1
|
Doganyigit Z, Eroglu E, Okan A. Intermediate filament proteins are reliable immunohistological biomarkers to help diagnose multiple tissue-specific diseases. Anat Histol Embryol 2023; 52:655-672. [PMID: 37329162 DOI: 10.1111/ahe.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Cytoskeletal networks are proteins that effectively maintain cell integrity and provide mechanical support to cells by actively transmitting mechanical signals. Intermediate filaments, which are from the cytoskeleton family and are 10 nanometres in diameter, are unlike actin and microtubules, which are highly dynamic cytoskeletal elements. Intermediate filaments are flexible at low strain, harden at high strain and resist breaking. For this reason, these filaments fulfil structural functions by providing mechanical support to the cells through their different strain-hardening properties. Intermediate filaments are suitable in that cells both cope with mechanical forces and modulate signal transmission. These filaments are composed of fibrous proteins that exhibit a central α-helical rod domain with a conserved substructure. Intermediate filament proteins are divided into six groups. Type I and type II include acidic and basic keratins, type III, vimentin, desmin, peripheralin and glial fibrillary acidic protein (GFAP), respectively. Type IV intermediate filament group includes neurofilament proteins and a fourth neurofilament subunit, α-internexin proteins. Type V consists of lamins located in the nucleus, and the type VI group consists of lens-specific intermediate filaments, CP49/phakinin and filen. Intermediate filament proteins show specific immunoreactivity in differentiating cells and mature cells of various types. Various carcinomas such as colorectal, urothelial and ovarian, diseases such as chronic pancreatitis, cirrhosis, hepatitis and cataract have been associated with intermediate filaments. Accordingly, this section reviews available immunohistochemical antibodies to intermediate filament proteins. Identification of intermediate filament proteins by methodological methods may contribute to the understanding of complex diseases.
Collapse
Affiliation(s)
- Zuleyha Doganyigit
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
2
|
Mohammed DAE, Ahmed RR, R G A. Maternal LiCl exposure disrupts thyroid-cerebral axis in neonatal albino rats. Int J Dev Neurosci 2021; 81:741-758. [PMID: 34528732 DOI: 10.1002/jdn.10151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
This work aimed to elucidate whether maternal lithium chloride (LiCl) exposure disturbs the thyroid-cerebral axis in neonatal albino rats. 50 mg of LiCl/kg b.wt. is orally given for pregnant Wistar rats from gestational day (GD) 1 to lactation day (LD) 28. The maternal administration of LiCl induced follicular dilatation and degeneration, hyperplasia, lumen obliteration and colloid vacuolation in the maternal and neonatal thyroid gland at postnatal days (PNDs) 14, 21 and 28. Neuronal degeneration (spongiform), gliosis, nuclear pyknosis, perivascular oedema, and meningeal hyperaemia were observed in the neonatal cerebral cortex of the maternal LiCl-treated group at examined PNDs. This disturbance appears to depend on intensification in the neonatal cerebral malondialdehyde (MDA), nitric oxide (NO), and hydrogen peroxide (H2 O2 ) levels, and attenuation in the glutathione (GSH), total thiol (t-SH), catalase (CAT), and superoxide dismutase (SOD) levels. In the neonatal cerebrum, the fold change in the relative mRNA expression of deiodinases (DII and DIII) increased significantly at PNDs 21 and 14, respectively, in the maternal LiCl-treated group. These data suggest that maternal LiCl may perturb the thyroid-cerebrum axis generating neonatal neurodevelopmental disorder.
Collapse
Affiliation(s)
- Dena A E Mohammed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha R Ahmed
- Division of Histology and Cytology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed R G
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Kaul D, Schwab SG, Mechawar N, Matosin N. How stress physically re-shapes the brain: Impact on brain cell shapes, numbers and connections in psychiatric disorders. Neurosci Biobehav Rev 2021; 124:193-215. [PMID: 33556389 DOI: 10.1016/j.neubiorev.2021.01.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022]
Abstract
Severe stress is among the most robust risk factors for the development of psychiatric disorders. Imaging studies indicate that life stress is integral to shaping the human brain, especially regions involved in processing the stress response. Although this is likely underpinned by changes to the cytoarchitecture of cellular networks in the brain, we are yet to clearly understand how these define a role for stress in human psychopathology. In this review, we consolidate evidence of macro-structural morphometric changes and the cellular mechanisms that likely underlie them. Focusing on stress-sensitive regions of the brain, we illustrate how stress throughout life may lead to persistent remodelling of the both neurons and glia in cellular networks and how these may lead to psychopathology. We support that greater translation of cellular alterations to human cohorts will support parsing the psychological sequalae of severe stress and improve our understanding of how stress shapes the human brain. This will remain a critical step for improving treatment interventions and prevention outcomes.
Collapse
Affiliation(s)
- Dominic Kaul
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia
| | - Sibylle G Schwab
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia
| | - Naguib Mechawar
- Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia; Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| |
Collapse
|
4
|
Delen K, Sırav B, Oruç S, Seymen CM, Kuzay D, Yeğin K, Take Kaplanoğlu G. Effects of 2600 MHz Radiofrequency Radiation in Brain Tissue of Male Wistar Rats and Neuroprotective Effects of Melatonin. Bioelectromagnetics 2021; 42:159-172. [PMID: 33440456 DOI: 10.1002/bem.22318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/06/2020] [Accepted: 12/20/2020] [Indexed: 02/05/2023]
Abstract
The debate on the biological effects of radiofrequency radiation (RFR) still continues due to differences in the design of studies (frequency, power density, specific absorption rate [SAR], exposure duration, cell, tissue, or animal type). The current study aimed to investigate the effects of 2,600 MHz RFR and melatonin on brain tissue biochemistry and histology of male rats. Thirty-six rats were divided into six groups randomly: cage-control, sham, RFR, melatonin, sham melatonin, and RFR melatonin. In RFR groups, animals were exposed to 2,600 MHz RFR for 30 days (30 min/day, 5 days/week) and the melatonin group animals were subcutaneously injected with melatonin (7 days/week, 10 mg/kg/day) for 30 days. SAR in brain gray matter was calculated as 0.44 and 0.295 W/kg for 1 and 10 g averaging, respectively. RFR exposure decreased the GSH, GSH-Px, and SOD levels and increased the MPO, MDA, and NOx levels (P < 0.005) significantly. RFR exposure also led to an increase in structural deformation and apoptosis in the brain tissue. This study revealed that exogenous high-dose melatonin could reduce these adverse effects of RFR. Limiting RFR exposure as much as possible is recommended, and taking daily melatonin supplements may be beneficial. Bioelectromagnetics. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Kevser Delen
- Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bahriye Sırav
- Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sinem Oruç
- Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Cemile M Seymen
- Department of Histology and Embryology Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Dilek Kuzay
- Department of Physiology, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Korkut Yeğin
- Department of Electrical and Electronics Engineering, Ege University, Izmir, Turkey
| | - Gülnur Take Kaplanoğlu
- Department of Histology and Embryology Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
5
|
Russo C, Patanè M, Russo A, Stanzani S, Pellitteri R. Effects of Ghrelin on Olfactory Ensheathing Cell Viability and Neural Marker Expression. J Mol Neurosci 2020; 71:963-971. [PMID: 32978692 DOI: 10.1007/s12031-020-01716-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/21/2020] [Indexed: 01/19/2023]
Abstract
Ghrelin (Ghre), a gut-brain peptide hormone, plays an important role in the entire olfactory system and in food behavior regulation. In the last years, it has aroused particular interest for its antioxidant, anti-inflammatory, and anti-apoptotic properties. Our previous research showed that Ghre and its receptor are expressed by peculiar glial cells of the olfactory system: Olfactory Ensheathing Cells (OECs). These cells are able to secrete different neurotrophic factors, promote axonal growth, and show stem cell characteristics. The aim of this work was to study, in an in vitro model, the effect of Ghre on both cell viability and the expression of some neural markers, such as Nestin (Ne), Glial Fibrillary Acid Protein (GFAP), Neuregulin (Neu), and β-III-tubulin (Tuj1), in primary mouse OEC cultures. The MTT test and immunocytochemical procedures were used to highlight cell viability and marker expression, respectively. Our results demonstrate that Ghre, after 7 days of treatment, exerted a positive effect, stimulating OEC viability compared with cells without Ghre treatment. In addition, Ghre was able to modify the expression of some biomarkers, increasing Neu and Tuj1 expression, while GFAP was constant; on the contrary, the presence of positive Ne cells was drastically reduced after 7 days, and this showed a loss of stem cell characteristic and therefore the possible orientation towards an adult neural phenotype.
Collapse
Affiliation(s)
- Cristina Russo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Martina Patanè
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Antonella Russo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Stefania Stanzani
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, 95126, Catania, Italy.
| |
Collapse
|
6
|
Alsayyah A, ElMazoudy R, Al-Namshan M, Al-Jafary M, Alaqeel N. Chronic neurodegeneration by aflatoxin B1 depends on alterations of brain enzyme activity and immunoexpression of astrocyte in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109407. [PMID: 31279280 DOI: 10.1016/j.ecoenv.2019.109407] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Aflatoxin B1 poses the greatest risk among the mycotoxins to target-organisms particularly human, however, no studies addressed the neurotoxicity of chronic exposure of aflatoxin. The oral dose level 1/600th of LD50 for 30, 60, and 90 days was used for three aflatoxin groups, respective to negative and vehicle control groups. Activity levels of brain antioxidants viz: superoxide dismutase, catalase, glutathione, and glutathione peroxidase significantly decreased in the three experimental durations in time-dependent trend, in contrast, lipid peroxidation showed a significant increase compared to controls. Significantly, chronic-dependent increase trend was noticed in the AF60 and AF90 group for acid phosphatase (16.1%, 35.2%), alkaline phosphatase (32.1%, 50.8%), aspartate aminotransferase (38.7%, 120.0%) and lactate dehydrogenase (30.6%, 42.1%) activities, respectively. However, a significant 23.7% decrease in the brain creatine kinase activity following 90 days of AFB1administration. Chronic administration of aflatoxin also causes alterations in activities of protein carbonyl with a maximum increase (twofold) after 90 days. Further, histopathological and immunohistochemical results confirmed time-related vasodilation, necrosis and astrocytes gliosis by high glial fibrillary acidic protein immunostaining in response to AFB1. These findings infer that long-term exposure to AFB1 results in several pathophysiological circumstances in a duration-dependent manner concerning neurodegeneration especially Alzheimer's disease.
Collapse
Affiliation(s)
- Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box.2208, Dammam, 31441, Saudi Arabia
| | - Reda ElMazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia.
| | - Mashael Al-Namshan
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Meneerah Al-Jafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Nouf Alaqeel
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box.1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
7
|
Trautz F, Franke H, Bohnert S, Hammer N, Müller W, Stassart R, Tse R, Zwirner J, Dreßler J, Ondruschka B. Survival-time dependent increase in neuronal IL-6 and astroglial GFAP expression in fatally injured human brain tissue. Sci Rep 2019; 9:11771. [PMID: 31417126 PMCID: PMC6695416 DOI: 10.1038/s41598-019-48145-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 01/31/2023] Open
Abstract
Knowledge on trauma survival time prior to death following a lethal traumatic brain injury (TBI) may be essential for legal purposes. Immunohistochemistry studies might allow to narrow down this survival interval. The biomarkers interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) are well known in the clinical setting for their usability in TBI prediction. Here, both proteins were chosen in forensics to determine whether neuronal or glial expression in various brain regions may be associated with the cause of death and the survival time prior to death following TBI. IL-6 positive neurons, glial cells and GFAP positive astrocytes all concordantly increase with longer trauma survival time, with statistically significant changes being evident from three days post-TBI (p < 0.05) in the pericontusional zone, irrespective of its definite cortical localization. IL-6 staining in neurons increases significantly in the cerebellum after trauma, whereas increasing GFAP positivity is also detected in the cortex contralateral to the focal lesion. These systematic chronological changes in biomarkers of pericontusional neurons and glial cells allow for an estimation of trauma survival time. Higher numbers of IL-6 and GFAP-stained cells above threshold values in the pericontusional zone substantiate the existence of fatal traumatic changes in the brain with reasonable certainty.
Collapse
Affiliation(s)
- Florian Trautz
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Simone Bohnert
- Institute of Forensic Medicine, University of Würzburg, Würzburg, Germany
| | - Niels Hammer
- Department of Anatomy, University of Otago, Dunedin, New Zealand.,Department of Orthopedic and Trauma Surgery, University Hospital of Leipzig, Leipzig, Germany.,Fraunhofer IWU, Dresden, Germany
| | - Wolf Müller
- Department of Neuropathology, University Hospital of Leipzig, Leipzig, Germany
| | - Ruth Stassart
- Department of Neuropathology, University Hospital of Leipzig, Leipzig, Germany
| | - Rexson Tse
- Department of Forensic Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Johann Zwirner
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jan Dreßler
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany.
| |
Collapse
|
8
|
Cytokine MIF Enhances Blood-Brain Barrier Permeability: Impact for Therapy in Ischemic Stroke. Sci Rep 2018; 8:743. [PMID: 29335619 PMCID: PMC5768806 DOI: 10.1038/s41598-017-16927-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/19/2017] [Indexed: 01/12/2023] Open
Abstract
Ischemic stroke is a devastating disease with limited therapeutic options. It is very urgent to find a new target for drug development. Here we found that the blood level of MIF in ischemic stroke patients is upregulated. To figure out the pathological role of MIF in ischemic stroke, both in vitro and in vivo studies were conducted. For in vitro studies, primary cortical neuron cultures and adult rat brain endothelial cells (ARBECs) were subjected to oxygen-glucose deprivation (OGD)/reoxygenation. Middle cerebral artery occlusion (MCAo) rodent models were used for in vivo studies. The results show that MIF exerts no direct neuronal toxicity in primary culture but disrupts tight junction in ARBECs. Furthermore, administration of MIF following MCAo shows the deleterious influence on stroke-induced injury by destroying the tight junction of blood-brain barrier and increasing the infarct size. In contrast, administration of MIF antagonist ISO-1 has the profound neuroprotective effect. Our results demonstrate that MIF might be a good drug target for the therapy of stroke.
Collapse
|
9
|
Vinci L, Ravarino A, Fanos V, Naccarato AG, Senes G, Gerosa C, Bevilacqua G, Faa G, Ambu R. Immunohistochemical markers of neural progenitor cells in the early embryonic human cerebral cortex. Eur J Histochem 2016; 60:2563. [PMID: 26972711 PMCID: PMC4800247 DOI: 10.4081/ejh.2016.2563] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022] Open
Abstract
The development of the human central nervous system represents a delicate moment of embryogenesis. The purpose of this study was to analyze the expression of multiple immunohistochemical markers in the stem/progenitor cells in the human cerebral cortex during the early phases of development. To this end, samples from cerebral cortex were obtained from 4 human embryos of 11 weeks of gestation. Each sample was formalin-fixed, paraffin embedded and immunostained with several markers including GFAP, WT1, Nestin, Vimentin, CD117, S100B, Sox2, PAX2, PAX5, Tβ4, Neurofilament, CD44, CD133, Synaptophysin and Cyclin D1. Our study shows the ability of the different immunohistochemical markers to evidence different zones of the developing human cerebral cortex, allowing the identification of the multiple stages of differentiation of neuronal and glial precursors. Three important markers of radial glial cells are evidenced in this early gestational age: Vimentin, Nestin and WT1. Sox2 was expressed by the stem/progenitor cells of the ventricular zone, whereas the postmitotic neurons of the cortical plate were immunostained by PAX2 and NSE. Future studies are needed to test other important stem/progenitor cells markers and to better analyze differences in the immunohistochemical expression of these markers during gestation.
Collapse
|
10
|
Experimental measles encephalitis in Lewis rats: dissemination of infected neuronal cell subtypes. J Neurovirol 2013; 19:461-70. [DOI: 10.1007/s13365-013-0199-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 12/11/2022]
|
11
|
Kulijewicz-Nawrot M, Verkhratsky A, Chvátal A, Syková E, Rodríguez JJ. Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer's disease. J Anat 2012; 221:252-62. [PMID: 22738374 DOI: 10.1111/j.1469-7580.2012.01536.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the loss of cognitive functions, reflecting pathological damage to the medial prefrontal cortex (mPFC) as well as to the hippocampus and the entorhinal cortex. Astrocytes maintain the internal homeostasis of the CNS and are fundamentally involved in neuropathological processes, including AD. Here, we analysed the astrocytic cytoskeletal changes within the mPFC of a triple transgenic mouse model of AD (3 × Tg-AD) by measuring the surface area and volume of glial fibrillary acidic protein (GFAP)-positive profiles in relation to the build-up and presence of amyloid-β (Aβ), and compared the results with those found in non-transgenic control animals at different ages. 3 × Tg-AD animals showed clear astroglial cytoskeletal atrophy, which appeared at an early age (3 months; 33% and 47% decrease in GFAP-positive surface area and volume, respectively) and remained throughout the disease progression at 9, 12 and 18 months old (29% and 36%; 37% and 35%; 43% and 37%, respectively). This atrophy was independent of Aβ accumulation, as only a few GFAP-positive cells were localized around Aβ aggregates, which suggests no direct relationship with Aβ toxicity. Thus, our results indicate that the progressive reduction in astrocytic branching and domain in the mPFC can account for the integrative dysfunction leading to the cognitive deficits and memory disturbances observed in AD.
Collapse
|
12
|
Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer's disease. ASN Neuro 2011; 3:271-9. [PMID: 22103264 PMCID: PMC3243908 DOI: 10.1042/an20110025] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The EC (entorhinal cortex) is fundamental for cognitive and mnesic functions. Thus damage to this area appears as a key element in the progression of AD (Alzheimer's disease), resulting in memory deficits arising from neuronal and synaptic alterations as well as glial malfunction. In this paper, we have performed an in-depth analysis of astroglial morphology in the EC by measuring the surface and volume of the GFAP (glial fibrillary acidic protein) profiles in a triple transgenic mouse model of AD [3xTg-AD (triple transgenic mice of AD)]. We found significant reduction in both the surface and volume of GFAP-labelled profiles in 3xTg-AD animals from very early ages (1 month) when compared with non-Tg (non-transgenic) controls (48 and 54%, reduction respectively), which was sustained for up to 12 months (33 and 45% reduction respectively). The appearance of Aβ (amyloid β-peptide) depositions at 12 months of age did not trigger astroglial hypertrophy; nor did it result in the close association of astrocytes with senile plaques. Our results suggest that the AD progressive cognitive deterioration can be associated with an early reduction of astrocytic arborization and shrinkage of the astroglial domain, which may affect synaptic connectivity within the EC and between the EC and other brain regions. In addition, the EC seems to be particularly vulnerable to AD pathology because of the absence of evident astrogliosis in response to Aβ accumulation. Thus we can consider that targeting astroglial atrophy may represent a therapeutic strategy which might slow down the progression of AD.
Collapse
|
13
|
Arboleda D, Forostyak S, Jendelova P, Marekova D, Amemori T, Pivonkova H, Masinova K, Sykova E. Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell Mol Neurobiol 2011; 31:1113-22. [PMID: 21630007 PMCID: PMC11498601 DOI: 10.1007/s10571-011-9712-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/13/2011] [Indexed: 01/15/2023]
Abstract
Adipose-derived stromal cells (ASCs) are an alternative source of stem cells for cell-based therapies of neurological disorders such as spinal cord injury (SCI). In the present study, we predifferentiated ASCs (pASCs) and compared their behavior with naïve ASCs in vitro and after transplantation into rats with a balloon-induced compression lesion. ASCs were predifferentiated into spheres before transplantation, then pASCs or ASCs were injected intraspinally 1 week after SCI. The cells' fate and the rats' functional outcome were assessed using behavioral, histological, and electrophysiological methods. Immunohistological analysis of pASCs in vitro revealed the expression of NCAM, NG2, S100, and p75. Quantitative RT-PCR at different intervals after neural induction showed the up-regulated expression of the glial markers NG2 and p75 and the neural precursor markers NCAM and Nestin. Patch clamp analysis of pASCs revealed three different types of membrane currents; however, none were fast activating Na(+) currents indicating a mature neuronal phenotype. Significant improvement in both the pASC and ASC transplanted groups was observed in the BBB motor test. In vivo, pASCs survived better than ASCs did and interacted closely with the host tissue, wrapping host axons and oligodendrocytes. Some transplanted cells were NG2- or CD31-positive, but no neuronal markers were detected. The predifferentiation of ASCs plays a beneficial role in SCI repair by promoting the protection of denuded axons; however, functional improvements were comparable in both the groups, indicating that repair was induced mainly through paracrine mechanisms.
Collapse
Affiliation(s)
- David Arboleda
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Serhiy Forostyak
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Pavla Jendelova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Dana Marekova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Takashi Amemori
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Helena Pivonkova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Katarina Masinova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| |
Collapse
|
14
|
Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease. Glia 2010; 58:831-8. [PMID: 20140958 DOI: 10.1002/glia.20967] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astrocytes are fundamental for brain homeostasis and are at the fulcrum of neurological diseases including Alzheimer's disease (AD). Here, we monitored changes in astroglia morphology throughout the age-dependent progression of AD. We used an immunohistochemical approach that allows us to determine the domain of glial cytoskeleton, by measuring the surface, volume, and the relationship between astrocytes and neuritic plaques. We investigated astroglia in the hippocampus of a triple transgenic mouse model of AD (3xTg-AD) that mimics the progression of the human disease. The numerical density of astrocytes is affected neither by AD nor by age. We found reduction of surface and volume of GFAP profiles from early ages (6 months; 43.84 and 52.76%, respectively), persisting at 12 (40.73 and 45.39%) and 18 months (64.80 and 71.95%) in the dentate gyrus (DG) of 3xTg-AD, whereas in CA1 it appears at 18 months (29.42 and 32.74%). This cytoskeleton atrophy is accompanied by a significant reduction of glial somata volume in DG at 12 and 18 months (40.46 and 75.55%, respectively), whereas in CA1 it is significant at 18 months (42.81%). However, while astroglial atrophy appears as a generalized process, astrocytes surrounding plaques are clearly hypertrophic as revealed by increased surface (48.06%; 66.66%), and volume (57.10%; 71.06%) of GFAP profiles in DG and CA1, respectively, at 18 months. We suggest differential effects of AD on astroglial populations depending on their association with plaques accounting for the progressive disruption of neural networks connectivity and neurotransmitters imbalance which underlie mnesic and cognitive impairments observed in AD.
Collapse
Affiliation(s)
- Markel Olabarria
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | | | | | | |
Collapse
|
15
|
Leonard BW, Mastroeni D, Grover A, Liu Q, Yang K, Gao M, Wu J, Pootrakul D, van den Berge SA, Hol EM, Rogers J. Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease. J Comp Neurol 2009; 515:269-94. [PMID: 19425077 PMCID: PMC2757160 DOI: 10.1002/cne.22040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In mice and in young adult humans, the subventricular zone (SVZ) contains multipotent, dividing astrocytes, some of which, when cultured, produce neurospheres that differentiate into neurons and glia. It is unknown whether the SVZ of very old humans has this capacity. Here, we report that neural stem/progenitor cells can also be cultured from rapid autopsy samples of SVZ from elderly human subjects, including patients with age-related neurologic disorders. Histological sections of SVZ from these cases showed a glial fibrillary acidic protein (GFAP)-positive ribbon of astrocytes similar to the astrocyte ribbon in human periventricular white matter biopsies that is reported to be a rich source of neural progenitors. Cultures of the SVZ contained 1) neurospheres with a core of Musashi-1-, nestin-, and nucleostemin-immunopositive cells as well as more differentiated GFAP-positive astrocytes; 2) SMI-311-, MAP2a/b-, and beta-tubulin(III)-positive neurons; and 3) galactocerebroside-positive oligodendrocytes. Neurospheres continued to generate differentiated progeny for months after primary culturing, in some cases nearly 2 years postinitial plating. Patch clamp studies of differentiated SVZ cells expressing neuron-specific antigens revealed voltage-dependent, tetrodotoxin-sensitive, inward Na+ currents and voltage-dependent, delayed, slowly inactivating K+ currents, electrophysiologic characteristics of neurons. A subpopulation of these cells also exhibited responses consistent with the kinetics and pharmacology of the h-current. However, although these cells displayed some aspects of neuronal function, they remained immature, insofar as they did not fire action potentials. These studies suggest that human neural progenitor activity may remain viable throughout much of the life span, even in the face of severe neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew Grover
- Sun Health Research Institute, Sun City, AZ 85351, U.S.A
| | - Qiang Liu
- Barrow Neurological Institute, Phoenix, AZ 85013, U.S.A
| | - Kechun Yang
- Barrow Neurological Institute, Phoenix, AZ 85013, U.S.A
| | - Ming Gao
- Barrow Neurological Institute, Phoenix, AZ 85013, U.S.A
| | - Jie Wu
- Barrow Neurological Institute, Phoenix, AZ 85013, U.S.A
| | | | - Simone A. van den Berge
- Netherlands Institute for Neuroscience, an institute of the NetherlandsRoyal Academy of Arts and Sciences, Meibergdreef 47, 1105 BAAmsterdam, The Netherlands
| | - Elly M. Hol
- Netherlands Institute for Neuroscience, an institute of the NetherlandsRoyal Academy of Arts and Sciences, Meibergdreef 47, 1105 BAAmsterdam, The Netherlands
| | - Joseph Rogers
- Sun Health Research Institute, Sun City, AZ 85351, U.S.A
| |
Collapse
|
16
|
Härtig W, Reichenbach A, Voigt C, Boltze J, Bulavina L, Schuhmann MU, Seeger J, Schusser GF, Freytag C, Grosche J. Triple fluorescence labelling of neuronal, glial and vascular markers revealing pathological alterations in various animal models. J Chem Neuroanat 2009; 37:128-38. [DOI: 10.1016/j.jchemneu.2008.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
17
|
The astrocytic response in early experimental autoimmune encephalomyelitis occurs across both the grey and white matter compartments. J Neuroimmunol 2009; 208:30-9. [PMID: 19195719 DOI: 10.1016/j.jneuroim.2008.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/23/2008] [Accepted: 12/28/2008] [Indexed: 11/22/2022]
Abstract
An unexpectedly prominent aspect of murine experimental autoimmune encephalomyelitis is pre-onset astrocyte reactivity. Further examination of this phenomenon in the spinal cord demonstrates that grey matter, as well as white matter astrocytes, change their morphology and cell density from the earliest disease manifestation. Comparison of the two compartments reveals that, whereas white matter changes are rostro-caudally consistent, grey matter reactivity is spatially restricted and of varying amplitude between spinal cord levels. These data strongly suggest that in neuroinflammation early, cross-compartmental recruitment of astrocytes occurs, but with different expression patterns.
Collapse
|
18
|
Puverel S, Nakatani H, Parras C, Soussi-Yanicostas N. Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult mice. J Comp Neurol 2009; 512:232-42. [DOI: 10.1002/cne.21888] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Mansour H, Chamberlain CG, Weible MW, Hughes S, Chu Y, Chan-Ling T. Aging-related changes in astrocytes in the rat retina: imbalance between cell proliferation and cell death reduces astrocyte availability. Aging Cell 2008; 7:526-40. [PMID: 18489730 DOI: 10.1111/j.1474-9726.2008.00402.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to investigate changes in astrocyte density, morphology, proliferation and apoptosis occurring in the central nervous system during physiological aging. Astrocytes in retinal whole-mount preparations from Wistar rats aged 3 (young adult) to 25 months (aged) were investigated qualitatively and quantitatively following immunofluorohistochemistry. Glial fibrillary acidic protein (GFAP), S100 and Pax2 were used to identify astrocytes, and blood vessels were localized using Griffonia simplicifolia isolectin B4. Cell proliferation was assessed by bromodeoxyuridine incorporation and cell death by TUNEL-labelling and immunolocalization of the apoptosis markers active caspase 3 and endonuclease G. The density and total number of parenchymal astrocytes in the retina increased between 3 and 9 months of age but decreased markedly between 9 and 12 months. Proliferation of astrocytes was detected at 3 months but virtually ceased beyond that age, whereas the proportion of astrocytes that were TUNEL positive and relative expression of active caspase 3 and endonuclease G increased progressively with aging. In addition, in aged retinas astrocytes exhibited gliosis-like morphology and loss of Pax2 reactivity. A small population of Pax2(+)/GFAP(-) cells was detected in both young adult and aged retinas. The reduction in the availability of astrocytes in aged retinas and other aging-related changes reported here may have a significant impact on the ability of astrocytes to maintain homeostasis and support neuronal function in old age.
Collapse
Affiliation(s)
- Hussein Mansour
- School of Medical Sciences (Anatomy and Histology) and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
Norsted E, Gömüç B, Meister B. Protein components of the blood-brain barrier (BBB) in the mediobasal hypothalamus. J Chem Neuroanat 2008; 36:107-21. [PMID: 18602987 DOI: 10.1016/j.jchemneu.2008.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 01/27/2023]
Abstract
The blood-brain barrier (BBB) plays an important role in controlling the access of substances to the brain. Of the circumventricular organs (CVO), i.e. areas that lack a BBB, the median eminence and its close relationship with the hypothalamic arcuate nucleus plays an important role in controlling the entry of blood-borne substances to neurons of the mediobasal hypothalamus. In order to clarify the nature of the BBB in the median eminence-arcuate nucleus complex, we have used immunohistochemistry and antisera to protein components of the BBB-(1) tight junctions, claudin-5 and zona occludens-1 (ZO-1); (2) endothelial cells: (a) all endothelial cells: rat endothelial cell antigen-1 (RECA-1), (b) endothelial cells at BBB: endothelial barrier antigen (EBA), glucose transporter 1 (GLUT1) and transferrin receptor (TfR), and (c) endothelial cells at CVOs: dysferlin; (3) basal lamina: laminin; (4) vascular smooth muscle cells: smooth muscle actin (SMA); (5) pericytes: chondroitin sulfate proteoglycan (NG2); (6) glial cells: (a) astrocytes: glial fibrillary acidic protein (GFAP), (b) tanycytes: dopamine- and cAMP-regulated phosphoprotein of 32kDA (DARPP-32), (c) microglia: CD11b. Neuronal cell bodies located in the ventromedial aspect of the arcuate nucleus were visualized by antiserum to agouti-related protein (AgRP). The study provides a detailed analysis on the cellular localization of BBB components in the mediobasal hypothalamus. Some vessels in the ventromedial aspect of the arcuate nucleus lacked the BBB markers EBA and TfR, suggesting an absence of an intact BBB. These vessels may represent a route of entry for circulating substances to a subpopulation of arcuate nucleus neurons.
Collapse
Affiliation(s)
- Ebba Norsted
- Department of Neuroscience, The Retzius Laboratory, Karolinska Institutet, Retzius väg 8, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
21
|
Kovács GG, Gelpi E, Lehotzky A, Höftberger R, Erdei A, Budka H, Ovádi J. The brain-specific protein TPPP/p25 in pathological protein deposits of neurodegenerative diseases. Acta Neuropathol 2007; 113:153-61. [PMID: 17123092 DOI: 10.1007/s00401-006-0167-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/27/2006] [Accepted: 10/28/2006] [Indexed: 10/23/2022]
Abstract
Immunohistochemical detection of protein components of pathological inclusions is widely used for neuropathological diagnosis of neurodegenerative disorders. However, different antibodies and antigen unmasking methods may account for variability between research studies and thus may affect diagnostic accuracy. Using two different antibodies raised against either a segment (184-200 aa) or the full length of human recombinant brain-specific tubulin polymerization promoting protein TPPP/p25, we immunohistochemically screened neurodegenerative disorders, both with and without pathological alpha-synuclein structures. We tested three different epitope unmasking methods, we applied laser confocal microscopy to evaluate double immunolabelling, and we compared the amount of structures exhibiting TPPP/p25 and alpha-synuclein immunoreactivity. We demonstrate that there are a variety of staining patterns depending on the epitope retrieval method and antibody used. The antibody raised against aa 184-200 segment of TPPP/p25 is better in immunolabelling the majority of alpha-synuclein immunopositive neuronal and glial pathological profiles detectable in Parkinson's disease, diffuse Lewy-body disease, and multiple system atrophy, in addition to immunostaining some extracellular huntingtin immunoreactive structures, lipofuscin, and neuromelanin particles. In contrast, the one raised against the full-length human recombinant TPPP/p25 is more suitable to immunodetect normal oligodendrocytes. Exposition of the segment aa 184-200 of TPPP/p25 in the aggregates of pathological inclusions renders this antibody a reliable marker of all types of alpha-synucleinopathies and suggests a role for TPPP/p25 in the aggregation process of some neurodegenerative conditions.
Collapse
Affiliation(s)
- Gábor G Kovács
- Department of Neuropathology, National Institute of Psychiatry and Neurology, Hüvösvölgyi ut 116, Budapest, 1021, Hungary.
| | | | | | | | | | | | | |
Collapse
|
22
|
Studer FE, Fedele DE, Marowsky A, Schwerdel C, Wernli K, Vogt K, Fritschy JM, Boison D. Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 2006; 142:125-37. [PMID: 16859834 DOI: 10.1016/j.neuroscience.2006.06.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
Adenosine is a potent modulator of excitatory neurotransmission, especially in seizure-prone regions such as the hippocampal formation. In adult brain ambient levels of adenosine are controlled by adenosine kinase (ADK), the major adenosine-metabolizing enzyme, expressed most strongly in astrocytes. Since ontogeny of the adenosine system is largely unknown, we investigated ADK expression and cellular localization during postnatal development of the mouse brain, using immunofluorescence staining with cell-type specific markers. At early postnatal stages ADK immunoreactivity was prominent in neurons, notably in cerebral cortex and hippocampus. Thereafter, as seen best in hippocampus, ADK gradually disappeared from neurons and appeared in newly developed nestin- and glial fibrillary acidic protein (GFAP)-positive astrocytes. Furthermore, the region-specific downregulation of neuronal ADK coincided with the onset of myelination, as visualized by myelin basic protein staining. After postnatal day 14 (P14), the transition from neuronal to astrocytic ADK expression was complete, except in a subset of neurons that retained ADK until adulthood in specific regions, such as striatum. Moreover, neuronal progenitors in the adult dentate gyrus lacked ADK. Finally, recordings of excitatory field potentials in acute slice preparations revealed a reduced adenosinergic inhibition in P14 hippocampus compared with adult. These findings suggest distinct roles for adenosine in the developing and adult brain. First, ADK expression in young neurons may provide a salvage pathway to utilize adenosine in nucleic acid synthesis, thus supporting differentiation and plasticity and influencing myelination; and second, adult ADK expression in astrocytes may offer a mechanism to regulate adenosine levels as a function of metabolic needs and synaptic activity, thus contributing to the differential resistance of young and adult animals to seizures.
Collapse
Affiliation(s)
- F E Studer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurer Str. 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Croisier E, MRes DE, Deprez M, Goldring K, Dexter DT, Pearce RKB, Graeber MB, Roncaroli F. Comparative study of commercially available anti-alpha-synuclein antibodies. Neuropathol Appl Neurobiol 2006; 32:351-6. [PMID: 16640654 DOI: 10.1111/j.1365-2990.2006.00722.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immunohistochemistry for alpha-synuclein has become the histological technique of choice for the diagnosis for Parkinson's disease, Dementia with Lewy bodies and Multiple System Atrophy (http://www.ICDNS.org). Nevertheless, no standardised protocol has been proposed. We have reviewed 242 of the 270 studies published until June 2005 that mentioned immunohistochemistry for anti-alpha synuclein on human tissue and we found that only 75 (31%) used commercial antibodies. We also noted that protocols, particularly dilution and antigen unmasking, varied between studies, even when the same antibody was employed. In order to establish a standardised protocol for alpha-synuclein immunohistochemistry, which can be applied in diagnostic neuropathology we tested seven commercial monoclonal antibodies in brains of subjects with Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, multiple sclerosis with incidental Lewy bodies and aged-matched normal brain and determined for each antibody the best suited protocol for antigen unmasking. We evaluated the intensity of immunolabelling in Lewy bodies, neuropil threads, dendrites, pre-synaptic terminals, granular cytoplasmic positivity, peri-axonal positivity, glial inclusions and non-specific immunolabelling. Although our results showed that all the antibodies detected alpha-synuclein inclusions, differences were noted between antibodies, particularly with regard to the detection of glial inclusions. From our study, the best antibodies of the seven tested appeared to be those directed against amino acids 116-131 and 15-123 and we suggest them to be used in routine diagnostic practice for alpha-synucleinopathies.
Collapse
Affiliation(s)
- E Croisier
- Department of Neuropathology, Imperial College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kalinichenko SG, Dudina YV, Dyuizen IV, Motavkin PA. Induction of NO synthase and glial acidic fibrillary protein in astrocytes in the temporal cortex of the rat with audiogenic epileptiform reactions. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2005; 35:629-34. [PMID: 16342620 DOI: 10.1007/s11055-005-0103-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The localizations of NADPH-diaphorase (NADPH-d), inducible NO synthase (iNOS), and glial acid fibrillary protein (GFAP) in astrocytes of the temporal cortex were studied in Krushinskii-Molodkina rats, which are genetically predisposed to audiogenic convulsive seizures. Convulsive reactions were induced in rats by three exposures to acoustic stimuli. Controls consisted of Wistar rats and Krushinskii-Molodkina rats not subjected to acoustic stimulation, these not developing convulsive reactions. The neocortex of animals with audiogenic convulsions consistently showed foci of brain tissue damage. Foci, of diameter 300-400 microm, were located in layers III-V and were groupings of NADPH-d-positive astrocytes; these were seen in both hemispheres. Astrocytes in foci of damage expressed iNOS and had elevated GFAP levels. The numbers of GFAP-immunopositive cells were increased by 25-37% in damage foci as compared with levels in controls and undamaged areas of the cortex. The induction of NO synthase and GFAP in astrocytes seen here indicates the involvement of glia in compensatory NO-dependent mechanisms formed in damage foci in response to audiogenic convulsive seizures.
Collapse
Affiliation(s)
- S G Kalinichenko
- Department of Pharmacology, Institute of Marine Biology, Far Eastern Division, Russian Academy of Sciences, Vladivostok
| | | | | | | |
Collapse
|
25
|
Davis S, Thomas A, Perry R, Oakley A, Kalaria RN, O'Brien JT. Glial fibrillary acidic protein in late life major depressive disorder: an immunocytochemical study. J Neurol Neurosurg Psychiatry 2002; 73:556-60. [PMID: 12397151 PMCID: PMC1738142 DOI: 10.1136/jnnp.73.5.556] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Depression is a common psychiatric disorder in late life. Cerebrovascular disease has been postulated as an important aetiological factor in many cases (the "vascular depression" hypothesis). Consistent with this, an inflammatory response, most probably representing ischaemia, has been reported with increases in intercellular adhesion molecule 1 (ICAM-1), in the dorsolateral prefrontal cortex (DLPFC) in postmortem tissue from elderly depressed subjects. As ischaemia is known to cause astrogliosis, this study has further tested the "vascular depression hypothesis" by investigating the distribution of the astrocytic marker glial fibrillary acidic protein (GFAP) in the DLPFC and in the anterior cingulate cortex (ACC). METHODS Postmortem tissue was obtained from 20 elderly patients with a history of major depressive disorder (MDD) and 20 control subjects. Sections were stained for GFAP using standard immunocytochemistry. Sets of images were obtained from all cortical layers in the DLPFC and ACC with the exception of layer IV in the ACC, and from gyral and deep white matter in both regions. The percentage of the area of each image occupied by GFAP was calculated using true colour image analysis, and mean values obtained for each region examined. RESULTS Immunoreactivity for GFAP was low in grey matter (for example, Mean (SEM) 0.76 (0.2)% in DLPFC layer V in depressed subjects), but higher in white matter (for example, 12.02 (2.2)% in DLPFC deep white matter in depressed subjects). Pronounced gliosis was observed within grey matter in a few cases only. GFAP immunoreactivity was significantly higher in layer I of the DLPFC in depressed subjects 15.8 (2.6)% than in controls 9.7 (1.3)% (t=2.2; df=27.5, p=0.04). No difference was detected in any other region. CONCLUSIONS The data suggest any increase in GFAP in elderly MDD patients is limited to layer 1 of the DLPFC. These results provide some support for the vascular depression hypothesis and further implicate DLPFC abnormalities in depression.
Collapse
Affiliation(s)
- S Davis
- Wolfson Research Centre, Institute for Aging and Health, Newcastle General Hospital, Newcastle upon Tyne, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Colombo JA, Quinn B, Puissant V. Disruption of astroglial interlaminar processes in Alzheimer's disease. Brain Res Bull 2002; 58:235-42. [PMID: 12127023 DOI: 10.1016/s0361-9230(02)00785-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A palisade of long, interlaminar astroglial processes in supragranular layers of the cerebral cortex is characteristic of adult individuals of anthropoid species. In the present study, this distinctive cytoarchitectonic feature was analyzed in tissue deriving from the neocortex of cases affected by Alzheimer's disease (n=14) and age-matched control cases (n=10). Samples of different cortical areas, and in particular prefrontal, temporal and striate fields, were analyzed. Astroglia was labeled by glial fibrillary acidic protein immunoreactivity, that allowed a clear distinction between the classical, stellate intralaminar astroglia and the interlaminar glial processes. The occurrence and relative density of neuritic plaques were ascertained in the same specimens with Bielchowsky staining. In most cortical regions of cases diagnosed as severe Alzheimer's disease by the donor institutions, interlaminar astroglia was found to be markedly altered or absent, and replaced by hypertrophic intralaminar astrocytes. Cases diagnosed as milder or uncertain Alzheimer's disease showed a less consistent involvement of the interlaminar glial palisade. Alterations of the interlaminar palisade in the cortex affected by Alzheimer's disease did not strictly correlate with the density of neuritic plaques in the examined specimens. The findings indicate that loss/severe disruption of the interlaminar palisade of astroglial processes is part of the array of neuropathological changes occurring in the cerebral cortex during Alzheimer's disease. In addition, our data indicate that different types of neocortical astrocytes (namely intralaminar and interlaminar astrocytes) respond differently to the pathobiology of Alzheimer's disease in the neocortex, inasmuch as interlaminar processes tend to disappear while intralaminar processes become reactive.
Collapse
Affiliation(s)
- J A Colombo
- Unidad de Neurobiología Aplicada (UNA), Buenos Aires, Argentina.
| | | | | |
Collapse
|
27
|
Reisin HD, Colombo JA. Astroglial interlaminar processes in human cerebral cortex: variations in cytoskeletal profiles. Brain Res 2002; 937:51-7. [PMID: 12020862 DOI: 10.1016/s0006-8993(02)02464-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Among mammalian species, astroglial interlaminar processes are unique features of the primate cerebral cortex. The morphological diversity in the immunocytochemical expression of their cytoskeleton was analyzed. For this purpose, samples from normal human cerebral cortex from autopsy cases were used. While Fractal dimension failed to represent the actual complexity of interlaminar processes, Compression analysis allowed classification of these profiles according to their relative tortuosity. Conversion of Compression values into estimates of membrane surface suggested that profile changes could not only affect the directionality of dynamic events, but also the amount of glial cell membrane exposed to the local neuropil. Terminal segments of interlaminar processes were usually more tightly twisted than the cytoskeleton stalk, and enlarged in aged individuals. If not aberrant structures, these so-called 'terminal masses' may provide an additional means to increase local membrane availability. Based on Compression analysis, categories of the geometric variability of the cytoskeleton of cerebral cortex interlaminar glial processes are presented.
Collapse
Affiliation(s)
- Hernán D Reisin
- Unidad de Neurobiología Aplicada (CEMIC-CONICET), Av. Galván 4102, 1431 Buenos Aires, Argentina
| | | |
Collapse
|
28
|
Kotani M, Osanai T, Tajima Y, Kato H, Imada M, Kaneda H, Kubo H, Sakuraba H. Identification of neuronal cell lineage-specific molecules in the neuronal differentiation of P19 EC cells and mouse central nervous system. J Neurosci Res 2002; 67:595-606. [PMID: 11891772 DOI: 10.1002/jnr.10150] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
P19 embryonic carcinoma (EC) cells are one of the simplest systems for analyzing the neuronal differentiation. To identify the membrane-associated molecules on the neuronal cells involved in the early neuronal differentiation in mice, we generated two monoclonal antibodies, SKY-1 and SKY-2, by immunizing rats with a membrane fraction of the neuronally committed P19 EC cells as an antigen. SKY-1 and SKY-2 recognized the carbohydrate moiety of a 90 kDa protein (RANDAM-1) and the polypeptide core of a 40 kDa protein (RANDAM-2), respectively. In the P19 EC cells, the expression of RANDAM-1 was colocalized to a part of Nestin-positive cells, whereas that of RANDAM-2 was observed in most Nestin-positive cells as well as beta-III-tubulin positive neurons. In the embryonic and adult brain of mice, RANDAM-1 was expressed at embryonic day 8.5 (E8.5), and the localization of antigen was restricted on the neuroepithelium and choroid plexus. The RANDAM-2 expression commenced at E6.0, and the antigen was distributed not only on the neuroepithelium of embryonic brain but on the neurons of adult brain. Collectively, it was concluded that RANDAM-1 is a stage specific antigen to express on the neural stem cells, and RANDAM-2 is constitutively expressed on both the neural stem cells and differentiated neuronal cells in mouse central nervous system (CNS).
Collapse
Affiliation(s)
- Masaharu Kotani
- Department of Clinical Genetics, Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cassiman D, Roskams T, van Pelt J, Libbrecht L, Aertsen P, Crabbé T, Vankelecom H, Denef C. Alpha B-crystallin expression in human and rat hepatic stellate cells. J Hepatol 2001; 35:200-7. [PMID: 11580142 DOI: 10.1016/s0168-8278(01)00122-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS We searched for factors implicated in early hepatic stellate cell (HSC) activation in diseased liver, by means of suppression subtractive hybridization (SSH). METHODS SSH was performed between messenger RNA (mRNA) from normal rat HSC and mRNA from HSC, isolated from rats with acute D-galactosamine (Gal)-induced hepatitis. RESULTS One of the potentially upregulated factors which we found was alpha B-crystallin (ABCRYS), a small heat-shock protein and a chaperone known to protect the cell against protein degradation in conditions of cellular stress and known to associate with various types of intermediate filaments. Upregulation of ABCRYS mRNA in HSC, following Gal-intoxication (3.5-fold) as well as by culturing the HSC on plastic (20-30-fold), was confirmed by quantitative real-time reverse transcription polymerase chain reaction. The expression of ABCRYS protein in human and rat HSC was demonstrated by immunohistochemistry, in vitro and in vivo, in normal and diseased liver. Double-staining co-localized ABCRYS immunoreactivity with alpha-smooth muscle actin immunoreactivity in human liver and with desmin immunoreactivity in rat liver. In vivo upregulation of ABCRYS protein following Gal-intoxication was also shown, by comparison with desmin expression. CONCLUSIONS Human and rat HSC express ABCRYS mRNA and protein. Both are rapidly upregulated following HSC activation.
Collapse
Affiliation(s)
- D Cassiman
- Laboratory of Cell Pharmacology, University of Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Luciano MG, Skarupa DJ, Booth AM, Wood AS, Brant CL, Gdowski MJ. Cerebrovascular adaptation in chronic hydrocephalus. J Cereb Blood Flow Metab 2001; 21:285-94. [PMID: 11295883 DOI: 10.1097/00004647-200103000-00012] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study characterizes the regional changes in vascularity, which accompanies chronic progressive hydrocephalus. Fifteen dogs underwent surgical induction of hydrocephalus and were used for histologic studies. Animals were divided into 4 groups: surgical control, short term (< or = 5 weeks), intermediate term (8 weeks), and long term (10 to 12 weeks). Vessel diameter, density, and luminal area were calculated by imaging quantification after manual vessel identification in the cortical gray, white matter, and caudate nucleus. Capillary vessel diameter decreased 23.5% to 30.2% (P < 0.01) in the caudate, but then returned to normal at 12 weeks. Capillary vessel density decreased 53.5% (P < 0.05) in the cortical gray, but then increased to 234.8% (P < 0.01) over surgical controls at 12 weeks. There was no initial decrease in capillary density in the caudate; however, the long-term group capillary density was significantly greater (172.8% to 210.5%, P < 0.01) than surgical controls. Overall, there was a short-term decrease in lumen area, with recovery in the longer term. Glial fibrillary acidic protein (GFAP) immunohistochemistry demonstrated the pattern of GFAP staining and reactive astrocytes differed in the caudate compared with the occipital cortex. This data suggest that an increase in capillary density and diameter may be an adaptive process allowing maintenance of adequate cerebral perfusion and metabolic support in the hypoxic environment of chronic hydrocephalus.
Collapse
Affiliation(s)
- M G Luciano
- Section of Pediatric and Congenital Neurosurgery, Department of Neurosurgery, The Cleveland Clinic Foundation, Cleveland, Ohio 44118, USA
| | | | | | | | | | | |
Collapse
|
31
|
Miguel-Hidalgo JJ, Rajkowska G. Immunohistochemistry of neural markers for the study of the laminar architecture in celloidin sections from the human cerebral cortex. J Neurosci Methods 1999; 93:69-79. [PMID: 10598866 DOI: 10.1016/s0165-0270(99)00114-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Morphometric studies of the cerebral cortex in celloidin sections provide reliable quantitative estimates of cytoarchitectural features in individual brain regions. To increase our knowledge about the morphology and distribution of neuronal and glial cell types using specific cellular markers, we compared two methods of celloidin removal/antigen recovery, and subsequent immunohistochemical staining of free floating sections with specific antibodies. The method based on methanol and NaOH for celloidin removal was the most adequate for optimal recovery of immunoreactivity of the neural markers NF200, MAP2, GFAP, calretinin, parvalbumin, calbindin-D28kD, and synaptophysin. The other method, based on a treatment with ethanol/ether and formic acid, gave good results in the immunostaining of NF200, GFAP and MAP2, but not the other markers named above. The immunostained sections were compared with nearby sections stained with cresyl violet in order to assign the immunoreactive structures to individual layers in the prefrontal cortex. Sections from blocks not embedded in celloidin showed a comparable distribution of all the antigens included in the present study. The present paper provides an antigen recovery technique for celloidin sections that can be applied to optimize studies on the cytoarchitecture and distribution of specific neural elements in the human cerebral cortex.
Collapse
Affiliation(s)
- J J Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 39216-4505, USA.
| | | |
Collapse
|
32
|
Halliday GM, Pond SM, Cartwright H, McRitchie DA, Castagnoli N, Van der Schyf CJ. Clinical and neuropathological abnormalities in baboons treated with HPTP, the tetrahydropyridine analog of haloperidol. Exp Neurol 1999; 158:155-63. [PMID: 10448427 DOI: 10.1006/exnr.1999.7090] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tardive dyskinesia (TD) is relatively common among psychiatric patients on maintenance therapy with typical neuroleptics and persists in more than 20% even after withdrawal of the medication. Such persistence suggests an underlying pathology due to neurotoxicity. We present evidence for such a neurotoxic mechanism in a baboon model of TD. Four baboons were treated chronically with the dehydration product of haloperidol, 4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)-4-oxobutyl]-1,2,3,6- tetrahydropyridine (HPTP), which is metabolized, similarly to haloperidol, to two neurotoxic pyridinium species. The animals developed orofacial dyskinesia which persisted after HPTP was ceased. Serial sections of the entire brain from the four treated animals and four vehicle-treated controls revealed volume loss in the basal forebrain and hypothalamus. Histological evaluation demonstrated a reduction in the density of magnocellular neurons in the anterior region of the nucleus basalis of Meynert (NbM). We speculate that the loss of these NbM neurons may be associated with the persistent orofacial dyskinesia observed in the HPTP-treated animals. These findings may contribute to a better understanding of neuroleptic-induced TD.
Collapse
Affiliation(s)
- G M Halliday
- Prince of Wales Medical Research Institute, Randwick, NSW, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122 ( Pt 4):593-624. [PMID: 10219775 DOI: 10.1093/brain/122.4.593] [Citation(s) in RCA: 1067] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite a hundred years' research, the neuropathology of schizophrenia remains obscure. However, neither can the null hypothesis be sustained--that it is a 'functional' psychosis, a disorder with no structural basis. A number of abnormalities have been identified and confirmed by meta-analysis, including ventricular enlargement and decreased cerebral (cortical and hippocampal) volume. These are characteristic of schizophrenia as a whole, rather than being restricted to a subtype, and are present in first-episode, unmedicated patients. There is considerable evidence for preferential involvement of the temporal lobe and moderate evidence for an alteration in normal cerebral asymmetries. There are several candidates for the histological and molecular correlates of the macroscopic features. The probable proximal explanation for decreased cortical volume is reduced neuropil and neuronal size, rather than a loss of neurons. These morphometric changes are in turn suggestive of alterations in synaptic, dendritic and axonal organization, a view supported by immunocytochemical and ultrastructural findings. Pathology in subcortical structures is not well established, apart from dorsal thalamic nuclei, which are smaller and contain fewer neurons. Other cytoarchitectural features of schizophrenia which are often discussed, notably entorhinal cortex heterotopias and hippocampal neuronal disarray, remain to be confirmed. The phenotype of the affected neuronal and synaptic populations is uncertain. A case can be made for impairment of hippocampal and corticocortical excitatory pathways, but in general the relationship between neurochemical findings (which centre upon dopamine, 5-hydroxytryptamine, glutamate and GABA systems) and the neuropathology of schizophrenia is unclear. Gliosis is not an intrinsic feature; its absence supports, but does not prove, the prevailing hypothesis that schizophrenia is a disorder of prenatal neurodevelopment. The cognitive impairment which frequently accompanies schizophrenia is not due to Alzheimer's disease or any other recognized neurodegenerative disorder. Its basis is unknown. Functional imaging data indicate that the pathophysiology of schizophrenia reflects aberrant activity in, and integration of, the components of distributed circuits involving the prefrontal cortex, hippocampus and certain subcortical structures. It is hypothesized that the neuropathological features represent the anatomical substrate of these functional abnormalities in neural connectivity. Investigation of this proposal is a goal of current neuropathological studies, which must also seek (i) to establish which of the recent histological findings are robust and cardinal, and (ii) to define the relationship of the pathological phenotype with the clinical syndrome, its neurochemistry and its pathogenesis.
Collapse
Affiliation(s)
- P J Harrison
- University Department of Psychiatry, Warneford Hospital, Oxford, UK.
| |
Collapse
|
34
|
Kacem K, Lacombe P, Seylaz J, Bonvento G. Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: A confocal microscopy study. Glia 1998. [DOI: 10.1002/(sici)1098-1136(199805)23:1<1::aid-glia1>3.0.co;2-b] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Härtig W, Kirazov L, Brückner G, Holzer M, Gärtner U, Bigl V. Blot analyses and immunocytochemistry of neural antigens with digoxigenylated primary and secondary antibodies. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1997; 2:35-43. [PMID: 9438069 DOI: 10.1016/s1385-299x(97)00026-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
While the digoxigenin-anti-digoxigenin (DIG) method is currently the preferred tool for non-radioactive in situ hybridization this study extends its application field to Western blotting of proteins and summarizes advantageous properties of digoxigenylated antibodies in immunocytochemistry. An established protocol for the preparation of digoxigenylated primary antibodies is complemented by dot blot analyses confirming the high sensitivity of hapten-anti-hapten techniques based on primary digoxigenylated antibodies. The comparative Western blot analysis of calcium-binding proteins in nervous tissue is used as an example to show the highly specific detection of relevant antigens with unmodified primary antibodies, digoxigenylated secondary antibodies and anti-digoxigenin-peroxidase conjugates. The application of the DIG technology seems to be especially indicated in tissues containing high amounts of endogenous biotin-bearing proteins which might induce false-positive staining in conventional streptavidin/biotin techniques. Finally, the previously shown suitability of digoxigenylated antibodies for different immunocytochemical procedures is completed here by examples for sensitive single immunoperoxidase staining of neural markers in rat brain and for carbocyanine double immunofluorescence labelling of senile plaques in old rhesus monkeys.
Collapse
Affiliation(s)
- W Härtig
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
36
|
MacGibbon GA, Lawlor PA, Walton M, Sirimanne E, Faull RL, Synek B, Mee E, Connor B, Dragunow M. Expression of Fos, Jun, and Krox family proteins in Alzheimer's disease. Exp Neurol 1997; 147:316-32. [PMID: 9344557 DOI: 10.1006/exnr.1997.6600] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Apoptosis is an active process of cell death characterized by distinct morphological features and is often the end result of a genetic program of events, i.e., programmed cell death (PCD). There is growing evidence supporting a role for apoptosis and/or PCD in Alzheimer's disease (AD), based on DNA fragmentation studies and recent findings of increased levels of inducible transcription factors (ITFs) such as c-Jun in AD brains. We have characterized the expression of a large range of ITFs (c-Fos, Fos B, Fos-related antigens, c-Jun, Jun B, Jun D, Krox20, and Krox24) using multiple antisera in AD postmortem hippocampi and compared this with human control hippocampi as well as Huntington's disease hippocampi and human epilepsy biopsy tissue. We found little evidence of nuclear expression of any ITF except c-Jun in the human postmortem tissue, compared with nuclear staining in biopsy tissue. We found some evidence for increased levels of c-Jun and Krox24 protein and krox24 mRNA in the CA1 region of AD hippocampi, suggesting that PCD may be involved in the pathogenesis of AD. In general, staining characteristics of ITFs varied with different antisera directed against the same protein, indicating the need for caution when interpreting results.
Collapse
Affiliation(s)
- G A MacGibbon
- Department of Pharmacology and Clinical Pharmacology, School of Medicine, The University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kril JJ, Flowers D, Butterworth RF. Distinctive pattern of Bergmann glial pathology in human hepatic encephalopathy. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1997; 31:279-87. [PMID: 9336769 DOI: 10.1007/bf02815130] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer type II astrocytosis is the pathological hallmark of hepatic encephalopathy. These astrocytes undergo a characteristic morphological change and, in addition, lose immunoreactivity for glial fibrillary acidic protein (GFAP). However, a previous study in the portacaval shunted rat, a model of hepatic encephalopathy, revealed increased rather than decreased GFAP immunoreactivity in Bergmann glia, a specialized group of cerebellar astrocytes. In the present study, sections of cerebellar vermis from 15 cirrhotic patients with hepatic encephalopathy and varying degrees of Alzheimer type II astrocytosis were stained using antisera to GFAP. The Bergmann glial cells did not show altered GFAP immunoreactivity compared to controls. In addition, the degree of GFAP immunoreactivity was not correlated with the degree of Alzheimer type II change nor related to the aetiology of the liver disease. These results suggest a differential response of Bergmann glia in human hepatic encephalopathy.
Collapse
Affiliation(s)
- J J Kril
- Centre for Education and Research on Ageing, Concord Hospital, Sydney, Australia.
| | | | | |
Collapse
|
38
|
Peuchen S, Bolaños JP, Heales SJ, Almeida A, Duchen MR, Clark JB. Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Prog Neurobiol 1997; 52:261-81. [PMID: 9247965 DOI: 10.1016/s0301-0082(97)00010-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Astrocytes have, until recently, been thought of as the passive supporting elements of the central nervous system. However, recent developments suggest that these cells actually play a crucial and vital role in the overall physiology of the brain. Astrocytes selectively express a host of cell membrane and nuclear receptors that are responsive to various neuroactive compounds. In addition, the cell membrane has a number of important transporters for these compounds. Direct evidence for the selective co-expression of neurotransmitters, transporters on both neurons and astrocytes, provides additional evidence for metabolic compartmentation within the central nervous system. Oxidative stress as defined by the excessive production of free radicals can alter dramatically the function of the cell. The free radical nitric oxide has attracted a considerable amount of attention recently, due to its role as a physiological second messenger but also because of its neurotoxic potential when produced in excess. We provide, therefore, an in-depth discussion on how this free radical and its metabolites affect the intra and intercellular physiology of the astrocyte(s) and surrounding neurons. Finally, we look at the ways in which astrocytes can counteract the production of free radicals in general by using their antioxidant pathways. The glutathione antioxidant system will be the focus of attention, since astrocytes have an enormous capacity for, and efficiency built into this particular system.
Collapse
Affiliation(s)
- S Peuchen
- Department of Neurochemistry, Institute of Neurology, London, U.K.
| | | | | | | | | | | |
Collapse
|
39
|
Dragunow M, MacGibbon GA, Lawlor P, Butterworth N, Connor B, Henderson C, Walton M, Woodgate A, Hughes P, Faull RL. Apoptosis, neurotrophic factors and neurodegeneration. Rev Neurosci 1997; 8:223-65. [PMID: 9548234 DOI: 10.1515/revneuro.1997.8.3-4.223] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptosis is an active process of cell death characterized by distinct morphological features, and is often the end result of a genetic programme of events, i.e. programmed cell death (PCD). There is growing evidence supporting a role for apoptosis in some neurodegenerative diseases. This conclusion is based on DNA fragmentation studies and findings of increased levels of pro-apoptotic genes in human brain and in in vivo and in vitro model systems. Additionally, there is some evidence for a loss of neurotrophin support in neurodegenerative diseases. In Alzheimer's disease, in particular, there is strong evidence from human brain studies, transgenic models and in vitro models to suggest that the mode of nerve cell death is apoptotic. In this review we describe the evidence implicating apoptosis in neurodegenerative diseases with a particular emphasis on Alzheimer's disease.
Collapse
Affiliation(s)
- M Dragunow
- Department of Pharmacology and Clinical Pharmacology, Medicine and Health Sciences Campus, The University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|