1
|
Offner T, Weiss L, Daume D, Berk A, Inderthal TJ, Manzini I, Hassenklöver T. Functional odor map heterogeneity is based on multifaceted glomerular connectivity in larval Xenopus olfactory bulb. iScience 2023; 26:107518. [PMID: 37636047 PMCID: PMC10448113 DOI: 10.1016/j.isci.2023.107518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Glomeruli are the functional units of the vertebrate olfactory bulb (OB) connecting olfactory receptor neuron (ORN) axons and mitral/tufted cell (MTC) dendrites. In amphibians, these two circuit elements regularly branch and innervate multiple, spatially distinct glomeruli. Using functional multiphoton-microscopy and single-cell tracing, we investigate the impact of this wiring on glomerular module organization and odor representations on multiple levels of the Xenopus laevis OB network. The glomerular odor map to amino acid odorants is neither stereotypic between animals nor chemotopically organized. Among the morphologically heterogeneous group of uni- and multi-glomerular MTCs, MTCs can selectively innervate glomeruli formed by axonal branches of individual ORNs. We conclude that odor map heterogeneity is caused by the coexistence of different intermingled glomerular modules. This demonstrates that organization of the amphibian main olfactory system is not strictly based on uni-glomerular connectivity.
Collapse
Affiliation(s)
- Thomas Offner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Daniela Daume
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Anna Berk
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Tim Justin Inderthal
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| |
Collapse
|
2
|
Tootoonian S, Schaefer AT, Latham PE. Sparse connectivity for MAP inference in linear models using sister mitral cells. PLoS Comput Biol 2022; 18:e1009808. [PMID: 35100264 PMCID: PMC8830798 DOI: 10.1371/journal.pcbi.1009808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/10/2022] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Sensory processing is hard because the variables of interest are encoded in spike trains in a relatively complex way. A major goal in studies of sensory processing is to understand how the brain extracts those variables. Here we revisit a common encoding model in which variables are encoded linearly. Although there are typically more variables than neurons, this problem is still solvable because only a small number of variables appear at any one time (sparse prior). However, previous solutions require all-to-all connectivity, inconsistent with the sparse connectivity seen in the brain. Here we propose an algorithm that provably reaches the MAP (maximum a posteriori) inference solution, but does so using sparse connectivity. Our algorithm is inspired by the circuit of the mouse olfactory bulb, but our approach is general enough to apply to other modalities. In addition, it should be possible to extend it to nonlinear encoding models.
Collapse
Affiliation(s)
- Sina Tootoonian
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail:
| | - Andreas T. Schaefer
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Peter E. Latham
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| |
Collapse
|
3
|
Jendrny P, Twele F, Meller S, Osterhaus ADME, Schalke E, Volk HA. Canine olfactory detection and its relevance to medical detection. BMC Infect Dis 2021; 21:838. [PMID: 34412582 PMCID: PMC8375464 DOI: 10.1186/s12879-021-06523-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
The extraordinary olfactory sense of canines combined with the possibility to learn by operant conditioning enables dogs for their use in medical detection in a wide range of applications. Research on the ability of medical detection dogs for the identification of individuals with infectious or non-infectious diseases has been promising, but compared to the well-established and-accepted use of sniffer dogs by the police, army and customs for substances such as money, explosives or drugs, the deployment of medical detection dogs is still in its infancy. There are several factors to be considered for standardisation prior to deployment of canine scent detection dogs. Individual odours in disease consist of different volatile organic molecules that differ in magnitude, volatility and concentration. Olfaction can be influenced by various parameters like genetics, environmental conditions, age, hydration, nutrition, microbiome, conditioning, training, management factors, diseases and pharmaceuticals. This review discusses current knowledge on the function and importance of canines' olfaction and evaluates its limitations and the potential role of the dog as a biomedical detector for infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Paula Jendrny
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany
| | - Friederike Twele
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany
| | | | - Esther Schalke
- Bundeswehr School of Dog Handling, Gräfin-Maltzan-Kaserne, Hochstraße, 56766, Ulmen, Germany
| | - Holger Andreas Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany.
| |
Collapse
|
4
|
Kim S, Brady J, Al-Badani F, Yu S, Hart J, Jung S, Tran TT, Myung NV. Nanoengineering Approaches Toward Artificial Nose. Front Chem 2021; 9:629329. [PMID: 33681147 PMCID: PMC7935515 DOI: 10.3389/fchem.2021.629329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Significant scientific efforts have been made to mimic and potentially supersede the mammalian nose using artificial noses based on arrays of individual cross-sensitive gas sensors over the past couple decades. To this end, thousands of research articles have been published regarding the design of gas sensor arrays to function as artificial noses. Nanoengineered materials possessing high surface area for enhanced reaction kinetics and uniquely tunable optical, electronic, and optoelectronic properties have been extensively used as gas sensing materials in single gas sensors and sensor arrays. Therefore, nanoengineered materials address some of the shortcomings in sensitivity and selectivity inherent in microscale and macroscale materials for chemical sensors. In this article, the fundamental gas sensing mechanisms are briefly reviewed for each material class and sensing modality (electrical, optical, optoelectronic), followed by a survey and review of the various strategies for engineering or functionalizing these nanomaterials to improve their gas sensing selectivity, sensitivity and other measures of gas sensing performance. Specifically, one major focus of this review is on nanoscale materials and nanoengineering approaches for semiconducting metal oxides, transition metal dichalcogenides, carbonaceous nanomaterials, conducting polymers, and others as used in single gas sensors or sensor arrays for electrical sensing modality. Additionally, this review discusses the various nano-enabled techniques and materials of optical gas detection modality, including photonic crystals, surface plasmonic sensing, and nanoscale waveguides. Strategies for improving or tuning the sensitivity and selectivity of materials toward different gases are given priority due to the importance of having cross-sensitivity and selectivity toward various analytes in designing an effective artificial nose. Furthermore, optoelectrical sensing, which has to date not served as a common sensing modality, is also reviewed to highlight potential research directions. We close with some perspective on the future development of artificial noses which utilize optical and electrical sensing modalities, with additional focus on the less researched optoelectronic sensing modality.
Collapse
Affiliation(s)
- Sanggon Kim
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
| | - Jacob Brady
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
| | - Faraj Al-Badani
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
| | - Sooyoun Yu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Joseph Hart
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Sungyong Jung
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Thien-Toan Tran
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Nosang V. Myung
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
5
|
Genome-wide identification and characterization of olfactory receptor genes in common carp (Cyprinus carpio). Gene 2021; 777:145468. [PMID: 33539942 DOI: 10.1016/j.gene.2021.145468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022]
Abstract
The environment contains a large extent of chemical information, which could be detected as olfactory sense. Olfactory in vertebrates plays important roles on many aspects during life time, including localizing prey or food, avoiding predators, mating behavior and social communication. Considering the essential role of olfactory receptors in the specific recognition of diverse stimuli, understanding the evolutionary dynamics of olfactory receptors in teleost means a lot, especially in the allotetraploid common carp, who has undergone the fourth whole-genome duplication event. Here, we identified the whole set of olfactory receptor genes in representative teleosts and found a significant contraction in common carp when compared with other teleosts. Odorant receptor genes (OR) occupy the most among four groups of olfactory receptors, including 33 functional genes and 16 pseudogenes. Furthermore, 6 trace amine-associated receptor (TAAR) genes (including 1 pseudogene), 7 odorant-related-A receptor genes, and 10 olfactory C family receptor genes (including 3 pseudogenes) were identified in common carp. Phylogenetic and motif analysis were performed to illustrate the phylogenetic relationship and structural conservation of teleost olfactory receptors. Selection pressure analysis suggested that olfactory receptor groups in common carp were all under relaxed purifying-selection. Additionally, gene expression divergences for olfactory receptor genes were investigated during embryonic development stages of common carp. We aim to determine the abundance of common carp olfactory receptor genes, explore the evolutionary fate and expression dynamics, and provide some genomic clues for the evolution of polyploid olfactory after whole-genome duplication and for future studies of teleost olfactory.
Collapse
|
6
|
Kermen F, Mandairon N, Chalençon L. Odor hedonics coding in the vertebrate olfactory bulb. Cell Tissue Res 2021; 383:485-493. [PMID: 33515292 PMCID: PMC7873110 DOI: 10.1007/s00441-020-03372-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022]
Abstract
Whether an odorant is perceived as pleasant or unpleasant (hedonic value) governs a range of crucial behaviors: foraging, escaping danger, and social interaction. Despite its importance in olfactory perception, little is known regarding how odor hedonics is represented and encoded in the brain. Here, we review recent findings describing how odorant hedonic value is represented in the first olfaction processing center, the olfactory bulb. We discuss how olfactory bulb circuits might contribute to the coding of innate and learned odorant hedonics in addition to the odorant's physicochemical properties.
Collapse
Affiliation(s)
- Florence Kermen
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
| | - Nathalie Mandairon
- CNRS. UMR 5292: INSERM, U1028: Lyon Neuroscience Research Center Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon1, F-69000, Villeurbanne, France
| | - Laura Chalençon
- CNRS. UMR 5292: INSERM, U1028: Lyon Neuroscience Research Center Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon1, F-69000, Villeurbanne, France
| |
Collapse
|
7
|
Shepherd GM, Hines ML, Migliore M, Chen WR, Greer CA. Predicting brain organization with a computational model: 50-year perspective on lateral inhibition and oscillatory gating by dendrodendritic synapses. J Neurophysiol 2020; 124:375-387. [PMID: 32639901 PMCID: PMC7500372 DOI: 10.1152/jn.00175.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
The first compartmental computer models of brain neurons using the Rall method predicted novel and unexpected dendrodendritic interactions between mitral and granule cells in the olfactory bulb. We review the models from a 50-year perspective on the work that has challenged, supported, and extended the original proposal that these interactions mediate both lateral inhibition and oscillatory activity, essential steps in the neural basis of olfactory processing and perception. We highlight strategies behind the neurophysiological experiments and the Rall methods that enhance the ability of detailed compartmental modeling to give counterintuitive predictions that lead to deeper insights into neural organization at the synaptic and circuit level. The application of these methods to mechanisms of neurogenesis and plasticity are exciting challenges for the future.
Collapse
Affiliation(s)
- Gordon M Shepherd
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Michael L Hines
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | | | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
8
|
Hirata T, Shioi G, Abe T, Kiyonari H, Kato S, Kobayashi K, Mori K, Kawasaki T. A Novel Birthdate-Labeling Method Reveals Segregated Parallel Projections of Mitral and External Tufted Cells in the Main Olfactory System. eNeuro 2019; 6:ENEURO.0234-19.2019. [PMID: 31672846 PMCID: PMC6868177 DOI: 10.1523/eneuro.0234-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 01/09/2023] Open
Abstract
A fundamental strategy in sensory coding is parallel processing, whereby unique, distinct features of sensation are computed and projected to the central target in the form of submodal maps. It remains unclear, however, whether such parallel processing strategy is employed in the main olfactory system, which codes the complex hierarchical odor and behavioral scenes. A potential scheme is that distinct subsets of projection neurons in the olfactory bulb (OB) form parallel projections to the targets. Taking advantage of the observation that the distinct projection neurons develop at different times, we developed a Cre-loxP-based method that allows for birthdate-specific labeling of cell bodies and their axon projections in mice. This birthdate tag analysis revealed that the mitral cells (MCs) born in an early developmental stage and the external tufted cells (TCs) born a few days later form segregated parallel projections. Specifically, the latter subset converges the axons onto only two small specific targets, one of which, located at the anterolateral edge of the olfactory tubercle (OT), excludes widespread MC projections. This target is made up of neurons that express dopamine D1 but not D2 receptor and corresponds to the most anterolateral isolation of the CAP compartments (aiCAP) that were defined previously. This finding of segregated projections suggests that olfactory sensing does indeed involve parallel processing of functionally distinct submodalities. Importantly, the birthdate tag method used here may pave the way for deciphering the functional meaning of these individual projection pathways in the future.
Collapse
Affiliation(s)
- Tatsumi Hirata
- Brain Function Laboratory, National Institute of Genetics
- Graduate University for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| | - Go Shioi
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takaya Abe
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kensaku Mori
- Department of Physiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Takahiko Kawasaki
- Brain Function Laboratory, National Institute of Genetics
- Graduate University for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| |
Collapse
|
9
|
Inter- and Intra-Species Communication of Emotion: Chemosignals as the Neglected Medium. Animals (Basel) 2019; 9:ani9110887. [PMID: 31683710 PMCID: PMC6912305 DOI: 10.3390/ani9110887] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022] Open
Abstract
Human body odors contain chemosignals that make species-specific communication possible. Such communication is without communicative intent and is generally below the threshold of consciousness. Human recipients of these chemosignals produced during emotional conditions display a simulacrum of the emotional state under which the chemosignal was produced. The investigation of an inter-species transfer of emotions via chemosignals was initiated by considerations of the historically anchored interdependence between humans and domesticated species, such as dogs and horses. Indeed, experiments with dogs have demonstrated that human body odors produced under emotional conditions of happiness and fear led dogs to manifest corresponding emotions to those experienced by humans. Preliminary data from horses also show that human body odors collected under fear and happiness conditions activate the autonomic nervous system of horses differentially. These studies indicate the possibility of a road to open our understanding of inter-species emotional communication via chemosignals.
Collapse
|
10
|
Nikonov AA, Maruska KP. Male dominance status regulates odor-evoked processing in the forebrain of a cichlid fish. Sci Rep 2019; 9:5083. [PMID: 30911102 PMCID: PMC6433859 DOI: 10.1038/s41598-019-41521-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
The ability to identify odors in the environment is crucial for survival and reproduction. However, whether olfactory processing in higher-order brain centers is influenced by an animal's physiological condition is unknown. We used in vivo neuron and local field potential (LFP) recordings from the ventral telencephalon of dominant and subordinate male cichlids to test the hypothesis that response properties of olfactory neurons differ with social status. Dominant males had a high percentage of neurons that responded to several odor types, suggesting broad tuning or differential sensitivity when males are reproductively active and defending a territory. A greater percentage of neurons in dominant males also responded to sex- and food-related odors, while a greater percentage of neurons in subordinate males responded to complex odors collected from behaving dominant males, possibly as a mechanism to mediate social suppression and allow subordinates to identify opportunities to rise in rank. Odor-evoked LFP spectral densities, indicative of synaptic inputs, were also 2-3-fold greater in dominant males, demonstrating status-dependent differences in processing possibly linking olfactory and other neural inputs to goal-directed behaviors. For the first time we reveal social and reproductive-state plasticity in olfactory processing neurons in the vertebrate forebrain that are associated with status-specific lifestyles.
Collapse
Affiliation(s)
- Alexandre A Nikonov
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA, 70803, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA, 70803, USA.
| |
Collapse
|
11
|
Grabe V, Sachse S. Fundamental principles of the olfactory code. Biosystems 2017; 164:94-101. [PMID: 29054468 DOI: 10.1016/j.biosystems.2017.10.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
Abstract
Sensory coding represents a basic principle of all phyla in nature: species attempt to perceive their natural surroundings and to make sense of them. Ultimately, sensory coding is the only way to allow a species to make the kinds of crucial decisions that lead to a behavioral response. In this manner, animals are able to detect numerous parameters, ranging from temperature and humidity to light and sound to volatile or non-volatile chemicals. Most of these environmental cues represent a clearly defined stimulus array that can be described along a single physical parameter, such as wavelength or frequency; odorants, in contrast, cannot. The odor space encompasses an enormous and nearly infinite number of diverse stimuli that cannot be classified according to their positions along a single dimension. Hence, the olfactory system has to encode and translate the vast odor array into an accurate neural map in the brain. In this review, we will outline the relevant steps of the olfactory code and describe its progress along the olfactory pathway, i.e., from the peripheral olfactory organs to the first olfactory center in the brain and then to the higher processing areas where the odor perception takes place, enabling an organism to make odor-guided decisions. We will focus mainly on studies from the vinegar fly Drosophila melanogaster, but we will also indicate similarities to and differences from the olfactory system of other invertebrate species as well as of the vertebrate world.
Collapse
Affiliation(s)
- Veit Grabe
- Max Planck Institute for Chemical Ecology, Department of EvolutionaryNeuroethology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Silke Sachse
- Max Planck Institute for Chemical Ecology, Department of EvolutionaryNeuroethology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| |
Collapse
|
12
|
Molecularly Imprinted Filtering Adsorbents for Odor Sensing. SENSORS 2016; 16:s16111974. [PMID: 27886070 PMCID: PMC5134632 DOI: 10.3390/s16111974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/08/2016] [Accepted: 11/16/2016] [Indexed: 11/17/2022]
Abstract
Versatile odor sensors that can discriminate among huge numbers of environmental odorants are desired in many fields, including robotics, environmental monitoring, and food production. However, odor sensors comparable to an animal’s nose have not yet been developed. An animal’s olfactory system recognizes odor clusters with specific molecular properties and uses this combinatorial information in odor discrimination. This suggests that measurement and clustering of odor molecular properties (e.g., polarity, size) using an artificial sensor is a promising approach to odor sensing. Here, adsorbents composed of composite materials with molecular recognition properties were developed for odor sensing. The selectivity of the sensor depends on the adsorbent materials, so specific polymeric materials with particular solubility parameters were chosen to adsorb odorants with various properties. The adsorption properties of the adsorbents could be modified by mixing adsorbent materials. Moreover, a novel molecularly imprinted filtering adsorbent (MIFA), composed of an adsorbent substrate covered with a molecularly imprinted polymer (MIP) layer, was developed to improve the odor molecular recognition ability. The combination of the adsorbent and MIP layer provided a higher specificity toward target molecules. The MIFA thus provides a useful technique for the design and control of adsorbents with adsorption properties specific to particular odor molecules.
Collapse
|
13
|
Rizzi S, Knaus HG, Schwarzer C. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain. J Comp Neurol 2015; 524:2093-116. [PMID: 26587966 PMCID: PMC4982087 DOI: 10.1002/cne.23934] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/11/2022]
Abstract
The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandra Rizzi
- Division of Molecular and Cellular Pharmacology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Hans-Günther Knaus
- Division of Molecular and Cellular Pharmacology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
14
|
Affiliation(s)
- Anne Tromelin
- CNRS; UMR6265 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- INRA; UMR1324 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- Université de Bourgogne; UMR Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
15
|
Maier W, Ruf I. Morphology of the nasal capsule of primates--with special reference to Daubentonia and Homo. Anat Rec (Hoboken) 2015; 297:1985-2006. [PMID: 25312360 DOI: 10.1002/ar.23023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/10/2022]
Abstract
Primitive mammals are considered macrosmatic. They have very large and complicated nasal capsules, nasal cavities with extensive olfactory epithelia, and relatively large olfactory bulbs. The complicated structures of the nasal capsule follow a relatively conservative "bauplan," which is normally easy to see in earlier fetal stages; especially in altricial taxa it differentiates well into postnatal life. As anteriormost part of the chondrocranium, the nasal capsule is at first cartilaginous. Most of it ossifies endochondrally, but "appositional bone" ("Zuwachsknochen") is also common. Many fetal structures become resorbed. Together, all surviving bone structures form the ethmoid bone, but cartilages of the external nose and of the vomeronasal complex can persist throughout life. We describe in detail the anatomy of Daubentonia madagascariensis based on a fetal stage (41 mm HL) and an adult skull was analyzed by µCT. We found that the nasal capsule of this species is by far the most complicated one of all extant Primates. We also describe older fetuses of Homo sapiens (35 and 63 mm HL) as representative of a derived primate. The most significant feature of man--and probably of all anthropoids--is the complete loss of the recessus frontoturbinalis and its associated structures. It can be demonstrated that the evolutionary reductions within the primate nasal capsule mainly affect those structures associated with olfaction, whereas cartilages that are important for the biomechanics of the facial skull of the fetus persist.
Collapse
Affiliation(s)
- Wolfgang Maier
- Institut für Evolution und Oekologie, Fachbereich Biologie der Universität, Auf der Morgenstelle 28, D - 772076, Tübingen, Germany
| | | |
Collapse
|
16
|
Modeling the cellular mechanisms and olfactory input underlying the triphasic response of moth pheromone-sensitive projection neurons. PLoS One 2015; 10:e0126305. [PMID: 25962173 PMCID: PMC4427114 DOI: 10.1371/journal.pone.0126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
In the antennal lobe of the noctuid moth Agrotis ipsilon, most pheromone-sensitive projection neurons (PNs) exhibit a triphasic firing pattern of excitation (E1)-inhibition (I)-excitation (E2) in response to a pulse of the sex pheromone. To understand the mechanisms underlying this stereotypical discharge, we developed a biophysical model of a PN receiving inputs from olfactory receptor neurons (ORNs) via nicotinic cholinergic synapses. The ORN is modeled as an inhomogeneous Poisson process whose firing rate is a function of time and is fitted to extracellular data recorded in response to pheromone stimulations at various concentrations and durations. The PN model is based on the Hodgkin-Huxley formalism with realistic ionic currents whose parameters were derived from previous studies. Simulations revealed that the inhibitory phase I can be produced by a SK current (Ca2+-gated small conductance K+ current) and that the excitatory phase E2 can result from the long-lasting response of the ORNs. Parameter analysis further revealed that the ending time of E1 depends on some parameters of SK, Ca2+, nACh and Na+ currents; I duration mainly depends on the time constant of intracellular Ca2+ dynamics, conductance of Ca2+ currents and some parameters of nACh currents; The mean firing frequency of E1 and E2 depends differentially on the interaction of various currents. Thus it is likely that the interplay between PN intrinsic currents and feedforward synaptic currents are sufficient to generate the triphasic firing patterns observed in the noctuid moth A. ipsilon.
Collapse
|
17
|
Brai E, Marathe S, Zentilin L, Giacca M, Nimpf J, Kretz R, Scotti A, Alberi L. Notch1 activity in the olfactory bulb is odour-dependent and contributes to olfactory behaviour. Eur J Neurosci 2014; 40:3436-49. [PMID: 25234246 DOI: 10.1111/ejn.12719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 11/28/2022]
Abstract
Notch signalling plays an important role in synaptic plasticity, learning and memory functions in both Drosophila and rodents. In this paper, we report that this feature is not restricted to hippocampal networks but also involves the olfactory bulb (OB). Odour discrimination and olfactory learning in rodents are essential for survival. Notch1 expression is enriched in mitral cells of the mouse OB. These principal neurons are responsive to specific input odorants and relay the signal to the olfactory cortex. Olfactory stimulation activates a subset of mitral cells, which show an increase in Notch activity. In Notch1cKOKln mice, the loss of Notch1 in mitral cells affects the magnitude of the neuronal response to olfactory stimuli. In addition, Notch1cKOKln mice display reduced olfactory aversion to propionic acid as compared to wildtype controls. This indicates, for the first time, that Notch1 is involved in olfactory processing and may contribute to olfactory behaviour.
Collapse
Affiliation(s)
- Emanuele Brai
- Unit of Anatomy, Department of Medicine, University of Fribourg, Route de Gockel, 1, Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Franceschini V, Bettini S, Pifferi S, Menini A, Siciliano G, Ognio E, Brini AT, Di Oto E, Revoltella RP. Transplanted human adipose tissue-derived stem cells engraft and induce regeneration in mice olfactory neuroepithelium in response to dichlobenil subministration. Chem Senses 2014; 39:617-29. [PMID: 25056732 DOI: 10.1093/chemse/bju035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used immunodeficient mice, whose dorsomedial olfactory region was permanently damaged by dichlobenil inoculation, to test the neuroregenerative properties of transplanted human adipose tissue-derived stem cells after 30 and 60 days. Analysis of polymerase chain reaction bands revealed that stem cells preferentially engrafted in the lesioned olfactory epithelium compared with undamaged mucosa of untreated transplanted mice. Although basal cell proliferation in untransplanted lesioned mice did not give rise to neuronal cells in the olfactory mucosa, we observed clusters of differentiating olfactory cells in transplanted mice. After 30 days, and even more at 60 days, epithelial thickness was partially recovered to normal values, as also the immunohistochemical properties. Functional reactivity to odorant stimulation was also confirmed through electro-olfactogram recording in the dorsomedial epithelium. Furthermore, we demonstrated that engrafted stem cells fused with mouse cells in the olfactory organ, even if heterokaryons detected were too rare to hypothesize they directly repopulated the lesioned epithelium. The data reported prove that the migrating transplanted stem cells were able to induce a neuroregenerative process in a specific lesioned sensory area, enforcing the perspective that they could become an available tool for stem cell therapy.
Collapse
Affiliation(s)
- Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, and Foundation Onlus Stem Cells and Life, Via Selmi 3, 40126 Bologna, Italy,
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, and Foundation Onlus Stem Cells and Life, Via Selmi 3, 40126 Bologna, Italy
| | - Simone Pifferi
- International School for Advanced Studies, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Anna Menini
- International School for Advanced Studies, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Emanuela Ognio
- IRCCS San Martino, National Institute for Cancer Research (IST), Largo Rosanna Benzi 10, 16132 Genua, Italy
| | - Anna Teresa Brini
- Department of Biomedical, Surgical and Odontoiatric Sciences, University of Milan, Via Vanvitelli 32, 2019 Milan, Italy
| | - Enrico Di Oto
- Department of Hematology and Oncology "L. and A. Seragnoli," Section of Anatomic Pathology at Bellaria Hospital, University of Bologna, Via Altura 3, 40139 Bologna, Italy and
| | - Roberto P Revoltella
- Institute for Chemical, Physical Processes, C.N.R. and Foundation Onlus Stem Cells and Life, Via L.L. Zamenhof 8, 56127 Pisa, Italy
| |
Collapse
|
19
|
Shepherd-Barr K, Shepherd GM. Madeleines and Neuromodernism: Reassessing Mechanisms of Autobiographical Memory in Proust. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/08989575.1998.10815117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Imahashi M, Watanabe M, Jha SK, Hayashi K. Olfaction-inspired sensing using a sensor system with molecular recognition and optimal classification ability for comprehensive detection of gases. SENSORS 2014; 14:5221-38. [PMID: 24625745 PMCID: PMC4003990 DOI: 10.3390/s140305221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/20/2014] [Accepted: 03/10/2014] [Indexed: 11/20/2022]
Abstract
In this study, we examined the comprehensive detection of numerous volatile molecules based on the olfactory information constructed by using olfaction-inspired sensor technology. The sensor system can simultaneously detect multiple odors by the separation and condensation ability of molecularly imprinted filtering adsorbents (MIFAs), where a MIP filter with a molecular sieve was deposited on a polydimethylsiloxane (PDMS) substrate. The adsorption properties of MIFAs were evaluated using the solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The results demonstrated that the system embedded with MIFAs possesses high sensitivity and specific selectivity. The digitization and comprehensive classification of odors were accomplished by using artificial odor maps constructed through this system.
Collapse
Affiliation(s)
- Masahiro Imahashi
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Masashi Watanabe
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Sunil Kumar Jha
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Kenshi Hayashi
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| |
Collapse
|
21
|
Conte I, Banfi S, Bovolenta P. Non-coding RNAs in the development of sensory organs and related diseases. Cell Mol Life Sci 2013; 70:4141-55. [PMID: 23588489 PMCID: PMC11113508 DOI: 10.1007/s00018-013-1335-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022]
Abstract
Genomes are transcribed well beyond the conventionally annotated protein-encoding genes and produce many thousands of regulatory non-coding RNAs (ncRNAs). In the last few years, ncRNAs, especially microRNAs and long non-coding RNA, have received increasing attention because of their implication in the function of chromatin-modifying complexes and in the regulation of transcriptional and post-transcriptional events. The morphological events and the genetic networks responsible for the development of sensory organs have been well delineated and therefore sensory organs have provided a useful scenario to address the role of ncRNAs. In this review, we summarize the current information on the importance of microRNAs and long non-coding RNAs during the development of the eye, inner ear, and olfactory system in vertebrates. We will also discuss those cases in which alteration of ncRNA expression has been linked to pathological conditions affecting these organs.
Collapse
Affiliation(s)
- Ivan Conte
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Paola Bovolenta
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC–UAM, c/Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
- CIBER de Enfermedades Raras, ISCIII, Madrid, Spain
| |
Collapse
|
22
|
Apps PJ. Are mammal olfactory signals hiding right under our noses? Naturwissenschaften 2013; 100:487-506. [DOI: 10.1007/s00114-013-1054-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 01/23/2023]
|
23
|
Miyasaka N, Wanner AA, Li J, Mack-Bucher J, Genoud C, Yoshihara Y, Friedrich RW. Functional development of the olfactory system in zebrafish. Mech Dev 2012; 130:336-46. [PMID: 23010553 DOI: 10.1016/j.mod.2012.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 11/29/2022]
Abstract
The olfactory system has become a popular model to study the function of neuronal circuits and the molecular and cellular mechanisms underlying the development of neurons and their connections. An excellent model to combine studies of function and development is the zebrafish because it not only permits sophisticated molecular and genetic analyses of development, but also functional measurements of neuronal activity patterns in the intact brain. This article reviews insights into the functional development of the olfactory system that have been obtained in zebrafish. The focus is on the specification of olfactory sensory neurons (OSNs), the mechanisms controlling odorant receptor expression and OSN identity, the pathfinding of OSN axons towards target glomeruli in the olfactory bulb (OB), the development of glomeruli and functional topographic maps in the OB, and the development of inhibitory interneurons in the OB.
Collapse
Affiliation(s)
- Nobuhiko Miyasaka
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Bautze V, Bär R, Fissler B, Trapp M, Schmidt D, Beifuss U, Bufe B, Zufall F, Breer H, Strotmann J. Mammalian-Specific OR37 Receptors Are Differentially Activated by Distinct Odorous Fatty Aldehydes. Chem Senses 2012; 37:479-93. [DOI: 10.1093/chemse/bjr130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Kuebler LS, Olsson SB, Weniger R, Hansson BS. Neuronal processing of complex mixtures establishes a unique odor representation in the moth antennal lobe. Front Neural Circuits 2011; 5:7. [PMID: 21772814 PMCID: PMC3128929 DOI: 10.3389/fncir.2011.00007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 04/27/2011] [Indexed: 12/03/2022] Open
Abstract
Animals typically perceive natural odor cues in their olfactory environment as a complex mixture of chemically diverse components. In insects, the initial representation of an odor mixture occurs in the first olfactory center of the brain, the antennal lobe (AL). The contribution of single neurons to the processing of complex mixtures in insects, and in particular moths, is still largely unknown. Using a novel multicomponent stimulus system to equilibrate component and mixture concentrations according to vapor pressure, we performed intracellular recordings of projection and interneurons in an attempt to quantitatively characterize mixture representation and integration properties of single AL neurons in the moth. We found that the fine spatiotemporal representation of 2–7 component mixtures among single neurons in the AL revealed a highly combinatorial, non-linear process for coding host mixtures presumably shaped by the AL network: 82% of mixture responding projection neurons and local interneurons showed non-linear spike frequencies in response to a defined host odor mixture, exhibiting an array of interactions including suppression, hypoadditivity, and synergism. Our results indicate that odor mixtures are represented by each cell as a unique combinatorial representation, and there is no general rule by which the network computes the mixture in comparison to single components. On the single neuron level, we show that those differences manifest in a variety of parameters, including the spatial location, frequency, latency, and temporal pattern of the response kinetics.
Collapse
Affiliation(s)
- Linda S Kuebler
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology Jena, Germany
| | | | | | | |
Collapse
|
26
|
Abaffy T, Defazio AR. The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility. BMC Res Notes 2011; 4:137. [PMID: 21548958 PMCID: PMC3118157 DOI: 10.1186/1756-0500-4-137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/06/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Our objective was to study the pattern of olfactory receptor expression within the dorsal and ventral regions of the mouse olfactory epithelium. We hypothesized that olfactory receptors were distributed based on the chemical properties of their ligands: e.g. receptors for polar, hydrophilic and weakly volatile odorants would be present in the dorsal region of olfactory epithelium; while receptors for non-polar, more volatile odorants would be distributed to the ventral region. To test our hypothesis, we used micro-transplantation of cilia-enriched plasma membranes derived from dorsal or ventral regions of the olfactory epithelium into Xenopus oocytes for electrophysiological characterization against a panel of 100 odorants. FINDINGS Odorants detected by ORs from the dorsal and ventral regions showed overlap in volatility and water solubility. We did not find evidence for a correlation between the solubility and volatility of odorants and the functional expression of olfactory receptors in the dorsal or ventral region of the olfactory epithelia. CONCLUSIONS No simple clustering or relationship between chemical properties of odorants could be associated with the different regions of the olfactory epithelium. These results suggest that the location of ORs within the epithelium is not organized based on the physico-chemical properties of their ligands.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, 1600 NW 10thAve, Miami, 33136, Fl, USA.
| | | |
Collapse
|
27
|
Soh Z, Tsuji T, Takiguchi N, Ohtake H. An Artificial Neural Network Approach for Glomerular Activity Pattern Prediction Using the Graph Kernel Method and the Gaussian Mixture Functions. Chem Senses 2011; 36:413-24. [DOI: 10.1093/chemse/bjq147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Neuro-based olfactory model for artificial organoleptic tests. ARTIFICIAL LIFE AND ROBOTICS 2009. [DOI: 10.1007/s10015-009-0699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Shepherd GM. Symposium overview and historical perspective: dendrodendritic synapses: past, present, and future. Ann N Y Acad Sci 2009; 1170:215-23. [PMID: 19686140 DOI: 10.1111/j.1749-6632.2009.03937.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gordon M Shepherd
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| |
Collapse
|
30
|
Abstract
Olfaction is one of the chemical senses in both vertebrate and invertebrate animals essential for a variety of social behaviors. Recent molecular biological and physiological studies using optical recording have indicated elaborate mechanisms in the main olfactory bulb for processing input from olfactory receptor neurons and control of output to higher centers in the brain. The current challenge is to identify a structural basis for understanding such elaborate molecular and functional organization. Immunocytochemistry and other advanced technologies have enabled us to label bulbar neurons selectively, and they have shown that the olfactory bulb has much greater heterogeneity in chemical and structural neuronal organization and in synaptic connectivity than previously believed. This review describes the structural aspects of the main olfactory bulb of rats and summarizes the findings for its synaptic organization based on chemical coding of neurons. Current uncertainties and issues that need to be clarified in the future are also discussed.
Collapse
Affiliation(s)
- Kazunori Toida
- Department of Anatomy and Cell Biology, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto, Tokushima, Japan.
| |
Collapse
|
31
|
Mölle M, Eschenko O, Gais S, Sara SJ, Born J. The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats. Eur J Neurosci 2009; 29:1071-81. [PMID: 19245368 DOI: 10.1111/j.1460-9568.2009.06654.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mechanisms underlying off-line consolidation of memory during sleep are elusive. Learning of hippocampus-dependent tasks increases neocortical slow oscillation synchrony, and thalamocortical spindle and hippocampal ripple activity during subsequent non-rapid eye movement sleep. Slow oscillations representing an oscillation between global neocortical states of increased (up-state) and decreased (down-state) neuronal firing temporally group thalamic spindle and hippocampal ripple activity, which both occur preferentially during slow oscillation up-states. Here we examined whether slow oscillations also group learning-induced increases in spindle and ripple activity, thereby providing time-frames of facilitated hippocampus-to-neocortical information transfer underlying the conversion of temporary into long-term memories. Learning (word-pairs in humans, odor-reward associations in rats) increased slow oscillation up-states and, in humans, shaped the timing of down-states. Slow oscillations grouped spindle and rat ripple activity into up-states under basal conditions. Prior learning produced in humans an increase in spindle activity focused on slow oscillation up-states. In rats, learning induced a distinct increase in spindle and ripple activity that was not synchronized to up-states. Event-correlation histograms indicated an increase in spindle activity with the occurrence of ripples. This increase was prolonged after learning, suggesting a direct temporal tuning between ripples and spindles. The lack of a grouping effect of slow oscillations on learning-induced spindles and ripples in rats, together with the less pronounced effects of learning on slow oscillations, presumably reflects a weaker dependence of odor learning on thalamo-neocortical circuitry. Slow oscillations might provide an effective temporal frame for hippocampus-to-neocortical information transfer only when thalamo-neocortical systems are already critically involved during learning.
Collapse
Affiliation(s)
- Matthias Mölle
- Department of Neuroendocrinology, University of Lübeck, Ratzeburger Allee 160, Haus 23a, 23538 Lübeck, Germany.
| | | | | | | | | |
Collapse
|
32
|
Shimizu T, Hibi M. Formation and patterning of the forebrain and olfactory system by zinc-finger genes Fezf1 and Fezf2. Dev Growth Differ 2009; 51:221-31. [PMID: 19222525 DOI: 10.1111/j.1440-169x.2009.01088.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The zinc finger genes Fezf1 (Fez) and Fezf2 (Fez-like, Fezl, Zfp312) were initially identified as anterior neuroectoderm-specific genes in Xenopus and zebrafish. They encode transcriptional regulators containing an Engrailed homology 1 (Eh1) repressor motif, which is known to interact with Groucho/TLE (Transducin-Like Enhancer of Split)-type transcriptional co-repressors. Both Fezf1 and Fezf2 are expressed in the prospective forebrain region during early embryogenesis, and they subsequently show both overlapping and distinct expression domains in the olfactory epithelium and forebrain. Loss-of-function studies in mouse and zebrafish revealed roles for Fezf1 and Fezf2 in the development of the olfactory system and forebrain. In mice, Fezf1, expressed in olfactory sensory neurons, is required for the axonal projection of olfactory sensory neurons, and controls the layer formation of the olfactory bulb in a non-cell autonomous manner. Fezf2 is involved in the differentiation of subplate neurons and the formation of the fimbria and fornix. Fezf2 is also essential for specification of the subcerebral projection neurons in the neocortex. Fezf1 and Fezf2 control the rostro-caudal patterning of the diencephalon by repressing the caudal diencephalon fate in the rostral diencephalon in mice and zebrafish. In zebrafish, fezf2 is also required for the development of monoaminergic (dopaminergic and serotonergic) neurons in the basal forebrain.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | |
Collapse
|
33
|
A neural network model of the olfactory system of mice: simulated the tendency of attention behavior. ARTIFICIAL LIFE AND ROBOTICS 2008. [DOI: 10.1007/s10015-008-0538-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Loseva E, Yuan TF, Karnup S. Neurogliogenesis in the mature olfactory system: a possible protective role against infection and toxic dust. ACTA ACUST UNITED AC 2008; 59:374-87. [PMID: 19027790 PMCID: PMC7112504 DOI: 10.1016/j.brainresrev.2008.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/01/2008] [Accepted: 10/25/2008] [Indexed: 01/12/2023]
Abstract
The outpost position of the olfactory bulb (OB) between the direct inputs from sensory neurons of the nasal epithelium and other parts of the brain suggests its highest vulnerability among all brain structures to penetration of exogenous agents. A number of neurotropic viruses have been found to invade the brain through the OB. There is growing evidence that microscopic particles of toxic dusts can propagate from the nasal epithelium to the OB and further into the brain. These harmful agents impair cellular elements of the brain. Apparently, cells in the OB are the most affected, as they are the first to encounter viral infections and toxic particles. It is well known that neuronal and glial progenitors are continuously generated from neuronal stem cells in the subventricular zone of the adult brain and then migrate predominantly into the OB. Therefore, it is feasible to suggest that substitution of injured or dead cells in the OB by new-born neurons, differentiating from progenitors, plays a role in protecting the OB neuronal microcircuits from destruction. Furthermore, some cytokines and chemokines released in response to infection and/or intoxication can modulate different stages of neurogenesis (proliferation, migration, and differentiation). We hypothesize that continuous neurogenesis in the olfactory system throughout adulthood evolved as a protective mechanism to prevent impairment of the most ancient but vitally important sensory system. In addition, differentiation of a substantial portion of progenitors to glial cells, including macrophages and microglia, may create an additional barrier to exogenous agents on their way deep to the brain.
Collapse
Affiliation(s)
- Elena Loseva
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia.
| | | | | |
Collapse
|
35
|
A neural network model of the olfactory system of mice: computer simulation of the attention behavior of mice for some components in an odor. ARTIFICIAL LIFE AND ROBOTICS 2008. [DOI: 10.1007/s10015-007-0445-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Cain WS, de Wijk RA, Nordin S, Nordin M. Independence of Odor Quality and Absolute Sensitivity in a Study of Aging. CHEMOSENS PERCEPT 2007. [DOI: 10.1007/s12078-007-9002-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Rolen SH, Caprio J. Processing of bile salt odor information by single olfactory bulb neurons in the channel catfish. J Neurophysiol 2007; 97:4058-68. [PMID: 17442768 DOI: 10.1152/jn.00247.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A chemotopic map of biologically relevant odorants (that include amino acids, bile salts, and nucleotides) exists in the olfactory bulb (OB) of channel catfish, Ictalurus punctatus. Neurons processing bile salt odorant information lie medially within this OB map; however, information as to how single neurons process bile salt odorant information is lacking. In the present report, recordings were obtained from 51 OB neurons from 30 channel catfish to determine the excitatory molecular receptive range (EMRR) of bile salt responsive neurons. All recordings were performed in vivo within the medial portions of the OB using extracellular electrophysiological techniques. Excitatory thresholds to bile salts typically ranged between 0.1 and 10 muM. The bile salt specificity of OB neurons were divided into three groups: neurons excited by taurine-conjugated bile salts only (group T), neurons excited by nonconjugated bile salts only (group N), and neurons excited by at least one member of each of the three classes of bile salts tested (group G). In addition to the conjugating group at C24 of the side-chain, OB neurons discriminated bile salts by the molecular features present at three other carbon positions (C3, C7, and C12) along the steroid backbone. These data suggest that OB neurons are selectively excited by combinations of molecular features found on the side-chain and along the steroid nucleus of bile salt molecules.
Collapse
Affiliation(s)
- S H Rolen
- Dept. of Biological Sciences, Louisiana State University, Life Sciences Bldg. Rm. 107, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
38
|
Shepherd GM, Chen WR, Willhite D, Migliore M, Greer CA. The olfactory granule cell: from classical enigma to central role in olfactory processing. ACTA ACUST UNITED AC 2007; 55:373-82. [PMID: 17434592 DOI: 10.1016/j.brainresrev.2007.03.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/08/2007] [Accepted: 03/13/2007] [Indexed: 11/22/2022]
Abstract
The granule cell of the olfactory bulb was first described by Golgi in 1875 and Cajal and his contemporaries in the 1890s as an enigmatic cell without an axon, whose status as a nerve cell was questionable. Insight into its functions began in the 1960s with evidence that it acted as an interneuron to mediate powerful inhibition of mitral cells. The circuit was found to involve dendrodendritic synapses for activation by mitral cell lateral dendrites of the granule cell dendritic spines and inhibition of the same and neighboring mitral cell lateral dendrites. Subsequent studies established the roles of glutamatergic receptors and GABAergic receptors in this circuit. The lateral inhibition is believed to be involved in contrast enhancement between mitral cells responding to different odor molecules. Current studies are analysing how the lateral inhibition can be mediated over arbitrary distances between columns of granule cells through action potential propagation in the mitral cell secondary dendrites. Among other important properties, granule cells undergo neurogenesis from precursor cells throughout adult life. This originally enigmatic cell thus appears to play a critical role in olfactory processing.
Collapse
Affiliation(s)
- Gordon M Shepherd
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | | | | | | | | |
Collapse
|
39
|
Nikonov AA, Caprio J. Responses of olfactory forebrain units to amino acids in the channel catfish. J Neurophysiol 2007; 97:2490-8. [PMID: 17251362 DOI: 10.1152/jn.01198.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A paucity of information exists concerning the processing of odorant information by single neurons in any vertebrate above the level of the olfactory bulb (OB). In this report, odorant specificity to four types of L-alpha-amino acids (neutral with long side-chains, neutral with short side-chains, basic and acidic), known biologically relevant odorants for teleosts, was determined for 217 spontaneously active forebrain (FB) neurons in the channel catfish. Group I FB units were identified that were excited by only one of four types of amino acids; no Group I unit was encountered that was excited by an acidic amino acid. The Group I FB units exhibited similar preferences as described previously for OB neurons, suggesting that no major modifications of olfactory information for at least some of these units occurred between the OB and FB. Evidence, however, for the convergence of odor information between the OB and FB was suggested by Group II FB units that exhibited a broader excitatory molecular receptive range (EMRR) than those of previously recorded types of OB units or the Group I FB units. Group II FB units were excited by both neutral and basic amino acids and a few also by acidic amino acids, EMRRs not observed previously in OB units. Stimulus-induced inhibition, likely for contrast enhancement, was also often observed for the many of the FB units encountered. The observed EMRRs of the FB units presently identified and those of the OB units previously studied are consistent with the ability of catfish to behaviorally discriminate these compounds.
Collapse
Affiliation(s)
- Alexander A Nikonov
- Department of Biological Sciences, Louisiana State University, Life Sciences Bldg., Rm 202, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
40
|
Sachse S, Peele P, Silbering AF, Gühmann M, Galizia CG. Role of histamine as a putative inhibitory transmitter in the honeybee antennal lobe. Front Zool 2006; 3:22. [PMID: 17196109 PMCID: PMC1770915 DOI: 10.1186/1742-9994-3-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 12/29/2006] [Indexed: 11/25/2022] Open
Abstract
Background Odors are represented by specific spatio-temporal activity patterns in the olfactory bulb of vertebrates and its insect analogue, the antennal lobe. In honeybees inhibitory circuits in the AL are involved in the processing of odors to shape afferent odor responses. GABA is known as an inhibitory transmitter in the antennal lobe, but not all interneurons are GABAergic. Therefore we sought to analyze the functional role of the inhibitory transmitter histamine for the processing of odors in the honeybee AL. Results We optically recorded the representation of odors before, during and after histamine application at the input level (estimated from a compound signal), and at the output level (by selectively measuring the projection neurons). For both, histamine led to a strong and reversible reduction of odor-evoked responses. Conclusion We propose that histamine, in addition to GABA, acts as an inhibitory transmitter in the honeybee AL and is therefore likely to play a role in odor processing.
Collapse
Affiliation(s)
- Silke Sachse
- Institut für Biologie – Neurobiologie, Freie Universität Berlin, Königin-Luise Str. 28-30, D-14195 Berlin, Germany
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Str. 8, D-07745 Jena, Germany
| | - Philipp Peele
- Institut für Biologie – Neurobiologie, Freie Universität Berlin, Königin-Luise Str. 28-30, D-14195 Berlin, Germany
| | - Ana F Silbering
- Institut für Biologie – Neurobiologie, Freie Universität Berlin, Königin-Luise Str. 28-30, D-14195 Berlin, Germany
- Lehrstuhl für Neurobiologie, Universität Konstanz, D-78457 Konstanz, Germany
| | - Martin Gühmann
- Institut für Biologie – Neurobiologie, Freie Universität Berlin, Königin-Luise Str. 28-30, D-14195 Berlin, Germany
| | - C Giovanni Galizia
- Institut für Biologie – Neurobiologie, Freie Universität Berlin, Königin-Luise Str. 28-30, D-14195 Berlin, Germany
- Lehrstuhl für Neurobiologie, Universität Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
41
|
Mori K, Takahashi YK, Igarashi KM, Yamaguchi M. Maps of odorant molecular features in the Mammalian olfactory bulb. Physiol Rev 2006; 86:409-33. [PMID: 16601265 DOI: 10.1152/physrev.00021.2005] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The olfactory bulb (OB) is the first relay station of the central olfactory system in the mammalian brain and contains a few thousand glomeruli on its surface. Because individual glomeruli represent a single odorant receptor, the glomerular sheet of the OB forms odorant receptor maps. This review summarizes the emerging view of the spatial organization of the odorant receptor maps. Recent studies suggest that individual odorant receptors are molecular-feature detecting units, and so are individual glomeruli in the OB. How are the molecular-feature detecting units spatially arranged in the glomerular sheet? To characterize the molecular-feature specificity of an individual glomerulus, it is necessary to determine the molecular receptive range (MRR) of the glomerulus and to compare the molecular structure of odorants within the MRR. Studies of the MRR mapping show that 1) individual glomeruli typically respond to a range of odorants that share a specific combination of molecular features, 2) each glomerulus appears to be unique in its MRR property, and 3) glomeruli with similar MRR properties gather together in proximity and form molecular-feature clusters. The molecular-feature clusters are located at stereotypical positions in the OB and might be part of the neural representation of basic odor quality. Detailed studies suggest that the glomerular sheet represents the characteristic molecular features in a systematic, gradual, and multidimensional fashion. The molecular-feature maps provide a basis for understanding how the olfactory cortex reads the odor maps of the OB.
Collapse
Affiliation(s)
- Kensaku Mori
- Department of Physiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|
42
|
Bernabeu R, Thiriet N, Zwiller J, Di Scala G. Lesion of the lateral entorhinal cortex amplifies odor-induced expression of c-fos, junB, and zif 268 mRNA in rat brain. Synapse 2006; 59:135-43. [PMID: 16342059 DOI: 10.1002/syn.20224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paradoxical facilitation of olfactory learning following entorhinal cortex (EC) lesion has been described, which may result from widespread functional alterations taking place within the olfactory system. To test this hypothesis, expression of the immediate early genes c-fos, junB, and zif 268 was studied in response to an olfactory stimulation in several brain areas in control and in EC-lesioned rats. Olfactory stimulation in control rats induced the expression of the three genes in the granular/mitral and glomerular layers of the olfactory bulb, as well as c-fos and junB expression in the piriform cortex. However EC lesion was devoid of effects in nonstimulated animals; it significantly amplified the odor-induced expression of the three genes in these areas, as well as in the amygdala, hippocampus, and parietal-temporal cortices. The data suggest that EC lesion modifies the neural processing of odor by suppressing an inhibitory influence on brain areas connected to this cortex.
Collapse
Affiliation(s)
- Ramón Bernabeu
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521, Université Louis Pasteur/CNRS, Strasbourg 67000, France
| | | | | | | |
Collapse
|
43
|
Hirata T, Nakazawa M, Yoshihara SI, Miyachi H, Kitamura K, Yoshihara Y, Hibi M. Zinc-finger gene Fez in the olfactory sensory neurons regulates development of the olfactory bulb non-cell-autonomously. Development 2006; 133:1433-43. [PMID: 16540508 DOI: 10.1242/dev.02329] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fez is a zinc-finger gene encoding a transcriptional repressor that is expressed in the olfactory epithelium, hypothalamus, ventrolateral pallium and prethalamus at mid-gestation. To reveal its function, we generated Fez-deficient mice. The Fez-deficient mice showed several abnormalities in the olfactory system: (1) impaired axonal projection of the olfactory sensory neurons; (2) reduced size of the olfactory bulb; (3) abnormal layer formation in the olfactory bulb; and (4) aberrant rostral migration of the interneuron progenitors. Fez was not expressed in the projection neurons, interneurons or interneuron progenitors. Transgene-mediated expression of Fez in olfactory sensory neurons significantly rescued the abnormalities in olfactory axon projection and in the morphogenesis of the olfactory bulb in Fez-knockout mice. Thus, Fez is cell-autonomously required for the axon termination of olfactory sensory neurons, and Fez non-cell-autonomously controls layer formation and interneuron development in the olfactory bulb. These findings suggest that signals from olfactory sensory neurons contribute to the proper formation of the olfactory bulb.
Collapse
Affiliation(s)
- Tsutomu Hirata
- Laboratory for Vertebrate Axis Formation, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Reisenman CE, Christensen TA, Hildebrand JG. Chemosensory selectivity of output neurons innervating an identified, sexually isomorphic olfactory glomerulus. J Neurosci 2006; 25:8017-26. [PMID: 16135759 PMCID: PMC1351300 DOI: 10.1523/jneurosci.1314-05.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The antennal lobe (AL) of insects, like the olfactory bulb of vertebrates, is characterized by discrete modules of synaptic neuropil called glomeruli. In some insects (e.g., moths and cockroaches), a few glomeruli are sexually dimorphic and function in labeled lines for processing of sensory information about sex pheromones. Controversy still exists, however, about whether projection (output) neurons (PNs) of glomeruli in the main AL are also narrowly tuned. We examined this critical issue in the AL of the moth Manduca sexta. We used intracellular recording and staining techniques to investigate the chemosensory tuning of PNs innervating an identifiable, sexually isomorphic glomerulus, G35, in the main AL. We found that the morphological features and chemosensory tuning of G35-PNs were nearly identical in females and males. G35-PNs responded to low concentrations of the plant-derived volatile compound cis-3-hexenyl acetate (c3HA), but the sensitivity threshold of female PNs was lower than that of male PNs. The propionate and butyrate homologs of c3HA could evoke excitatory responses but only at moderate-to-high concentrations. Other plant volatiles did not evoke responses from G35-PNs. Moreover, PNs innervating glomeruli near G35 (in females) showed little or no response to c3HA. Female G35-PNs were hyperpolarized by (+/-)linalool, a compound that excites PNs in an adjacent glomerulus, thus providing evidence for lateral-inhibitory interactions between glomeruli. Our results show that PNs arborizing in an identified glomerulus in the main olfactory pathway are morphologically and physiologically equivalent in both sexes and have characteristic, limited molecular receptive ranges that are highly conserved across individuals.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077, USA.
| | | | | |
Collapse
|
45
|
Elsaesser R, Paysan J. Morituri te salutant? Olfactory signal transduction and the role of phosphoinositides. ACTA ACUST UNITED AC 2006; 34:97-116. [PMID: 16374712 DOI: 10.1007/s11068-005-5050-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 08/11/2005] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
During the past 150 years, researchers have investigated the cellular, physiological, and molecular mechanisms underlying the sense of smell. Based on these efforts, a conclusive model of olfactory signal transduction in the vertebrate's nose is now available, spanning from G-protein-mediated odorant receptors to ion channels, which are linked by a cyclic adenosine 3',5'-monophosphate-mediated signal transduction cascade. Here we review some historical milestones in the chronology of olfactory research, particularly emphasising the role of cyclic nucleotides and inositol trisphosphate as alternative second messengers in olfactory cells. We will describe the functional anatomy of the nose, outline the cellular composition of the olfactory epithelium, and describe the discovery of the molecular backbone of the olfactory signal transduction cascade. We then summarize our current model, in which cyclic adenosine monophosphate is the sole excitatory second messenger in olfactory sensory neurons. Finally, a possible significance of microvillous olfactory epithelial cells and inositol trisphosphate in olfaction will be discussed.
Collapse
Affiliation(s)
- Rebecca Elsaesser
- School of Medicine, Johns Hopkins University, 725 N. Wolfe St., 408 WBSB, Baltimore, MD 21205, USA
| | | |
Collapse
|
46
|
Whitley M, Treloar H, De Arcangelis A, Georges Labouesse E, Greer CA. The alpha6 integrin subunit in the developing mouse olfactory bulb. ACTA ACUST UNITED AC 2006; 34:81-96. [PMID: 16374711 DOI: 10.1007/s11068-005-5049-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Integrins are heterodimeric cell surface receptors that mediate developmental events by binding extracellular matrix ligands. Several lines of evidence suggest a role for integrins, specifically the alpha 6 subunit, in neuronal migration, neurite outgrowth, and axon guidance during olfactory development. Therefore, we undertook an analysis of the expression of the alpha 6 subunit in the olfactory system of the embryonic and early postnatal mouse to understand the role it may play during neural development. In addition, as a functional assay we examined the developmental effects of the loss of this subunit on olfactory development by analyzing an alpha 6 knockout (alpha 6-/-). Immunohistochemical analyses and confocal microscopy were used to examine alpha 6 expression in the CD-1 embryonic and early postnatal olfactory system and also to examine the organization of the olfactory system in the alpha 6-/- mouse. In CD-1 mice from E13 to E17, alpha 6 localizes in radial patterns extending from the core of the olfactory bulb to the nerve layer and colocalizes with RC2, an antibody specific for radial glia. By the day of birth (P0; approximately E19), expression is limited to the external plexiform layer and the olfactory nerve layer, where it colocalizes with laminin and p75. In the alpha 6-/- mouse, areas of ectopic granule cells were observed in the mitral cell layer of the olfactory bulb. These ectopias coincided with areas of disorganization of the radial glial processes and breaks in the mitral cell layer. These observations suggest a role for alpha 6 integrin in neural migration during olfactory development, likely secondary to organization of the radial glial scaffold.
Collapse
Affiliation(s)
- Matthew Whitley
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
47
|
Faillace MP, Zwiller J, Di Scala G, Bernabeu R. Odor increases [3H]phorbol dibutyrate binding to protein kinase C in olfactory structures of rat brain. Effect of entorhinal cortex lesion. Brain Res 2006; 1068:16-22. [PMID: 16386712 DOI: 10.1016/j.brainres.2005.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 10/24/2005] [Accepted: 11/06/2005] [Indexed: 11/22/2022]
Abstract
Since protein kinase C (PKC) is known to be activated in the olfactory bulb and in several limbic areas related to odor processing, we determined whether an olfactory stimulus was able to modulate the activity of PKC in animals with bilateral entorhinal cortex lesion. The translocation of PKC from the cytosol to the membrane was studied using the phorbol ester 12,13-dibutyrate ([3H]PDBu) binding in control and bilateral entorhinal cortex (EC) lesioned rats. The lesion of EC per se did not significantly affect [3H]PDBu binding in any of the brain structures analyzed, while odor stimulation induced it in both control and EC-lesioned groups in the external plexiform layer of the olfactory bulb. In contrast, an odor-induced increase of [3H]PDBu binding in internal glomerular layer of the olfactory bulb was only observed in EC lesioned animals. Similar results were obtained in the piriform cortex. In both CA1 and CA3 hippocampal subfields, odor stimulation induced an increase of [3H]PDBu binding in both control and EC-lesioned animals, the increase being potentiated only in CA1 of lesioned rats. The dentate gyrus and the amygdala exhibited a similar pattern of [3H]PDBu binding, showing a significant increase exclusively in EC-lesioned animals after odor stimulation. The results strongly suggest that the EC plays a key role in odor processing. PKC appears to play an important role in responding to the activation of lipid second messengers, which have been described to be involved in the processing of odor stimuli in several structures of the olfactory pathway.
Collapse
Affiliation(s)
- Maria Paula Faillace
- Laboratorio de Biologia de Vertebrados, IQUIFIB, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Junín 956, piso 6, Buenos Aires (1121), Argentina
| | | | | | | |
Collapse
|
48
|
Abstract
In this review, we use data obtained primarily from humans to argue that sniffs are not merely a stimulus carrier but are rather a central component of the olfactory percept. We argue that sniffs 1) are necessary for the olfactory percept, 2) affect odorant intensity perception and identity perception, 3) drive activity in olfactory cortex, 4) are rapidly modulated in an odorant-dependent fashion by a dedicated olfactomotor system, and 5) are sufficient to generate an olfactory percept of some sort even in the absence of odor.
Collapse
Affiliation(s)
- Joel Mainland
- Helen Wills Neuroscience Institute and Department of Psychology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
49
|
Shimshek DR, Bus T, Kim J, Mihaljevic A, Mack V, Seeburg PH, Sprengel R, Schaefer AT. Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors. PLoS Biol 2005; 3:e354. [PMID: 16216087 PMCID: PMC1255741 DOI: 10.1371/journal.pbio.0030354] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 08/16/2005] [Indexed: 11/18/2022] Open
Abstract
Genetic perturbations of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q), both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable ("mosaic") among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.
Collapse
Affiliation(s)
- Derya R Shimshek
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Thorsten Bus
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Jinhyun Kim
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Andre Mihaljevic
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Volker Mack
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Peter H Seeburg
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Rolf Sprengel
- 1Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | | |
Collapse
|
50
|
Kosaka K, Kosaka T. synaptic organization of the glomerulus in the main olfactory bulb: compartments of the glomerulus and heterogeneity of the periglomerular cells. Anat Sci Int 2005; 80:80-90. [PMID: 15960313 DOI: 10.1111/j.1447-073x.2005.00092.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
According to the combinatorial receptor and glomerular codes for odors, the fine tuning of the output level from each glomerulus is assumed to be important for information processing in the olfactory system, which may be regulated by numerous elements, such as olfactory nerves (ONs), periglomerular (PG) cells, centrifugal nerves and even various interneurons, such as granule cells, making synapses outside the glomeruli. Recently, structural and physiological analyses at the cellular level started to reveal that the neuronal organization of the olfactory bulb may be more complex than previously thought. In the present paper, we describe the following six points of the structural organization of the glomerulus, revealed by confocal laser scanning microscopy and electron microscopy analyses of rats, mice and other mammals: (i) the chemical heterogeneity of PG cells; (ii) compartmental organization of the glomerulus, with each glomerulus consisting of two compartments, the ON zone and the non-ON zone; (iii) the heterogeneity of PG cells in terms of their structural and synaptic features, whereby type 1 PG cells send their intraglomerular dendrites into both the ON and non-ON zones and type 2 PG cells send their intraglomerular dendrites only into the non-ON zone, thus receiving either few synapses from the ON terminals, if present, or none at all; (iv) the spatial relationship of mitral/tufted cell dendritic processes with ON terminals and PG cell dendrites; (v) complex neuronal interactions via chemical synapses and gap junctions in the glomerulus; and (vi) comparative aspects of the organization of the main olfactory bulb.
Collapse
Affiliation(s)
- Katsuko Kosaka
- School of Health Sciences, Faculty of Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|