1
|
Schäfer V, Stegmüller S, Becker H, Richling E. Reactivity of the 2-Methylfuran Phase I Metabolite 3-Acetylacrolein Toward DNA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25319-25329. [PMID: 39494867 PMCID: PMC11565790 DOI: 10.1021/acs.jafc.4c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Abstract
2-Methylfuran (2-MF) is a well-known industrial chemical and also formed via thermal treatment of food. One main source of 2-MF in the human diet is coffee. 2-MF is known to form 3-acetylacrolein (AcA, 4-oxopent-2-enal) via cytochrome P 450 metabolism and further reacts with amino acids in vivo. Still the reactivity toward other biomolecules is rather scarce. Therefore, AcA was synthesized, and its reaction with 2'-deoxyadenosine (dA), 2'deoxyguanosine (dG), 2'deoxycytosine (dC), and 2'-deoxythymidine (dT) was tested. For this purpose, adduct formation was performed by acid hydrolysis of 2,5-dihydro-2,5-dimethoxy-2-methylfuran (DHDMMF) as well as pure AcA. The structures of these adducts were confirmed by UPLC-ESI+-MS/MS fragmentation patterns and 1H-/13CNMR spectra. Except for dT, which showed no reactivity, all adducts of AcA were characterized, which enabled the development of sensitive quantification methods via (U)HPLC-ESI±-MS/MS. Pure AcA was synthesized by oxidation of 2-MF using dimethyldioxirane (DMDO), and its behavior in aqueous medium was studied. Incubations of AcA and isolated DNA of primary rat hepatocytes (pRH) showed time- and dose-dependent formation of the identified DNA adducts dA-AcA, dG-AcA, or dC-AcA. In contrast, the DNA adducts dA-AcA, dG-AcA, or dC-AcA were not detected on a cellular level when pRH were incubated with 2-MF or AcA. This indicates an efficient detoxification or reaction with biomolecules in the cell, although the induction of other DNA damage, possibly also by other metabolites, cannot be ruled out in principle.
Collapse
Affiliation(s)
- Verena Schäfer
- Department of Chemistry,
Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Simone Stegmüller
- Department of Chemistry,
Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Hanna Becker
- Department of Chemistry,
Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Elke Richling
- Department of Chemistry,
Division of Food Chemistry and Toxicology, University of Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| |
Collapse
|
2
|
Api AM, Bartlett A, Belsito D, Botelho D, Bruze M, Bryant-Freidrich A, Burton GA, Cancellieri MA, Chon H, Dagli ML, Dekant W, Deodhar C, Farrell K, Fryer AD, Jones L, Joshi K, Lapczynski A, Lavelle M, Lee I, Moustakas H, Muldoon J, Penning TM, Ritacco G, Sadekar N, Schember I, Schultz TW, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, 5-methylfurfural, CAS registry number 620-02-0. Food Chem Toxicol 2024; 192 Suppl 1:114943. [PMID: 39173822 DOI: 10.1016/j.fct.2024.114943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Bartlett
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - A Bryant-Freidrich
- Member Expert Panel for Fragrance Safety, Pharmaceutical Sciences, Wayne State University, 42 W. Warren Ave., Detroit, MI, 48202, USA
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Farrell
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Muldoon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Schember
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
3
|
Yilmaz B, Aydin Y, Orta-Yilmaz B. Furan promotes cytotoxic effects through DNA damage and cell apoptosis in Leydig cells. Toxicol Mech Methods 2023; 33:796-805. [PMID: 37488932 DOI: 10.1080/15376516.2023.2240884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Furan is an organic chemical that can cause adverse effects on human health and is formed as a result of the thermal decomposition of many food components during cooking, storage, and processing techniques. Studies have shown that exposure to furan causes nephrotoxicity, hepatotoxicity, immunotoxicity, and reproductive toxicity. According to our current knowledge of the literature, the genotoxic mode of action of furan is highly controversial. The genotoxic effects of furan on the male reproductive system, however, have not been studied. In this study, the TM3 Leydig cell line was treated with 750, 1500, and 3000 μM concentrations of furan for 24 h. Following the completion of the exposure period, the cytotoxicity of furan in TM3 Leydig cells was assessed using a cell viability assay and a spectrophotometric measurement of lactate dehydrogenase (LDH) enzyme levels. The double fluorescence staining method was used to demonstrate furan-induced apoptosis, and DNA damage was shown using the micronucleus, comet, and chromosomal aberration assays. The result indicated that furan administration of Leydig cells resulted in an increase in structural chromosomal aberration, comet, and micronucleus formation, reduced cell viability, increased LDH activity, and a higher incidence of apoptotic cells. These findings revealed that furan induces DNA damage in TM3 Leydig cells, causing genotoxicity and DNA damage-induced cytotoxicity.
Collapse
Affiliation(s)
- Buse Yilmaz
- Department of Biology, Institute of Graduate Studies in Science and Engineering, Istanbul University, Istanbul, Turkey
| | - Yasemin Aydin
- Department of Biology, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
4
|
Qi L, Zhu YX, Wang YK, Tang XX, Li KJ, He M, Sui Y, Wang PM, Zheng DQ, Zhang K. Nonlethal Furfural Exposure Causes Genomic Alterations and Adaptability Evolution in Saccharomyces cerevisiae. Microbiol Spectr 2023; 11:e0121623. [PMID: 37395645 PMCID: PMC10434202 DOI: 10.1128/spectrum.01216-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
Furfural is a major inhibitor found in lignocellulosic hydrolysate, a promising feedstock for the biofermentation industry. In this study, we aimed to investigate the potential impact of this furan-derived chemical on yeast genome integrity and phenotypic evolution by using genetic screening systems and high-throughput analyses. Our results showed that the rates of aneuploidy, chromosomal rearrangements (including large deletions and duplications), and loss of heterozygosity (LOH) increased by 50-fold, 23-fold, and 4-fold, respectively, when yeast cells were cultured in medium containing a nonlethal dose of furfural (0.6 g/L). We observed significantly different ratios of genetic events between untreated and furfural-exposed cells, indicating that furfural exposure induced a unique pattern of genomic instability. Furfural exposure also increased the proportion of CG-to-TA and CG-to-AT base substitutions among point mutations, which was correlated with DNA oxidative damage. Interestingly, although monosomy of chromosomes often results in the slower growth of yeast under spontaneous conditions, we found that monosomic chromosome IX contributed to the enhanced furfural tolerance. Additionally, terminal LOH events on the right arm of chromosome IV, which led to homozygosity of the SSD1 allele, were associated with furfural resistance. This study sheds light on the mechanisms underlying the influence of furfural on yeast genome integrity and adaptability evolution. IMPORTANCE Industrial microorganisms are often exposed to multiple environmental stressors and inhibitors during their application. This study demonstrates that nonlethal concentrations of furfural in the culture medium can significantly induce genome instability in the yeast Saccharomyces cerevisiae. Notably, furfural-exposed yeast cells displayed frequent chromosome aberrations, indicating the potent teratogenicity of this inhibitor. We identified specific genomic alterations, including monosomic chromosome IX and loss of heterozygosity of the right arm of chromosome IV, that confer furfural tolerance to a diploid S. cerevisiae strain. These findings enhance our understanding of how microorganisms evolve and adapt to stressful environments and offer insights for developing strategies to improve their performance in industrial applications.
Collapse
Affiliation(s)
- Lei Qi
- Donghai Laboratory, Zhoushan, China
- Ocean College, Zhejiang University, Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | | | - Ye-Ke Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | | | - Ke-Jing Li
- Ocean College, Zhejiang University, Zhoushan, China
| | - Min He
- Ocean College, Zhejiang University, Zhoushan, China
| | - Yang Sui
- Donghai Laboratory, Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Pin-Mei Wang
- Donghai Laboratory, Zhoushan, China
- Ocean College, Zhejiang University, Zhoushan, China
| | - Dao-Qiong Zheng
- Donghai Laboratory, Zhoushan, China
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ke Zhang
- College of Life Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Nelson GM, Carswell GK, Swartz CD, Recio L, Yauk CL, Chorley BN. Early microRNA responses in rodent liver mediated by furan exposure establish dose thresholds for later adverse outcomes. Toxicol Lett 2023; 384:105-114. [PMID: 37517673 PMCID: PMC10530563 DOI: 10.1016/j.toxlet.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
To reduce reliance on long-term in vivo studies, short-term data linking early molecular-based measurements to later adverse health effects is needed. Although transcriptional-based benchmark dose (BMDT) modeling has been used to estimate potencies and stratify chemicals based on potential to induce later-life effects, dose-responsive epigenetic alterations have not been routinely considered. Here, we evaluated the utility of microRNA (miRNA) profiling in mouse liver and blood, as well as in mouse primary hepatocytes in vitro, to indicate mechanisms of liver perturbation due to short-term exposure of the known rodent liver hepatotoxicant and carcinogen, furan. Benchmark dose modeling of miRNA measurements (BMDmiR) were compared to the referent transcriptional (BMDT) and apical (BMDA) estimates. These analyses indicate a robust dose response for 34 miRNAs to furan and involvement of p53-linked pathways in furan-mediated hepatotoxicity, supporting mRNA and apical measurements. Liver-sourced miRNAs were also altered in the blood and primary hepatocytes. Overall, these results indicate mechanistic involvement of miRNA in furan carcinogenicity and provide evidence of their potential utility as accessible biomarkers of exposure and disease.
Collapse
Affiliation(s)
- Gail M Nelson
- US Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Gleta K Carswell
- US Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Carol D Swartz
- Inotiv Co., 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA
| | - Leslie Recio
- ScitoVation, 100 Capitola Drive Suite 106, Durham, NC 27713, USA
| | - Carole L Yauk
- Dept. Of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Brian N Chorley
- US Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
6
|
Monien BH, Bergau N, Hogervorst JGF, Nawrot TS, Trefflich I, Weikert C, Abraham K. Detection of a Hemoglobin Adduct of the Food Contaminant Furfuryl Alcohol in Humans: Levels of N-((Furan-2-yl)methyl)-valine in Two Epidemiological Studies. Mol Nutr Food Res 2021; 65:e2100584. [PMID: 34652883 DOI: 10.1002/mnfr.202100584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/06/2021] [Indexed: 11/05/2022]
Abstract
SCOPE Furfuryl alcohol is a heat-induced food contaminant, classified as possibly carcinogenic to humans. The proximal carcinogen 2-sulfoxymethylfuran leads to adduct formation in DNA and proteins (e.g., N-((furan-2-yl)methyl)-Val (FFA-Val) in hemoglobin). METHODS AND RESULTS This study analyzed human erythrocyte samples from two studies for the presence of FFA-Val: the Risks and Benefits of a Vegan Diet study (RBVD; 72 adults) and the ENVIRonmental influence ON early AGEing birth cohort study (ENVIRONAGE; 100 mother-newborn pairs). In the RBVD study, FFA-Val levels are lower in vegans compared to omnivores (median 13.0 vs 15.8 pmol g-1 hemoglobin, p = 0.008), and lower in non-smokers compared to smokers (median 14.1 vs 17.0 pmol g-1 hemoglobin, p = 0.003). In the birth cohort, FFA-Val levels are distinctly higher in maternal compared to newborn samples (median 15.2 vs 2.2 pmol g-1 hemoglobin, p < 0.001). CONCLUSIONS FFA-Val, hitherto detected only in blood samples of mice, is quantifiable in all human samples, indicating a general exposure to furfuryl alcohol. The low adduct levels in blood samples from newborn children suggested that the placenta is a barrier to furfuryl alcohol. Dietary habits and tobacco smoking are two main influencing factors on the formation of FFA-Val, which may be of use as a biomarker of exposure to furfuryl alcohol.
Collapse
Affiliation(s)
- Bernhard H Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| | - Nick Bergau
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| | - Janneke G F Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, 3590, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, 3590, Belgium
| | - Iris Trefflich
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| | - Cornelia Weikert
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| | - Klaus Abraham
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| |
Collapse
|
7
|
Russo MT, De Luca G, Palma N, Leopardi P, Degan P, Cinelli S, Pepe G, Mosesso P, Di Carlo E, Sorrentino C, Musiani P, Crebelli R, Bignami M, Dogliotti E. Oxidative Stress, Mutations and Chromosomal Aberrations Induced by In Vitro and In Vivo Exposure to Furan. Int J Mol Sci 2021; 22:9687. [PMID: 34575853 PMCID: PMC8465244 DOI: 10.3390/ijms22189687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 11/17/2022] Open
Abstract
Furan is a volatile compound that is formed in foods during thermal processing. It is classified as a possible human carcinogen by international authorities based on sufficient evidence of carcinogenicity from studies in experimental animals. Although a vast number of studies both in vitro and in vivo have been performed to investigate furan genotoxicity, the results are inconsistent, and its carcinogenic mode of action remains to be clarified. Here, we address the mutagenic and clastogenic activity of furan and its prime reactive metabolite cis-2 butene-1,4-dial (BDA) in mammalian cells in culture and in mouse animal models in a search for DNA lesions responsible of these effects. To this aim, Fanconi anemia-derived human cell lines defective in the repair of DNA inter-strand crosslinks (ICLs) and Ogg1-/- mice defective in the removal of 8-hydroxyguanine from DNA, were used. We show that both furan and BDA present a weak (if any) mutagenic activity but are clear inducers of clastogenic damage. ICLs are strongly indicated as key lesions for chromosomal damage whereas oxidized base lesions are unlikely to play a critical role.
Collapse
Affiliation(s)
- Maria Teresa Russo
- National Centre for Chemical Products, Cosmetics and Consumer Protection, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Gabriele De Luca
- Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Nieves Palma
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| | - Paola Leopardi
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| | - Paolo Degan
- IRCCS AOU San Martino, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy;
| | - Serena Cinelli
- European Research Biology Center, Via Tito Speri 12/14, Pomezia, 00071 Rome, Italy;
| | - Gaetano Pepe
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (G.P.); (P.M.)
| | - Pasquale Mosesso
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, 01100 Viterbo, Italy; (G.P.); (P.M.)
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy; (E.D.C.); (C.S.)
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy; (E.D.C.); (C.S.)
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy
| | - Piero Musiani
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66022 Chieti, Italy; (E.D.C.); (C.S.)
| | - Riccardo Crebelli
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (N.P.); (P.L.); (R.C.)
| |
Collapse
|
8
|
Younes M, Aquilina G, Castle L, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wölfle D, Wright M, Benigni R, Bolognesi C, Chipman K, Cordelli E, Degen G, Marzin D, Svendsen C, Carfì M, Vianello G, Mennes W. Scientific Opinion on Flavouring Group Evaluation 67, Revision 3 (FGE.67Rev3): consideration of 23 furan-substituted compounds evaluated by JECFA at the 55th, 65th, 69th and 86th meetings. EFSA J 2021; 19:e06362. [PMID: 33552300 PMCID: PMC7856567 DOI: 10.2903/j.efsa.2021.6362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The Panel on Food Additives and Flavourings (FAF) was requested to consider the JECFA evaluations of 25 flavouring substances assigned to the Flavouring Group Evaluation 67 (FGE.67Rev3), using the Procedure as outlined in the Commission Regulation (EC) No 1565/2000. Eleven substances have already been considered in FGE.67 and its revisions (FGE.67Rev1 and FGE.67Rev2). During the current assessment, two substances were no longer supported by industry, therefore 12 candidate substances are evaluated in FGE.67Rev3. New genotoxicity and toxicity data are available for 2-pentylfuran [FL-no: 13.059] and 2-acetylfuran [FL-no: 13.054], which are representative substances of subgroup IV [FL-no: 13.069, 13.106, 13.148] and VI-B [FL-no: 13.045, 13.070, 13.083, 13.101, 13.105, 13.138, 13.163], respectively. Based on these data, the Panel concluded that the concern for genotoxicity is ruled out for both [FL-no: 13.054] and [FL-no: 13.059] and consequently for the substances that they represent. Since the candidate substances cannot be anticipated to be metabolised to innocuous products only, they were evaluated along the B-side of the Procedure. The Panel derived a NOAEL of 22.6 mg/kg bw per day and a BMDL of 8.51 mg/kg bw per day, for 2-acetylfuran and 2-pentylfuran, respectively. For all 12 substances sufficient margins of safety were calculated when based on the MSDI approach. Adequate specifications for the materials of commerce are available for all 23 flavouring substances. The Panel agrees with JECFA conclusions, for all 23 substances, 'No safety concern at estimated levels of intake as flavouring substances' based on the MSDI approach. For 18 substances [FL-no: 13.021, 13.022, 13.023, 13.024, 13.031, 13.045, 13.047, 13.054, 13.059, 13.074, 13.083, 13.101, 13.105, 13.106, 13.138, 13.148, 13.163 and 13.190], the mTAMDI intake estimates are above the threshold of toxicological concern (TTC) for their structural classes and more reliable data on uses and use levels are required to finalise their evaluation.
Collapse
|
9
|
Younes M, Aquilina G, Castle L, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wölfle D, Wright M, Benigni R, Bolognesi C, Chipman K, Cordelli E, Degen G, Marzin D, Svendsen C, Carfì M, Vianello G, Mennes W. Scientific Opinion on Flavouring Group Evaluation 13 Revision 3 (FGE.13Rev3): furfuryl and furan derivatives with and without additional side-chain substituents and heteroatoms from chemical group 14. EFSA J 2021; 19:e06386. [PMID: 33552301 PMCID: PMC7856902 DOI: 10.2903/j.efsa.2021.6386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Panel on Food additives and Flavourings of the EFSA was requested to update Flavouring Group Evaluation 13 using the Procedure as outlined in Commission Regulation (EC) No 1565/2000, to include an evaluation of the flavouring substances 2-ethyl-5-methylfuran [FL-no: 13.125] and 2-octylfuran [FL-no: 13.162]. FGE.13 revision 3 (FGE.13Rev3) deals with 26 flavourings substances of which 24 have been already evaluated to be of no safety concern. For [FL-no: 13.125] and [FL-no: 13.162], a concern for genotoxicity was raised in FGE.13Rev1. This concern could be ruled out based on new genotoxicity data on supporting substances in FGE.67Rev3. Subsequently, [FL-no: 13.125 and 13.162] were evaluated, through a stepwise approach that integrates intake from current uses, toxicological threshold of concern (TTC), and available data on metabolism and toxicity, along the B-side of the Procedure, making use of a BMDL of 8.51 mg/kg body weight (bw) per day. The Panel derived this BMDL from an oral subchronic toxicity study with the supporting substance 2-pentylfuran [FL-no: 13.059]. Using this BMDL, for [FL-no: 13.125 and 13.162], adequate margins of safety were calculated based on the MSDI approach. The Panel concluded that the 26 candidate substances in FGE.13Rev3 do not give rise to safety concerns at their levels of dietary intake, when estimated on the basis of the MSDI approach. Adequate specifications for the materials of commerce have been provided for all 26 substances. Data on uses and use levels are needed for [FL-no: 13.130]. For 21 flavouring substances [FL-no: 13.011, 13.102, 13.108, 13.113, 13.114, 13.122, 13.125, 13.127, 13.129, 13.132, 13.133, 13.135, 13.136, 13.139, 13.141, 13.143, 13.146, 13.149, 13.162, 13.178 and 13.185], the mTAMDI intake estimates are above the TTC for their structural class and more reliable data on uses and use levels are required to finalise their evaluation.
Collapse
|
10
|
2-Methylfuran: Toxicity and genotoxicity in male Sprague-Dawley rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 854-855:503209. [DOI: 10.1016/j.mrgentox.2020.503209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022]
|
11
|
Kettlitz B, Scholz G, Theurillat V, Cselovszky J, Buck NR, O’ Hagan S, Mavromichali E, Ahrens K, Kraehenbuehl K, Scozzi G, Weck M, Vinci C, Sobieraj M, Stadler RH. Furan and Methylfurans in Foods: An Update on Occurrence, Mitigation, and Risk Assessment. Compr Rev Food Sci Food Saf 2019; 18:738-752. [DOI: 10.1111/1541-4337.12433] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Beate Kettlitz
- FoodDrinkEurope (FDE) Ave. des Nerviens 9–31 1040 Brussels Belgium
| | - Gabriele Scholz
- Nestlé ResearchVers‐chez‐les‐Blanc 1000 Lausanne 26 Switzerland
| | - Viviane Theurillat
- Nestlé Research & Development Rte de Chavornay 3 CH‐1350 Orbe Switzerland
| | - Jörg Cselovszky
- Cereal Partners Worldwide S.A. Rte de Chavornay 7 CH‐1350 Orbe Switzerland
| | - Neil R. Buck
- General Mills Inc. Ave. Reverdil 12–14 CH‐1260 Nyon Switzerland
| | - Sue O’ Hagan
- Pepsico Beaumont Park, 4 Leycroft Rd., Leiecster LE4 1ET United Kingdom
| | - Eva Mavromichali
- Specialised Nutrition Europe (SNE) Ave. des Nerviens 9–31 1040 Brussels Belgium
| | - Katja Ahrens
- German Federation for Food Law and Food Science Claire‐Waldoff‐Str. 7 10117 Berlin Germany
| | - Karin Kraehenbuehl
- Société des Produits Nestlé S.A. Entre‐deux‐Villes 10–12 1814 La Tour‐de‐Peilz Switzerland
| | - Gabriella Scozzi
- European Breakfast Cereal Assn. Ave. des Nerviens 9–31 B‐1040 Brussels Belgium
| | - Markus Weck
- CULINARIA Europe Reuterstraße 151 D‐53113 Bonn Germany
| | - Claudia Vinci
- European Assn. of Fruit and Vegetable Processors (Profel) Av. De Tervueren 188A B‐1150 Brussels Belgium
| | - Marta Sobieraj
- European Fruit Juice Assn. (AIJN) Rue de la Loi 221 box 5 B‐1040 Brussels Belgium
| | | |
Collapse
|
12
|
Bluhm K, Heger S, Redelstein R, Brendt J, Anders N, Mayer P, Schaeffer A, Hollert H. Genotoxicity of three biofuel candidates compared to reference fuels. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:131-138. [PMID: 30391874 DOI: 10.1016/j.etap.2018.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
Global demand for alternative energy sources increases due to concerns regarding energy security and greenhouse gas emissions. However, little is known regarding the impacts of biofuels to the environment and human health even though the identification of such impacts is important to avoid biofuels leading to undesired effects. In this study mutagenicity and genotoxicity of the three biofuel candidates ethyl levulinate (EL), 2-methyltetrahydrofuran (2-MTHF) and 2-methylfuran (2-MF) were investigated in comparison to two petroleum-derived fuels and a biodiesel. None of the samples induced mutagenicity in the Ames fluctuation test. However, the Micronucleus assay revealed significant effects in Chinese hamster (Cricetulus griseus) V79 cells caused by the potential biofuels. 2-MF revealed the highest toxic potential with significant induction of micronuclei below 20.0 mg/L. EL and 2-MTHF induced micronuclei only at very high concentrations (>1000.0 mg/L). In regard to the genotoxic potential of 2-MF, its usage as biofuel should be critically discussed.
Collapse
Affiliation(s)
- Kerstin Bluhm
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Sebastian Heger
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Regine Redelstein
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Julia Brendt
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Nico Anders
- RWTH Aachen University, Aachener Verfahrenstechnik - Enzyme Process Technology, Worringerweg 1, 52074 Aachen, Germany
| | - Philipp Mayer
- Technical University of Denmark, Department of Environmental Engineering, Kongens Lyngby, Denmark
| | - Andreas Schaeffer
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany; Chongqing University, College of Resources and Environmental Science, Chongqing, 400715, China; Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing, 210093, China
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany; Chongqing University, College of Resources and Environmental Science, Chongqing, 400715, China; Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing, 210093, China; Tongji University, College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, 200092, China.
| |
Collapse
|
13
|
Silva PC, Domingues L, Collins T, Oliveira R, Johansson B. Quantitative assessment of DNA damage in the industrial ethanol production strain Saccharomyces cerevisiae PE-2. FEMS Yeast Res 2018; 18:5097783. [PMID: 30219865 DOI: 10.1093/femsyr/foy101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/12/2018] [Indexed: 11/14/2022] Open
Abstract
Lignocellulosic hydrolysates remain one of the most abundantly used substrates for the sustainable production of second generation fuels and chemicals with Saccharomyces cerevisiae. Nevertheless, fermentation inhibitors such as acetic acid, furfural and hydroxymethylfurfural are formed during the process and can lead to slow or stuck fermentations and/or act as genotoxic agents leading to production strain genetic instability. We have developed a novel dominant deletion (DEL) cassette assay for quantification of DNA damage in both wild-type and industrial yeast strains. Using this assay, the ethanol production strain S. cerevisiae PE-2 was shown to be more resistant to hydrogen peroxide and furfural than the laboratory DEL strain RS112. Indeed, the PE-2 strain also showed a lower tendency for recombination, consistent with a more efficient DNA protection. The dominant DEL assay presented herein should prove to be a useful tool in the selection of robust yeast strains and process conditions for second generation feedstock fermentations.
Collapse
Affiliation(s)
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Tony Collins
- CBMA - Center of Molecular and Environmental Biology
| | - Rui Oliveira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | |
Collapse
|
14
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Chipman K, De Meulenaer B, Dinovi M, Mennes W, Schlatter J, Schrenk D, Baert K, Dujardin B, Wallace H. Risks for public health related to the presence of furan and methylfurans in food. EFSA J 2017; 15:e05005. [PMID: 32625300 PMCID: PMC7009982 DOI: 10.2903/j.efsa.2017.5005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risk to human health of the presence of furan and methylfurans (2-methylfuran, 3-methylfuran and 2,5-dimethylfuran) in food. They are formed in foods during thermal processing and can co-occur. Furans are produced from several precursors such as ascorbic acid, amino acids, carbohydrates, unsaturated fatty acids and carotenoids, and are found in a variety of foods including coffee and canned and jarred foods. Regarding furan occurrence, 17,056 analytical results were used in the evaluation. No occurrence data were received on methylfurans. The highest exposures to furan were estimated for infants, mainly from ready-to-eat meals. Grains and grain-based products contribute most for toddlers, other children and adolescents. In adults, elderly and very elderly, coffee is the main contributor to dietary exposure. Furan is absorbed from the gastrointestinal tract and is found in highest amounts in the liver. It has a short half-life and is metabolised by cytochrome P450 2E1 (CYP2E1) to the reactive metabolite, cis-but-2-ene-1,4-dialdehyde (BDA). BDA can bind covalently to amino acids, proteins and DNA. Furan is hepatotoxic in rats and mice with cholangiofibrosis in rats and hepatocellular adenomas/carcinomas in mice being the most prominent effects. There is limited evidence of chromosomal damage in vivo and a lack of understanding of the underlying mechanism. Clear evidence for indirect mechanisms involved in carcinogenesis include oxidative stress, gene expression alterations, epigenetic changes, inflammation and increased cell proliferation. The CONTAM Panel used a margin of exposure (MOE) approach for the risk characterisation using as a reference point a benchmark dose lower confidence limit for a benchmark response of 10% of 0.064 mg/kg body weight (bw) per day for the incidence of cholangiofibrosis in the rat. The calculated MOEs indicate a health concern. This conclusion was supported by the calculated MOEs for the neoplastic effects.
Collapse
|
15
|
Huffman MP, Høie AH, Svendsen C, Brunborg G, Murkovic M, Glatt H, Husøy T. An in vitro study on the genotoxic effect of substituted furans in cells transfected with human metabolizing enzymes: 2,5-dimethylfuran and furfuryl alcohol. Mutagenesis 2016; 31:597-602. [PMID: 27226491 PMCID: PMC4992344 DOI: 10.1093/mutage/gew025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
2,5-Dimethylfuran (DMF) and furfuryl alcohol (FFA) are two substituted furans that are formed during the processing of foods and have also been used as food flavorings. DMF and FFA are proposed to be bioactivated by human sulfotransferases (SULTs) which are not expressed in conventional cell lines used for genotoxicity testing. Therefore, in addition to the standard V79 cell line, we used a transfected V79 derived cell line co-expressing human cytochrome P450 (CYP) 2E1 and human SULT1A1 to assess the genotoxicity of DMF and FFA. The alkaline single cell gel electrophoresis (SCGE) assay was used to detect DNA damage in the form of single strand breaks and alkali-labile sites after exposure to DMF (0.5h; 0.5, 1, 1.5 or 2mM) or FFA (3h; 1, 3, 6 or 15mM). DMF induced DNA damage in V79 cells in a concentration-dependent manner irrespective of the expression of human CYP2E1 and SULT1A1. Almost no increase in the level of DNA damage was detected after exposure to FFA, except for a weak effect at the highest concentration in the transfected cell line. The results suggest that DNA damage in V79 cells from exposure to DMF detected by the alkaline SCGE assay is independent of human CYP2E1 and SULT1A1, and the genotoxic effect of FFA, as assessed by SCGE, is minimal in V79 cells.
Collapse
Affiliation(s)
- Minor P Huffman
- Department of Food, Water and Cosmetics, Norwegian Institute of Public Health (NIPH), NO-0403 Oslo, Norway
| | - Anja H Høie
- Department of Food, Water and Cosmetics, Norwegian Institute of Public Health (NIPH), NO-0403 Oslo, Norway
| | - Camilla Svendsen
- Department of Food, Water and Cosmetics, Norwegian Institute of Public Health (NIPH), NO-0403 Oslo, Norway
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, National Institute of Public Health (NIPH), NO-0403 Oslo, Norway
| | - Michael Murkovic
- Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, 14558 Nuthetal, Germany, and Department of Food Safety, Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Trine Husøy
- Department of Food, Water and Cosmetics, Norwegian Institute of Public Health (NIPH), NO-0403 Oslo, Norway,
| |
Collapse
|
16
|
Scientific Opinion on Flavouring Group Evaluation 67 Revision 2 (FGE.67Rev2): Consideration of 28 furan‐substituted compounds evaluated by JECFA at the 55th, 65th and 69th meetings (JECFA, 2001, 2006a, 2009b). EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Høie AH, Monien BH, Sakhi AK, Glatt H, Hjertholm H, Husøy T. Formation of DNA adducts in wild-type and transgenic mice expressing human sulfotransferases 1A1 and 1A2 after oral exposure to furfuryl alcohol. Mutagenesis 2015; 30:643-9. [PMID: 25904584 PMCID: PMC4540787 DOI: 10.1093/mutage/gev023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Furfuryl alcohol (FFA) is present in many heat-treated foods as a result of its formation via dehydration of pentoses. It is also used legally as a flavouring agent. In an inhalation study conducted in the National Toxicology Program, FFA showed some evidence of carcinogenic activity in rats and mice. FFA was generally negative in conventional genotoxicity assays, which suggests that it may be a non-genotoxic carcinogen. However, it was recently found that FFA is mutagenic in Salmonella strains expressing appropriate sulfotransferases (SULTs), such as human or mouse SULT1A1. The same DNA adducts that were formed by FFA in these strains, mainly N (2)-((furan-2-yl)methyl)-2'-deoxyguanosine (N (2)-MF-dG), were also detected in tissues of FFA-exposed mice and even in human lung specimens. In the present study, a single oral dose of FFA (250 mg/kg body weight) or saline was administered to FVB/N mice and transgenic mice expressing human SULT1A1/1A2 on the FVB/N background. The transgenic mice were used, since human and mouse SULT1A1 substantially differ in substrate specificity and tissue distribution. DNA adducts were studied in liver, kidney, proximal and distal small intestine as well as colon, using isotope-dilution ultra performance liquid chromatography (UPLC-MS/MS). Surprisingly, low levels of adducts that may represent N (2)-MF-dG were detected even in tissues of untreated mice. FFA exposure enhanced the adduct levels in colon and liver, but not in the remaining investigated tissues of wild-type (wt) mice. The situation was similar in transgenic mice, except that N (2)-MF-dG levels were also strongly enhanced in the proximal small intestine. These different results between wt and transgenic mice may be attributed to the fact that human SULT1A1, but not the orthologous mouse enzyme, is strongly expressed in the small intestine.
Collapse
Affiliation(s)
- Anja Hortemo Høie
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, 0456 Oslo, Norway, Research Group Genotoxic Food Contaminants, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558 Nuthetal, Germany, Department of Exposure and Risk Assessment, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway, Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, Germany Present address: Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany.
| | - Bernhard Hans Monien
- Research Group Genotoxic Food Contaminants, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558 Nuthetal, Germany, Present address: Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Amrit Kaur Sakhi
- Department of Exposure and Risk Assessment, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, Germany
| | - Hege Hjertholm
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, 0456 Oslo, Norway, Research Group Genotoxic Food Contaminants, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558 Nuthetal, Germany, Department of Exposure and Risk Assessment, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway, Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, Germany Present address: Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Trine Husøy
- Department of Food, Water and Cosmetics, Division of Environmental Medicine, Norwegian Institute of Public Health, 0456 Oslo, Norway, Research Group Genotoxic Food Contaminants, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558 Nuthetal, Germany, Department of Exposure and Risk Assessment, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway, Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, Germany Present address: Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| |
Collapse
|
18
|
Aung MT, Lee PR, Yu B, Liu SQ. Cider fermentation with three Williopsis saturnus yeast strains and volatile changes. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0935-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Fromowitz M, Shuga J, Wlassowsky AY, Ji Z, North M, Vulpe CD, Smith MT, Zhang L. Bone marrow genotoxicity of 2,5-dimethylfuran, a green biofuel candidate. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:488-491. [PMID: 22730236 DOI: 10.1002/em.21707] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
2,5-Dimethylfuran (DMF) is being considered as a potential green transportation biofuel, but there is limited information about its toxicity and safety. We examined DMF toxicity in the bone marrow using a murine in vitro erythropoietic micronucleus assay and found that exposure to DMF (0.1 mM, 1 hr) induced an increase in micronuclei frequency compared with controls. These data suggest that DMF may be genotoxic to hematopoietic cells and that more thorough toxicological studies on DMF should be conducted to ensure public and occupational safety before it is considered a viable biofuel and produced in mass quantities. As well as specific data on DMF, our study further validates an in vitro cell culture system that captures the essential features of the in vivo mammalian micronucleus genotoxicity assay, enabling increased throughput and controlled studies on hematopoietic DNA damage response, while reducing animal sacrifice. In vitro assays, such as the in vitro micronucleus assay, will be essential as international chemical policy is increasingly utilizing green chemistry principles that require more toxicological testing.
Collapse
Affiliation(s)
- Michele Fromowitz
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Moro S, Chipman JK, Wegener JW, Hamberger C, Dekant W, Mally A. Furan in heat-treated foods: formation, exposure, toxicity, and aspects of risk assessment. Mol Nutr Food Res 2012; 56:1197-211. [PMID: 22641279 DOI: 10.1002/mnfr.201200093] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/26/2012] [Accepted: 04/04/2012] [Indexed: 12/24/2022]
Abstract
Furan is formed in a variety of heat-treated foods through thermal degradation of natural food constituents. Relatively high levels of furan contamination are found in ground roasted coffee, instant coffee, and processed baby foods. European exposure estimates suggest that mean dietary exposure to furan may be as high as 1.23 and 1.01 μg/kg bw/day for adults and 3- to 12-month-old infants, respectively. Furan is a potent hepatotoxin and hepatocarcinogen in rodents, causing hepatocellular adenomas and carcinomas in rats and mice, and high incidences of cholangiocarcinomas in rats at doses ≥ 2 mg/kg bw. There is therefore a relatively low margin of exposure between estimated human exposure and doses that cause a high tumor incidence in rodents. Since a genotoxic mode of action cannot be excluded for furan-induced tumor formation, the present exposures may indicate a risk to human health and need for mitigation. This review summarizes the current knowledge on mechanisms of furan formation in food, human dietary exposure to furan, and furan toxicity, and highlights the need to establish the risk resulting from the genotoxic and carcinogenic properties of furan at doses lower than 2 mg/kg bw.
Collapse
Affiliation(s)
- Sabrina Moro
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
McDaniel LP, Ding W, Dobrovolsky VN, Shaddock JG, Mittelstaedt RA, Doerge DR, Heflich RH. Genotoxicity of furan in Big Blue rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 742:72-8. [DOI: 10.1016/j.mrgentox.2011.12.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 01/01/2023]
|
22
|
Buhrke T, Merkel R, Lengler I, Lampen A. Absorption and metabolism of cis-9,trans-11-CLA and of its oxidation product 9,11-furan fatty acid by Caco-2 cells. Lipids 2012; 47:435-42. [PMID: 22249938 PMCID: PMC3311842 DOI: 10.1007/s11745-012-3653-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
Abstract
Furan fatty acids (furan-FA) can be formed by auto-oxidation of conjugated linoleic acids (CLA) and may therefore be ingested when CLA-containing foodstuff is consumed. Due to the presence of a furan ring structure, furan-FA may have toxic properties, however, these substances are toxicologically not well characterized so far. Here we show that 9,11-furan-FA, the oxidation product of the major CLA isomer cis-9,trans-11-CLA (c9,t11-CLA), is not toxic to human intestinal Caco-2 cells up to a level of 100 μM. Oil-Red-O staining indicated that 9,11-furan-FA as well as c9,t11-CLA and linoleic acid are taken up by the cells and stored in the form of triglycerides in lipid droplets. Chemical analysis of total cellular lipids revealed that 9,11-furan-FA is partially elongated probably by the enzymatic activity of cellular fatty acid elongases whereas c9,t11-CLA is partially converted to other isomers such as c9,c11-CLA or t9,t11-CLA. In the case of 9,11-furan-FA, there is no indication for any modification or activation of the furan ring system. From these results, we conclude that 9,11-furan-FA has no properties of toxicological relevance at least for Caco-2 cells which serve as a model for enterocytes of the human small intestine.
Collapse
Affiliation(s)
- Thorsten Buhrke
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | | | | | | |
Collapse
|
23
|
Scientific Opinion on Flavouring Group Evaluation 67, Revision 1 (FGE.67Rev.1): Consideration of 40 furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers evaluated by J. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
24
|
Scientific Opinion on Flavouring Group Evaluation 66, Revision 1 (FGE.66Rev1): Consideration of Furfuryl Alcohol and Related Flavouring Substances Evaluated by JECFA (55th meeting). EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Scientific Opinion on Flavouring Group Evaluation 13, Revision 2 (FGE.13Rev2): Furfuryl and furan derivatives with and without additional side-chain substituents and heteroatoms from chemical group 14. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Monien BH, Herrmann K, Florian S, Glatt H. Metabolic activation of furfuryl alcohol: formation of 2-methylfuranyl DNA adducts in Salmonella typhimurium strains expressing human sulfotransferase 1A1 and in FVB/N mice. Carcinogenesis 2011; 32:1533-9. [DOI: 10.1093/carcin/bgr126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Scientific Opinion on Flavouring Group Evaluation 218, Revision 1 (FGE.218Rev1): alpha, beta‐Unsaturated aldehydes and precursors from subgroup 4.2 of FGE.19: Furfural derivatives. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.1840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Flavouring Group Evaluation 67 (FGE.67): Consideration of 40 furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers evaluated by JECFA at the 65th meeting (JECFA, 2006b). EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Scientific Opinion on Flavouring Group Evaluation 65 (FGE.65): Consideration of sulfur-substituted furan derivatives used as flavouring agents evaluated by JECFA (59th meeting) structurally related to a subgroup of substances within the group of “Furfuryl. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
30
|
Carthew P, DiNovi M, Setzer RW. Application of the margin of exposure (MoE) approach to substances in food that are genotoxic and carcinogenic: example: furan (CAS No. 110-00-9). Food Chem Toxicol 2010; 48 Suppl 1:S69-74. [PMID: 20113857 DOI: 10.1016/j.fct.2009.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 09/01/2009] [Accepted: 10/12/2009] [Indexed: 10/19/2022]
Abstract
Furan is commonly found in foods such as coffee, canned and jarred foods, including baby food containing meat, and various vegetables. It is thought to be formed by the thermal decomposition of carbohydrates. Furan is carcinogenic in rodents, although the detailed mechanism of action has not been completely established, for all the tumour types induced. Dose-response modelling of the data for hepatocellular tumours gives a BMDL10 of 1.23 mg/kg/day, and MOEs of between 750 and 4300 for exposures of infants and adults.
Collapse
|
31
|
Scientific Opinion on Flavouring Group Evaluation 13Rev1: Furfuryl and furan derivatives with and without additional side‐chain substituents and heteroatoms from chemical group 14. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
32
|
Flavouring Group Evaluation 218: alpha, beta-Unsaturated aldehydes and precursors from subgroup 4.2 of FGE.19: Furfural derivatives - Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC). EFSA J 2009. [DOI: 10.2903/j.efsa.2009.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
33
|
Flavouring Group Evaluation 66 (FGE.66):Consideration of furfuryl alcohol and related flavouring substances evaluated by JECFA (55th meeting) structurally related to Furfuryl and furan derivatives with and without additional side chain substituents and he. EFSA J 2009. [DOI: 10.2903/j.efsa.2009.752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
34
|
Abstract
The industrial and environmental chemical, furan, is a liver toxicant and carcinogen in laboratory animals. It has been classified as a possible human carcinogen. The mechanism of tumor induction is unknown. However, toxicity is initiated by cytochrome P450 catalyzed oxidation of furan to an alpha,beta-unsaturated dialdehyde, cis-2-butene-1,4-dial. This metabolite reacts readily with protein and DNA nucleophiles and is a bacterial mutagen in Ames assay strain TA104. Metabolism studies indicate that this reactive metabolite is formed in vivo. It is also an intermediate leading to other metabolites whose role in furan-derived toxicities has yet to be explored.
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences and the Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
35
|
Sujatha PS. Response of Human Lymphocytes In Vitro to Two Dietary Furans, Furfuryl Alcohol and 2-Furyl Methyl Ketone. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Sujatha PS. Monitoring cytotoxic potentials of furfuryl alcohol and 2-furyl methyl ketone in mice. Food Chem Toxicol 2008; 46:286-92. [PMID: 17904264 DOI: 10.1016/j.fct.2007.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 07/30/2006] [Accepted: 08/09/2007] [Indexed: 11/12/2022]
Abstract
Furfuryl alcohol (FA) and 2-furyl methyl ketone (2FMK) are two dietary furans with wide industrial applications and also found in a variety of food items. In a mouse test system, the mutagenicity of these two compounds after five days of exposure has been reported. In the present study histopathological changes and biochemical alterations after a period of 5-90 days of exposure have been evaluated in target organs like liver and kidney. Hepatotoxicity in the form of pycnosis, vacuolation and focal necrosis was observed after 60 and 90 days of treatment with 2000 and 4000 ppm of FA. Kidney showed damage to tubular epithelium only after treatment with 4000 ppm of FA. 2-FMK did not show any noticeable damage to liver or kidney. Significant variations in total protein content and activity of aspartate and alanine aminotransferase (ASAT and ALAT) were observed in both liver and kidney after longer exposure to both the furans. There was an increased expression of two proteins of 92 and 94 KD in the liver of treated animals irrespective of the concentration or duration. It is apparent from the present study that dietary contamination with furans has definite hepatic and renal toxicity potentials in man.
Collapse
Affiliation(s)
- P S Sujatha
- Genetic Toxicology Laboratory, Department of Genetics, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
37
|
Abstract
Furan is an organic, volatile compound used in various chemical-manufacturing industries. Headspace gas chromatography is the analytical method of choice for obtaining reliable results on its occurrence. The presence of furan in some food items has been known since the late 1970s, but a US Food and Drug Administration (FDA) survey published in 2004 revealed the occurrence of furan in a broad variety of canned and jarred foods, including baby food, that undergo heat treatment. Furan is carcinogenic in rats and mice, showing a dose-dependent increase in hepatocellular adenomas and carcinomas. In rats, a dose-dependent increase of mononuclear leukaemia is evident and a very high incidence of cholangiocarcinomas of the liver, even at the lowest dose tested. There is evidence to indicate that furan-induced carcinogenicity is probably attributable to a genotoxic mechanism. However, chronic toxicity with secondary cell proliferation may indirectly amplify the tumour response. From the available data, there is a relative small difference between possible human exposure and the doses in experimental animals required to produce carcinogenic effects. However, reliable risk assessment requires further data on both toxicity and exposure. The European Food Safety Authority's (EFSA) Scientific Panel on Contaminants in the Food Chain (CONTAM) recommended these studies as part of a reliable risk assessment of furan in food.
Collapse
Affiliation(s)
- C W Heppner
- European Food Safety Authority, Unit on Contaminants, Parma, Parma, Italy.
| | | |
Collapse
|
38
|
Byrns MC, Vu CC, Neidigh JW, Abad JL, Jones RA, Peterson LA. Detection of DNA adducts derived from the reactive metabolite of furan, cis-2-butene-1,4-dial. Chem Res Toxicol 2006; 19:414-20. [PMID: 16544946 PMCID: PMC2530910 DOI: 10.1021/tx050302k] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Furan is a toxic and carcinogenic compound used in industry and commonly found in the environment. The mechanism of furan's carcinogenesis is not well-understood and may involve both genotoxic and nongenotoxic pathways. Furan undergoes oxidation by cytochrome P450 to cis-2-butene-1,4-dial, which is thought to mediate furan's toxic effects. Consistently, cis-2-butene-1,4-dial readily reacts with glutathione, amino acids, and nucleosides. To determine the importance of DNA alkylation in furan-induced carcinogenesis, we developed an assay for the detection of cis-2-butene-1,4-dial-derived DNA adducts. DNA samples were treated with O-benzyl-hydroxylamine, which reacts with the aldehyde functionality of the DNA adducts. Enzyme hydrolysates of these samples were then analyzed by capillary electrospray tandem mass spectrometry with selected reaction monitoring. The dCyd and dAdo adducts were detected in digests of DNA treated with nanomolar concentrations of cis-2-butene-1,4-dial. In addition, these adducts were present in DNA isolated from Ames assay strain TA104 treated with mutagenic concentrations of cis-2-butene-1,4-dial. These data support the hypothesis that cis-butene-1,4-dial is a genotoxic metabolite of furan. This method will allow us to explore the role of these adducts in furan-induced carcinogenesis.
Collapse
Affiliation(s)
- Michael C. Byrns
- Division of Environmental Health and Cancer Center, University of Minnesota, Minneapolis MN, 55455
- Department of Biochemistry and Microbiology Loma Linda University Medical School Loma Linda, CA 92350
| | - Choua C. Vu
- Division of Environmental Health and Cancer Center, University of Minnesota, Minneapolis MN, 55455
| | - Jonathan W. Neidigh
- Department of Biochemistry and Microbiology Loma Linda University Medical School Loma Linda, CA 92350
| | - José-Luis Abad
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Roger A. Jones
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Lisa A. Peterson
- Division of Environmental Health and Cancer Center, University of Minnesota, Minneapolis MN, 55455
- To whom requests for reprints should be addressed at The Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware St. S.E., Minneapolis, MN 55455. Phone: 612-626-0164; fax: 612-626-5135;
| |
Collapse
|
39
|
Fan X. Formation of furan from carbohydrates and ascorbic acid following exposure to ionizing radiation and thermal processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:7826-31. [PMID: 16190637 DOI: 10.1021/jf051135x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study was conducted to investigate the formation of furan from sugars, ascorbic acid, and organic acids as affected by ionizing radiation and thermal treatments. Results showed that both thermal treatments and irradiation induced formation of furan from ascorbic acid, fructose, sucrose, or glucose. Little furan was produced from malic acid or citric acid. The pH and concentration of sugars and ascorbic acid solutions had profound influences on furan formation due to either irradiation or thermal treatment. The rate of irradiation-induced furan formation increased with decreasing pH from 8 to 3. Approximately 1600 times less furan was formed at pH 8 as apposed to pH 3. At the same pHs, the amounts of furan formed from irradiation of ascorbic acid, fructose, and sucrose were always higher than from glucose. As pH decreased from 7 to 3, an increase in thermally induced furan was observed for sucrose and ascorbic acid solutions, but for glucose solution, less furan was formed at pH 3 than at pH 7. The levels of sugars commonly found in fruits and fruit juices, upon irradiation, would be high enough to potentially produce low parts per billion (ppb) levels of furan. The concentration of ascorbic acid at which a maximum of furan was produced upon irradiation was about 0.5 mg/mL, a level commonly found in some foods. Five furan derivatives were tentatively identified in thermally treated ascorbic acid solution, while one furan derivative was tentatively found in both irradiated and thermally treated samples.
Collapse
Affiliation(s)
- Xuetong Fan
- Food Safety Intervention Technologies, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, Pennsylvania 19038, USA.
| |
Collapse
|
40
|
Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to Flavouring Group Evaluation 13 (FGE.13); Furfuryl and furan derivatives with and without additional side-chain substituents. EFSA J 2005. [DOI: 10.2903/j.efsa.2005.215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Byrns MC, Vu CC, Peterson LA. The formation of substituted 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine adducts by cis-2-butene-1,4-dial, a reactive metabolite of furan. Chem Res Toxicol 2005; 17:1607-13. [PMID: 15606136 DOI: 10.1021/tx049866z] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Furan is an environmental chemical that induces liver toxicity and tumor formation in rodents, leading to its classification as a probable human carcinogen. cis-2-Butene-1,4-dial, the metabolite considered responsible for furan's toxicological effects, is mutagenic in the Ames assay and reacts with 2'-deoxycytidine (dCyd), 2'-deoxyadenosine (dAdo), and 2'-deoxyguanosine (dGuo) to form previously characterized diastereomeric adducts. The initially formed dCyd adducts are stable to rearrangement, while the dAdo and dGuo adducts are unstable and rearrange to form secondary products. On the basis of UV absorbance, fluorescence, 1H NMR, and mass spectral data, the rearrangement product of the dAdo adduct was identified as the substituted etheno-dAdo adduct, 1''-[3-(2'-deoxy-beta-D-erythropentafuranosyl)-3H-imidazo[2,1-i]purin-8-yl]ethane-2''-al. The NMR characterization of the O-methyloxime derivative of the secondary dGuo adduct, along with mass spectral and UV data on the underivatized adduct, allowed for its structural assignment as the substituted etheno-dGuo compound, 3-(2'-deoxy-beta-D-erythropentafuranosyl)imidazo-7-(ethane-2''-al)[1,2-alpha]purine-9-one. The characterization of the primary and secondary products formed in the reaction of cis-2-butene-1,4-dial with nucleosides is important for understanding the mechanism of furan-induced carcinogenesis. These secondary adducts retain a reactive aldehyde with the potential to form cross-links and are likely to contribute significantly to furan's toxic and carcinogenic effects.
Collapse
Affiliation(s)
- Michael C Byrns
- Division of Environmental Health Sciences and Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
42
|
|
43
|
Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the Commission related to Furfural and Furfural Diethylacetal. EFSA J 2004. [DOI: 10.2903/j.efsa.2004.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
44
|
Adams TB, Doull J, Goodman JI, Munro IC, Newberne P, Portoghese PS, Smith RL, Wagner BM, Weil CS, Woods LA, Ford RA. The FEMA GRAS assessment of furfural used as a flavour ingredient. Flavor and Extract Manufacturers' Association. Food Chem Toxicol 1997; 35:739-51. [PMID: 9350219 DOI: 10.1016/s0278-6915(97)00056-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Expert Panel of the Flavor and Extract Manufacturers' Association (FEMA) has assessed the safety of furfural for its continued use as a flavour ingredient. The safety assessment takes into account the current scientific information on exposure, metabolism, pharmacokinetics, toxicology, carcinogenicity and genotoxicity. Furfural was reaffirmed as GRAS (GRASr) as a flavour ingredient under conditions of intended use based on: (1) its mode of metabolic detoxication in humans; (2) its low level of flavour use compared with higher intake levels as a naturally occurring component of food; (3) the safety factor calculated from results of subchronic and chronic studies, (4) the lack of reactivity with DNA; and (5) the conclusion that the only statistically significant finding in the 2-year NTP bioassays, an increased incidence of hepatocellular adenomas and carcinomas in the high-dose group of male mice, was secondary to pronounced hepatotoxicity. Taken together, these data do not indicate any risk to human health under conditions of use as a flavour ingredient. This evidence of safety is supported by the occurrence of furfural as a natural component of traditional foods, at concentrations in the diet resulting in a 'natural intake' that is at least 100 times higher than the intake of furfural from use as a flavour ingredient.
Collapse
Affiliation(s)
- T B Adams
- Flavor and Extract Manufacturers' Association, Washington, DC 20006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Furfural is recognized as a dietary mutagen and is present in various foods and beverages. We have examined the mutagenic effect of furfural induced lesions in plasmid pBluescript SK(+/-). There was a progressive decrease in the transformation capacity of the plasmid as a function of furfural concentration with a concomitant increase in the number of mutant plasmids. Several mutant plasmids with reduced transformation capacity and a molecular size similar to the parental plasmid were isolated. A stretch of DNA of 108 basepairs within the multiple cloning region was sequenced. It was observed that the number of mutagenic events in the case of furfural damaged plasmid was not significantly greater than in spontaneously arisen mutants. These results were interpreted to indicate that furfural mediated DNA damage is efficiently repaired.
Collapse
Affiliation(s)
- Q A Khan
- Department of Biochemistry, Faculty of Life sciences, Aligarh Muslim University, India
| | | | | |
Collapse
|
46
|
Bostick RM, Potter JD, Kushi LH, Sellers TA, Steinmetz KA, McKenzie DR, Gapstur SM, Folsom AR. Sugar, meat, and fat intake, and non-dietary risk factors for colon cancer incidence in Iowa women (United States). Cancer Causes Control 1994; 5:38-52. [PMID: 8123778 DOI: 10.1007/bf01830725] [Citation(s) in RCA: 302] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To investigate the relation of dietary intakes of sucrose, meat, and fat, and anthropometric, lifestyle, hormonal, and reproductive factors to colon cancer incidence, data were analyzed from a prospective cohort study of 35,215 Iowa (United States) women, aged 55-69 years and without a history of cancer, who completed mailed dietary and other questionnaires in 1986. Through 1990, 212 incident cases of colon cancer were documented. Proportional hazards regression was used to adjust for age and other risk factors. Risk factors found to be associated significantly with colon cancer included: (i) sucrose-containing foods and beverages other than ice cream/milk; relative risks (RR) across the quintiles = 1.00, 1.73, 1.56, 1.54, and 2.00 (95% confidence intervals [CI] for quintiles two and five exclude 1.0); (ii) sucrose; RR across the quintiles = 1.00, 1.70, 1.81, 1.82, and 1.45 (CI for quintiles two through four exclude 1.0); (iii) height; RR = 1.23 for highest to lowest quintile (P for trend = 0.02); (iv) body mass index; RR = 1.41 for highest to lowest quintile (P for trend = 0.03); and (v) number of livebirths, RR = 1.59 for having had one to two livebirths and 1.80 for having had three or more livebirths compared with having had none (P for trend = 0.04). These data support hypotheses that sucrose intake or being tall or obese increases colon cancer risk; run contrary to the hypothesis that increased parity decreases risk; support previous findings of no association with demographic factors other than age, cigarette smoking, or use of oral contraceptives or estrogen replacement therapy; and raise questions regarding previous associations with meat, fat, protein, and physical activity.
Collapse
Affiliation(s)
- R M Bostick
- Department of Family Practice and Community Health, Medical School, University of Minnesota, Minneapolis 55454
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Shahabuddin, Rahman A, Hadi SM. Reaction of furfural and methylfurfural with DNA: use of single-strand-specific nucleases. Food Chem Toxicol 1991; 29:719-721. [PMID: 1959826 DOI: 10.1016/0278-6915(91)90131-p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The furans, furfural and methylfurfural, are dietary mutagens that are present in various food products and beverages. AT base-pair-depleted calf thymus DNA was prepared by the action of pea seed single-strand-specific nuclease on native DNA. Compared with furan-treated native DNA, furan-treated AT-depleted DNA showed a reduced rate of S1 nuclease hydrolysis and a reduced formation of single-strand breaks, as determined using an alkaline unwinding assay. These results indicate that furfural and methylfurfural primarily react with AT base pairs in duplex DNA, and demonstrate the usefulness of single-strand-specific nucleases in such studies.
Collapse
Affiliation(s)
- Shahabuddin
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, India
| | | | | |
Collapse
|
48
|
Feron VJ, Til HP, de Vrijer F, Woutersen RA, Cassee FR, van Bladeren PJ. Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat Res 1991; 259:363-85. [PMID: 2017217 DOI: 10.1016/0165-1218(91)90128-9] [Citation(s) in RCA: 324] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aldehydes constitute a group of relatively reactive organic compounds. They occur as natural (flavoring) constituents in a wide variety of foods and food components, often in relatively small, but occasionally in very large concentrations, and are also widely used as food additives. Evidence of carcinogenic potential in experimental animals is convincing for formaldehyde and acetaldehyde, limited for crotonaldehyde, furfural and glycidaldehyde, doubtful for malondialdehyde, very weak for acrolein and absent for vanillin. Formaldehyde carcinogenesis is a high-dose phenomenon in which the cytotoxicity plays a crucial role. Cytotoxicity may also be of major importance in acetaldehyde carcinogenesis but further studies are needed to prove or disprove this assumption. For a large number of aldehydes (relevant) data on neither carcinogenicity nor genotoxicity are available. From epidemiological studies there is no convincing evidence of aldehyde exposure being related to cancer in humans. Overall assessment of the cancer risk of aldehydes in the diet leads to the conclusion that formaldehyde, acrolein, citral and vanillin are no dietary risk factors, and that the opposite may be true for acetaldehyde, crotonaldehyde and furfural. Malondialdehyde, glycidaldehyde, benzaldehyde, cinnamaldehyde and anisaldehyde cannot be evaluated on the basis of the available data. A series of aldehydes should be subjected to at least mutagenicity, cytogenicity and cytotoxicity tests. Priority setting for testing should be based on expected mechanism of action and degree of human exposure.
Collapse
Affiliation(s)
- V J Feron
- TNO-CIVO Toxicology and Nutrition Institute, Zeist, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
McDiarmid MA, Lees PS, Agnew J, Midzenski M, Duffy R. Reproductive hazards of fire fighting. II. Chemical hazards. Am J Ind Med 1991; 19:447-72. [PMID: 2035546 DOI: 10.1002/ajim.4700190404] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies of the health of fire fighters have historically focused on non-malignant respiratory disease and cancer. More recently, concerns have surfaced about reproductive health effects in many areas of the workforce, including fire fighting. These concerns prompted this review of chemical exposures that may contribute to adverse reproductive health outcomes in male as well as female fire fighters. A review of the industrial hygiene literature was undertaken to identify agents commonly found in fire smoke. These agents were then examined for evidence of reproductive toxicity or mutagenicity/carcinogenicity. This profile of chemical agents and their reproductive toxicities permits a qualitative determination that fire fighters are exposed to potential reproductive toxicants as a part of their normal fire fighting duties. Considerations for mitigating these risks are also discussed.
Collapse
Affiliation(s)
- M A McDiarmid
- Department of Environmental Health Sciences, School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, MD 21205
| | | | | | | | | |
Collapse
|
50
|
Nishi Y, Miyakawa Y, Kato K. Chromosome aberrations induced by pyrolysates of carbohydrates in Chinese hamster V79 cells. Mutat Res 1989; 227:117-23. [PMID: 2797043 DOI: 10.1016/0165-7992(89)90007-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The clastogenic activity of some pyrolysates of carbohydrates was examined in cultured Chinese hamster V79 cells. These pyrolysates include levoglucosan (LG-I), levoglucosenone (LG-II), furfural (FF), 5-(hydroxymethyl)-2-furfural (HMF), glyoxal (GL), methylglyoxal (MGL), 3-deoxy-D-glucosone (DG) and thiazolidine (TZ). LG-I did not induce a significant number of chromosome aberrations at doses up to 8000 micrograms/ml. In contrast, the related compound LG-II induced aberrations and reduced mitosis in a dose-dependent fashion at around 1/2000 of the LG-I doses. Both furan derivatives, FF and HMF, and both glyoxal derivatives, GL and MGL, induced a significant number of chromosome aberrations and a significant lowering of mitotic activity. Among these compounds, FF and MGL showed stronger clastogenic activity than HMF and GL, respectively. DG slightly but positively induced chromosome aberrations. TZ was one of the most potent clastogens among the compounds examined in this study, showing the highest incidence of aberrant cells with many exchanges at doses inducing a significant lowering of mitotic activity. The results of this study indicate the need for a re-evaluation of the thermal decomposition of carbohydrates as a source of genotoxic contaminants.
Collapse
Affiliation(s)
- Y Nishi
- Life Science Research Laboratory, Japan Tobacco Inc., Kanagawa
| | | | | |
Collapse
|