1
|
Multi-Parametric Portfolio to Assess the Fitness and Gonadal Maturation in Four Key Reproductive Phases of Brown Trout. Animals (Basel) 2021; 11:ani11051290. [PMID: 33946305 PMCID: PMC8146139 DOI: 10.3390/ani11051290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Brown trout is a freshwater fish with economic importance and with a great potential to be used as an environmental biosensor species. Despite being selected as a model species in distinct scientific contexts, in cultured specimens, there is a surprising lack of works investigating the morpho-physiological changes associated with the reproductive cycle; particularly concerning the gonads. In this study, a multi-parameter portfolio of biometric, biochemical, hormonal, and morphological analysis was established, which allowed a seasonal and sex characterization of the gonad status of adult brown trout males and females. Sampling included four reproductive phases: spawning capable (December), regressing (March), regenerating (July), and developing (November). Sex- and season-specific changes were described. The discriminative parameters characterized here stand now as normal baseline values against which abnormal patterns can be compared with. These parameters have the potential to be used as tools for the environmental monitoring of the reproductive status of wild populations and for the control of breeding stocks in aquaculture. Abstract Brown trout is an environmental freshwater sentinel species and is economically important for recreational fishing and aquaculture. Despite that, there is limited knowledge regarding morpho-physiological variations in adults throughout the reproductive cycle. Thus, this study aimed to analyze the fitness and gonadal maturation of cultured adult brown trout in four reproductive phases (spawning capable—December, regressing—March, regenerating—July, and developing—November). The systematic evaluation of males and females was based on biometric, biochemical, and hormonal parameters, along with a histomorphological grading of gonads and the immunophenotype location of key steroidogenic enzymes. The total weight and lengths reached the lowest levels in December. Gonad weights were higher in December and November, while the opposite pattern was found for liver weights. The lowest levels of cholesterol and total protein were also noted during those stages. The 11-ketotestosterone (11-KT) and testosterone (T) for males, and estradiol (E2) and T for females, mostly explained the hormonal variations. The immunohistochemistry of cytochrome P450c17 (CYP17-I), aromatase (CYP19), and 17β-hydroxysteroid dehydrogenase (17β-HSD) showed sex and site-specific patterns in the distinct reproductive phases. The sex- and season-specific changes generated discriminative multi-parameter profiles, serving as a tool for environmental and aquaculture surveys.
Collapse
|
2
|
Chiu YL, Shikina S, Yoshioka Y, Shinzato C, Chang CF. De novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis. BMC Genomics 2020; 21:732. [PMID: 33087060 PMCID: PMC7579821 DOI: 10.1186/s12864-020-07113-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. RESULTS 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. CONCLUSIONS Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.
Collapse
Affiliation(s)
- Yi-Ling Chiu
- Doctoral Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Doctoral Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan. .,Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 20224, Taiwan.
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 20224, Taiwan. .,Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
3
|
Rodrigues-Filho JA, Garcia CEO, Chehade CG, Sanches EG, Borella MI, Nostro FLL, Araújo BC, Branco GS, Moreira RG. Gonadal remodeling and hormonal regulation during sex change of juvenile dusky grouper Epinephelus marginatus (Teleostei, Serranidae), an endangered protogynous hermaphrodite fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1809-1824. [PMID: 32557081 DOI: 10.1007/s10695-020-00830-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Sex change was induced in Epinephelus marginatus juveniles using a nonsteroidal aromatase inhibitor (AI), a synthetic androgen (17α-methyltestosterone; MT), and a combination of both (MT + AI) in a 90-day experiment. A detailed remodeling of the gonads, the plasma level of gonadal steroids, and immunostaining of pituitary follicle-stimulating hormone (FSH), luteinizing hormone (LH), and somatolactin (SL) cells were analyzed. Sex inversion reached the final spermatogenesis stages using MT, while AI triggered spermatogenesis, but reaching only the spermatid stage. Estradiol (E2) levels did not change in fish treated with AI but decreased throughout the experimental period in animals treated with MT and MT + AI. Testosterone (T) levels increased in animals treated with MT during the first 60 days (and combined with AI in the first 30 days), decreasing in all experimental groups at 90 days, while AI-treated animals had increased plasma 11-ketotestosterone (11-KT) levels after 90 days. In control fish, FSH- and SL-producing cells (ir-FSH and ir-SL) were restricted to pars intermedia (PI) of the adenohypophysis. Pituitary ir-FSH cells were decreased at the end of the experimental period in all treatments compared with the CT animals. LH-producing cells (ir-LH) were present in proximal pars distalis (PPD) and pars intermedia (PI) of adenohypophysis and did not change after the experimental period. The decreased number of ir-FSH cells at the end of the experiment in all treatments could be related to the negative feedback loop triggered by the increase in natural and/or synthetic androgens.
Collapse
Affiliation(s)
- J A Rodrigues-Filho
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Fundação Instituto de Pesca do Estado do Rio de Janeiro (FIPERJ), Rio de Janeiro, Brazil
| | - C E O Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - C G Chehade
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - E G Sanches
- Instituto de Pesca-APTA/SAA, São Paulo, Brazil
| | - M I Borella
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - F L Lo Nostro
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), Laboratorio de Ecotoxicología Acuática, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - B C Araújo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - G S Branco
- Centro de Aquicultura da UNESP (CAUNESP), Jaboticabal, Brazil
| | - R G Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Peter Dennis L, Nocillado J, Palma P, Amagai T, Soyano K, Elizur A. Development of a giant grouper Luteinizing Hormone (LH) Enzyme-Linked Immunosorbent Assay (ELISA) and its use towards understanding sexual development in grouper. Gen Comp Endocrinol 2020; 296:113542. [PMID: 32585213 DOI: 10.1016/j.ygcen.2020.113542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 10/23/2022]
Abstract
A recombinant giant grouper Luteinizing Hormone (LH) consisting of tethered beta and alpha subunits was produced in a yeast expression system. The giant grouper LH β-subunit was also produced and administered to rabbits for antibody development. The recombinant LH and its antibody were used to develop an Enzyme Linked Immunosorbent Assay (ELISA). This ELISA enabled detection of plasma LH levels in groupers at a sensitivity between 391 pg/ml and 200 ng/ml. Different species of grouper were assayed with this ELISA in conjunction with gonadal histology and body condition data to identify links between circulating LH levels and sexual development. We found that circulating levels of LH decreased when oocytes began to degenerate, and sex-transition gonadal characteristics were apparent when LH levels decreased further. When circulating LH levels were related to body condition (body weight/ body length), transitioning-stage fish had relatively high body condition but low plasma LH levels. This observation was similar across multiple grouper species and indicates that plasma LH levels combined with body condition may be a marker for early male identification in the protogynous hermaphrodite groupers.
Collapse
Affiliation(s)
- Lachlan Peter Dennis
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia
| | - Josephine Nocillado
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia
| | - Peter Palma
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia; Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan 5021, Iloilo, Philippines
| | - Takafumi Amagai
- Institute for East China Sea Research, Nagasaki University, Bunkyomachi 852-8131, Nagasaki, Japan
| | - Kiyoshi Soyano
- Institute for East China Sea Research, Nagasaki University, Bunkyomachi 852-8131, Nagasaki, Japan
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC 4558, Queensland, Australia.
| |
Collapse
|
5
|
Rahdari A, Khoshkholgh M, Yarmohammadi M, Ortiz-Zarragoitia M, Lokman PM, Akhavan SR, de Cerio OD, Cancio I, Falahatkar B. The effects of 11-ketotestosterone implants on transcript levels of gonadotropin receptors, and foxl2 and dmrt1 genes in the Previtellogenic ovary of cultured beluga (Huso huso). JOURNAL OF FISH BIOLOGY 2020; 97:374-382. [PMID: 32388872 DOI: 10.1111/jfb.14366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
The in vivo effect of 11-ketotestosterone (11KT) on transcript levels of the gonadotropin receptors (fshr and lhr) and sex differentiation-related genes (dmrt1 and foxl2) was examined in the ovaries of immature female beluga. For this purpose, six fish were treated with implants containing 2.5 mg 11KT and a placebo group of six females of the same age and gametogenic stage were given a blank implant. The implants were intraperitoneally inserted into 4-year-old females at the previtellogenic stage (mean body weight 5580 ± 165 g) and maintained under culture conditions for 8 weeks. Ovary samples for gene expression analysis of lhr, fshr, dmrt1 and foxl2 were collected by biopsy at 3 and 8 weeks post implantation. Diameters of oocytes increased in response to 11KT treatment, both at 3 and at 8 weeks post implantation, but no obvious changes were evident in cytology. Three weeks of 11KT treatment did not affect target gene expression, but a tendency for a time-dependent decrease of lhr and dmrt1 mRNA levels was observed in both treatment and placebo groups. By 8 weeks of treatment, however, 11KT implants provoked the upregulation of fshr and foxl2 transcript levels. Furthermore, lhr and dmrt1 transcript abundances recovered by 8 weeks of exposure in both blank- and 11KT-implanted beluga. These results suggest that 11KT, either directly or indirectly, may affect gametogenesis and regulate some key components of the reproductive axis in female beluga.
Collapse
Affiliation(s)
- Abdolali Rahdari
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
- Department of Fisheries, Hamoun International Wetland Research Institute, University of Zabol, Zabol, Iran
| | - Majidreza Khoshkholgh
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Mahtab Yarmohammadi
- International Sturgeon Research Institute, Agricultural Research Education and Extension Organization, Rasht, Iran
| | - Maren Ortiz-Zarragoitia
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Basque Country, Spain
| | | | - Sobhan R Akhavan
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Oihane Diaz de Cerio
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Basque Country, Spain
| | - Ibon Cancio
- Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country, Basque Country, Spain
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| |
Collapse
|
6
|
Monson C, Forsgren K, Goetz G, Harding L, Swanson P, Young G. A teleost androgen promotes development of primary ovarian follicles in coho salmon and rapidly alters the ovarian transcriptome†. Biol Reprod 2017; 97:731-745. [DOI: 10.1093/biolre/iox124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/12/2017] [Indexed: 12/30/2022] Open
|
7
|
Bass AL, Hinch SG, Teffer AK, Patterson DA, Miller KM. A survey of microparasites present in adult migrating Chinook salmon (Oncorhynchus tshawytscha) in south-western British Columbia determined by high-throughput quantitative polymerase chain reaction. JOURNAL OF FISH DISEASES 2017; 40:453-477. [PMID: 28188649 DOI: 10.1111/jfd.12607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/07/2016] [Accepted: 12/10/2016] [Indexed: 05/06/2023]
Abstract
Microparasites play an important role in the demography, ecology and evolution of Pacific salmonids. As salmon stocks continue to decline and the impacts of global climate change on fish populations become apparent, a greater understanding of microparasites in wild salmon populations is warranted. We used high-throughput, quantitative PCR (HT-qRT-PCR) to rapidly screen 82 adult Chinook salmon from five geographically or genetically distinct groups (mostly returning to tributaries of the Fraser River) for 45 microparasite taxa. We detected 20 microparasite species, four of which have not previously been documented in Chinook salmon, and four of which have not been previously detected in any salmonids in the Fraser River. Comparisons of microparasite load to blood plasma variables revealed some positive associations between Flavobacterium psychrophilum, Cryptobia salmositica and Ceratonova shasta and physiological indices suggestive of morbidity. We include a comparison of our findings for each microparasite taxa with previous knowledge of its distribution in British Columbia.
Collapse
Affiliation(s)
- A L Bass
- Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - S G Hinch
- Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - A K Teffer
- Biology Department, University of Victoria, Victoria, BC, Canada
| | - D A Patterson
- Fisheries and Oceans Canada, Science Branch, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - K M Miller
- Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| |
Collapse
|
8
|
Crespo D, Assis LHC, Furmanek T, Bogerd J, Schulz RW. Expression profiling identifies Sertoli and Leydig cell genes as Fsh targets in adult zebrafish testis. Mol Cell Endocrinol 2016; 437:237-251. [PMID: 27566230 DOI: 10.1016/j.mce.2016.08.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/27/2016] [Accepted: 08/22/2016] [Indexed: 11/26/2022]
Abstract
Spermatogonial stem cells are quiescent, undergo self-renewal or differentiating divisions, thereby forming the cellular basis of spermatogenesis. This cellular development is orchestrated by follicle-stimulating hormone (FSH), through the production of Sertoli cell-derived factors, and by Leydig cell-released androgens. Here, we investigate the transcriptional events induced by Fsh in a steroid-independent manner on the restart of zebrafish (Danio rerio) spermatogenesis ex vivo, using testis from adult males where type A spermatogonia were enriched by estrogen treatment in vivo. Under these conditions, RNA sequencing preferentially detected differentially expressed genes in somatic/Sertoli cells. Fsh-stimulated spermatogonial proliferation was accompanied by modulating several signaling systems (i.e. Tgf-β, Hedgehog, Wnt and Notch pathways). In silico protein-protein interaction analysis indicated a role for Hedgehog family members potentially integrating signals from different pathways during fish spermatogenesis. Moreover, Fsh had a marked impact on metabolic genes, such as lactate and fatty acid metabolism, or on Sertoli cell barrier components. Fish Leydig cells express the Fsh receptor and one of the most robust Fsh-responsive genes was insulin-like 3 (insl3), a Leydig cell-derived growth factor. Follow-up work showed that recombinant zebrafish Insl3 mediated pro-differentiation effects of Fsh on spermatogonia in an androgen-independent manner. Our experimental approach allowed focusing on testicular somatic genes in zebrafish and showed that the activity of signaling systems known to be relevant in stem cells was modulated by Fsh, providing promising leads for future work, as exemplified by the studies on Insl3.
Collapse
Affiliation(s)
- Diego Crespo
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Luiz H C Assis
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Tomasz Furmanek
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Jan Bogerd
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway.
| |
Collapse
|
9
|
Dolan BP, Fisher KM, Colvin ME, Benda SE, Peterson JT, Kent ML, Schreck CB. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha. FISH & SHELLFISH IMMUNOLOGY 2016; 48:136-144. [PMID: 26581919 DOI: 10.1016/j.fsi.2015.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/06/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.
Collapse
Affiliation(s)
- Brian P Dolan
- Department of Biomedical Sciences, 105 Magruder Hall, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97333, USA.
| | - Kathleen M Fisher
- Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
| | - Michael E Colvin
- Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
| | - Susan E Benda
- Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
| | - James T Peterson
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA
| | - Carl B Schreck
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
10
|
Adebiyi FA, Siraj SS, Harmin SA, Christianus A. Plasma sex steroid hormonal profile and gonad histology during the annual reproductive cycle of river catfish Hemibagrus nemurus (Valenciennes, 1840) in captivity. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:547-557. [PMID: 23010937 DOI: 10.1007/s10695-012-9718-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 09/15/2012] [Indexed: 06/01/2023]
Abstract
Plasma sex steroid hormonal profile and gonad histology were correlated to study the annual reproductive cycle of Hemibagrus nemurus. Hormones were measured by Enzyme Linked Immunosorbent Assay. Gonad tissues were observed by using light microscopy. The highest testosterone (T) value for male was observed in November and that of female was in October. 11-ketotestosterone (11-KT) and 17β-estradiol (E2) levels were highest in June and November, respectively. Hormonal profiles of T, 11-KT and E2 showed several peaks which indicated a non-seasonal pattern. There were significant differences (p < 0.05) in the monthly levels of T, 11-KT and E2. Gonadosomatic index of H. nemurus ranged from 1.14 ± 0.02 % to 7.06 ± 1.40 %, and high gonadosomatic indices were recorded in May, August and November. Gonad histology revealed that spermatozoa were always present in the testes which implied continuous spermatogenesis and asynchronous ovarian development pattern was observed in the ovaries. The annual reproductive cycle of H. nemurus did not show a seasonal pattern and this indicate that H. nemurus is a non-seasonal breeder with several spawning cycles and can be referred to as indeterminate batch spawner. The major significances of this study are annual sex steroid hormonal profile and asynchronous ovarian development of H. nemurus. This information will contribute to our knowledge of reproductive biology of H. nemurus.
Collapse
Affiliation(s)
- Fatimat Adenike Adebiyi
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | | | | | | |
Collapse
|
11
|
Hoogenboom MO, Metcalfe NB, Groothuis TG, de Vries B, Costantini D. Relationship between oxidative stress and circulating testosterone and cortisol in pre-spawning female brown trout. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:379-87. [DOI: 10.1016/j.cbpa.2012.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/02/2012] [Accepted: 07/09/2012] [Indexed: 12/20/2022]
|
12
|
Chen J, Zhang Y, Tang Z, Mao J, Kuang Z, Qin C, Li W. Production of recombinant orange-spotted grouper (Epinephelus coioides) follicle-stimulating hormone (FSH) in single-chain form and dimer form by Pichia pastoris and their biological activities. Gen Comp Endocrinol 2012; 178:237-49. [PMID: 22684083 DOI: 10.1016/j.ygcen.2012.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 11/21/2022]
Abstract
FSH is a key regulator of steroidogenesis and gonadal growth in teleosts. However, function of FSH is elusive in grouper due to the lack of purified and native FSH. In the present study, we reported production of bioactive orange-spotted grouper (Epinephelus coioides) FSH in dimer form and single-chain form by Pichia pastoris. Dimer form of recombinant grouper FSH (rgFSHba) was accomplished by co-expressing mature FSHb-subunit and a-subunit genes. Fusion of mature FSHb-subunit and a-subunit genes together linking with a polypeptide (4×(Gly-Ser)-Gly-Thr) gene generated single-chain form of recombinant grouper FSH (rgFSHb-a). Recombinant grouper common α-subunit (rgCga) and FSHb-subunit (rgFSHb) were also separately produced. Recombinant proteins were verified by Western blot and mass spectrometry assays, and characterized by deglycosylation analysis. Deglycosylation assay suggested that glycosylation of recombinant FSH mainly occurred on common a-subunit. Bioactivities of recombinant proteins were initially evaluated by activating grouper FSH receptor, and further demonstrated by incubating ovarian fragments of adult grouper and intraperitoneal injection in juvenile female grouper. Two forms of recombinant FSH presented similar biological activities of activating FSH receptor and stimulating in vitro testosterone (T) and estradiol-17β (E2) secretion, though the dimer form functioned slightly weaker than the single-chain form. However, injections of rgFSHb-a or rgFSHba could significantly increase serum T and E2 levels, induce early ovarian development, reduce hypothalamic gnrh1 mRNA level, and increase hypothalamic cyp19a1b mRNA level. Data in this study suggested that recombinant gonadotropin could be produced in dimer form or single-chain form by P. pastoris, and FSH could regulate steroidogenesis and early ovarian development in juvenile grouper.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Clark TD, Donaldson MR, Pieperhoff S, Drenner SM, Lotto A, Cooke SJ, Hinch SG, Patterson DA, Farrell AP. Physiological benefits of being small in a changing world: responses of Coho salmon (Oncorhynchus kisutch) to an acute thermal challenge and a simulated capture event. PLoS One 2012; 7:e39079. [PMID: 22720035 PMCID: PMC3374769 DOI: 10.1371/journal.pone.0039079] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/16/2012] [Indexed: 11/30/2022] Open
Abstract
Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20°C at 3°C h−1) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males (‘jacks’). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7°C was size-specific, with jacks regaining resting levels of metabolism at 9.3±0.5 h post-exercise in comparison with 12.3±0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20±0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b∼1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater ‘oxygen debt’ that took longer to pay back at the size-independent peak metabolic rate of ∼6 mg min−1 kg−1. Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non-lethal fisheries interactions have the potential to select for small individuals within fish populations over time.
Collapse
Affiliation(s)
- Timothy D Clark
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Clark TD, Donaldson MR, Drenner SM, Hinch SG, Patterson DA, Hills J, Ives V, Carter JJ, Cooke SJ, Farrell AP. The efficacy of field techniques for obtaining and storing blood samples from fishes. JOURNAL OF FISH BIOLOGY 2011; 79:1322-1333. [PMID: 22026608 DOI: 10.1111/j.1095-8649.2011.03118.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Prompted by the dramatic increase in the use of blood analyses in fisheries research and monitoring, this study investigated the efficacy of common field techniques for sampling and storing blood from fishes. Three questions were addressed: (1) Do blood samples taken via rapid caudal puncture (the 'grab-and-stab' technique) yield similar results for live v. sacrificed groups of fishes? (2) Do rapidly obtained caudal blood samples accurately represent blood properties of fishes prior to capture? (3) Does storage of whole blood in an ice slurry for a working day (8·5 h) modify the properties of the plasma? It was shown that haematocrit, plasma ions, metabolites, stress hormones and sex hormones of caudal blood samples were statistically similar when taken from live v. recently sacrificed groups of adult coho salmon Oncorhynchus kisutch. Moreover, this study confirmed by using paired blood samples from cannulated O. kisutch that blood acquired through the caudal puncture technique (mean ±s.e. 142 ± 26 s after capture) was representative of fish prior to capture. Long-term (8·5 h) cold storage of sockeye salmon Oncorhynchus nerka whole blood caused significant decreases in plasma potassium and chloride, and a significant increase in plasma glucose. Previous research has suggested that these changes largely result from net movements of ions and molecules between the plasma and erythrocytes, movements that can occur within minutes of storage. Thus, blood samples from fishes should be centrifuged as quickly as practicable in the field for separation of plasma and erythrocytes to prevent potentially misleading data.
Collapse
Affiliation(s)
- T D Clark
- Department of Forest Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yamamoto Y, Adam Luckenbach J, Goetz FW, Young G, Swanson P. Disruption of the salmon reproductive endocrine axis through prolonged nutritional stress: changes in circulating hormone levels and transcripts for ovarian genes involved in steroidogenesis and apoptosis. Gen Comp Endocrinol 2011; 172:331-43. [PMID: 21447335 DOI: 10.1016/j.ygcen.2011.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/03/2011] [Accepted: 03/19/2011] [Indexed: 01/12/2023]
Abstract
Mechanisms regulating the normal progression of ovarian follicular growth versus onset of atresia in fishes are poorly understood. To gain a better understanding of these processes, we exposed immature female coho salmon (Oncorhynchus kisutch) to prolonged fasting to induce follicular atresia and monitored body growth, development of the ovarian follicles, changes in reproductive hormones, and transcripts for ovarian genes. Prolonged fasting reduced body and ovary weight and increased the appearance of atretic follicles relative to normally fed controls. Endocrine analyses showed that fasting reduced plasma insulin-like growth factor 1 (IGF1), estradiol-17β (E2), and pituitary, but not plasma, levels of follicle-stimulating hormone (FSH). Transcripts for ovarian fsh receptor (fshr) and steroidogenesis-related genes, such as steroidogenic acute regulatory protein (star), 3β-hydroxysteroid dehydrogenase (hsd3b), and P450 aromatase (cyp19a1a) were significantly lower in fasted fish. Ovarian expression of apoptosis-related genes, such as Fas-associated death domain (fadd), caspase 8 (casp8), caspase 3 (casp3), and caspase 9 (casp9) were significantly elevated in fasted fish compared to fed fish, indicating that apoptosis is involved in the process of atresia in this species. Interestingly, some genes such as fadd, casp8, casp3, and hsd3b, were differentially expressed prior to increases in the number of atretic follicles and reductions in hormone levels induced by fasting, and may therefore have potential as early indicators of atresia. Together these results suggest that prolonged nutritional stress may disrupt the reproductive system and induce follicular atresia in part via reductions in ovarian IGF and FSH signaling, and downstream effects on steroidogenesis-related genes and E2 production.
Collapse
Affiliation(s)
- Yoji Yamamoto
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
16
|
Choi S, Lee CH, Park W, Kim DJ, Sohn YC. Effects of shortened photoperiod on gonadotropin-releasing hormone, gonadotropin, and vitellogenin gene expression associated with ovarian maturation in rainbow trout. Zoolog Sci 2010; 27:24-32. [PMID: 20064005 DOI: 10.2108/zsj.27.24] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reproductive activities of salmonids are synchronized by changes in photoperiod, which control the endocrine system via the brain-pituitary-gonadal axis. Gonadotropin-releasing hormone (GnRH) in the brain regulates synthesis and release of the pituitary gonadotropins (GTHs; FSH and LH). FSH and LH in turn stimulate the production of sex steroids for oocyte growth and maturation-Inducing steroid hormones for oocyte maturation and ovulation, respectively, in female salmonids. To clarify effects of long-term photoperiod manipulations on the reproductive activity of salmonids from early recrudescence to ovulation, we Investigated the gene expression profiles of GnRH, GTHs, and vitellogenin (VTG), and plasma sex steroids in female rainbow trout (Oncorhynchus mykiss). In addition, the percentages of eyed embryos and hatched alevins were examined together with the number of ovulated eggs to evaluate the effects of photoperiod regimes on egg quality. During late summer, the mRNA levels of GnRHs, GTHalpha, and LHbeta, and the plasma level of a maturational steroid (17alpha,20beta-dihydroxy-4-pregnen-3-one; 17,20beta-P) were significantly elevated by a gradually shortened photoperiod under constant temperature, in accordance with accelerated sexual maturation. The percentages of eyed embryos and hatched alevins from fish ovulated in August were comparable to those of control fish observed in December. These results clearly indicate that syntheses of GnRHs, LH, VTG, and 17,20beta-P are effectively accelerated by a programmed long-short photoperiod regime in early recrudescent female rainbow trout, without a marked deterioration in egg quality.
Collapse
Affiliation(s)
- Sungchang Choi
- Department of Marine Molecular Biotechnology, Faculty of Marine Bioscience and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | | | | | | | | |
Collapse
|
17
|
Mylonas CC, Fostier A, Zanuy S. Broodstock management and hormonal manipulations of fish reproduction. Gen Comp Endocrinol 2010; 165:516-34. [PMID: 19318108 DOI: 10.1016/j.ygcen.2009.03.007] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 03/12/2009] [Accepted: 03/16/2009] [Indexed: 11/17/2022]
Abstract
Control of reproductive function in captivity is essential for the sustainability of commercial aquaculture production, and in many fishes it can be achieved by manipulating photoperiod, water temperature or spawning substrate. The fish reproductive cycle is separated in the growth (gametogenesis) and maturation phase (oocyte maturation and spermiation), both controlled by the reproductive hormones of the brain, pituitary and gonad. Although the growth phase of reproductive development is concluded in captivity in most fishes-the major exemption being the freshwater eel (Anguilla spp.), oocyte maturation (OM) and ovulation in females, and spermiation in males may require exogenous hormonal therapies. In some fishes, these hormonal manipulations are used only as a management tool to enhance the efficiency of egg production and facilitate hatchery operations, but in others exogenous hormones are the only way to produce fertilized eggs reliably. Hormonal manipulations of reproductive function in cultured fishes have focused on the use of either exogenous luteinizing hormone (LH) preparations that act directly at the level of the gonad, or synthetic agonists of gonadotropin-releasing hormone (GnRHa) that act at the level of the pituitary to induce release of the endogenous LH stores, which, in turn act at the level of the gonad to induce steroidogenesis and the process of OM and spermiation. After hormonal induction of maturation, broodstock should spawn spontaneously in their rearing enclosures, however, the natural breeding behavior followed by spontaneous spawning may be lost in aquaculture conditions. Therefore, for many species it is also necessary to employ artificial gamete collection and fertilization. Finally, a common question in regards to hormonal therapies is their effect on gamete quality, compared to naturally maturing or spawning broodfish. The main factors that may have significant consequences on gamete quality-mainly on eggs-and should be considered when choosing a spawning induction procedure include (a) the developmental stage of the gonads at the time the hormonal therapy is applied, (b) the type of hormonal therapy, (c) the possible stress induced by the manipulation necessary for the hormone administration and (d) in the case of artificial insemination, the latency period between hormonal stimulation and stripping for in vitro fertilization.
Collapse
Affiliation(s)
- Constantinos C Mylonas
- Institute of Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece.
| | | | | |
Collapse
|
18
|
Gohin M, Bobe J, Chesnel F. Comparative transcriptomic analysis of follicle-enclosed oocyte maturational and developmental competence acquisition in two non-mammalian vertebrates. BMC Genomics 2010; 11:18. [PMID: 20059772 PMCID: PMC2821372 DOI: 10.1186/1471-2164-11-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 01/08/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In vertebrates, late oogenesis is a key period during which the oocyte acquires its ability to resume meiosis (i.e. maturational competence) and to develop, once fertilized, into a normal embryo (i.e. developmental competence). However, the molecular mechanisms involved in these key biological processes are far from being fully understood. In order to identify key mechanisms conserved among teleosts and amphibians, we performed a comparative analysis using ovarian tissue sampled at successive steps of the maturational competence acquisition process in the rainbow trout (Oncorhynchus mykiss) and in the clawed toad (Xenopus laevis). Our study aimed at identifying common differentially expressed genes during late oogenesis in both species. Using an existing transcriptomic analysis that had previously been carried out in rainbow trout, candidate genes were selected for subsequent quantitative PCR-based comparative analysis. RESULTS Among the 1200 differentially expressed clones in rainbow trout, twenty-six candidate genes were selected for further analysis by real-time PCR in both species during late oogenesis. Among these genes, eight had similar expression profiles in trout and Xenopus. Six genes were down-regulated during oocyte maturation (cyp19a1, cyp17a1, tescalcin, tfr1, cmah, hsd11b3) while two genes exhibited an opposite pattern (apoc1, star). In order to document possibly conserved molecular mechanisms, four genes (star, cyp19a1, cyp17a1 and hsd11b3) were further studied due to their known or suspected role in steroidogenesis after characterization of the orthology relationships between rainbow trout and Xenopus genes. Apoc1 was also selected for further analysis because of its reported function in cholesterol transport, which may modulate steroidogenesis by regulating cholesterol bioavailability in the steroidogenic cells. CONCLUSIONS We have successfully identified orthologous genes exhibiting conserved expression profiles in the ovarian follicle during late oogenesis in both trout and Xenopus. While some identified genes were previously uncharacterized during Xenopus late oogenesis, the nature of these genes has pointed out molecular mechanisms possibly conserved in amphibians and teleosts. It should also be stressed that in addition to the already suspected importance of steroidogenesis in maturational competence acquisition, our approach has shed light on other regulatory pathways which may be involved in maturational and developmental competence acquisitions that will require further studies.
Collapse
Affiliation(s)
- Maella Gohin
- CNRS/IGDR (UMR 6061), IFR140 GFAS, Université de Rennes I, 2, Avenue du Pr, Léon Bernard, 35043 Rennes Cedex, France.
| | | | | |
Collapse
|
19
|
Mesa MG, Bayer JM, Bryan MB, Sower SA. Annual sex steroid and other physiological profiles of Pacific lampreys (Entosphenus tridentatus). Comp Biochem Physiol A Mol Integr Physiol 2009; 155:56-63. [PMID: 19782759 DOI: 10.1016/j.cbpa.2009.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/31/2009] [Accepted: 09/19/2009] [Indexed: 11/30/2022]
Abstract
We documented changes in plasma levels of estradiol 17-beta (E2), progesterone (P), 15alpha-hydroxytestosterone (15alpha-T), thyroxine (T4), triiodothyronine (T3), protein, triglycerides (TGs), and glucose in adult Pacific lampreys (Entosphenus tridentatus) held in the laboratory in two different years. Levels of E2 in both sexes ranged from 0.5 to 2 ng/mL from September to March, peaked in late April (2-4 ng/mL), and decreased in May, with levels higher in males than in females. Levels of P were low from September through April, but then increased substantially during May (2-4 ng/mL), with levels again highest in males. Levels of 15alpha-T in males were around 0.75 ng/mL through the winter before exceeding 1 ng/mL in April and decreasing thereafter, whereas females showed a gradual increase from 0.25 ng/mL in November to 0.5 ng/mL in April before decreasing. Thyroxine concentrations differed between fish in each year, with most having levels ranging from 0.75 to 2.5 ng/mL in the fall and winter, and only fish in 2003 showing distinct peaks (3-4 ng/mL) in early April or May. Plasma T3 was undetectable from November through mid-March before surging dramatically in April (ca. 150 ng/mL) and decreasing thereafter. Levels of protein, TGs, and glucose decreased or were stable during the fall and winter with TGs and glucose surging in late April to early May for some fish. Our study is the first to document long-term physiological changes in Pacific lampreys during overwintering and sexual maturation and increases our understanding of the life history of this unique fish.
Collapse
Affiliation(s)
- Matthew G Mesa
- US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, 5501 Cook-Underwood Road, Cook, Washington 98605, USA.
| | | | | | | |
Collapse
|
20
|
Gillet C, Breton B. LH secretion and ovulation following exposure of Arctic charr to different temperature and photoperiod regimes: responsiveness of females to a gonadotropin-releasing hormone analogue and a dopamine antagonist. Gen Comp Endocrinol 2009; 162:210-8. [PMID: 19303415 DOI: 10.1016/j.ygcen.2009.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/05/2009] [Accepted: 03/07/2009] [Indexed: 11/18/2022]
Abstract
The timing of ovulation and LH plasma levels were investigated in Arctic charr reared at 5 degrees C and 10 degrees C, exposed to the ambient photoperiod, or short or long-day photoperiod regimes during the prespawning period. The effectiveness of sGnRHa alone, or sGnRHa combined with a dopamine antagonist, in stimulating LH secretion and inducing ovulation was also investigated. With the natural photoperiod, ovulation occurred spontaneously at 5 degrees C, but was inhibited at 10 degrees C. A transition from 10 to 5 degrees C soon resulted in suppression of the inhibition. At 5 degrees C, the effectiveness of sGnRHa was similar to that of sGnRHa combined with pimozide in stimulating LH secretion and inducing ovulation. At 10 degrees C, sGnRHa+pimozide was more effective that sGnRHa alone in stimulating LH secretion and inducing a high rate of ovulation, suggesting that dopamine-induced inhibition of LH secretion could occur naturally in Arctic charr at 10 degrees C. Exposure of Arctic charr to a long day (LD) photoperiod regime in fall and winter did not completely inhibit ovulation, but markedly delayed it and prolonged the ensuing ovulation period. The LD photoperiod also reduced LH plasma levels in females while they were ovulating, but did not modify the responsiveness of the pituitary to GnRHa stimulation compared to a control group exposed to a short-day (SD) photoperiod. There was an interval of several weeks after a transition from LD to SD before LH secretion and ovulation were stimulated.
Collapse
|
21
|
Cao H, Zhou L, Zhang YZ, Wei QW, Chen XH, Gui JF. Molecular characterization of Chinese sturgeon gonadotropins and cellular distribution in pituitaries of mature and immature individuals. Mol Cell Endocrinol 2009; 303:34-42. [PMID: 19428989 DOI: 10.1016/j.mce.2009.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 01/18/2009] [Accepted: 01/19/2009] [Indexed: 11/20/2022]
Abstract
Chinese sturgeon (Acipenser sinensis) is a rare and endangered species, and also an important resource for the sturgeon aquaculture industry. To understand molecular characterization of Chinese sturgeon gonadotropins (GTHs), we cloned the full-length cDNAs of gonadotropin subunits common alpha (GTH-alpha), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from a pituitary cDNA library of mature female. Two subtypes of GTH-alpha were identified. The nucleotide sequences of A. sinensis common alpha I (AsGTH-alpha I), common alpha II (AsGTH-alpha II), FSHbeta (AsFSHbeta) and LHbeta (AsLHbeta) subunit cDNAs are 345, 363, 387 and 414bp in length, and encode mature peptides of 115, 121, 129 and 138aa, respectively. Then, three polyclonal antibodies were prepared from the in vitro expressed AsGTH-alpha I, AsFSHbeta and AsLHbeta mature proteins, respectively. Significant expression differences were revealed between immature and mature sturgeon pituitaries. Western blot detection and immunofluoresence localization revealed the existence of three-gonadotropin subunits (AsGTH-alpha, AsFSHbeta and AsLHbeta) in mature sturgeon pituitaries, but only AsFSHbeta was detected in immature individual pituitaries during early stages in the sturgeon life, and obvious difference was observed between males and females. In males, AsFSHbeta was expressed in 4-year-old individuals, whereas in females, AsFSHbeta was just expressed in 5-year-old individuals.
Collapse
Affiliation(s)
- Hong Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | |
Collapse
|
22
|
Kortner TM, Rocha E, Arukwe A. Androgenic modulation of early growth of Atlantic cod (Gadus morhua L.) previtellogenic oocytes and zona radiata-related genes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:184-195. [PMID: 19184733 DOI: 10.1080/15287390802539020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Available evidence suggests that androgens play critical roles in early oocyte growth and development in fish. However, the molecular mechanisms underlying this important aspect of reproductive endocrinology have not yet been established. In this study the effects of androgens (11-ketotestosterone [11-KT] and testosterone [T]) were determined on gene expression patterns and growth of cod previtellogenic oocytes, using an in vitro oocyte culture technique. Previtellogenic ovarian tissue was cultured for 5 and 10 d at different concentrations of 11-KT and T (0, 1, or 1000 microM) dissolved in ethanol (0.3%). The androgen concentrations were selected as they represent physiological and supra-physiological concentrations, respectively. Quantitative polymerase chain reaction (PCR) demonstrated increased mRNA expression for five genes recently identified as androgen responsive in our subtracted cDNA library in previtellogenic cod ovary exposed in vitro to androgens. Quantitative histological analyses showed a consistent stereological validation of oocyte growth and development after exposure to androgens. In general, both 11-KT and T induced previtellogenic oocyte growth and development, and these effects were more pronounced with 11-KT exposure. Taken together, our study reveals some novel roles of androgens on the development of previtellogenic oocytes, indicating control of early follicular and oocyte growth in cod ovary. The potent effects of 11-KT on oocyte growth support our earlier hypothesis that non-aromatizable androgens play significant roles in regulating early oocyte growth with potential consequences for the fecundity process. Therefore, these novel roles of androgens as promoters of ovarian growth and development presented in this study may be useful for the aquaculture industry and for breeding of new captive and endangered species. From a toxicological point of view, the cod is a marine species and exposure to complex chemical mixtures that may exert androgenic and/or anti-androgenic effects represents an environmental issue of reasonable concern in the marine environment. Therefore, the findings in the present study represent a novel basis that can be used to determine the effects of xenoandrogens on oocyte development and fecundity in this important marine species.
Collapse
Affiliation(s)
- Trond M Kortner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | |
Collapse
|
23
|
Kortner TM, Rocha E, Silva P, Castro LFC, Arukwe A. Genomic approach in evaluating the role of androgens on the growth of Atlantic cod (Gadus morhua) previtellogenic oocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:205-18. [DOI: 10.1016/j.cbd.2008.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 11/27/2022]
|
24
|
Sébert ME, Legros C, Weltzien FA, Malpaux B, Chemineau P, Dufour S. Melatonin activates brain dopaminergic systems in the eel with an inhibitory impact on reproductive function. J Neuroendocrinol 2008; 20:917-29. [PMID: 18445127 DOI: 10.1111/j.1365-2826.2008.01744.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the eel, a deficit in gonadotrophin-releasing hormone (GnRH) and a strong dopaminergic (DA) inhibition are responsible for the blockade of gonad development if silver eels are prevented from their reproductive migration. Environmental factors that eels encounter during their oceanic reproductive migration are thought to play an important role in the stimulation of eel pubertal development. We investigated the potential role of melatonin, a known mediator of the effects of external factors on reproductive function in vertebrates. We demonstrated that a long-term melatonin treatment increased brain tyrosine hydroxylase (TH, the rate limiting enzyme of DA synthesis) mRNA expression in a region-dependent way. Melatonin stimulated the dopaminergic system of the preoptic area, which is involved in the inhibitory control of gonadotrophin [luteinising hormone (LH) and follicle-stimulating hormone (FSH)] synthesis and release. Moreover, we showed that the increased TH expression appeared to be consistent with melatonin binding site distribution as shown by 2[(125)I]-melatonin labelling studies. On the other hand, melatonin had no effects on the two eel native forms of GnRH (mGnRH and cGnRH-II) mRNA expression. Concerning the pituitary-gonad axis, we showed that melatonin treatment decreased both gonadotrophin beta-subunit (LHbeta, FSHbeta) mRNA expression and reduced sexual steroid (11-ketotestosterone, oestradiol) plasma levels. This indicates that melatonin treatment had a negative effect on eel reproductive function. To our knowledge, the results of the present study provide the first evidence that melatonin enhances TH expression in specific brain regions in a non-mammalian species. By this mechanism melatonin could represent one pathway by which environmental factors could modulate reproductive function in the eel.
Collapse
Affiliation(s)
- M-E Sébert
- USM 0401, UMR 5178 CNRS/MNHN/UPMC Biologie des Organismes Marins et Ecosystèmes, Département des Milieux et Peuplements Aquatiques, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Cheshenko K, Pakdel F, Segner H, Kah O, Eggen RIL. Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. Gen Comp Endocrinol 2008; 155:31-62. [PMID: 17459383 DOI: 10.1016/j.ygcen.2007.03.005] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/05/2007] [Accepted: 03/09/2007] [Indexed: 11/28/2022]
Abstract
Many natural and synthetic compounds present in the environment exert a number of adverse effects on the exposed organisms, leading to endocrine disruption, for which they were termed endocrine disrupting chemicals (EDCs). A decrease in reproduction success is one of the most well-documented signs of endocrine disruption in fish. Estrogens are steroid hormones involved in the control of important reproduction-related processes, including sexual differentiation, maturation and a variety of others. Careful spatial and temporal balance of estrogens in the body is crucial for proper functioning. At the final step of estrogen biosynthesis, cytochrome P450 aromatase, encoded by the cyp19 gene, converts androgens into estrogens. Modulation of aromatase CYP19 expression and function can dramatically alter the rate of estrogen production, disturbing the local and systemic levels of estrogens. In the present review, the current progress in CYP19 characterization in teleost fish is summarized and the potential of several classes of EDCs to interfere with CYP19 expression and activity is discussed. Two cyp19 genes are present in most teleosts, cyp19a and cyp19b, primarily expressed in the ovary and brain, respectively. Both aromatase CYP19 isoforms are involved in the sexual differentiation and regulation of the reproductive cycle and male reproductive behavior in diverse teleost species. Alteration of aromatase CYP19 expression and/or activity, be it upregulation or downregulation, may lead to diverse disturbances of the above mentioned processes. Prediction of multiple transcriptional regulatory elements in the promoters of teleost cyp19 genes suggests the possibility for several EDC classes to affect cyp19 expression on the transcriptional level. These sites include cAMP responsive elements, a steroidogenic factor 1/adrenal 4 binding protein site, an estrogen-responsive element (ERE), half-EREs, dioxin-responsive elements, and elements related to diverse other nuclear receptors (peroxisome proliferator activated receptor, retinoid X receptor, retinoic acid receptor). Certain compounds including phytoestrogens, xenoestrogens, fungicides and organotins may modulate aromatase CYP19 activity on the post-transcriptional level. As is shown in this review, diverse EDCs may affect the expression and/or activity of aromatase cyp19 genes through a variety of mechanisms, many of which need further characterization in order to improve the prediction of risks posed by a contaminated environment to teleost fish population.
Collapse
Affiliation(s)
- Ksenia Cheshenko
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, Postfach 611, CH 8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Sébert ME, Amérand A, Vettier A, Weltzien FA, Pasqualini C, Sébert P, Dufour S. Effects of high hydrostatic pressure on the pituitary-gonad axis in the European eel, Anguilla anguilla (L.). Gen Comp Endocrinol 2007; 153:289-98. [PMID: 17324430 DOI: 10.1016/j.ygcen.2007.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 01/04/2007] [Accepted: 01/19/2007] [Indexed: 11/16/2022]
Abstract
European silver eels are thought to undergo sexual maturation during their oceanic reproductive migration from the European continent to their spawning area in the Sargasso Sea. Tracking data and various anatomical and physiological features suggest that silver eels migrate in deep sea, leading us to hypothesise that high hydrostatic pressure (HP) influences the induction of eel reproduction. We subjected female and male silver eels to 101ATA for 3 and 7 weeks, respectively, in a hyperbaric chamber equipped with a freshwater recirculation system. In comparison with control eels kept at 1 ATA, HP effects were tested against the messenger RNA levels of pituitary gonadotropins (LHbeta, FSHbeta) using quantitative real-time RT-PCR. The effects of HP on gonadal activity were estimated by measuring gonadosomatic index, oocyte diameter and plasma levels of vitellogenin (Vtg) and sex steroids (E(2), 11-KT). At the pituitary level, LHbeta expression tended to increase while FSHbeta expression decreased in both sex, leading to an increase in the LHbeta/FSHbeta ratio. This suggests a differential effect of HP on the expression of the two gonadotropins. In females submitted to HP, we observed a significant increase in oocyte diameter and plasma levels of 11-KT and E(2). A similar trend was observed for 11-KT plasma levels in males. In females, Vtg plasma levels also significantly increased, reflecting the stimulatory effect of sex steroids on hepatic vitellogenesis. Our results suggest that HP plays a specific and positive role in eel reproduction but additional environmental and internal factors are necessary to ensure complete sexual maturation.
Collapse
Affiliation(s)
- Marie-Emilie Sébert
- USM 0401, UMR 5178 CNRS/MNHN/UPMC Biologie des Organismes Marins et Ecosystèmes, Département des Milieux et Peuplements Aquatiques, Muséum National d'Histoire Naturelle, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Cui M, Li W, Liu W, Yang K, Pang Y, Haoran L. Production of recombinant orange-spotted grouper (Epinephelus coioides) luteinizing hormone in insect cells by the baculovirus expression system and its biological effect. Biol Reprod 2006; 76:74-84. [PMID: 17021348 DOI: 10.1095/biolreprod.105.050484] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The cDNA sequence encoding orange-spotted grouper lhb (LHbeta) and cga (GTHalpha) subunits were cocloned into baculovirus transfer vectors and expressed in insect Sf9 cells. The results showed that two bands of 15.6 kDa and 11.4 kDa could be detected by SDS-PAGE and a band of 30 kDa could be detected by native PAGE. The recombinant grouper Lh (rgLh) could stimulate the secretion of testosterone (T) and estradiol-17beta (E2) from the gonad in a static incubation system in a time-dependent, but not a dose-dependent, manner. Using in vivo bioassay, the mRNA levels of two aromatases (cyp19a1a [P450aromA] and cyp19a1b [P450aromB]), gnrh (GnRH), lhb, and cga in the pituitary, gonad, and hypothalamus were determined in different groups of orange-spotted groupers treated respectively with rgLh, human chorionic gonadotropin (hCG), and a culture medium of insect cells transformed with an expression vector without lhb and cga subunits. The mRNA levels of cyp19a1a and cyp19a1b rose dramatically after injecting rgLh intraperitoneally, which was consistent with the secretion of sex steroid hormones. Interestingly, the mRNA levels of gnrh dropped in the pituitary, hypothalamus, and gonad, and the mRNA levels of lhb and cga in the pituitary of the experimental group expressed at a higher level than that of the hCG group. These results are in accord with the long positive feedback loop of Lh on gonad sex steroid hormones and the short negative feedback loop of Lh on gnrh mRNA levels. These results indicate that the rgLh is successfully expressed by the baculovirus-insect expression system and that the rgLh has biological activity.
Collapse
Affiliation(s)
- Miao Cui
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Campbell B, Dickey J, Beckman B, Young G, Pierce A, Fukada H, Swanson P. Previtellogenic oocyte growth in salmon: relationships among body growth, plasma insulin-like growth factor-1, estradiol-17beta, follicle-stimulating hormone and expression of ovarian genes for insulin-like growth factors, steroidogenic-acute regulatory protein and receptors for gonadotropins, growth hormone, and somatolactin. Biol Reprod 2006; 75:34-44. [PMID: 16554413 DOI: 10.1095/biolreprod.105.049494] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Body growth during critical periods is known to be an important factor in determining the age of maturity and fecundity in fish. However, the endocrine mechanisms controlling oogenesis in fish and the effects of growth on this process are poorly understood. In this study interactions between the growth and reproductive systems were examined by monitoring changes in various components of the FSH-ovary axis, plasma insulin-like growth factor 1 (Igf1), and ovarian gene expression in relation to body and previtellogenic oocyte growth in coho salmon. Samples were collected from females during two hypothesized critical periods when growth influences maturation in this species. Body growth during the fall-spring months was strongly related to the degree of oocyte development, with larger fish possessing more advanced oocytes than smaller, slower growing fish. The accumulation of cortical alveoli in the oocytes was associated with increases in plasma and pituitary FSH, plasma estradiol-17beta, and ovarian steroidogenic acute regulatory protein (star) gene expression, whereas ovarian transcripts for growth hormone receptor and somatolactin receptor decreased. As oocytes accumulated lipid droplets, a general increase occurred in plasma Igf1 and components of the FSH-ovary axis, including plasma FSH, estradiol-17beta, and ovarian mRNAs for gonadotropin receptors, star, igf1, and igf2. A consistent positive relationship between plasma Igf1, estradiol-17beta, and pituitary FSH during growth in the spring suggests that these factors are important links in the mechanism by which body growth influences the rate of oocyte development.
Collapse
Affiliation(s)
- B Campbell
- School of Aquatic and Fishery Sciences, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ando H, Urano A. Molecular regulation of gonadotropin secretion by gonadotropin-releasing hormone in salmonid fishes. Zoolog Sci 2005; 22:379-89. [PMID: 15846047 DOI: 10.2108/zsj.22.379] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a central role in the control of reproductive function in vertebrates. In salmonids, salmon GnRH (sGnRH) secreted by preoptic GnRH neurons regulates gonadal maturation through stimulation of synthesis and release of pituitary gonadotropins (GTHs). In addition, several lines of our evidence indicate that sGnRH is involved in spawning behavior, and serves to integrate the gonadal maturation with the reproductive behavior. A growing number of studies show that the effects of GnRH are mediated by multiple subtypes of GnRH receptors, successive multiple signaling pathways, and finally multiple transcription factors which act cooperatively to stimulate transcription of GTH subunit genes. This complex regulatory system of the action of GnRH may serve as a molecular basis of divergent physiological strategies of reproductive success in various vertebrate species. In this article, recent data on the molecular mechanisms of action of GnRH are reviewed with special reference to the regulation of synthesis and release of GTHs in the pituitary of salmonids to elucidate the multifunctional action of GnRH.
Collapse
Affiliation(s)
- Hironori Ando
- Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University.
| | | |
Collapse
|
30
|
Alam MA, Komuro H, Bhandari RK, Nakamura S, Soyano K, Nakamura M. Immunohistochemical evidence identifying the site of androgen production in the ovary of the protogynous grouper Epinephelus merra. Cell Tissue Res 2005; 320:323-9. [PMID: 15778855 DOI: 10.1007/s00441-004-1037-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 10/29/2004] [Indexed: 11/26/2022]
Abstract
Androgen plays an important role in the developing ovaries of female fish. However, little is known regarding either the sites of production of androgen or its functional roles. In the present study, we investigated immunohistochemically the localization of cholesterol-side-chain-cleavage (P450scc) and cytochrome P45011beta-hydroxylase (P45011beta) with antibodies P450scc and P45011beta in the ovary of the female honeycomb grouper Epinephelus merra during its reproductive cycle. Clusters of strongly immunopositive cells, with 100-1000 cells in each cluster, against both P450scc and P45011beta, were observed throughout the annual reproductive cycle in tissue near blood vessels in the tunica ovary surrounding the outer periphery of the ovary. The ultrastructural characteristics of these cells showed that they were steroid-producing cells. In contrast, immunopositive cells against P450scc but not against P45011beta were localized in the theca layer surrounding the outer periphery of oocytes. These results suggest that two distinct steroid biosynthesis sites exist in the ovary and that cells at the two sites differ functionally. The only cells that biosynthesize 11-ketotestosterone are found in clusters in the vicinity of blood vessels; they possibly play a physiological role in oocyte growth and gonadal restructuring during the sex change of individuals of this species.
Collapse
Affiliation(s)
- Mohammad Ashraful Alam
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Yueh WS, Thomas P, Chang CF. Identification of 17,20beta,21-trihydroxy-4-pregnen-3-one as an oocyte maturation-inducing steroid in black porgy, Acanthopagrus schlegeli. Gen Comp Endocrinol 2005; 140:184-91. [PMID: 15639146 DOI: 10.1016/j.ygcen.2004.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 09/20/2004] [Accepted: 10/21/2004] [Indexed: 11/17/2022]
Abstract
The identity of the maturation-inducing steroid (MIS) in black porgy, Acanthopagrus schlegeli, a marine protandrous teleost, is unknown. Previous studies demonstrated that two teleost MISs, the progestins 17,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S) and 17,20beta-dihydroxy-4-pregnen-3-one (DHP) can induce maturation of black porgy oocytes in vitro. The purpose of the present study was to identify the major progestin produced during oocyte maturation (OM) in black porgy and investigate whether its secretion increases during this process. Females were injected twice with a LHRH analog to induce OM. Ovarian follicles undergoing OM were incubated in vitro with tritiated [3H]pregnenolone precursor and the tritiated products were extracted, purified, and identified by HPLC, TLC, acetylation, and recrystallization. Significant amounts of tritiated products were biosynthesized from [3H]pregnenolone that co-migrated with 20beta-S but not with DHP on HPLC and TLC. Similar TLC profiles were obtained with the tritiated products isolated from the HPLC/TLC 20beta-S fraction and standard 20beta-S after the acetylation reaction. The identity of the tritiated products as 20beta-S was confirmed by recrystallization. 20beta-S had a slightly higher potency than DHP in the inducing in vitro final oocyte maturation. Plasma 20beta-S concentrations increased significantly during the oocyte maturation after injection with a LHRH analog. The present data suggest that 20beta-S is the MIS in black porgy.
Collapse
Affiliation(s)
- Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan.
| | | | | |
Collapse
|
32
|
Meiri I, Knibb WR, Zohar Y, Elizur A. Temporal profile of beta follicle-stimulating hormone, beta luteinizing hormone, and growth hormone gene expression in the protandrous hermaphrodite, gilthead seabream, Sparus aurata. Gen Comp Endocrinol 2004; 137:288-99. [PMID: 15201067 DOI: 10.1016/j.ygcen.2004.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 04/06/2004] [Accepted: 04/08/2004] [Indexed: 10/26/2022]
Abstract
The temporal profile of betaFSH, betaLH, and growth hormone (GH) gene expression was measured throughout the periods of gonadal development, spawning, and post-spawning in the protandrous hermaphrodite gilthead seabream (sb), Sparus aurata (L.). Sampling was carried out monthly, covering a 8-31 month fish age. Pituitary RNA was extracted individually. The levels of betaFSH, betaLH, and GH mRNA were measured by dot blot hybridization using sb betaFSH, betaLH, and GH cDNA as probes and analyzed by computing densitometer (values standardized using individuals' beta-actin pituitary mRNA levels). All three genes, betaFSH, betaLH, and GH were expressed throughout the year, with seasonal variations. However, transcript levels of betaLH were consistently higher than those of betaFSH. During the spawning season (which lasts for about 4 months), the mRNA levels of both betaFSH and betaLH subunits increased dramatically. betaFSH peaked at the start of the spawning season for both males and females, and was significantly higher in males. As for betaLH transcripts, a statistical interaction between sex and date was observed. No significant differences between males and females were found for GH. The pattern of GH expression levels was found to be correlated to that of betaLH.
Collapse
Affiliation(s)
- Iris Meiri
- Israel Oceanographic and Limnological Research, National Center for Mariculture, P.O. Box 1212, Eilat, 88112, Israel.
| | | | | | | |
Collapse
|
33
|
Montserrat N, González A, Méndez E, Piferrer F, Planas JV. Effects of follicle stimulating hormone on estradiol-17 beta production and P-450 aromatase (CYP19) activity and mRNA expression in brown trout vitellogenic ovarian follicles in vitro. Gen Comp Endocrinol 2004; 137:123-31. [PMID: 15158124 DOI: 10.1016/j.ygcen.2004.02.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/23/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
In order to determine whether follicle stimulating hormone (FSH) regulates P-450 aromatase (P-450 arom) in salmonid fish, we investigated the in vitro effects of FSH on estradiol (E(2)) production and P-450 arom activity and expression in brown trout (Salmo trutta) vitellogenic ovarian follicles. Brown trout ovarian follicles were incubated in the presence of coho salmon FSH and the production of E(2) into the medium was measured by RIA, the activity of P-450 arom by the tritiated water release assay and the expression of P-450 arom by Northern blotting using a homologous cDNA probe obtained by RT-PCR. Results from this study indicate that the dose- and time-dependent stimulatory effects of FSH on E(2) production are dependent on new RNA and protein synthesis. The basal and FSH-stimulated E(2) production was completely blocked by fadrozole, a specific aromatase inhibitor. FSH was capable of stimulating P-450 arom activity but this stimulation was only detectable with short incubation times (30 min) since longer incubation times with FSH resulted in the inhibition of P-450 arom activity. In addition, FSH increased the steady-state P-450 arom mRNA levels. In conclusion, our results indicate, for the first time in teleost fish, that FSH stimulates the expression of P-450 arom, as well as its activity, albeit after a short-term treatment with FSH, and that FSH plays a fundamental role in the regulation of the production of E(2) in the salmonid ovary.
Collapse
Affiliation(s)
- Núria Montserrat
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
34
|
Ando H, Swanson P, Kitani T, Koide N, Okada H, Ueda H, Urano A. Synergistic effects of salmon gonadotropin-releasing hormone and estradiol-17beta on gonadotropin subunit gene expression and release in masu salmon pituitary cells in vitro. Gen Comp Endocrinol 2004; 137:109-21. [PMID: 15094341 DOI: 10.1016/j.ygcen.2004.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 02/04/2004] [Accepted: 02/25/2004] [Indexed: 11/23/2022]
Abstract
Effects of salmon gonadotropin-releasing hormone (sGnRH) and estradiol-17beta (E2) on gene expression and release of gonadotropins (GTHs) were examined in masu salmon (Oncorhynchus masou) using primary pituitary cell cultures at three reproductive stages, initiation of sexual maturation in May, pre-spawning in July, and spawning in September. Amounts of GTH subunit mRNAs were determined by real-time polymerase chain reaction, and levels of GTH released in the medium were determined by RIA. In control cells, the amounts of three GTH subunit mRNAs (alpha2, FSHbeta, and LHbeta) peaked in July prior to spawning. FSH release spontaneously increased with gonadal maturation and peaked in September, whereas LH release remained low until July and extensively increased in September. Addition of E2 to the culture extensively increased the amounts of LHbeta mRNA in May and July in both sexes. It also increased the alpha2 mRNA in July in the females. In contrast, sGnRH alone did not have any significant effects on the amounts of three GTH subunit mRNAs at all stages, except for the elevation of alpha2 and FSHbeta mRNAs in July in the females. Nevertheless, synergistic effects by sGnRH and E2 were evident for all three GTH subunit mRNAs. In May, sGnRH in combination with E2 synergistically increased the amounts of LHbeta mRNA in the males and alpha2 mRNA in the females. However, in July the combination suppressed the amounts of alpha2 and FSHbeta mRNAs in the females. sGnRH alone stimulated LH release at all stages in both sexes, and the release was synergistically enhanced by E2. Synergistic stimulation of FSH release was also observed in May and July in both sexes. These results indicate that a functional interaction of sGnRH with E2 is differently involved in synthesis and release of GTH. The synergistic interaction modulates GTH synthesis differentially, depending on subunit, stage, and gender, whereas it potentiates the activity of GnRH to release GTH in any situation.
Collapse
Affiliation(s)
- Hironori Ando
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Mateos J, Mañanós E, Martínez-Rodríguez G, Carrillo M, Querat B, Zanuy S. Molecular characterization of sea bass gonadotropin subunits (alpha, FSHbeta, and LHbeta) and their expression during the reproductive cycle. Gen Comp Endocrinol 2003; 133:216-32. [PMID: 12928011 DOI: 10.1016/s0016-6480(03)00164-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Reproduction is controlled by two pituitary gonadotropin hormones, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). This study reports the cloning, sequence analysis, and gene expression of gonadotropin (GTH) subunits from the European sea bass (Dicentrarchus labrax). The GTH subunits were cloned from a sea bass brain-pituitary cDNA library. The nucleotide sequences of the common alpha, the FSHbeta, and the LHbeta subunit cDNAs were 625, 521, and 591 base pair (bp) long, respectively, encoding for mature peptides of 94, 105, and 115 amino acids (aa), respectively. Sequence analysis showed that sea bass FSHbeta is more similar to higher vertebrate FSHbeta's (35-37%) than to LHbeta's (26-30%), whereas sea bass LHbeta is more similar to LHbeta's (40-53%) than to FSHbeta's (26-41%). Phylogenetic analysis of fish GTH sequences grouped the beta subunits into two groups, FSH and LH, distributed into four classes, corresponding to the accepted divisions of Elopomorphs, Ostariophysis, Salmonids, and Percomorphs. A dot-blot technique was developed to analyze GTH pituitary mRNA levels during the reproductive cycle of male sea bass. From October (initiation of gametogenesis) to February (spermiation), the expression of all three subunits in the pituitary increased in parallel, concomitantly with the gonadosomatic index (GSI) and the accumulation of LH protein in the pituitary, all values declining sharply at post-spermiation. This study demonstrates that the pituitary of sea bass contains two gonadotropin hormones and that both gonadotropins are probably involved in the control of gametogenesis, gamete maturation, and spermiation.
Collapse
Affiliation(s)
- Jorge Mateos
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal (Castellón), Spain
| | | | | | | | | | | |
Collapse
|
36
|
McQuillan HJ, Lokman PM, Young G. Effects of sex steroids, sex, and sexual maturity on cortisol production: an in vitro comparison of chinook salmon and rainbow trout interrenals. Gen Comp Endocrinol 2003; 133:154-63. [PMID: 12899856 DOI: 10.1016/s0016-6480(03)00163-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sex steroids appear to be responsible for hyperactivation of the hypothalamus-pituitary-interrenal (HPI) axis that occurs in mature semelparous Pacific salmon as a prelude to post-spawning (programmed) death. This study was undertaken to examine the direct effects of sex steroids on interrenal activity of semelparous (chinook salmon) and iteroparous (rainbow trout) salmonids using an in vitro incubation system. In addition, phenotypic sex differences in cortisol production by interrenals of sexually mature (spawning) rainbow trout and chinook salmon were investigated. Interrenal tissue from juvenile and sexually mature chinook salmon and rainbow trout was incubated for 48 h in culture medium containing either no steroid (controls), 1 microM estradiol (E2) or 1 microM 11-ketotestosterone (11-KT). This tissue was then challenged for 3h with either pregnenolone, dibutyryladenosine 3('):5(')-cyclic monophosphate (dbcAMP) or forskolin, or synthetic human adrenocorticotropic hormone (ACTH(1-24)). Sex differences in in vitro interrenal cortisol production were assessed using separate tissue pools challenged with the same agents. Cortisol in media was measured by radioimmunoassay. E2 suppressed the ability of juvenile chinook salmon interrenals to utilize pregnenolone as substrate for cortisol synthesis. In mature female chinook salmon the suppressive effect of E2 was less pronounced, but was observed as a reduced response of interrenals to both pregnenolone and dbcAMP. E2 did not affect ACTH(1-24) stimulated cortisol production. Immature and mature rainbow trout interrenals were both relatively insensitive to E2. 11-KT did not affect cortisol production by juvenile chinook salmon and juvenile or mature rainbow trout, and had only minor effects in male and female spawning chinook salmon. In mature chinook salmon and rainbow trout, the interrenals of females were more responsive to ACTH stimulation and showed a greater utilization of pregnenolone as a substrate than interrenals of males. Mature female rainbow trout were also more responsive to dbcAMP stimulation than males. The results of this study suggest that the onset of sexual maturation and gonadal steroid production may contribute to sexually dimorphic cortisol responses in vitro.
Collapse
|
37
|
Lokman PM, Harris B, Kusakabe M, Kime DE, Schulz RW, Adachi S, Young G. 11-Oxygenated androgens in female teleosts: prevalence, abundance, and life history implications. Gen Comp Endocrinol 2002; 129:1-12. [PMID: 12409090 DOI: 10.1016/s0016-6480(02)00562-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although 11-ketotestosterone (11-KT) has been found in blood of females of several diadromous fish species, the importance, abundance, and prevalence of this and related 11-oxygenated androgens in females have not been investigated. To address this issue and to determine whether the differences among androgen profiles relate to specific life history strategies, particularly diadromous migrations, fish (males and females) of around 30 species were sampled and 5 androgens were measured by radioimmunoassay. Levels of 17beta-estradiol and cortisol were also determined to evaluate ovarian and interrenal activity at the time of sampling. Testosterone (T) was the predominant androgen in most sexually recrudescent females. Only in female eel and sturgeon were 11-oxygenated androgens present in levels as high as, or higher than, those of T, although substantial amounts were also found in blood of mullet and salmonids. 11-KT was generally the most abundant 11-oxyandrogen, levels being higher than those of 11beta-hydroxytestosterone or 11beta-hydroxyandrostenedione. It is concluded that 11-oxygenated androgens are quantitatively minor steroids in most female fish. There was no convincing evidence to support the notion that the presence of 11-oxygenated androgens in blood is an adaptation specific to migratory fishes.
Collapse
Affiliation(s)
- P Mark Lokman
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
38
|
Mateos J, Mañanos E, Carrillo M, Zanuy S. Regulation of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) gene expression by gonadotropin-releasing hormone (GnRH) and sexual steroids in the Mediterranean Sea bass. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:75-86. [PMID: 11997211 DOI: 10.1016/s1096-4959(01)00535-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The secretion of gonadotropins, the key reproductive hormones in vertebrates, is controlled from the brain by the gonadotropin-releasing hormone (GnRH), but also by complex steroid feedback mechanisms. In this study, after the recent cloning of the three gonadotropin subunits of sea bass (Dicentrarchus labrax), we aimed at investigating the effects of GnRH and sexual steroids on pituitary gonadotropin mRNA levels, in this valuable aquaculture fish species. Implantation of sea bass, in the period of sexual resting, for 12 days with estradiol (E2), testosterone (T) or the non-aromatizable androgen dihydrotestosterone (DHT), almost suppressed basal expression of FSHbeta (four to 15-fold inhibition from control levels), while slightly increasing that of alpha (1.5-fold) and LHbeta (approx. twofold) subunits. Further injection with a GnRH analogue (15 microg/kg BW; [D-Ala6, Pro9-Net]-mGnRH), had no effect on FSHbeta mRNA levels, but stimulated (twofold) pituitary alpha and LHbeta mRNA levels in sham- and T-implanted fish, and slightly in E2- and DHT-implanted fish (approx. 1.5-fold). The GnRHa injection, as expected, elevated plasma LH levels with a parallel decrease on LH pituitary content, with no differences between implanted fish. In conclusion, high circulating steroid levels seems to exert different action on gonadotropin secretion, inhibiting FSH while stimulating LH synthesis. In these experimental conditions, the GnRHa stimulate LH synthesis and release, but have no effect on FSH synthesis.
Collapse
Affiliation(s)
- Jorge Mateos
- Instituto de Acuicultura de Torre la Sal (C.S.I.C.), Ribera de Cabanes s/n, 12595-Torre la Sal, Castellón, Spain
| | | | | | | |
Collapse
|
39
|
Meiri I, Gothilf Y, Zohar Y, Elizur A. Physiological changes in the spawning gilthead seabream, Sparus aurata, succeeding the removal of males. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 292:555-64. [PMID: 12115938 DOI: 10.1002/jez.10072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The physiological effects triggered in females by the removal of males from a group of spawning fish were examined in the multiple batch spawner, the gilthead seabream, Sparus aurata. One week after the removal of males, a large portion of the oocytes underwent atresia, and sporadic release of low quality eggs continued at low frequency over a period of seven weeks. The transcript levels of the three native gonadotropin releasing hormone (GnRH) forms, salmon (s)GnRH, seabream (sb)GnRH, and chicken (c)GnRH-II, and the two beta GtH subunits were measured. Brain mRNA levels for all three GnRHs and pituitary beta LH mRNA levels significantly declined in the females as a result of removing the males compared to females that were maintained with males. Pituitary beta FSH mRNA levels showed the opposite trend and were significantly higher in females that were separated from males. Circulating levels of LH, testosterone, estradiol, 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one, and 17 alpha, 20 beta,21-trihydroxy-4-pregnen-3-one all declined in the group of females without males. These results imply the existence of an endocrine response to socio-sexual stimuli during the reproductive process in the gilthead seabream.
Collapse
Affiliation(s)
- Iris Meiri
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat 88112, Israel
| | | | | | | |
Collapse
|
40
|
Rohr DH, Lokman PM, Davie PS, Young G. 11-Ketotestosterone induces silvering-related changes in immature female short-finned eels, Anguilla australis. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:701-14. [PMID: 11691606 DOI: 10.1016/s1095-6433(01)00402-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The developmental transition from a residential, immature 'yellow' eel to a migratory, maturing adult 'silver' eel is accompanied by many morphological changes that appear to be under endocrine control. High circulating levels of the teleost, and usually male-specific, androgen 11-ketotestosterone (11-KT) are found in migrating female short-finned eels, Anguilla australis. We examined the role of this steroid in silvering by implanting immature, female short-finned eels either with blank vehicles or with vehicles containing 11-KT. Six weeks after they had received the implants, eels treated with 11-KT had developed 'chisel-shaped' snouts and black pectoral fins with tapered ends, and the size of their eyes had increased significantly. 11-KT treated eels had a thicker dermis than control eels and an epidermis with fewer or no mucous cells. Ventricular mass at the end of the experiment was two-fold larger than in control eels. 11-KT treated eels also had larger livers and gonads. Ovaries contained predominantly cortical alveolus stage III oocytes, as opposed to the smaller gonads of control eels containing previtellogenic stage II oocytes. All of these changes correspond to changes during the developmental transition from yellow to silver eels in the wild. This demonstrates that silvering in eels is under endocrine control and that the presumed male-specific steroid 11-KT is capable of inducing silvering-related changes in a female teleost. We discuss how species-specific responses to 11-KT may differ depending on tissue-specific androgen receptor abundance and how a dual demand on liver function can explain the apparently positive effects of 11-KT on liver growth.
Collapse
Affiliation(s)
- D H Rohr
- Institute of Veterinary, Animal & Biomedical Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
41
|
Munakata A, Amano M, Ikuta K, Kitamura S, Aida K. The involvement of sex steroid hormones in downstream and upstream migratory behavior of masu salmon. Comp Biochem Physiol B Biochem Mol Biol 2001; 129:661-9. [PMID: 11399503 DOI: 10.1016/s1096-4959(01)00365-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
From May through July when masu salmon, Oncorhynchus masou, commence downstream migration under natural conditions, yearling precocious male masu salmon (resident form) showed higher GSI and plasma levels of testosterone (T) and 11-ketotestosterone (11-KT) in contrast to immature smolts (migratory form). From March through September coinciding with the upstream migration period, 2-year-old male and female adults also showed higher GSI and plasma levels of T, estradiol-17beta (E(2)) 11-KT, 17alpha-hydroxyprogesterone and 17alpha,20beta-dihydroxy-4-pregnene-3-one (DHP). In order to test the effects of steroid hormones on migratory behaviors, silascone tube capsules containing 500 microg of T, E(2), 11-KT, DHP, or a vehicle was implanted into smolts, castrated precocious males, or immature parr, and downstream and upstream behavior were observed in artificial raceways in spring and autumn. Downstream behavior of smolts was inhibited significantly by T, E(2) and 11-KT. Upstream behavior was stimulated by T and 11-KT in castrated precocious males and stimulated by T, E(2) and 11-KT in immature parr. These results indicate that T, E(2) and 11-KT are the factors regulating downstream and upstream migratory behavior. In particular, because of its changing patterns in plasma and significant effects, T, the common precursor hormone of E(2) (female) and 11-KT (male), is considered to play central roles in both types of behavior.
Collapse
Affiliation(s)
- A Munakata
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, 113-8657, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
42
|
Munakata A, Amano M, Ikuta K, Kitamura S, Aida K. The effects of testosterone on upstream migratory behavior in masu salmon, Oncorhynchus masou. Gen Comp Endocrinol 2001; 122:329-40. [PMID: 11356045 DOI: 10.1006/gcen.2001.7646] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of testosterone (T) on upstream migratory behavior in masu salmon, Oncorhynchus masou, were studied by use of artificial raceways. In Experiment 1, yearling precocious males castrated in August were implanted with a capsule of medical silicone tube containing 500 microg of T in September. Their upstream migration was recorded in an artificial raceway with castrated and sham-operated precocious males implanted with a capsule containing vehicle for 2 months. In Experiment 2, upstream migratory behavior of yearling immature parr implanted with a capsule containing T 500 microg or vehicle was observed from September through November. In Experiment 3, upstream migratory behavior of castrated, castrated + T 50 microg, castrated + T 500 microg, and sham-operated precocious males was observed from September through October. In Experiment 4, upstream migratory behavior of the control, T 50 microg-, T 500 microg-, and T 1000 microg-treated immature parr was observed from September through October. In each experiment, plasma and pituitary samples were taken from the fish that moved upstream and remained to measure levels of T, gonadotropin (GTH) II, thyroxine (T(4)), and triiodothyronine (T(3)) by radioimmunoassay. Administration of T caused increases in plasma T levels within the physiological range. In Experiment 1, the frequency of migration upstream was 0, 19.2, and 35.7% in the castrated, castrated + T 500 microg, and sham-operated groups, respectively. The frequency was higher in the castrated + T 500 microg and sham-operated groups than in the castrated group. In Experiment 2, the frequency was higher in T 500 microg-treated parr (22%) than in the control (2.6%). In Experiments 1 and 2, pituitary contents of GTH II in the T-treated groups and precocious males were higher than those in the castrated precocious males and immature parr. In Experiment 3, castrated + T 50 microg, castrated + T 500 microg, and sham-operated fish showed upstream migratory behavior, whereas castrated fish without T did not. In Experiment 4, the frequency was 5.7, 22.9, 17.1, and 28.6% in the control, T 50 microg-, T 500 microg-, and T 1000 microg-treated groups, respectively. In each experiment, plasma levels of T(4) in migrants were lower than those in nonmigrants, whereas plasma levels of T(3) did not show such changes. From these results, it is inferred that T is a factor influencing upstream migration in masu salmon.
Collapse
Affiliation(s)
- A Munakata
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
| | | | | | | | | |
Collapse
|
43
|
Barcellos LJ, Wassermann GF, Scott AP, Woehl VM, Quevedo RM, Ittzés I, Krieger MH, Lulhier F. Steroid profiles in cultured female jundiá, the Siluridae Rhamdia quelen (Quoy and Gaimard, Pisces Teleostei), during the first reproductive cycle. Gen Comp Endocrinol 2001; 121:325-32. [PMID: 11254374 DOI: 10.1006/gcen.2001.7603] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The jundiá Rhamdia quelen (Quoy and Gaimard) is a teleost species from the Siluridae family and is an important species for aquaculture in temperate and subtropical climates. Gonad and blood tissue samples were taken from cultured jundiá females between 1998 and 1999. Plasma concentrations of 17beta-estradiol (E(2)), testosterone (T), 11-ketotestosterone (11-KT), 17-hydroxy-4-pregnene-3,20-dione (17-P), 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P), and 17,20beta,21-trihydroxy-4-pregnen-3-one (20beta-S) were measured by radioimmunoassay and potential correlations with the stage of oogenesis and sexual maturation examined. During the experimental period two spawning episodes were observed. Plasma concentrations of E(2) increased progressively during oocyte development, simultaneously with the appearance of yolk vesicles and increasing amounts of deposited yolk. In female jundiá, the T peak occurred in October and was coincident with the peak in gonadosomatic index. Two distinct peaks of progestogens were detected, corresponding to the two spawning episodes, suggesting that one or more of these steroids might act as the "maturational-inducing steroid" in jundiá. Unusually large amounts of 11-KT were also measured in the plasma of mature jundiá females. The identity of 11-KT was confirmed by thin-layer chromatography. Although the profiles of the other steroids are compatible with the roles proposed for the action of these hormones in other teleosts, the role of 11-KT, normally found only in males, is unknown.
Collapse
Affiliation(s)
- L J Barcellos
- Laboratory of Experimental Endocrinology, Federal University of the State of Rio Grande do Sul (UFRGS), Porto Alegre, RS, CEP 90050-170, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Baker DM, Davies B, Dickhoff WW, Swanson P. Insulin-like growth factor I increases follicle-stimulating hormone (FSH) content and gonadotropin-releasing hormone-stimulated FSH release from coho salmon pituitary cells in vitro. Biol Reprod 2000; 63:865-71. [PMID: 10952933 DOI: 10.1095/biolreprod63.3.865] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The effects of insulin-like growth factor I (IGF-I) and insulin on the function of coho salmon gonadotropes in vitro were investigated. Dispersed pituitary cells from immature coho salmon (Oncorhynchus kisutch) were incubated with IGF-I for 1, 3, 7, or 10 days, then incubated with salmon GnRH for an additional 24 h. Medium FSH content before and after GnRH treatment and intracellular FSH content after GnRH treatment were measured. Incubation of pituitary cells with IGF-I for 7 or 10 days increased GnRH-stimulated FSH release and remaining cell content, but did not affect basal release. To examine the specificity of the effects of IGF-I, we compared FSH release and cell content of FSH and LH after 10-day incubation with a range of concentrations of IGF-I or insulin. Incubation with physiological concentrations of IGF-I resulted in significantly higher GnRH-stimulated FSH release and remaining cell content of FSH and LH. Conversely, supraphysiological concentrations of insulin were required to produce more moderate effects on gonadotropin levels. These results suggest that elevation of gonadotropin levels by IGF-I may be one mechanism by which somatic growth and nutrition promote pubertal development in salmon.
Collapse
Affiliation(s)
- D M Baker
- University of Washington School of Fisheries, Seattle, Washington 98192. Northwest Fisheries Science Center, Seattle, Washington 98112, USA
| | | | | | | |
Collapse
|
45
|
Dickey JT, Swanson P. Effects of salmon gonadotropin-releasing hormone on follicle stimulating hormone secretion and subunit gene expression in coho salmon (Oncorhynchus kisutch). Gen Comp Endocrinol 2000; 118:436-49. [PMID: 10843795 DOI: 10.1006/gcen.2000.7482] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous work has indicated that, during the process of gametogenesis in salmon, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are differentially synthesized and released. Although substantial information is available on the regulation of LH in many fish species, relatively little is known about the regulation of FSH biosynthesis and secretion or the regulation of two types of alpha subunit in salmon. In this study, the effects of salmon gonadotropin-releasing hormone (sGnRH) on in vitro secretion of FSH, and alpha1, alpha2, LH beta, and FSH beta subunit gene expression were investigated in coho salmon (Oncorhynchus kisutch) using primary pituitary cell cultures. To quantify FSH beta, LH beta, alpha1, and alpha2 subunit transcript levels, a multiplex RNase protection assay (RPA) was developed. Probes for the beta subunits of coho salmon FSH and LH were available from previous studies. To generate probes for the alpha subunit RPAs, alpha1 and alpha2 subunit cDNAs were cloned using reverse transcriptase PCR. Release of FSH and LH into cell culture medium was quantified by radioimmunoassays. The effects of sGnRH on gonadotropin release and gene expression were tested at two points during the spring (April and May) prior to spawning in the autumn; a period when plasma and pituitary FSH levels are increasing and females are in early stages of secondary oocyte growth. In both experiments, sGnRH increased steady-state mRNA levels of FSH beta, alpha1, and alpha2, whereas LH beta mRNA levels were not detectable. Secretion of FSH was stimulated by sGnRH in a concentration-dependent manner. Medium LH was not detectable in the first experiment (April) and was measurable only after sGnRH treatment in the second experiment (May). Control levels of medium FSH and transcripts for FSH beta and alpha1 subunits increased approximately fourfold between April and May, whereas alpha2 transcript levels remained relatively constant, suggesting that the seasonal increase in FSH release may involve increased production of alpha1. Therefore, sGnRH has direct stimulatory effects on both secretion of FSH and FSH subunit biosynthesis, most likely due to increased transcription. However, alterations in rates of transcript degradation cannot be ruled out.
Collapse
Affiliation(s)
- J T Dickey
- Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, WA 98112, USA
| | | |
Collapse
|
46
|
Davies B, Bromage N, Swanson P. The brain-pituitary-gonadal axis of female rainbow trout Oncorhynchus mykiss: effects of photoperiod manipulation1. Gen Comp Endocrinol 1999; 115:155-66. [PMID: 10375474 DOI: 10.1006/gcen.1999.7301] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two groups of post-spawned female rainbow trout were exposed to two different photoperiods, an ambient photoperiod (56 degrees N) and a combination of long and short photoperiods (a constant 18L:6D from February 1 until May 10, then a constant 6L:18D), which acted to advance maturation and spawning. The stimulatory long-short photoperiod advanced spawning by 3-4 months and correspondingly advanced peaks in serum levels of 17beta-estradiol, testosterone, calcium (an index of vitellogenin), and GTH II. Earlier events in gonadal recrudescence appeared to be less affected by the photoperiod. The initiation of exogenous vitellogenesis coincided with high levels of both pituitary salmon gonadotropin-releasing hormone (sGnRH) content and serum follicle-stimulating hormone (FSH, GTH I) levels. High levels of serum FSH were associated with rapid gonadal growth in the fish exposed to the stimulatory long-short photoperiod. In contrast, the fish exposed to the ambient photoperiod showed gonadal steroid production, formation of vitellogenin, and secondary oocyte growth without any detectable increase in serum FSH levels. The possible roles and interactions of sGnRH, gonadotropins, and steroids with respect to normal and artificially stimulated ovarian maturation are discussed.
Collapse
Affiliation(s)
- B Davies
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | | | | |
Collapse
|
47
|
Gomez JM, Weil C, Ollitrault M, Le Bail PY, Breton B, Le Gac F. Growth hormone (GH) and gonadotropin subunit gene expression and pituitary and plasma changes during spermatogenesis and oogenesis in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 1999; 113:413-28. [PMID: 10068502 DOI: 10.1006/gcen.1998.7222] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In order to evaluate potential interactions between somatotropic and gonadotropic axes in rainbow trout (Oncorhynchus mykiss), changes in pituitary content of the specific messenger RNA of growth hormone (GH) and gonadotropin (GTH) alpha- and beta-subunits were studied during gametogenesis with respect to pituitary and plasma hormone concentrations. Quantitative analyses of mRNA and hormones were performed by dot blot hybridization and homologous RIA on individual fish according to stage of spermatogenesis and oogenesis. All transcripts were detectable in 9-month-old immature fish. GH, GTH IIbeta, and GTH alpha increased moderately throughout most of gametogenesis and then more dramatically at spermiation and during the periovulatory period. GTH Ibeta mRNA increased first from stage I to V in males and more abruptly at spermiation, while in females GTH Ibeta transcripts increased first during early vitellogenesis and again around ovulation. Pituitary GH absolute content (microgram/pituitary, not normalized with body weight) increased slowly during gametogenesis and more abruptly in males during spermiation. In the pituitary of previtellogenic females and immature males, GTH I beta peptide contents were 80- to 500-fold higher than GTH II beta peptide contents. GTH I contents rose regularly during the initial phases of vitellogenesis and spermatogenesis and then more abruptly in the final stages of gonadal maturation, while GTH II contents show a dramatic elevation during final oocyte growth and maturation, in postovulated females, and during spermiogenesis and spermiation in males. Blood plasma GTH II concentrations were undetectable in most gonadal stages, but were elevated during spermiogenesis and spermiation and during oocyte maturation and postovulation. In contrast, plasma GTH I was already high ( approximately 2 ng/ml) in fish with immature gonads, significantly increased at the beginning of spermatogonial proliferation, and then increased again between stages III and VI to reach maximal levels ( approximately 9 ng/ml) toward the end of sperm cell differentiation, but decreased at spermiation. In females, plasma GTH I rose strongly for the first time up to early exogenous vitellogenesis, decreased during most exogenous vitellogenesis, and increased again around ovulation. Our data revealed that patterns of relative abundance of GTH Ibeta mRNA and pituitary and plasma GTH I were similar, but not the GTH II patterns, suggesting differential regulation between these two hormones at the transcriptional and posttranscriptional levels. Pituitary and plasma GH changes could not be related to sexual maturation, and only a weak relationship was observed between GH and gonadotropin patterns, demonstrating that no simple connection exists between somatotropic and gonadotropic axes at the pituitary level during gametogenesis.
Collapse
Affiliation(s)
- J M Gomez
- Campus de Beaulieu, INRA, Rennes Cedex, 35042, France
| | | | | | | | | | | |
Collapse
|
48
|
Afonso LO, Iwama GK, Smith J, Donaldson EM. Effects of the aromatase inhibitor Fadrozole on plasma sex steroid secretion and ovulation rate in female coho salmon, Oncorhynchus kisutch, close to final maturation. Gen Comp Endocrinol 1999; 113:221-9. [PMID: 10082624 DOI: 10.1006/gcen.1998.7198] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma levels of 17beta-estradiol, 17alpha, 20beta-dihydroxy-4-pregnen-3-one (17alpha,20beta-P), and testosterone were measured in adult female coho salmon in late vitellogenesis, approximately 1.5 months before spawning and just before and following intraperitoneal injection with the aromatase inhibitor (AI) Fadrozole. Injection at dosages of 0.1, 1.0, and 10.0 mg AI/kg body wt caused a significant drop in plasma 17beta-estradiol levels relative to preinjection values within 3 or 6 h. Injection of 10 mg AI/kg body wt caused a significant increase in plasma 17alpha-20beta-P levels within 3 h. Ten days after injection 67% of the fish treated with 10 mg AI/kg body wt had ovulated in contrast with 0% in the group injected with 0.1 mg AI/kg body wt. The fertilization rate of the eggs varied between 96% in the control group and 85% in the groups injected with AI. We conclude that the shift from 17beta-estradiol to 17alpha,20beta-P biosynthesis, which is characteristic of maturing Oncorhynchus sp., was advanced significantly by treatment with AI and that Fadrozole can be used as a tool to investigate periovulatory endocrine changes in salmon.
Collapse
Affiliation(s)
- L O Afonso
- West Vancouver Laboratory, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, V7V 1N6
| | | | | | | |
Collapse
|
49
|
Blázquez M, Bosma PT, Fraser EJ, Van Look KJ, Trudeau VL. Fish as models for the neuroendocrine regulation of reproduction and growth. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 119:345-64. [PMID: 9827007 DOI: 10.1016/s0742-8413(98)00023-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Models are essential for the full understanding of neuroendocrine control processes. In this regard fish offer a rich source of biological material. They have diverse growth and reproductive strategies, inhabiting most of the Earth's aquatic ecological niches. Fish possess many of the common vertebrate features but also offer several unique aspects to allow the biologist easy access to the study of hypothalamic and pituitary function. Several key examples of how teleosts, or the bony fish, can offer insight into fundamental mechanisms of vertebrate sex differentiation, growth and reproduction are reviewed.
Collapse
Affiliation(s)
- M Blázquez
- Department of Zoology, University of Aberdeen, UK
| | | | | | | | | |
Collapse
|
50
|
Mylonas CC, Woods LC, Thomas P, Zohar Y. Endocrine profiles of female striped bass (Morone saxatilis) in captivity, during postvitellogenesis and induction of final oocyte maturation via controlled-release GnRHa-delivery systems. Gen Comp Endocrinol 1998; 110:276-89. [PMID: 9593648 DOI: 10.1006/gcen.1998.7073] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma levels of reproductive and thyroid hormones were measured in captive striped bass females during postvitellogenesis and the spawning period (March-June). Circulating gonadotropin II (GtH II), 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P), and 17,20beta, 21-trihydroxy-4-pregnen-3-one (17,20beta,21-P) remained low and unchanged in nonmaturing females, while 17beta-estradiol (E2) and testosterone (T) declined throughout postvitellogenesis. Plasma thyroxine (T4) declined significantly in mid-April, while triiodothyronine (T3) increased in mid-May. The only female that ovulated spontaneously had markedly different E2, T, and T3 profiles during postvitellogenesis, and had a surge in plasma GtH II during final oocyte maturation (FOM). The lack of a GtH II surge is presumably responsible for the absence of FOM, but earlier, and as of yet unknown, endocrine disruptions during postvitellogenesis may determine the female's ability to undergo FOM. Treatment of females with a gonadotropin-releasing hormone agonist (GnRHa)-delivery system induced FOM and ovulation within 3 and 10 days, respectively, and resulted in the production of fertile eggs. Plasma GtH II increased continually after GnRHa implantation, even in the presence of declining GnRHa plasma levels. Plasma E2 increased first and peaked prior to FOM, whereas T peaked at the peripheral germinal vesicle (GV) stage. Plasma 17,20beta-P and 17,20beta,21-P increased dramatically at the GV breakdown (GVBD) stage. Plasma T4 was unaffected by the GnRHa treatment, whereas T3 decreased after GnRHa implantation and remained low throughout FOM. Based on the observed hormonal profiles, FOM can be separated into an early phase (lipid-droplet coalescence, GV migration) associated with E2 and T elevations, and a late phase (yolk-globule coalescence, GVBD) associated with 17,20beta-P and 17,20beta,21-P elevation.
Collapse
Affiliation(s)
- C C Mylonas
- Columbus Center, University of Maryland Biotechnology Institute, 701 E. Pratt St., Baltimore, Maryland 21202, USA.
| | | | | | | |
Collapse
|