthases have been identified in S. cerevisiae. Most of the encoded enzymes have been characterized experimentally. Only the putative RNA:Psi-synthase Pus2p (encoded by the YGL063w ORF) had no identified substrate. Here, we analyzed Psi residues in cytoplasmic and mitochondrial tRNAs extracted from S. cerevisiae strains, carrying disruptions in the PUS1 and/or PUS2 ORFs. Our results demonstrate that Pus2p is a mitochondrial-specific tRNA:Psi-synthase acting at positions 27 and 28 in tRNAs. The importance of the Asp56 residue in the conserved ARTD motif of the Pus2p catalytic site is demonstrated in vivo. Interestingly, in spite of the absence of a characteristic N-terminal targeting signal, our data strongly suggest an efficient and rapid targeting of Pus2p in yeast mitochondria. In contradiction with the commonly held idea that a unique nuclear gene encodes the enzyme required for both cytoplasmic and mitochondrial tRNA modifications, here we show the existence of an enzyme specifically dedicated to mitochondrial tRNA modification (Pus2p), the corresponding modification in cytoplasmic tRNAs being catalyzed by another protein (Pus1p).
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239,54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | |
Collapse
|
18
|
Lee C, Kramer G, Graham DE, Appling DR. Yeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferase. J Biol Chem 2007; 282:27744-53. [PMID: 17652090 DOI: 10.1074/jbc.m704572200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TRM5 gene encodes a tRNA (guanine-N1-)-methyltransferase (Trm5p) that methylates guanosine at position 37 (m(1)G37) in cytoplasmic tRNAs in Saccharomyces cerevisiae. Here we show that Trm5p is also responsible for m(1)G37 methylation of mitochondrial tRNAs. The TRM5 open reading frame encodes 499 amino acids containing four potential initiator codons within the first 48 codons. Full-length Trm5p, purified as a fusion protein with maltose-binding protein, exhibited robust methyltransferase activity with tRNA isolated from a Delta trm5 mutant strain, as well as with a synthetic mitochondrial initiator tRNA (tRNA(Met)(f)). Primer extension demonstrated that the site of methylation was guanosine 37 in both mitochondrial tRNA(Met)(f) and tRNA(Phe). High pressure liquid chromatography analysis showed the methylated product to be m(1)G. Subcellular fractionation and immunoblotting of a strain expressing a green fluorescent protein-tagged version of the TRM5 gene revealed that the enzyme was localized to both cytoplasm and mitochondria. The slightly larger mitochondrial form was protected from protease digestion, indicating a matrix localization. Analysis of N-terminal truncation mutants revealed that a Trm5p active in the cytoplasm could be obtained with a construct lacking amino acids 1-33 (Delta1-33), whereas production of a Trm5p active in the mitochondria required these first 33 amino acids. Yeast expressing the Delta1-33 construct exhibited a significantly lower rate of oxygen consumption, indicating that efficiency or accuracy of mitochondrial protein synthesis is decreased in cells lacking m(1)G37 methylation of mitochondrial tRNAs. These data suggest that this tRNA modification plays an important role in reading frame maintenance in mitochondrial protein synthesis.
Collapse
Affiliation(s)
- Changkeun Lee
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
19
|
Frye M, Watt FM. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol 2006; 16:971-81. [PMID: 16713953 DOI: 10.1016/j.cub.2006.04.027] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 04/05/2006] [Accepted: 04/05/2006] [Indexed: 12/22/2022]
Abstract
BACKGROUND Myc is a well-known proto-oncogene, but its functions in normal tissue remain enigmatic. In adult epidermis, Myc stimulates exit from the stem cell compartment, decreasing cell adhesion and, by an unknown mechanism, triggering proliferation of transit-amplifying cells. RESULTS We describe a novel direct target gene of Myc, Misu, that is expressed at low levels in normal epidermis but is upregulated on Myc activation. Misu encodes a previously uncharacterized RNA methyltransferase with high sequence homology to NSun2 and defines a new family of mammalian SUN-domain-containing proteins. The nucleolar localization of Misu is dependent on RNA polymerase III transcripts, and knockdown of Misu decreases nucleolar size. In G2 phase of the cell cycle, Misu is found in cytoplasmic vesicles, and it decorates the spindle in mitosis. Misu expression is highest in S phase, and RNAi constructs block Myc-induced keratinocyte proliferation and cell-cycle progression. Misu is expressed at low levels in normal tissues, but is highly induced in a range of tumors. Growth of human squamous-cell-carcinoma xenografts is decreased by Misu RNAi. CONCLUSIONS Misu is a novel downstream Myc target that methylates RNA polymerase III transcripts. Misu mediates Myc-induced cell proliferation and growth and is a potential target for cancer therapies.
Collapse
Affiliation(s)
- Michaela Frye
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.
| | | |
Collapse
|
20
|
Huang HY, Tang HL, Chao HY, Yeh LS, Wang CC. An unusual pattern of protein expression and localization of yeast alanyl-tRNA synthetase isoforms. Mol Microbiol 2006; 60:189-98. [PMID: 16556230 DOI: 10.1111/j.1365-2958.2006.05083.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous studies have shown that in Saccharomyces cerevisiae the mitochondrial and cytoplasmic forms of alanyl-tRNA synthetase are encoded by a single nuclear gene, ALA1, through alternative use of in-frame successive ACG triplets and a downstream AUG triplet. Here we show that despite the obvious participation of the non-AUG-initiated leader peptide in mitochondrial localization, the leader peptide per se cannot target a cytoplasmic passenger protein into mitochondria under normal conditions. Functional mapping further shows that an efficient targeting signal is composed of the leader peptide and an 18-residue sequence downstream of Met1. Consistent to this observation, overexpression of the cytoplasmic form enables it to overcome the compartmental barrier and function in the mitochondria as well, but deletion of as few as eight amino acid residues from its amino-terminus eliminates such a potential. Thus, the sequence upstream of the first in-frame AUG initiator not only carries an unusual initiation site, but also contributes to a novel pattern of protein expression and localization.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Life Science, National Central University, 300 Jung-da Road., Jung-li, Taiwan 32001
| | | | | | | | | |
Collapse
|
21
|
Behm-Ansmant I, Grosjean H, Massenet S, Motorin Y, Branlant C. Pseudouridylation at position 32 of mitochondrial and cytoplasmic tRNAs requires two distinct enzymes in Saccharomyces cerevisiae. J Biol Chem 2004; 279:52998-3006. [PMID: 15466869 DOI: 10.1074/jbc.m409581200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic and mitochondrial tRNAs contain several pseudouridylation sites, and the tRNA:Psi-synthase acting at position 32 had not been identified in Saccharomyces cerevisiae. By combining genetic and biochemical analyses, we demonstrate that two enzymes, Rib2/Pus8p and Pus9p, are required for Psi32 formation in cytoplasmic and mitochondrial tRNAs, respectively. Pus9p acts mostly in mitochondria, and Rib2/Pus8p is strictly cytoplasmic. This is the first case reported so far of two distinct tRNA modification enzymes acting at the same position but present in two different compartments. This peculiarity may be the consequence of a gene fusion that occurred during yeast evolution. Indeed, Rib2/Pus8p displays two distinct catalytic activities involved in completely unrelated metabolism: its C-terminal domain has a DRAP-deaminase activity required for riboflavin biogenesis in the cytoplasm, whereas its N-terminal domain carries the tRNA:Psi32-synthase activity. Pus9p has only a tRNA:Psi32-synthase activity and contains a characteristic mitochondrial targeting sequence at its N terminus. These results are discussed in terms of RNA:Psi-synthase evolution.
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire de Maturation des Acides Ribonucléiques (ARN) et Enzymologie Moléculaire, UMR 7567 CNRSUHP Nancy I, Faculté des Sciences, BP 239, Vandoeuvre-les-Nancy 54506 Cedex, France
| | | | | | | | | |
Collapse
|
22
|
Johnson MA, Kuo YM, Westaway SK, Parker SM, Ching KHL, Gitschier J, Hayflick SJ. Mitochondrial Localization of Human PANK2 and Hypotheses of Secondary Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration. Ann N Y Acad Sci 2004; 1012:282-98. [PMID: 15105273 DOI: 10.1196/annals.1306.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutations in the pantothenate kinase 2 gene (PANK2) lead to pantothenate kinase-associated neurodegeneration (PKAN, formerly Hallervorden-Spatz syndrome). This neurodegenerative disorder is characterized by iron accumulation in the basal ganglia. Pantothenate kinase is the first enzyme in the biosynthesis of coenzyme A from pantothenate (vitamin B(5)). PANK2, one of four human pantothenate kinase genes, is uniquely predicted to be targeted to mitochondria. We demonstrate mitochondrial localization of PANK2 and speculate on mechanisms of secondary iron accumulation in PKAN. Furthermore, PANK2 uses an unconventional translational start codon, CUG, which is polymorphic in the general population. The variant sequence, CAG (allele frequency: 0.05), leads to skipping of the mitochondrial targeting signal and cytosolic localization of PANK2. This common variant may cause mitochondrial dysfunction and impart susceptibility to late-onset neurodegenerative disorders with brain iron accumulation, including Parkinson's disease.
Collapse
Affiliation(s)
- Monique A Johnson
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland 97239, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Helm M, Attardi G. Nuclear Control of Cloverleaf Structure of Human Mitochondrial tRNALys. J Mol Biol 2004; 337:545-60. [PMID: 15019776 DOI: 10.1016/j.jmb.2004.01.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 01/19/2004] [Accepted: 01/20/2004] [Indexed: 11/24/2022]
Abstract
The evolutionary loss in eukaryotic cells of mitochondrial (mt) tRNA genes and of tRNA structural information in the surviving genes has led to the appearance of mt-tRNAs with highly unusual structural features. One such mt-tRNA is the human mt-tRNALys, which relies on post-transcriptional base modification to achieve correct three-dimensional structure. It has been shown that the in vitro transcript of human mt-tRNALys adopts a particular, non-cloverleaf structure when devoid of modified bases, while the native, fully modified tRNA shows the expected cloverleaf structure. Furthermore, a methyl group at position A9-N1, introduced chemically in an otherwise unmodified mt-tRNALys transcript, was found to induce a stable cloverleaf conformation, raising the question of how the specific methyltransferase recognizes the unmodified transcript. In order to shed light on this unusual case of tRNA maturation, the tRNA modification enzymes contained in protein extracts from either highly purified HeLa cell mitochondria or HeLa cell cytosol were first identified and compared, and then used to analyze the mt-tRNALys. An initial screening for modification activities, using as substrates unmodified in vitro transcripts of tRNA genes with well characterized structures, namely yeast cytosolic tRNAPhe, human cytosolic tRNA3Lys, and human mt-tRNAIle, revealed the presence of nine and 11 modification activities in the mitochondrial and cytosolic protein extracts, respectively, the mitochondrial extract including a tRNA (adenine-9,N1)-methyltransferase activity. The comparison of the level and kinetics of A9-N1 methylation and other secondary modifications in the unmodified, misfolded mt-tRNALys and in a cloverleaf-shaped structural mutant, engineered to adopt the tRNALys cloverleaf structure without post-transcriptional modifications, suggested strongly that the methylation of A9-N1 in tRNALys proceeds via a cloverleaf-shaped intermediate. Therefore, it is proposed that this intermediate is present in the in vitro transcript as part of a dynamic equilibrium, and that the mitochondrial protein extract contains an activity that stabilizes, by secondary modification, such a transient cloverleaf-shaped intermediate. Thus, countering the evolutionary loss of structural information in mt-tRNA genes, the mt-tRNA structure is maintained by a modification enzyme encoded in nuclear DNA.
Collapse
Affiliation(s)
- Mark Helm
- Institut für Pharmazie und Molekulare Biotechnologie Abteilung Chemie, Im Neuenheimer Feld 364 D-69120 Heidelberg, Germany
| | | |
Collapse
|
24
|
Mili S, Piñol-Roma S. LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs. Mol Cell Biol 2003; 23:4972-82. [PMID: 12832482 PMCID: PMC162214 DOI: 10.1128/mcb.23.14.4972-4982.2003] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Revised: 04/14/2003] [Accepted: 04/25/2003] [Indexed: 11/20/2022] Open
Abstract
LRP130 (also known as LRPPRC) is an RNA-binding protein that is a constituent of postsplicing nuclear RNP complexes associated with mature mRNA. It belongs to a growing family of pentatricopeptide repeat (PPR) motif-containing proteins, several of which have been implicated in organellar RNA metabolism. We show here that only a fraction of LRP130 proteins are in nuclei and are directly bound in vivo to at least some of the same RNA molecules as the nucleocytoplasmic shuttle protein hnRNP A1. The majority of LRP130 proteins are located within mitochondria, where they are directly bound to polyadenylated RNAs in vivo. In vitro, LRP130 binds preferentially to polypyrimidines. This RNA-binding activity maps to a domain in its C-terminal region that does not contain any previously described RNA-binding motifs and that contains only 2 of the 11 predicted PPR motifs. Therefore, LRP130 is a novel type of RNA-binding protein that associates with both nuclear and mitochondrial mRNAs and as such is a potential candidate for coordinating nuclear and mitochondrial gene expression. These findings provide the first identification of a mammalian protein directly bound to mitochondrial RNA in vivo and provide a possible molecular explanation for the recently described association of mutations in LRP130 with cytochrome c oxidase deficiency in humans.
Collapse
Affiliation(s)
- Stavroula Mili
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | |
Collapse
|
25
|
Bodley AL, Chakraborty AK, Xie S, Burri C, Shapiro TA. An unusual type IB topoisomerase from African trypanosomes. Proc Natl Acad Sci U S A 2003; 100:7539-44. [PMID: 12810956 PMCID: PMC164622 DOI: 10.1073/pnas.1330762100] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
African trypanosomes are ancient eukaryotes that cause lethal disease in humans and cattle. Available drugs are inadequate and the need for new therapeutic targets is great. Trypanosoma brucei and related pathogens differ strikingly from higher eukaryotes in many aspects of nucleic acid structure and metabolism. We find yet another example of this in their unusual DNA topoisomerase IB. Type IB topoisomerases relieve the supercoils that accumulate during DNA and RNA synthesis, and are of considerable importance as the target for antitumor camptothecins. Dozens of type IB topoisomerases sequenced from eukaryotes, bacteria, and pox viruses are all encoded by a single gene that predictably contains a highly conserved DNA binding domain and C-terminal catalytic domain, linked by a nonconserved hydrophilic region. We find that topoisomerase IB in T. brucei is encoded by two genes: one for the DNA-binding domain and a second for the C-terminal catalytic domain. In keeping with this, highly purified fractions of native T. brucei topoisomerase IB catalytic activity contain two proteins, of 90 and 36 kDa. The native enzyme is conventional in its Mg2+-independence, ability to relax positive and negative supercoils, and inhibition by camptothecin. Camptothecin promotes the formation of a covalent complex between 32P-labeled substrate DNA and the small subunit. This unusual structural organization may provide a missing link in the evolution of type IB enzymes, which are thought to have arisen over time from the fusion of two independent domains. It also provides another basis for the design of selectively toxic drug candidates.
Collapse
Affiliation(s)
- Annette L Bodley
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
26
|
Perez-Jannotti RM, Klein SM, Bogenhagen DF. Two forms of mitochondrial DNA ligase III are produced in Xenopus laevis oocytes. J Biol Chem 2001; 276:48978-87. [PMID: 11598119 DOI: 10.1074/jbc.m107177200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Full-length cDNAs for DNA ligase IV and the alpha and beta isoforms of DNA ligase III were cloned from Xenopus laevis to permit study of the genes encoding mitochondrial DNA ligase. DNA ligase III alpha and III beta share a common NH(2) terminus that encodes a mitochondrial localization signal capable of targeting green fluorescent protein to mitochondria while the NH(2) terminus of DNA ligase IV does not. Reverse transcriptase-polymerase chain reaction analyses with adult frog tissues demonstrate that while DNA ligase III alpha and DNA ligase IV are ubiquitously expressed, DNA ligase III beta expression is restricted to testis and ovary. Mitochondrial lysates from X. laevis oocytes contain both DNA ligase III alpha and III beta but no detectable DNA ligase IV. Gel filtration, sedimentation, native gel electrophoresis, and in vitro cross-linking experiments demonstrate that mtDNA ligase III alpha exists as a high molecular weight complex. We discuss the possibility that DNA ligase III alpha exists in mitochondria in association with novel mitochondrial protein partners or as a homodimer.
Collapse
Affiliation(s)
- R M Perez-Jannotti
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
27
|
Ansmant I, Motorin Y, Massenet S, Grosjean H, Branlant C. Identification and characterization of the tRNA:Psi 31-synthase (Pus6p) of Saccharomyces cerevisiae. J Biol Chem 2001; 276:34934-40. [PMID: 11406626 DOI: 10.1074/jbc.m103131200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To characterize the substrate specificity of the putative RNA:pseudouridine (Psi)-synthase encoded by the Saccharomyces cerevisiae open reading frame (ORF) YGR169c, the corresponding gene was deleted in yeast, and the consequences of the deletion on tRNA and small nuclear RNA modification were tested. The resulting DeltaYGR169c strain showed no detectable growth phenotype, and the only difference in Psi formation in stable cellular RNAs was the absence of Psi at position 31 in cytoplasmic and mitochondrial tRNAs. Complementation of the DeltaYGR169c strain by a plasmid bearing the wild-type YGR169c ORF restored Psi(31) formation in tRNA, whereas a point mutation of the enzyme active site (Asp(168)-->Ala) abolished tRNA:Psi(31)-synthase activity. Moreover, recombinant His(6)-tagged Ygr169 protein produced in Escherichia coli was capable of forming Psi(31) in vitro using tRNAs extracted from the DeltaYGR169c yeast cells as substrates. These results demonstrate that the protein encoded by the S. cerevisiae ORF YGR169c is the Psi-synthase responsible for modification of cytoplasmic and mitochondrial tRNAs at position 31. Because this is the sixth RNA:Psi-synthase characterized thus far in yeast, we propose to rename the corresponding gene PUS6 and the expressed protein Pus6p. Finally, the cellular localization of the green fluorescent protein-tagged Pus6p was studied by functional tests and direct fluorescence microscopy.
Collapse
Affiliation(s)
- I Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | |
Collapse
|
28
|
Nakai Y, Nakai M, Hayashi H, Kagamiyama H. Nuclear localization of yeast Nfs1p is required for cell survival. J Biol Chem 2001; 276:8314-20. [PMID: 11110795 DOI: 10.1074/jbc.m007878200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Nfs1p is mainly found in the mitochondrial matrix and has been shown to participate in iron-sulfur cluster assembly. We show here that Nfs1p contains a potential nuclear localization signal, RRRPR, in its mature part. When this sequence was mutated to RRGSR, the mutant protein could not restore cell growth under chromosomal NFS1-depleted conditions. However, this mutation did not affect the function of Nfs1p in biogenesis of mitochondrial iron-sulfur proteins. The growth defect of the mutant was complemented by simultaneous expression of the mature Nfs1p, which contains the intact nuclear localization signal but lacks its mitochondrial-targeting presequence. These results suggest that a fraction of Nfs1p is localized in the nucleus and is essential for cell viability.
Collapse
Affiliation(s)
- Y Nakai
- Department of Biochemistry, Osaka Medical College, Takatsuki, Osaka 569-8686 Japan.
| | | | | | | |
Collapse
|
29
|
Tolkunova E, Park H, Xia J, King MP, Davidson E. The human lysyl-tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript. J Biol Chem 2000; 275:35063-9. [PMID: 10952987 DOI: 10.1074/jbc.m006265200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two cDNAs encoding human lysyl-tRNA synthetase have been identified. One encodes the cytoplasmic form of the enzyme identified previously. The second cDNA contains the same sequence but with a 180-bp insertion at the 5'-end of the mRNA. This results in a predicted protein whose carboxyl 576 amino acids are identical to those of the cytoplasmic enzyme but with a different amino terminus of 49 amino acids that contains a putative mitochondrial targeting sequence. Expression of the two lysyl-tRNA synthetase-green fluorescent protein gene fusions in a human cell line confirmed that the cytoplasmic form was targeted to the cytoplasm and the mitochondrial form to mitochondria. The genomic lysyl-tRNA synthetase gene consisted of 15 exons. The two isoforms were created by alternative splicing of the first three exons of the gene. The cytoplasmic form was created by splicing exon 1 to exon 3. The inclusion of exon 2 between exons 1 and 3 produced an mRNA encoding the mitochondrial isoform with an additional upstream small open reading frame, consisting mainly of a portion of the 5' coding region of the cytoplasmic isoform. This is the first example of mitochondrial targeting sequence being encoded on the second exon of a gene. Ribonuclease protection analysis showed that the mRNA encoding the cytoplasmic isoform makes up approximately 70%, and the mitochondrial isoform approximately 30%, of the mature transcripts from the lysyl-tRNA synthetase gene. The mitochondrial form of the enzyme, purified after expression in Escherichia coli, aminoacylated in vitro transcripts corresponding to both the cytoplasmic and mitochondrial tRNA(Lys), despite the difference in the discriminator base sequence in the acceptor stems of these tRNAs.
Collapse
Affiliation(s)
- E Tolkunova
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
30
|
Ansmant I, Massenet S, Grosjean H, Motorin Y, Branlant C. Identification of the Saccharomyces cerevisiae RNA:pseudouridine synthase responsible for formation of psi(2819) in 21S mitochondrial ribosomal RNA. Nucleic Acids Res 2000; 28:1941-6. [PMID: 10756195 PMCID: PMC103309 DOI: 10.1093/nar/28.9.1941] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
So far, four RNA:pseudouridine (Psi)-synthases have been identified in yeast Saccharomyces cerevisiae. Together, they act on cytoplasmic and mitochondrial tRNAs, U2 snRNA and rRNAs from cytoplasmic ribosomes. However, RNA:Psi-synthases responsible for several U-->Psi conversions in tRNAs and UsnRNAs remained to be identified. Based on conserved amino-acid motifs in already characterised RNA:Psi-synthases, four additional open reading frames (ORFs) encoding putative RNA:Psi-synthases were identified in S.cerevisiae. Upon disruption of one of them, the YLR165c ORF, we found that the unique Psi residue normally present in the fully matured mitochondrial rRNAs (Psi(2819)in 21S rRNA) was missing, while Psi residues at all the tested pseudo-uridylation sites in cytoplasmic and mitochondrial tRNAs and in nuclear UsnRNAs were retained. The selective U-->Psi conversion at position 2819 in mitochondrial 21S rRNA was restored when the deleted yeast strain was transformed by a plasmid expressing the wild-type YLR165c ORF. Complementation was lost after point mutation (D71-->A) in the postulated active site of the YLR165c-encoded protein, indicating the direct role of the YLR165c protein in Psi(2819)synthesis in mitochondrial 21S rRNA. Hence, for nomenclature homogeneity the YLR165c ORF was renamed PUS5 and the corresponding RNA:Psi-synthase Pus5p. As already noticed for other mitochondrial RNA modification enzymes, no canonical mitochondrial targeting signal was identified in Pus5p. Our results also show that Psi(2819)in mitochondrial 21S rRNA is not essential for cell viability.
Collapse
Affiliation(s)
- I Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | |
Collapse
|
31
|
Stanford DR, Martin NC, Hopper AK. ADEPTs: information necessary for subcellular distribution of eukaryotic sorting isozymes resides in domains missing from eubacterial and archaeal counterparts. Nucleic Acids Res 2000; 28:383-92. [PMID: 10606634 PMCID: PMC102526 DOI: 10.1093/nar/28.2.383] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Revised: 11/22/1999] [Accepted: 11/22/1999] [Indexed: 11/14/2022] Open
Abstract
Sorting isozymes are encoded by single genes, but the encoded proteins are distributed to multiple subcellular compartments. We surveyed the predicted protein sequences of several nucleic acid interacting sorting isozymes from the eukaryotic taxonomic domain and compared them with their homologs in the archaeal and eubacterial domains. Here, we summarize the data showing that the eukaryotic sorting isozymes often possess sequences not present in the archaeal and eubacterial counterparts and that the additional sequences can act to target the eukaryotic proteins to their appropriate subcellular locations. Therefore, we have named these protein domains ADEPTs (Additional Domains for Eukaryotic Protein Targeting). Identification of additional domains by phylogenetic comparisons should be generally useful for locating candidate sequences important for subcellular distribution of eukaryotic proteins.
Collapse
Affiliation(s)
- D R Stanford
- Department of Biochemistry, Pennsylvania State University College of Medicine, H171, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|
32
|
Affiliation(s)
- D F Bogenhagen
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| |
Collapse
|
33
|
Tolerico LH, Benko AL, Aris JP, Stanford DR, Martin NC, Hopper AK. Saccharomyces cerevisiae Mod5p-II contains sequences antagonistic for nuclear and cytosolic locations. Genetics 1999; 151:57-75. [PMID: 9872948 PMCID: PMC1460473 DOI: 10.1093/genetics/151.1.57] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOD5 encodes a tRNA modification activity located in three subcellular compartments. Alternative translation initiation generates Mod5p-I, located in the mitochondria and the cytosol, and Mod5p-II, located in the cytosol and nucleus. Here we study the nucleus/cytosol distribution of overexpressed Mod5p-II. Nuclear Mod5p-II appears concentrated in the nucleolus, perhaps indicating that the nuclear pool may have a different biological role than the cytoplasmic and mitochondrial pools. Mod5p contains three motifs resembling bipartite-like nuclear localization sequences (NLSs), but only one is sufficient to locate a passenger protein to the nucleus. Mutations of basic residues of this motif cumulatively contribute to a cytosolic location for the fusion proteins. These alterations also cause decreased nuclear pools of endogenous Mod5p-II. Depletion of nuclear Mod5p-II does not affect tRNATyr function. Despite the NLS, most Mod5p is cytosolic. We assessed whether Mod5p sequences cause a karyophilic reporter to be located in the cytosol. By this assay, Mod5p may contain more than one region that functions as cytoplasmic retention and/or nuclear export sequences. Thus, distribution of Mod5p results from the presence/absence of mitochondrial targeting information and sequences antagonistic for nuclear and cytosolic locations. Mod5p is highly conserved; sequences responsible for subcellular distribution appear to reside in "accessory" motifs missing from prokaryotic counterparts.
Collapse
Affiliation(s)
- L H Tolerico
- Program in Cell and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
34
|
Land T, Rouault TA. Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol Cell 1998; 2:807-15. [PMID: 9885568 DOI: 10.1016/s1097-2765(00)80295-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Iron-sulfur clusters are prosthetic groups that are required for the function of numerous enzymes in the cell, including enzymes important in respiration, photosynthesis, and nitrogen fixation. Here we report cloning of the human homolog of NifS, a cysteine desulfurase that is proposed to supply the inorganic sulfur in iron-sulfur clusters. In human cells, different forms of NifS that localize either to mitochondria or to the cytosol and nucleus are synthesized from a single transcript through initiation at alternative inframe AUGs, and initiation site selection varies according to the pH of the medium or cytosol. Thus, a novel form of translational regulation permits rapid redistribution of NifS proteins into different compartments of the cell in response to changes in metabolic status.
Collapse
Affiliation(s)
- T Land
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
35
|
Constantinesco F, Benachenhou N, Motorin Y, Grosjean H. The tRNA(guanine-26,N2-N2) methyltransferase (Trm1) from the hyperthermophilic archaeon Pyrococcus furiosus: cloning, sequencing of the gene and its expression in Escherichia coli. Nucleic Acids Res 1998; 26:3753-61. [PMID: 9685492 PMCID: PMC147764 DOI: 10.1093/nar/26.16.3753] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structural gene pfTRM1 (GenBank accession no. AF051912), encoding tRNA(guanine-26, N 2- N 2) methyltransferase (EC 2.1.1.32) of the strictly anaerobic hyperthermophilic archaeon Pyrococcus furiosus, has been identified by sequence similarity to the TRM1 gene of Saccharomyces cerevisiae (YDR120c). The pfTRM1 gene in a 3.0 kb restriction DNA fragment of P.furiosus genomic DNA has been cloned by library screening using a PCR probe to the 5'-part of the corresponding ORF. Sequence analysis revealed an entire ORF of 1143 bp encoding a polypeptide of 381 residues (calculated molecular mass 43.3 kDa). The deduced amino acid sequence of this newly identified gene shares significant similarity with the TRM1- like genes of three other archaea (Methanococcus jannaschii, Methanobacterium thermoautotrophicum and Archaeoglobus fulgidus), one eukaryon (Caenorhabditis elegans) and one hyperthermophilic eubacterium (Aquifex aeolicus). Two short consensus motifs for S-adenosyl-l-methionine binding are detected in the sequence of pfTrm1p. Cloning of the P.furiosus TRM1 gene in an Escherichia coli expression vector allowed expression of the recombinant protein (pfTrm1p) with an apparent molecular mass of 42 kDa. A protein extract from the transformed E.coli cells shows enzymatic activity for the quantitative formation of N 2, N 2-dimethylguanosine at position 26 in a transcript of yeast tRNAPhe used as substrate. The recombinant enzyme was also shown to modify bulk E.coli tRNAs in vivo.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding Sites/genetics
- Cloning, Molecular
- DNA Primers/genetics
- DNA, Archaeal/genetics
- Escherichia coli/genetics
- Gene Expression
- Genes
- Genes, Archaeal
- Guanine/chemistry
- Molecular Sequence Data
- Nucleic Acid Conformation
- Point Mutation
- Pyrococcus/enzymology
- Pyrococcus/genetics
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Substrate Specificity
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- F Constantinesco
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique,1 Avenue de la Terrasse, Batiment 34, F-91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
36
|
Nakai Y, Yoshihara Y, Hayashi H, Kagamiyama H. cDNA cloning and characterization of mouse nifS-like protein, m-Nfs1: mitochondrial localization of eukaryotic NifS-like proteins. FEBS Lett 1998; 433:143-8. [PMID: 9738949 DOI: 10.1016/s0014-5793(98)00897-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have isolated a mouse cDNA which shows significant sequence similarity to the yeast nifS-like gene (y-NFS1), and termed it m-Nfs1. The deduced protein sequence (459 amino acids long) has several characteristic features common to those of bacterial NifS proteins, but distinct from them by its amino-terminal extension which contains a typical mitochondrial targeting presequence. m-Nfs1 was found to be a soluble 47-kDa protein in the matrix fraction of mouse liver mitochondria. The m-Nfs1 gene was ubiquitously expressed in most tissues, suggesting its housekeeping function in vivo. We also found that the gamma-NFS1 protein was localized in the mitochondrial matrix in yeast cells. These results suggest that both eukaryotic NifS-like proteins may play some roles in mitochondrial functions.
Collapse
Affiliation(s)
- Y Nakai
- Department of Biochemistry, Osaka Medical College, Japan
| | | | | | | |
Collapse
|
37
|
Abstract
Prior work has demonstrated that a conserved nonanucleotide [5'-TATAAGTAA(+2)] promoter sequence is used by the mitochondrial [mt]1 RNA polymerase in Saccharomyces cerevisiae. However, the highly AT-rich yeast mt genome carries many other promoter-like sequences, but only a fraction of them are involved in gene-specific transcription. To examine the sequence variability of this nonanucleotide promoter motif, single or multiple nt substitutions were introduced into the canonical promoter sequence. The transcriptional activity of these altered promoter sequences was examined under the in-vitro reaction conditions. The results presented here determined that several variant promoter sequences (i. e. TAAAAGTAA, TATAAGAAA, TATAAGTAG, TATAAGAAG, TATAAGAGA, TATAAGGGA, TATAAGTGG, TAAAAGTAG) were efficiently used by the mtRNA polymerase. However, a single (i.e. AATAAGTAA, TTTAAGTAA, TATTAGTAA, TATAACTAA, TATAAGGAA, TATAAGTAT) or multiple (TATAGGAAA, TAAAAGGAA, TATAGGGAA, TAAAGGAAA, TAAAGGGAA) nt substitution(s) in other locations drastically reduced mt promoter function. Interestingly, some of these poorly or partially active promoter variants (i.e. TATAAGGAA, TATAAGTAT, TATAAGTCA) became fully functional in the presence of sequence-specific dinucleotide primer. Since dinucleotide primer bypasses the first phosphodiester bond formation in transcription, it is suggested that the -1T-->G, +1A-->C and +2A-->T mutations affect mt transcription at the level of initiation rather than polymerase binding.
Collapse
Affiliation(s)
- T K Biswas
- Department of Pathology, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
38
|
Lecointe F, Simos G, Sauer A, Hurt EC, Motorin Y, Grosjean H. Characterization of yeast protein Deg1 as pseudouridine synthase (Pus3) catalyzing the formation of psi 38 and psi 39 in tRNA anticodon loop. J Biol Chem 1998; 273:1316-23. [PMID: 9430663 DOI: 10.1074/jbc.273.3.1316] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The enzymatic activity of yeast gene product Deg1 was identified using both disrupted yeast strain and cloned recombinant protein expressed in yeast and in Escherichia coli. The results show that the DEG1-disrupted yeast strain lacks synthase activity for the formation of pseudouridines psi 38 and psi 39 in tRNA whereas the other activities, specific for psi formation at positions 13, 27, 28, 32, 34, 35, 36, and 55 in tRNA, remain unaffected. Also, the His6-tagged recombinant yeast Deg1p expressed in E. coli as well as a protein fusion with protein A in yeast display the enzymatic activity only toward psi 38 and psi 39 formation in different tRNA substrates. Therefore, Deg1p is the third tRNA:pseudouridine synthase (Pus3p) characterized so far in yeast. Disruption of the DEG1 gene is not lethal but reduces considerably the yeast growth rate, especially at an elevated temperature (37 degrees C). Deg1p localizes both in the nucleus and in the cytoplasm, as shown by immunofluorescence microscopy. Identification of the pseudouridine residues present (or absent) in selected naturally occurring cytoplasmic and mitochondrial tRNAs from DEG1-disrupted strain points out a common origin of psi 38- and psi 39-synthesizing activity in both of these two cellular compartments. The sensitivity of Pus3p (Deg1p) activity to overall three-dimensional tRNA architecture and to a few individual mutations in tRNA was also studied. The results indicate the existence of subtle differences in the tRNA recognition by yeast Pus3p and by its homologous tRNA:pseudouridine synthase truA from E. coli (initially called hisT or PSU-I gene product).
Collapse
Affiliation(s)
- F Lecointe
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
39
|
Kunzmann A, Brennicke A, Marchfelder A. 5' end maturation and RNA editing have to precede tRNA 3' processing in plant mitochondria. Proc Natl Acad Sci U S A 1998; 95:108-13. [PMID: 9419337 PMCID: PMC18142 DOI: 10.1073/pnas.95.1.108] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report the characterization and partial purification of potato mitochondrial RNase Z, an endonuclease that generates mature tRNA 3' ends. The enzyme consists of one (or more) protein(s) without RNA subunits. Products of the processing reaction are tRNA molecules with 3' terminal hydroxyl groups and 3' trailers with 5' terminal phosphates. The main processing sites are located immediately 3' to the discriminator and one nucleotide further downstream. This endonucleolytic processing at and close to the tRNA 3' end in potato mitochondria suggests a higher similarity to the eukaryotic than to the prokaryotic tRNA 3' processing pathway. Partial purification and separation of RNase Z from the 5' processing activity RNase P allowed us to determine biochemical characteristics of the enzyme. The activity is stable over broad pH and temperature ranges, with peak activity at pH 8 and 30 degrees C. Optimal concentrations for MgCl2 and KCl are 5 mM and 30 mM, respectively. The potato mitochondrial RNase Z accepts only tRNA precursors with mature 5' ends. The precursor for tRNAPhe requires RNA editing for efficient processing by RNase Z.
Collapse
Affiliation(s)
- A Kunzmann
- Allgemeine Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | |
Collapse
|
40
|
Becker HF, Motorin Y, Planta RJ, Grosjean H. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids Res 1997; 25:4493-9. [PMID: 9358157 PMCID: PMC147073 DOI: 10.1093/nar/25.22.4493] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The protein products of two yeast Saccharomyces cerevisiae genes (YNL292w and CBF5) display a remarkable sequence homology with Escherichia coli tRNA:pseudouridine-55 synthase (encoded by gene truB). The gene YNL292w coding for one of these proteins was cloned in an E.coli expression vector downstream of a His6-tag. The resulting recombinant protein (Pus4) was expressed at high level and purified to homogeneity by metal affinity chromatography on Ni2+-NTA-agarose, followed by ion-exchange chromatography on MonoQ. The purified Pus4p catalyzes the formation of pseudouridine-55 in T7 in vitro transcripts of several yeast tRNA genes. In contrast to the known yeast pseudouridine synthase (Pus1) of broad specificity, no other uridines in tRNA molecules are modified by the cloned recombinant tRNA:Psi55 synthase. The disruption of the corresponding gene YNL292w in yeast, which has no significant effect on the growth of yeast cells, leads to the complete disappearance of the Psi55 formation activity in a cell-free extract. These results allow the formal identification of the protein encoded by the yeast ORF YNL292w as the only enzyme responsible for the formation of Psi55 which is almost universally conserved in tRNAs. The substrate specificity of the purified YNL292w-encoded recombinant protein was shown to be similar to that of the native protein present in yeast cell extract. Chemical mapping of pseudouridine residues in both cytoplasmic and mitochondrial tRNAs from the yeast strain carrying the disrupted gene reveals that the same gene product is responsible for Psi55 formation in tRNAs of both cellular compartments.
Collapse
Affiliation(s)
- H F Becker
- Laboratoire d'Enzymologie et Biochimie Structurales du CNRS, Avenue de la Terrasse, Batiment 34, F-91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
41
|
Chow KS, Singh DP, Roper JM, Smith AG. A single precursor protein for ferrochelatase-I from Arabidopsis is imported in vitro into both chloroplasts and mitochondria. J Biol Chem 1997; 272:27565-71. [PMID: 9346891 DOI: 10.1074/jbc.272.44.27565] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ferrochelatase is the last enzyme of heme biosynthesis and in higher plants is found in both chloroplasts and mitochondria. We have isolated cDNAs for two isoforms of ferrochelatase from Arabidopsis thaliana, both of which are imported into isolated chloroplasts. In this paper we show that ferrochelatase-I is also imported into isolated pea mitochondria with approximately the same efficiency as into chloroplasts. Processing of the precursor was observed with both chloroplast stroma and mitochondrial matrix extracts. This was inhibited by EDTA, indicating it was due to the specific processing proteases. The specificity of import was verified by the fact that the mitochondrial preparation did not import the precursor of the light-harvesting chlorophyll a/b protein precursor or the precursor of porphobilinogen deaminase, an earlier enzyme of tetrapyrrole biosynthesis, both of which are exclusively chloroplast-located. Furthermore, import of ferrochelatase-I precursor into mitochondria was inhibited by valinomycin, but this had no effect on its import into chloroplasts. Thus a single precursor molecule is recognized by the import machinery of the two organelles. The implications for the targeting of ferrochelatase in a possible protective role against photooxidative stress are discussed.
Collapse
Affiliation(s)
- K S Chow
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | | | | | | |
Collapse
|
42
|
Jiang HQ, Motorin Y, Jin YX, Grosjean H. Pleiotropic effects of intron removal on base modification pattern of yeast tRNAPhe: an in vitro study. Nucleic Acids Res 1997; 25:2694-701. [PMID: 9207014 PMCID: PMC146816 DOI: 10.1093/nar/25.14.2694] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cell-free yeast extract has been successfully used to catalyze the enzymatic formation of 11 out of the 14 naturally occurring modified nucleotides in yeast tRNAPhe(anticodon GAA). They are m2G10, D17, m22G26, Cm32, Gm34,psi39, m5C40, m7G46, m5C49, T54 andpsi55. Only D16, Y37 and m1A58 were not formed under in vitro conditions. However, m1G37was quantitatively produced instead of Y37. The naturally occurring intron was absolutely required for m5C40formation while it hindered completely the enzymatic formation of Cm32, Gm34and m1G37. Enzymatic formation of m22G26,psi39, m7G46, m5C49, T54 andpsi55were not or only slightly affected by the presence of the intron. These results allow us to classify the different tRNA modification enzymes into three groups: intron insensitive, intron dependent, and those requiring the absence of the intron. The fact that truncated tRNAPheconsisting of the anticodon stem and loop prolonged with the 19 nucleotide long intron is a substrate for tRNA: cytosine-40 methylase demonstrates that the enzyme is not only strictly intron dependent, but also does not require fully structured tRNA.
Collapse
Affiliation(s)
- H Q Jiang
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Avenue de la Terrasse, Batiment 34, F-91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
43
|
Abstract
A mitochondrial DNA topoisomerase (type I, ATP-independent) can be biochemically distinguished from the nuclear enzyme DNA topoisomerase I. This conclusion is based on the subcellular localization of the mitochondrial enzyme, its optimal reaction conditions and sensitivity to enzyme inhibitors. Unlike its nuclear counterpart, the mitochondrial DNA topoisomerase exhibits an absolute requirement for a divalent cation (Mg2+ and Ca2+ work equally well in vitro). In addition, it is slightly more sensitive to monovalent salts, with optimal activity obtained in 50-100 mM KCl. The mitochondrial enzyme is equally active at pH 7.5 or pH 9.5, but unlike its nuclear equivalent, is inactivated at higher pH values. The mitochondrial DNA topoisomerase is sensitive to coumermycin, berenil, camptothecin and 2,2,5,5-tetramethyl-4-imidazolidinone, a chemical that has no inhibitory effect on DNA topoisomerase I. Immunoblotting studies show that mitochondrial DNA topoisomerase activity is associated with a polypeptide (M(r) approximately 79,000) that cross-reacts with the antiserum against DNA topoisomerase I. Thus, the mitochondrial DNA topoisomerase may be derived by the differential expression of the DNA topoisomerase I gene or from the expression of a gene that is homologous to the DNA topoisomerase I gene.
Collapse
Affiliation(s)
- A Tua
- Department of Chemistry, Auburn University, AL 36849-5312, USA
| | | | | | | |
Collapse
|
44
|
Grosjean H, Szweykowska-Kulinska Z, Motorin Y, Fasiolo F, Simos G. Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: a review. Biochimie 1997; 79:293-302. [PMID: 9258438 DOI: 10.1016/s0300-9084(97)83517-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In eukaryotic cells, especially in yeast, several genes encoding tRNAs contain introns. These are removed from pre-tRNAs during the maturation process by a tRNA-specific splicing machinery that is located within the nucleus at the nuclear envelope. Before and after the intron removal, several nucleoside modifications are added in a stepwise manner, but most of them are introduced prior to intron removal. Some of these early nucleoside modifications are catalyzed by intron-dependent enzymes while most of the others are catalyzed in an intron-independent manner. In the present paper, we review all known cases where the nucleoside modifications were shown to depend strictly on the presence of an intron. These are pseudouridines at anticodon positions 34, 35 and 36 and 5-methylcytosine at position 34 of several eukaryotic tRNAs. One common property of the corresponding intron-dependent modifying enzymes is that their activities are essentially dependent on the local specific architecture of the pre-tRNA molecule that comprises the anticodon stem and loop prolonged by the intron domain. Thus introns clearly serve as internal (cis-type) RNAs that guide nucleoside modifications by providing transient target sites in tRNA for selected nuclear modifying enzymes. This situation may be similar to the recently discovered (trans-type) snoRNA-guided process of ribose methylations of ribosomal RNAs within the nucleolus of eukaryotic cells.
Collapse
Affiliation(s)
- H Grosjean
- CNRS, Laboratoire d'Enzymologie et de Biochimie Structurales, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
45
|
Boguta M, Czerska K, Zoładek T. Mutation in a new gene MAF1 affects tRNA suppressor efficiency in Saccharomyces cerevisiae. Gene 1997; 185:291-6. [PMID: 9055829 DOI: 10.1016/s0378-1119(96)00669-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutation in the MAF1 gene was identified in a screen for decreased efficiency of tRNA suppressor SUP11 in the yeast Saccharomyces cerevisiae (Sc). maf1-1 mutation exerts a dual phenotypic effect: antisuppression and temperature sensitive (ts) respiratory growth. MAF1, cloned by complementation of the ts phenotype of maf1-1, also alleviates the antisuppressor effect. The coding sequence of MAF1 is interrupted by an intron of 80 bp. The putative gene product, Maf1p, is a hydrophilic protein of 395 amino acids (aa) not showing significant similarity to known proteins which indicates that MAF1 encodes a novel protein. Maf1p may play a role in the tRNA biosynthetic pathway since a fragment of the RPO31/RPC160 gene encoding the largest subunit of RNA polymerase III was cloned as a multicopy suppressor of mafl-1.
Collapse
Affiliation(s)
- M Boguta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
46
|
Abstract
Mitochondria import many hundreds of different proteins that are encoded by nuclear genes. These proteins are targeted to the mitochondria, translocated through the mitochondrial membranes, and sorted to the different mitochondrial subcompartments. Separate translocases in the mitochondrial outer membrane (TOM complex) and in the inner membrane (TIM complex) facilitate recognition of preproteins and transport across the two membranes. Factors in the cytosol assist in targeting of preproteins. Protein components in the matrix partake in energetically driving translocation in a reaction that depends on the membrane potential and matrix-ATP. Molecular chaperones in the matrix exert multiple functions in translocation, sorting, folding, and assembly of newly imported proteins.
Collapse
Affiliation(s)
- W Neupert
- Institut für Physiologische Chemie der Universität München, Germany
| |
Collapse
|
47
|
Papadimitriou A, Gross HJ. Pre-tRNA 3'-processing in Saccharomyces cerevisiae. Purification and characterization of exo- and endoribonucleases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:747-59. [PMID: 9022706 DOI: 10.1111/j.1432-1033.1996.0747r.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated ribonucleases from Saccharomyces cerevisiae which are active in pre-tRNA 3'-processing in vitro. Two pre-tRNA 3'-exonucleases with molecular masses of 33 and 60 kDa, two pre-tRNA 3'-endonucleases with molecular masses of 45 kDa/60 kDa and 55 kDa and 70-kDa 3'-pre-tRNase were purified from yeast whole cell extracts by several successive chromatographic purification steps. The purified exonucleases are non-processive 3'-exonucleases that catalyze the exonucleolytic processing of 3'-trailer sequences of pre-tRNAs to produce mature tRNAs. The 45-kDa/60-kDa 3'-endonuclease is tRNA-specific and catalyzes the processing of pre-tRNAs in a single endonucleolytic step. Two isoenzymes of this activity (p45 and p60) were identified by chromatography. The second endonuclease, p55, is dependent on monovalent ions and cleaves about three nucleotides downstream the mature 3'-end. All of the purified 3'-pre-tRNases accept homologous as well as heterologous pre-tRNA substrates. Pre-tRNAs carrying a 5'-leader are processed with almost the same efficiency as those lacking this 5'-leader. Mature tRNAs carrying the CCA 3'-sequence and tRNA pseudogene products carrying mutations in the mature domain are processed by the 3'-exonucleases, not by the 3'-endonucleases. The specific endonuclease p45/p60 discriminates between UUUOH as a 3'-flank, which is cleaved, and the CCA 3'-end of mature tRNAs, which is not cleaved. This study suggests that several 3'-pre-tRNases are active on tRNA precursors in vitro and might therefore in pre-tRNA 3'-processing in yeast, partly in a cooperative manner.
Collapse
Affiliation(s)
- A Papadimitriou
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Würzburg, Germany
| | | |
Collapse
|
48
|
Affiliation(s)
- M W Gray
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifa NS, Canada.
| |
Collapse
|
49
|
Wolfe CL, Hopper AK, Martin NC. Mechanisms leading to and the consequences of altering the normal distribution of ATP(CTP):tRNA nucleotidyltransferase in yeast. J Biol Chem 1996; 271:4679-86. [PMID: 8617732 DOI: 10.1074/jbc.271.9.4679] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
CCA1 codes for mitochondrial, cytosolic, and nuclear ATP(CTP):tRNA nucleotidyltransferase. Studies reported here examine the mechanisms leading to and the consequences of altering the distribution of this important tRNA processing enzyme. We show that the majority of Cca1p-I, translated from the first in-frame ATG, is in mitochondria but surprisingly, there is a small contribution to nuclear and cytosolic tRNA processing by this form as well. The majority of Cca1p-II and Cca1p-III, translated from ATG2 and ATG3, respectively, is in the cytosol but both are also located in the nucleus for processing precursors. Altering the cytosolic/nuclear distribution of Cca1p by fusing the SV40 nuclear localization signal to the 5' end of CCA1 causes a growth defect and results in the accumulation of end-shortened tRNAs in the cytosol. These results suggest an important role for Cca1p in the cytosol of eukaryotes, presumably in the repair of 3' CCA termini. These experiments also demonstrate that individual tRNAs are affected differently by reduced cytosolic nucleotidyltransferase and that cells resuming exponential growth are more severely affected than those continuing exponential growth.
Collapse
Affiliation(s)
- C L Wolfe
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
50
|
Cermakian N, Ikeda TM, Cedergren R, Gray MW. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res 1996; 24:648-54. [PMID: 8604305 PMCID: PMC145688 DOI: 10.1093/nar/24.4.648] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although mitochondria and chloroplasts are considered to be descendants of eubacteria-like endo- symbionts, the mitochondrial RNA polymerase of yeast is a nucleus-encoded, single-subunit enzyme homologous to bacteriophage T3 and T7 RNA polymerases, rather than a multi-component, eubacterial-type alpha 2 beta beta' enzyme, as encoded in chloroplast DNA. To broaden our knowledge of the mitochondrial transcriptional apparatus, we have used a polymerase chain reaction (PCR) approach designed to amplify an internal portion of phage T3/T7-like RNA polymerase genes. Using this strategy, we have recovered sequences homologous to yeast mitochondrial and phage T3/T7 RNA polymerases from a phylogenetically broad range of multicellular and unicellular eukaryotes. These organisms display diverse patterns of mitochondrial genome organization and expression, and include species that separated from the main eukaryotic line early in the evolution of this lineage. In certain cases, we can deduce that PCR-amplified sequences, some of which contain small introns, are localized in nuclear DNA. We infer that the T3/T7-like RNA polymerase sequences reported here are likely derived from genes encoding the mitochondrial RNA polymerase in the organisms in which they occur, suggesting a phage T3/T7-like RNA polymerase was recruited to act in transcription in the mitochondrion at an early stage in the evolution of this organelle.
Collapse
Affiliation(s)
- N Cermakian
- Canadian Institute for Advanced Research, Department de Biochimie, Universite de Montreal, Quebec, Canada
| | | | | | | |
Collapse
|