1
|
Liang D, Labrakakis C. Multiple Posterior Insula Projections to the Brainstem Descending Pain Modulatory System. Int J Mol Sci 2024; 25:9185. [PMID: 39273133 PMCID: PMC11395413 DOI: 10.3390/ijms25179185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The insular cortex is an important hub for sensory and emotional integration. It is one of the areas consistently found activated during pain. While the insular's connections to the limbic system might play a role in the aversive and emotional component of pain, its connections to the descending pain system might be involved in pain intensity coding. Here, we used anterograde tracing with viral expression of mCherry fluorescent protein, to examine the connectivity of insular axons to different brainstem nuclei involved in the descending modulation of pain in detail. We found extensive connections to the main areas of descending pain control, namely, the periaqueductal gray (PAG) and the raphe magnus (RMg). In addition, we also identified an extensive insular connection to the parabrachial nucleus (PBN). Although not as extensive, we found a consistent axonal input from the insula to different noradrenergic nuclei, the locus coeruleus (LC), the subcoereuleus (SubCD) and the A5 nucleus. These connections emphasize a prominent relation of the insula with the descending pain modulatory system, which reveals an important role of the insula in pain processing through descending pathways.
Collapse
Affiliation(s)
- Despoina Liang
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
2
|
Lubejko ST, Livrizzi G, Buczynski SA, Patel J, Yung JC, Yaksh TL, Banghart MR. Inputs to the locus coeruleus from the periaqueductal gray and rostroventral medulla shape opioid-mediated descending pain modulation. SCIENCE ADVANCES 2024; 10:eadj9581. [PMID: 38669335 PMCID: PMC11051679 DOI: 10.1126/sciadv.adj9581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stanley A. Buczynski
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Chemistry and Biochemistry Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Janki Patel
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean C. Yung
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Lubejko ST, Livrizzi G, Patel J, Yung JC, Yaksh TL, Banghart MR. Inputs to the locus coeruleus from the periaqueductal gray and rostroventral medulla shape opioid-mediated descending pain modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561768. [PMID: 37873091 PMCID: PMC10592708 DOI: 10.1101/2023.10.10.561768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. Unexpectedly, given prior emphasis on descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We also report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings significantly revise current models of the DPMS and establish a novel supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Janki Patel
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean C. Yung
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Moriya S, Yamashita A, Masukawa D, Sakaguchi J, Ikoma Y, Sameshima Y, Kambe Y, Yamanaka A, Kuwaki T. Involvement of A5/A7 noradrenergic neurons and B2 serotonergic neurons in nociceptive processing: a fiber photometry study. Neural Regen Res 2021; 17:881-886. [PMID: 34472489 PMCID: PMC8530127 DOI: 10.4103/1673-5374.322465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the central nervous system, the A6 noradrenaline (NA) and the B3 serotonin (5-HT) cell groups are well-recognized players in the descending antinociceptive system, while other NA/5-HT cell groups are not well characterized. A5/A7 NA and B2 5-HT cells project to the spinal horn and form descending pathways. We recorded G-CaMP6 green fluorescence signal intensities in the A5/A7 NA and the B2 5-HT cell groups of awake mice in response to acute tail pinch stimuli, acute heat stimuli, and in the context of a non-noxious control test, using fiber photometry with a calcium imaging system. We first introduced G-CaMP6 in the A5/A7 NA or B2 5-HT neuronal soma, using transgenic mice carrying the tetracycline-controlled transactivator transgene under the control of either a dopamine β-hydroxylase or a tryptophan hydroxylase-2 promoters and by the site-specific injection of adeno-associated virus (AAV-TetO(3G)-G-CaMP6). After confirming the specific expression patterns of G-CaMP6, we recorded G-CaMP6 green fluorescence signals in these sites in awake mice in response to acute nociceptive stimuli. G-CaMP6 fluorescence intensity in the A5, A7, and B2 cell groups was rapidly increased in response to acute nociceptive stimuli and soon after, it returned to baseline fluorescence intensity. This was not observed in the non-noxious control test. The results indicate that acute nociceptive stimuli rapidly increase the activities of A5/A7 NA or B2 5-HT neurons but the non-noxious stimuli do not. The present study suggests that A5/A7 NA or B2 5-HT neurons play important roles in nociceptive processing in the central nervous system. We suggest that A5/A7/B2 neurons may be new therapeutic targets. All performed procedures were approved by the Institutional Animal Use Committee of Kagoshima University (MD17105) on February 22, 2018.
Collapse
Affiliation(s)
- Shunpei Moriya
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Akira Yamashita
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Junichi Sakaguchi
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Yoko Ikoma
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Yoshimune Sameshima
- Department of Pharmacology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Yuki Kambe
- Department of Pharmacology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| |
Collapse
|
5
|
Rossi GC, Bodnar RJ. Interactive Mechanisms of Supraspinal Sites of Opioid Analgesic Action: A Festschrift to Dr. Gavril W. Pasternak. Cell Mol Neurobiol 2021; 41:863-897. [PMID: 32970288 PMCID: PMC11448623 DOI: 10.1007/s10571-020-00961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Abstract
Almost a half century of research has elaborated the discoveries of the central mechanisms governing the analgesic responses of opiates, including their receptors, endogenous peptides, genes and their putative spinal and supraspinal sites of action. One of the central tenets of "gate-control theories of pain" was the activation of descending supraspinal sites by opiate drugs and opioid peptides thereby controlling further noxious input. This review in the Special Issue dedicated to the research of Dr. Gavril Pasternak indicates his contributions to the understanding of supraspinal mediation of opioid analgesic action within the context of the large body of work over this period. This review will examine (a) the relevant supraspinal sites mediating opioid analgesia, (b) the opioid receptor subtypes and opioid peptides involved, (c) supraspinal site analgesic interactions and their underlying neurophysiology, (d) molecular (particularly AS) tools identifying opioid receptor actions, and (e) relevant physiological variables affecting site-specific opioid analgesia. This review will build on classic initial studies, specify the contributions that Gavril Pasternak and his colleagues did in this specific area, and follow through with studies up to the present.
Collapse
Affiliation(s)
- Grace C Rossi
- Department of Psychology, C.W. Post College, Long Island University, Post Campus, Brookville, NY, USA.
| | - Richard J Bodnar
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
- CUNY Neuroscience Collaborative, Graduate Center, CUNY, New York, NY, USA
| |
Collapse
|
6
|
Jeong Y, Wagner MA, Ploutz-Snyder RJ, Holden JE. Pain condition and sex differences in the descending noradrenergic system following lateral hypothalamic stimulation. IBRO Rep 2020; 8:11-17. [PMID: 31890982 PMCID: PMC6931064 DOI: 10.1016/j.ibror.2019.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/11/2019] [Indexed: 01/28/2023] Open
Abstract
LH stimulation produced pronociceptive and antinociceptive effects from alpha-adrenoceptors in naïve male and female rats. LH stimulation produced pronociceptive and antinociceptive effects from alpha-adrenoceptors in male CCI rats. LH stimulation produced alpha-adrenoceptor-mediated pronociception, but not antinociception in female CCI rats.
The lateral hypothalamus (LH) is known to modulate nociception via the descending noradrenergic system in acute nociception, but less is known about its role in neuropathic pain states. In naïve females, LH stimulation produces opposing effects of α-adrenoceptors, with α2-adrenoceptors mediating antinociception, while pronociceptive α1-adrenoceptors attenuate the effect. Whether this opposing response is seen in neuropathic conditions or in naïve males is unknown. We used a mixed factorial design to compare male and female rats with chronic constriction injury (CCI) to naïve rats, measured by Total Paw Withdrawal (TPW) responses to a thermal stimulus. Rats received one of three doses of carbachol to stimulate the LH followed by intrathecal injection of either an α1- or an α2-adrenoceptor antagonist (WB4101 or yohimbine, resp.) or saline for control. Overall, naïve rats showed a more pronounced opposing alpha-adrenergic response than CCI rats (p < 0.04). Naïve male and female rats demonstrated antinociception following α1-adrenoceptor blockade and hyperalgesia following α2-adrenoceptor blockade. Male CCI rats also showed dose dependent effects from either WB4101 or yohimbine (p < 0.05), while female CCI rats had significant antinociception from WB4101 (p < 0.05), but no effect from yohimbine. These results support the idea that peripheral nerve damage differentially alters the descending noradrenergic modulatory system in male and female rats, and notably, that female CCI rats do not show antinociception from descending noradrenergic input. These findings are suggestive that clinical therapies that recruit the descending noradrenergic system may require a different approach based on patient gender.
Collapse
Affiliation(s)
- Younhee Jeong
- College of Nursing Science, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Monica A Wagner
- The University of Pittsburgh School of Nursing, 3500 Victoria Street, Victoria Bldg, Pittsburgh, PA 15261, United States
| | - Robert J Ploutz-Snyder
- The University of Michigan School of Nursing, 400 N. Ingalls Bldg, Ann Arbor, MI 48109-5482, United States
| | - Janean E Holden
- The University of Michigan School of Nursing, 400 N. Ingalls Bldg, Ann Arbor, MI 48109-5482, United States
| |
Collapse
|
7
|
Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II-Comparison with Those of Other Endogenous Pain Modulators. Pharmaceuticals (Basel) 2019; 12:ph12030136. [PMID: 31527474 PMCID: PMC6789548 DOI: 10.3390/ph12030136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 01/23/2023] Open
Abstract
Much evidence indicates that hypothalamus-derived neuropeptides, oxytocin, orexins A and B, inhibit nociceptive transmission in the rat spinal dorsal horn. In order to unveil cellular mechanisms for this antinociception, the effects of the neuropeptides on synaptic transmission were examined in spinal lamina II neurons that play a crucial role in antinociception produced by various analgesics by using the whole-cell patch-clamp technique and adult rat spinal cord slices. Oxytocin had no effect on glutamatergic excitatory transmission while producing a membrane depolarization, γ-aminobutyric acid (GABA)-ergic and glycinergic spontaneous inhibitory transmission enhancement. On the other hand, orexins A and B produced a membrane depolarization and/or a presynaptic spontaneous excitatory transmission enhancement. Like oxytocin, orexin A enhanced both GABAergic and glycinergic transmission, whereas orexin B facilitated glycinergic but not GABAergic transmission. These inhibitory transmission enhancements were due to action potential production. Oxytocin, orexins A and B activities were mediated by oxytocin, orexin-1 and orexin-2 receptors, respectively. This review article will mention cellular mechanisms for antinociception produced by oxytocin, orexins A and B, and discuss similarity and difference in antinociceptive mechanisms among the hypothalamic neuropeptides and other endogenous pain modulators (opioids, nociceptin, adenosine, adenosine 5’-triphosphate (ATP), noradrenaline, serotonin, dopamine, somatostatin, cannabinoids, galanin, substance P, bradykinin, neuropeptide Y and acetylcholine) exhibiting a change in membrane potential, excitatory or inhibitory transmission in the spinal lamina II neurons.
Collapse
|
8
|
The Neurotoxin DSP-4 Induces Hyperalgesia in Rats that is Accompanied by Spinal Oxidative Stress and Cytokine Production. Neuroscience 2018; 376:13-23. [PMID: 29421433 DOI: 10.1016/j.neuroscience.2018.01.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/30/2022]
Abstract
Central neuropathic pain (CNP) a significant problem for many people, is not well-understood and difficult to manage. Dysfunction of the central noradrenergic system originating in the locus coeruleus (LC) may be a causative factor in the development of CNP. The LC is the major noradrenergic nucleus of the brain and plays a significant role in central modulation of nociceptive neurotransmission. Here, we examined CNS pathophysiological changes induced by intraperitoneal administration of the neurotoxin DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride). Administration of DSP-4 decreased levels of norepinephrine in spinal tissue and cerebrospinal fluid (CSF) and led to the development of thermal and mechanical hyperalgesia over 21 days, that was reversible with morphine. Hyperalgesia was accompanied by significant increases in noradrenochrome (oxidized norepinephrine) and expression of 4-hydroxynonenal in CSF and spinal cord tissue respectively at day 21, indicative of oxidative stress. In addition, spinal levels of pro-inflammatory cytokines (interleukins 6 and 17A, tumor necrosis factor-α), as well as the anti-inflammatory cytokine interleukin10 were also significantly elevated at day 21, indicating that an inflammatory response occurred. The inflammatory effect of DSP-4 presented in this study that includes oxidative stress may be particularly useful in elucidating mechanisms of CNP in inflammatory disease states.
Collapse
|
9
|
de Freitas RL, Medeiros P, da Silva JA, de Oliveira RC, de Oliveira R, Ullah F, Khan AU, Coimbra NC. The μ1-opioid receptor and 5-HT2A- and 5HT2C-serotonergic receptors of the locus coeruleus are critical in elaborating hypoalgesia induced by tonic and tonic–clonic seizures. Neuroscience 2016; 336:133-145. [DOI: 10.1016/j.neuroscience.2016.08.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 01/25/2023]
|
10
|
Bravo L, Mico JA, Rey-Brea R, Camarena-Delgado C, Berrocoso E. Effect of DSP4 and desipramine in the sensorial and affective component of neuropathic pain in rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:57-67. [PMID: 27181607 DOI: 10.1016/j.pnpbp.2016.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Previous findings suggest that neuropathic pain induces characteristic changes in the noradrenergic system that may modify the sensorial and affective dimensions of pain. We raise the hypothesis that different drugs that manipulate the noradrenergic system can modify specific domains of pain. In the chronic constriction injury (CCI) model of neuropathic pain, the sensorial (von Frey and acetone tests) and the affective (place escape/avoidance paradigm) domains of pain were evaluated in rats 1 and 2weeks after administering the noradrenergic neurotoxin [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] (DSP4, 50mg/kg). In other animals, we evaluated the effect of enhancing noradrenergic tone in the 2weeks after injury by administering the antidepressant desipramine (10mg/kg/day, delivered by osmotic minipumps) during this period, a noradrenaline reuptake inhibitor. Moreover, the phosphorylation of the extracellular signal regulated kinases (p-ERK) in the anterior cingulate cortex (ACC) was also assessed. The ACC receives direct inputs from the main noradrenergic nucleus, the locus coeruleus, and ERK activation has been related with the expression of pain-related negative affect. These studies revealed that DSP4 almost depleted noradrenergic axons in the ACC and halved noradrenergic neurons in the locus coeruleus along with a decrease in the affective dimension and an increased of p-ERK in the ACC. However, it did not modify sensorial pain perception. By contrast, desipramine reduced pain hypersensitivity, while completely impeding the reduction of the affective pain dimension and without modifying the amount of p-ERK. Together results suggest that the noradrenergic system may regulate the sensorial and affective sphere of neuropathic pain independently.
Collapse
Affiliation(s)
- Lidia Bravo
- Neuropsychopharmacology & Psychobiology Research Group, University of Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28007 Madrid, Spain; Psychobiology Area, Department of Psychology, University of Cadiz, Spain
| | - Juan A Mico
- Neuropsychopharmacology & Psychobiology Research Group, University of Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28007 Madrid, Spain; Department of Neuroscience, University of Cádiz, Spain
| | - Raquel Rey-Brea
- Neuropsychopharmacology & Psychobiology Research Group, University of Cádiz, Spain
| | | | - Esther Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, University of Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28007 Madrid, Spain; Psychobiology Area, Department of Psychology, University of Cadiz, Spain.
| |
Collapse
|
11
|
Cholinergic and glutamatergic transmission at synapses between pedunculopotine tegmental nucleus axonal terminals and A7 catecholamine cell group noradrenergic neurons in the rat. Neuropharmacology 2016; 110:237-250. [PMID: 27422407 DOI: 10.1016/j.neuropharm.2016.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 06/23/2016] [Accepted: 07/11/2016] [Indexed: 11/20/2022]
Abstract
We characterized transmission from the pedunculopotine tegmental nucleus (PPTg), which contains cholinergic and glutamatergic neurons, at synapses with noradrenergic (NAergic) A7 neurons. Injection of an anterograde neuronal tracer, biotinylated-dextran amine, into the PPTg resulted in labeling of axonal terminals making synaptic connection with NAergic A7 neurons. Consistent with this, extracellular stimulation using a train of 10 pulses at 100 Hz evoked both fast and slow excitatory synaptic currents (EPSCs) that were blocked, respectively, by DNQX, a non-N-methyl-d-aspartate receptor blocker, or atropine, a cholinergic muscarinic receptor (mAChR) blocker. Interestingly, many spontaneous-like, but stimulation-dependent, EPSCs, were seen for up to one second after the end of stimulation and were blocked by DNQX and decreased by EGTA-AM, a membrane permeable form of EGTA, showing they are glutamatergic EPSCs causing by asynchronous release of vesicular quanta. Moreover, application of atropine or carbachol, an mAChR agonist, caused, respectively, an increase in the number of asynchronous EPSCs or a decrease in the frequency of miniature EPSCs, showing that mAChRs mediated presynaptic inhibition of glutamatergic transmission of the PPTg onto NAergic A7 neurons. In conclusion, our data show direct synaptic transmission of PPTg afferents onto pontine NAergic neurons that involves cooperation of cholinergic and glutamatergic transmission. This dual-transmitter transmission drives the firing rate of NAergic neurons, which may correlate with axonal and somatic/dendritic release of NA.
Collapse
|
12
|
Mohammad-Pour Kargar H, Azizi H, Mirnajafi-Zadeh J, Ali Reza M, Semnanian S. Microinjection of orexin-A into the rat locus coeruleus nucleus induces analgesia via cannabinoid type-1 receptors. Brain Res 2015; 1624:424-432. [DOI: 10.1016/j.brainres.2015.07.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/19/2015] [Accepted: 07/29/2015] [Indexed: 01/05/2023]
|
13
|
Liu CY, Lee ML, Yang CS, Chen CM, Min MY, Yang HW. Morphological and physiological evidence of a synaptic connection between the lateral parabrachial nucleus and neurons in the A7 catecholamine cell group in rats. J Biomed Sci 2015; 22:79. [PMID: 26385355 PMCID: PMC4575445 DOI: 10.1186/s12929-015-0179-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The descending noradrenergic (NAergic) system is one of the important endogenous analgesia systems. It has been suggested that noxious stimuli could activate descending NAergic system; nevertheless, the underlying neuronal circuit remains unclear. As NAergic neurons in the A7 catecholamine cell group (A7) are a part of the descending NAergic system and the lateral parabrachial nucleus (LPB) is an important brainstem structure that relays ascending nociceptive signal, we aimed to test whether LPB neurons have direct synaptic contact with NAergic A7 neurons. RESULTS Stereotaxic injections of an anterograde tracer, biotinylated dextran-amine (BDA), were administered to LPB in rats. The BDA-labeled axonal terminals that have physical contacts with tyrosine hydroxylase-positive (presumed noadrenergic) neurons were identified in A7. Consistent with these morphological observations, the excitatory synaptic currents (EPSCs) were readily evoked in NAergic A7 neurons by extracellular stimulation of LPB. The EPSCs evoked by LPB stimulation were blocked by CNQX, a non-NMDA receptor blocker, and AP5, a selective NMDA receptor blocker, showing that LPB-A7 synaptic transmission is glutamatergic. Moreover, the amplitude of LPB-A7 EPSCs was significantly attenuated by DAMGO, a selective μ-opioid receptor agonist, which was associated with an increase in paired-pulse ratio. CONCLUSIONS Taken together, the above results showed direct synaptic connections between LPB and A7 catecholamine cell group, the function of which is subject to presynaptic modulation by μ-opioid receptors.
Collapse
Affiliation(s)
- Chia-Yi Liu
- Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan. .,Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan.
| | - Meng-Lam Lee
- Department of Biomedical Sciences, Chung Shan Medical University, 110, Chien-Kuo N. Rd, Sec. 1, Taichung, 402, Taiwan. .,Department of Medical Research, Chung Shan Medical University, Taichung, Taiwan.
| | - Chi-Sheng Yang
- Department of Nursing, Hungkuang University, Taichung, Taiwan.
| | - Chuan-Mu Chen
- Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan. .,Rong Hsing Research Center for Translational Medicine, and the iEGG Center, National Chung Hsing University, Taichung, Taiwan.
| | - Ming-Yuan Min
- Department of Life Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan.
| | - Hsiu-Wen Yang
- Department of Biomedical Sciences, Chung Shan Medical University, 110, Chien-Kuo N. Rd, Sec. 1, Taichung, 402, Taiwan. .,Department of Medical Research, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Abstract
Inhibition of both itching and scratching is important in the treatment of chronic pruritic diseases, because itching has a negative impact on quality of life and vigorous scratching worsens skin conditions. Pharmacological modulation of itch transmission in the dorsal horn is an effective way to inhibit both itching and scratching in pruritic diseases. Pruriceptive transmission in the spinal dorsal horn undergoes inhibitory modulation by the descending noradrenergic system. The noradrenergic inhibition is mediated by excitatory α₁-adrenoceptors located on inhibitory interneurons and inhibitory α₂-adrenoceptors located on central terminals of primary sensory neurons. The descending noradrenergic system and α-adrenoceptors in the dorsal horn are potential targets for antipruritic drugs.
Collapse
Affiliation(s)
- Yasushi Kuraishi
- Laboratory of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan,
| |
Collapse
|
15
|
Abstract
This article provides an integrated review of the basic anatomy and physiology of the pain processing pathways. The transmission and parcellation of noxious stimuli from the peripheral nervous system to the central nervous system is discussed. In addition, the inhibitory and excitatory systems that regulate pain along with the consequences of dysfunction are considered.
Collapse
Affiliation(s)
- Sarah Bourne
- Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, S4, Cleveland, OH 44195, USA
| | - Andre G Machado
- Department of Neurosurgery, Center for Neurological Restoration, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, S31, Cleveland, OH 44195, USA
| | - Sean J Nagel
- Department of Neurosurgery, Center for Neurological Restoration, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, S31, Cleveland, OH 44195, USA.
| |
Collapse
|
16
|
Shen F, Tsuruda PR, Smith JAM, Obedencio GP, Martin WJ. Relative contributions of norepinephrine and serotonin transporters to antinociceptive synergy between monoamine reuptake inhibitors and morphine in the rat formalin model. PLoS One 2013; 8:e74891. [PMID: 24098676 PMCID: PMC3787017 DOI: 10.1371/journal.pone.0074891] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/07/2013] [Indexed: 01/21/2023] Open
Abstract
Multimodal analgesia is designed to optimize pain relief by coadministering drugs with distinct mechanisms of action or by combining multiple pharmacologies within a single molecule. In clinical settings, combinations of monoamine reuptake inhibitors and opioid receptor agonists have been explored and one currently available analgesic, tapentadol, functions as both a µ-opioid receptor agonist and a norepinephrine transporter inhibitor. However, it is unclear whether the combination of selective norepinephrine reuptake inhibition and µ-receptor agonism achieves an optimal antinociceptive synergy. In this study, we assessed the pharmacodynamic interactions between morphine and monoamine reuptake inhibitors that possess different affinities and selectivities for norepinephrine and serotonin transporters. Using the rat formalin model, in conjunction with measurements of ex vivo transporter occupancy, we show that neither the norepinephrine-selective inhibitor, esreboxetine, nor the serotonin-selective reuptake inhibitor, fluoxetine, produce antinociceptive synergy with morphine. Atomoxetine, a monoamine reuptake inhibitor that achieves higher levels of norepinephrine than serotonin transporter occupancy, exhibited robust antinociceptive synergy with morphine. Similarly, a fixed-dose combination of esreboxetine and fluoxetine which achieves comparable levels of transporter occupancy potentiated the antinociceptive response to morphine. By contrast, duloxetine, a monoamine reuptake inhibitor that achieves higher serotonin than norepinephrine transporter occupancy, failed to potentiate the antinociceptive response to morphine. However, when duloxetine was coadministered with the 5-HT3 receptor antagonist, ondansetron, potentiation of the antinociceptive response to morphine was revealed. These results support the notion that inhibition of both serotonin and norepinephrine transporters is required for monoamine reuptake inhibitor and opioid-mediated antinociceptive synergy; yet, excess serotonin, acting via 5-HT3 receptors, may reduce the potential for synergistic interactions. Thus, in the rat formalin model, the balance between norepinephrine and serotonin transporter inhibition influences the degree of antinociceptive synergy observed between monoamine reuptake inhibitors and morphine.
Collapse
Affiliation(s)
- Fei Shen
- Departments of Pharmacology, Theravance Inc., South San Francisco, California, United States of America
- * E-mail:
| | - Pamela R. Tsuruda
- Departments of Molecular and Cell Biology, Theravance Inc., South San Francisco, California, United States of America
| | - Jacqueline A. M. Smith
- Departments of Molecular and Cell Biology, Theravance Inc., South San Francisco, California, United States of America
| | - Glenmar P. Obedencio
- Departments of Molecular and Cell Biology, Theravance Inc., South San Francisco, California, United States of America
| | - William J. Martin
- Departments of Pharmacology, Theravance Inc., South San Francisco, California, United States of America
| |
Collapse
|
17
|
Somers DL, Clemente RF. The neurophysiological basis of peripheral electrical nerve stimulation for the treatment of causalgia. PHYSICAL THERAPY REVIEWS 2013. [DOI: 10.1179/ptr.1996.1.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Hughes SW, Hickey L, Hulse RP, Lumb BM, Pickering AE. Endogenous analgesic action of the pontospinal noradrenergic system spatially restricts and temporally delays the progression of neuropathic pain following tibial nerve injury. Pain 2013; 154:1680-1690. [PMID: 23707289 PMCID: PMC3763373 DOI: 10.1016/j.pain.2013.05.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 11/17/2022]
Abstract
Pontospinal noradrenergic neurons form part of an endogenous analgesic system that suppresses acute pain, but there is conflicting evidence about its role in neuropathic pain. We investigated the chronology of descending noradrenergic control during the development of a neuropathic pain phenotype in rats following tibial nerve transection (TNT). A lumbar intrathecal cannula was implanted at the time of nerve injury allowing administration of selective α-adrenoceptor (α-AR) antagonists to sequentially assay their effects upon the expression of allodynia and hyperalgesia. Following TNT animals progressively developed mechanical and cold allodynia (by day 10) and subsequently heat hypersensitivity (day 17). Blockade of α2-AR with intrathecal yohimbine (30 μg) revealed earlier ipsilateral sensitization of all modalities while prazosin (30 μg, α1-AR) was without effect. Established allodynia (by day 21) was partly reversed by the re-uptake inhibitor reboxetine (5 μg, i.t.) but yohimbine no longer had any sensitising effect. This loss of effect coincided with a reduction in the descending noradrenergic innervation of the ipsilateral lumbar dorsal horn. Yohimbine reversibly unmasked contralateral hindlimb allodynia and hyperalgesia of all modalities and increased dorsal horn c-fos expression to an innocuous brush stimulus. Contralateral thermal hyperalgesia was also reversibly uncovered by yohimbine administration in a contact heat ramp paradigm in anaesthetised TNT rats. Following TNT there is an engagement of inhibitory α2-AR-mediated noradrenergic tone which completely masks contralateral and transiently suppresses the development of ipsilateral sensitization. This endogenous analgesic system plays a key role in shaping the spatial and temporal expression of the neuropathic pain phenotype after nerve injury.
Collapse
Affiliation(s)
- S W Hughes
- School of Physiology & Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
19
|
Bajic D, Proudfit HK. Projections from the rat cuneiform nucleus to the A7, A6 (locus coeruleus), and A5 pontine noradrenergic cell groups. J Chem Neuroanat 2013; 50-51:11-20. [PMID: 23524296 DOI: 10.1016/j.jchemneu.2013.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/01/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
Abstract
Stimulation of neurons in the cuneiform nucleus (CnF) produces antinociception and cardiovascular responses that could be mediated, in part, by noradrenergic neurons that innervate the spinal cord dorsal horn. The present study determined the projections of neurons in the CnF to the pontine noradrenergic neurons in the A5, A6 (locus coeruleus), and A7 cell groups that are known to project to the spinal cord. Injections of the anterograde tracer, biotinylated dextran amine in the CnF of Sasco Sprague-Dawley rats labeled axons located near noradrenergic neurons that were visualized by processing tissue sections for tyrosine hydroxylase-immunoreactivity. Anterogradely labeled axons were more dense on the side ipsilateral to the BDA deposit. Both A7 and A5 cell groups received dense projections from neurons in the CnF, whereas locus coeruleus received only a sparse projection. Highly varicose anterogradely labeled axons from the CnF were found in close apposition to dendrites and somata of tyrosine hydroxylase-immunoreactive neurons in pontine tegmentum. Although definitive evidence for direct pathways from CnF neurons to the pontine noradrenergic cell groups requires ultrastructural analysis, the results of the present studies provide presumptive evidence of direct projections from neurons in the CnF to the pontine noradrenergic neurons of the A7, locus coeruleus, and A5 cell groups. These results support the suggestion that the analgesia and cardiovascular responses produced by stimulation of neurons in the CnF may be mediated, in part, by pontine noradrenergic neurons.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Pharmacology, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA.
| | | |
Collapse
|
20
|
Jeong Y, Moes JR, Wagner M, Holden JE. The posterior hypothalamus exerts opposing effects on nociception via the A7 catecholamine cell group in rats. Neuroscience 2012; 227:144-53. [PMID: 23036619 DOI: 10.1016/j.neuroscience.2012.09.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 01/16/2023]
Abstract
Stimulation of the posterior hypothalamic area (PH) produces antinociception in rats and humans, but the precise mechanisms are unknown. The PH forms anatomical connections with the parabrachial area, which contains the pontine A7 catecholamine cell group, a group of spinally projecting noradrenergic neurons known to produce antinociception in the dorsal horn. The aim of the present study was to determine whether PH-induced antinociception is mediated in part through connections with the A7 cell group in female Sprague-Dawley rats, as measured by the tail flick and foot withdrawal latency. Stimulation of the PH with the cholinergic agonist carbachol (125 nmol) produced antinociception that was blocked by pretreatment with atropine sulfate. Intrathecal injection of the α(2)-adrenoceptor antagonist yohimbine reversed PH-induced antinociception, but the α(1)-adrenoceptor antagonist WB4101 facilitated antinociception. Intrathecal injection of normal saline had no effect. In a separate experiment, cobalt chloride, which reversibly arrests synaptic activity, was microinjected into the A7 cell group and blocked PH-induced antinociception. These findings provide evidence that the PH modulates nociception in part through connections with the A7 catecholamine cell group through opposing effects. Antinociception occurs from actions at α(2)-adrenoceptors in the dorsal horn, while concurrent hyperalgesia occurs from actions of norepinephrine at α(1)-adrenoceptors. This hyperalgesic response likely attenuates antinociception from PH stimulation.
Collapse
Affiliation(s)
- Y Jeong
- College of Nursing Science, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, Korea.
| | | | | | | |
Collapse
|
21
|
Wei H, Pertovaara A. Regulation of Neuropathic Hypersensitivity by α2-Adrenoceptors in the Pontine A7 Cell Group. Basic Clin Pharmacol Toxicol 2012; 112:90-5. [DOI: 10.1111/j.1742-7843.2012.00930.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 08/08/2012] [Indexed: 01/06/2023]
Affiliation(s)
- Hong Wei
- Biomedicum Helsinki; Institute of Biomedicine/Physiology; University of Helsinki; Helsinki; Finland
| | - Antti Pertovaara
- Biomedicum Helsinki; Institute of Biomedicine/Physiology; University of Helsinki; Helsinki; Finland
| |
Collapse
|
22
|
Bajic D, Van Bockstaele EJ, Proudfit HK. Ultrastructural analysis of rat ventrolateral periaqueductal gray projections to the A5 cell group. Neuroscience 2012; 224:145-59. [PMID: 22917613 DOI: 10.1016/j.neuroscience.2012.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/05/2012] [Accepted: 08/09/2012] [Indexed: 11/15/2022]
Abstract
Stimulation of neurons in the ventrolateral periaqueductal gray (PAG) produces antinociception as well as cardiovascular depressor responses that are mediated in part by pontine noradrenergic neurons. A previous report using light microscopy has described a pathway from neurons in the ventrolateral PAG to noradrenergic neurons in the A5 cell group that may mediate these effects. The present study used anterograde tracing and electron microscopic analysis to provide more definitive evidence that neurons in the ventrolateral PAG form synapses with noradrenergic and non-catecholaminergic A5 neurons in Sasco Sprague-Dawley rats. Deposits of anterograde tracer, biotinylated dextran amine, into the rat ventrolateral PAG labeled a significant number of axons in the region of the rostral subdivision of the A5 cell group, and a relatively lower number in the caudal A5 cell group. Electron microscopic analysis of anterogradely-labeled terminals in both rostral (n=127) and caudal (n=70) regions of the A5 cell group indicated that approximately 10% of these form synapses with noradrenergic dendrites. In rostral sections, about 31% of these were symmetric synapses, 19% were asymmetric synapses, and 50% were membrane appositions without clear synaptic specializations. In caudal sections, about 22% were symmetric synapses, and the remaining 78% were appositions. In both rostral and caudal subdivisions of the A5, nearly 40% of the anterogradely-labeled terminals formed synapses with non-catecholaminergic dendrites, and about 45% formed axoaxonic synapses. These results provide direct evidence for a monosynaptic pathway from neurons in the ventrolateral PAG to noradrenergic and non-catecholaminergic neurons in the A5 cell group. Further studies should evaluate if this established monosynaptic pathway may contribute to the cardiovascular depressor effects or the analgesia produced by the activation of neurons in the ventrolateral PAG.
Collapse
Affiliation(s)
- D Bajic
- Department of Pharmacology, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
23
|
Hall FS, Schwarzbaum JM, Perona MTG, Templin JS, Caron MG, Lesch KP, Murphy DL, Uhl GR. A greater role for the norepinephrine transporter than the serotonin transporter in murine nociception. Neuroscience 2010; 175:315-27. [PMID: 21129446 DOI: 10.1016/j.neuroscience.2010.11.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/27/2010] [Accepted: 11/28/2010] [Indexed: 11/16/2022]
Abstract
Norepinephrine and serotonin involvement in nociceptive functions is supported by observations of analgesic effects of norepinephrine transporter (NET) and serotonin transporter (SERT) inhibitors such as amitriptyline. However, the relative contribution of NET and SERT to baseline nociception, as well as amitriptyline analgesia, is unclear. Amitriptyline and morphine analgesia in wild-type (WT) mice and littermates with gene knockout (KO) of SERT, NET or both transporters was conducted using the hotplate and tail-flick tests. Hypoalgesia was observed in NET KO mice, and to a lesser extent in SERT KO mice. The magnitude of this hypoalgesia in NET KO mice was so profound that it limited the assessment of drug-induced analgesia. Nonetheless, the necessary exclusion of these subjects because of profound baseline hypoalgesia strongly supports the role of norepinephrine and NET in basal nociceptive behavior while indicating a much smaller role for serotonin and SERT. To further clarify the role of NET and SERT in basal nociceptive sensitivity further experiments were conducted in SERT KO and NET KO mice across a range of temperatures. NET KO mice were again found to have pronounced thermal hypoalgesia compared to WT mice in both the hotplate and tail-flick tests, while only limited effects were observed in SERT KO mice. Furthermore, in the acetic acid writhing test of visceral nociception pronounced hypoalgesia was again found in NET KO mice, but no change in SERT KO mice. As some of these effects may have resulted from developmental consequences of NET KO, the effects of the selective NET blocker nisoxetine and the selective SERT blocker fluoxetine were also examined in WT mice: only nisoxetine produced analgesia in these mice. Collectively these data suggest that NET has a far greater role in determining baseline analgesia, and perhaps other analgesic effects, than SERT in mice.
Collapse
Affiliation(s)
- F S Hall
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nilsen KB, Flaten MA, Hagen K, Matre D, Sand T. [Mechanisms for pain inhibiton in the central nervous system]. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2010; 130:1921-4. [PMID: 20930880 DOI: 10.4045/tidsskr.10.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Several endogenous factors regulate the perception of pain. Understanding of pain-alleviating mechanisms is increasing, which is useful both for doctors who treat pain-ridden patients and for researchers interested in the physiology of pain. This article provides an overview of such mechanisms. MATERIAL AND METHODS This review article is based on literature identified through a non-systematic search in PubMed. RESULTS Endogenous pain-alleviating mechanisms are mainly controlled by different parts of the reticular substance, and are normally activated by painful stimulation. Expectation of pain reduction (placebo analgesic effect), painful stimulation in other sites and high blood pressure are examples of factors which may increase the body's endogenous pain-alleviating mechanisms. Opioid-sensitive cells in the brain stem are important for endogenous pain alleviation. Reduced endogenous pain alleviation is found in a number of painful conditions, but it has not been clarified whether reduced endogenous pain inhibition is a cause of or a result of chronic pain. INTERPRETATION Strengthening of the body's own mechanisms for pain alleviation is possible and potentially useful in treatment of pain-ridden patients.
Collapse
Affiliation(s)
- Kristian Bernhard Nilsen
- Seksjon for klinisk nevrofysiologi, Avdeling for nevrologi, Oslo universitetssykehus, 0407 Oslo, Norway.
| | | | | | | | | |
Collapse
|
25
|
Roles of A-type potassium currents in tuning spike frequency and integrating synaptic transmission in noradrenergic neurons of the A7 catecholamine cell group in rats. Neuroscience 2010; 168:633-45. [PMID: 20381592 DOI: 10.1016/j.neuroscience.2010.03.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/23/2010] [Accepted: 03/30/2010] [Indexed: 11/24/2022]
Abstract
We investigated voltage-dependent K(+) currents (I(K)) in noradrenergic (NAergic) A7 neurons. The I(K) evoked consisted of A-type I(K) (I(A)), which had the characteristics of a low threshold for activation (approximately -50 mV), fast activation/inactivation, and rapid recovery from inactivation. Since the I(A) were blocked by heteropodatoxin-2 (Hptx-2), a specific Kv4 channel blocker, and the NAergic A7 neurons were shown to be reactive with antibodies against Kv4.1/Kv4.3 channel proteins, we conclude that the I(A) evoked in NAergic neurons are mediated by Kv4.1/Kv4.3 channels. I(A) were also evoked using voltage commands of a single action potential (AP), a subthreshold voltage change between two consecutive APs, or excitatory postsynaptic potential (EPSP) activity recorded in current-clamp mode (CCM). Blockade of the I(A) by 4-AP, a broad spectrum I(A) blocker, or by Hptx-2 increased the half-width and spontaneous firing of APs and reduced the amount of synaptic drive needed to elicit APs in CCM, showing that the I(A) play important roles in regulating the shape and firing frequency of APs and in synaptic integration in NAergic A7 neurons. Since these neurons are the principal projection neurons to the dorsal horn of the spinal cord, these results also suggest roles for Kv4.1/4.3 channels in descending NAergic pain regulation.
Collapse
|
26
|
Bajic D, Commons KG. Visualizing acute pain-morphine interaction in descending monoamine nuclei with Fos. Brain Res 2010; 1306:29-38. [PMID: 19833107 PMCID: PMC2810425 DOI: 10.1016/j.brainres.2009.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/30/2009] [Accepted: 10/02/2009] [Indexed: 12/17/2022]
Abstract
The effect of morphine is often studied in the absence of pain, and it remains poorly understood if and how noxious stimulation may change the activity state of descending pain-modulatory pathways and their response to morphine. Immunohistochemical double-labeling technique with Fos and markers for noradrenergic and serotonergic neurons was used to examine if an intraplantar formalin injection (an acute noxious input) changed the effect of morphine on noradrenergic neurons of the A7 and A5 cell groups, and serotonergic neurons of the nucleus raphe magnus (NRM). Four groups of rats were analyzed: (1) control injected with normal saline subcutaneously, (2) rats treated with FORMALIN into the hind paw 30 min after subcutaneous normal saline injection, (3) rats injected with MORPHINE sulfate subcutaneously, and (4) rats treated with formalin into the hind paw 30 min after subcutaneous morphine injection (morphine/formalin). The average number of total Fos-labeled cells per section was unchanged in all areas of analysis in all treatment groups. However, the percentage of noradrenergic neurons in the A7 and A5 cell groups that contained Fos was significantly increased in the morphine/formalin group compared to all other groups, while no differences were found in serotonin cells in the NRM. In contrast with the view that morphine simply blocks access of nociceptive information to supraspinal brain areas, these data suggest that noxious stimulation has the capacity to modify the actions of morphine on brainstem noradrenergic nuclei, which may participate in descending pain modulation as well as other behavioral responses to pain.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston, Boston, MA, USA.
| | | |
Collapse
|
27
|
Takeoka A, Kubasak MD, Zhong H, Kaplan J, Roy RR, Phelps PE. Noradrenergic innervation of the rat spinal cord caudal to a complete spinal cord transection: effects of olfactory ensheathing glia. Exp Neurol 2009; 222:59-69. [PMID: 20025875 DOI: 10.1016/j.expneurol.2009.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/23/2009] [Accepted: 12/05/2009] [Indexed: 02/06/2023]
Abstract
Transplantation of olfactory bulb-derived olfactory ensheathing glia (OEG) combined with step training improves hindlimb locomotion in adult rats with a complete spinal cord transection. Spinal cord injury studies use the presence of noradrenergic (NA) axons caudal to the injury site as evidence of axonal regeneration and we previously found more NA axons just caudal to the transection in OEG- than media-injected spinal rats. We therefore hypothesized that OEG transplantation promotes descending coeruleospinal regeneration that contributes to the recovery of hindlimb locomotion. Now we report that NA axons are present throughout the caudal stump of both media- and OEG-injected spinal rats and they enter the spinal cord from the periphery via dorsal and ventral roots and along large penetrating blood vessels. These results indicate that the presence of NA fibers in the caudal spinal cord is not a reliable indicator of coeruleospinal regeneration. We then asked if NA axons appose cholinergic neurons associated with motor functions, i.e., central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more NA varicosities adjacent to central canal cluster cells, partition cells, and SMNs in the lumbar enlargement of OEG- than media-injected rats. As non-synaptic release of NA is common in the spinal cord, more associations between NA varicosities and motor-associated cholinergic neurons in the lumbar spinal cord may contribute to the improved treadmill stepping observed in OEG-injected spinal rats. This effect could be mediated through direct association with SMNs and/or indirectly via cholinergic interneurons.
Collapse
Affiliation(s)
- Aya Takeoka
- Department of Physiological Science, UCLA, Box 951606, Los Angeles, CA 90095-1606, USA
| | | | | | | | | | | |
Collapse
|
28
|
Retrograde viral vector-mediated inhibition of pontospinal noradrenergic neurons causes hyperalgesia in rats. J Neurosci 2009; 29:12855-64. [PMID: 19828800 DOI: 10.1523/jneurosci.1699-09.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pontospinal noradrenergic neurons form a component of an endogenous analgesic system and represent a potential therapeutic target. We tested the principle that genetic manipulation of their excitability can alter nociception using an adenoviral vector (AVV-PRS-hKir(2.1)) containing a catecholaminergic-selective promoter (PRS) to retrogradely transduce and inhibit the noradrenergic neurons projecting to the lumbar dorsal horn through the expression of a potassium channel (hKir(2.1)). Expression of hKir(2.1) in catecholaminergic PC12 cells hyperpolarized the membrane potential and produced a barium-sensitive inward rectification. LC neurons transduced by AVV-PRS-hKir(2.1) in slice cultures also showed barium-sensitive inward rectification and reduced spontaneous firing rate (median 0.2 Hz; n = 19 vs control 1.0 Hz; n = 18, p < 0.05). Pontospinal noradrenergic neurons were retrogradely transduced in vivo by injection of AVV into the lumbar dorsal horn (L4-5). Rats transduced with AVV-PRS-hKir(2.1) showed thermal but not mechanical hyperalgesia. Similar selective augmentation of thermal hyperalgesia was seen in the CFA-inflammatory pain model after AVV-PRS-hKir(2.1). In the formalin test, rats transduced with hKir(2.1) showed enhanced nocifensive behaviors (both Phase I and II, p < 0.05, n = 11/group) and increased c-Fos-positive cells in the lumbar dorsal horn. Transduction with AVV-PRS-hKir(2.1) before spared nerve injury produced no change in tactile or cold allodynia. Thus, the selective genetic inhibition of approximately 150 pontospinal noradrenergic neurons produces a modality-specific thermal hyperalgesia, increased nocifensive behaviors, and spinal c-Fos expression in the formalin test, but not in the spared nerve injury model of neuropathic pain, indicating that these neurons exert a selective tonic restraining influence on in vivo nociception.
Collapse
|
29
|
Min MY, Shih PY, Wu YW, Lu HW, Lee ML, Yang HW. Neurokinin 1 receptor activates transient receptor potential-like currents in noradrenergic A7 neurons in rats. Mol Cell Neurosci 2009; 42:56-65. [PMID: 19463951 DOI: 10.1016/j.mcn.2009.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022] Open
Abstract
Noradrenergic (NAergic) A7 neurons are involved in modulating nociception by releasing noradrenaline in the dorsal spinal cord. Since NAergic A7 neurons receive dense Substance P (Sub-P) releasing terminals from ventromedial medulla, here we tested the effect of Sub-P on them. Bath application of Sub-P induced an inward current (I(Sub-P)) in NAergic neurons, which was significantly blocked by Neurokinin 1 (NK1) receptor antagonist. The I(Sub-P) was reversed at approximately -20 mV, blocked by several TRP channel blockers, enhanced by OAG and negatively regulated by PKC. Immunohistochemistry staining showed that NAergic A7 neurons express high level of TRPC6 channel proteins, which is consistent with pharmacological properties of I(Sub-P) shown above, as TRPC6 channel is shown to be augmented by OAG and inhibited by PKC. In conclusion, the above results provide mechanism underlying postsynaptic action of Sub-P on NAergic A7 neurons and a role for TRPC6 channel in NAergic pain modulation.
Collapse
Affiliation(s)
- Ming-Yuan Min
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei 106, Taiwan; Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Jeong Y, Holden JE. Lateral Hypothalamic-Induced Alpha-Adrenoceptor Modulation Occurs in a Model of Inflammatory Pain in Rats. Biol Res Nurs 2009; 10:331-9. [DOI: 10.1177/1099800408325053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous work from our lab showed that stimulation of the lateral hypothalamus (LH) produces analgesia (antinociception) in a model of thermal nociceptive pain. This antinociceptive effect is mediated by α2-adrenoceptors in the spinal cord dorsal horn. However, a concomitant, opposing hyperalgesic (pro-nociceptive) response also occurs, which is mediated by α1-adrenoceptors in the dorsal horn. Antinociception predominates but is attenuated by the pronociceptive response. To determine whether such an effect occurs in a model of inflammatory pain, we applied mustard oil (allyl isothiocyanate; 20 μl) to the left ankle of female Sprague-Dawley rats. We then stimulated the LH using carbamylcholine chloride (carbachol; 125 nmol). The foot withdrawal latencies were measured. Some rats received intrathecal α-adrenoceptor antagonists to determine whether the opposing α-adrenoceptor response was present. Mustard oil application produced hyperalgesia in the affected paw, while the LH stimulation increased the foot withdrawal latencies for the mustard oil paw as compared to the control group. Following carbachol microinjection in the LH, WB4101, an α1-adrenoceptor antagonist, produced significantly longer foot withdrawal latencies compared to saline controls, while yohimbine, an α2-antagonist, decreased the foot withdrawal latencies from 10 min postinjection ( p < .05). These findings support the hypothesis that the LH-induced nociceptive modulation is mediated through an α-adrenoceptor opposing response in a model of inflammatory pain.
Collapse
Affiliation(s)
- Younhee Jeong
- College of Nursing Science, Kyunghee University, Seoul,
Korea
| | - Janean E. Holden
- University of Illinois at Chicago, and Department of
Medical-Surgical Nursing, College of Nursing, Chicago, Illinois,
| |
Collapse
|
31
|
Howorth PW, Teschemacher AG, Pickering AE. Retrograde adenoviral vector targeting of nociresponsive pontospinal noradrenergic neurons in the rat in vivo. J Comp Neurol 2009; 512:141-57. [PMID: 19003793 PMCID: PMC2659361 DOI: 10.1002/cne.21879] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The spinal dorsal horn receives a dense innervation of noradrenaline-containing fibers that originate from pontine neurons in the A5, locus coeruleus (LC), and A7 cell groups. These pontospinal neurons are believed to constitute a component of the endogenous analgesic system. We used an adenoviral vector with a catecholaminergic-selective promoter (AVV-PRS) to retrogradely label the noradrenergic neurons projecting to the lumbar (L4–L5) dorsal horn with enhanced green fluorescent protein (EGFP) or monomeric red fluorescent protein (mRFP). Retrogradely labeled neurons (145 ± 12, n = 14) were found in A5-12%, LC-80% and A7-8% after injection of AVV-PRS-EGFP to the dorsal horn of L4–L5. These neurons were immunopositive for dopamine β-hydroxylase, indicating that they were catecholaminergic. Retrograde labeling was optimal 7 days after injection, persisted for over 4 weeks, and was dependent on viral vector titer. The spinal topography of the noradrenergic projection was examined using EGFP- and mRFP-expressing adenoviral vectors. Pontospinal neurons provide bilateral innervation of the cord and there was little overlap in the distribution of neurons projecting to the cervical and lumbar regions. The axonal arbor of the pontospinal neurons was visualized with GFP immunocytochemistry to show projections to the inferior olive, cerebellum, thalamus, and cortex but not to the hippocampus or caudate putamen. Formalin testing evoked c-fos expression in these pontospinal neurons, suggesting that they were nociresponsive (A5-21%, LC-16%, and A7-26%, n = 8). Thus, we have developed a viral vector-based strategy to selectively, retrogradely target the pontospinal noradrenergic neurons that are likely to be involved in the descending control of nociception.
Collapse
Affiliation(s)
- Patrick W Howorth
- Department of Physiology, University of Bristol, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
32
|
Wang Y, Feng C, Wu Z, Wu A, Yue Y. Activity of the descending noradrenergic pathway after surgery in rats. Acta Anaesthesiol Scand 2008; 52:1336-41. [PMID: 19025524 DOI: 10.1111/j.1399-6576.2008.01778.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Previous studies have shown that activation of the descending noradrenergic inhibition pathway results in analgesia after surgery. However, the time course of activity of the descending noradrenergic pathway after surgery has not been examined previously. Here, we investigated the spinal release of noradrenaline (NA) in the post-operative period in a freely moving rat model of incisional pain. METHODS Loop microdialysis catheters were implanted subarachnoidally via the atlanto-occipital membrane in Sprague-Dawley rats. Twelve healthy rats without neural deficits were divided into two groups, Group A and Group B, following 5 days of recovery. A plantar incision in the right hind paws of rats in Group A was performed under 1.2% isoflurane. All rats in Group B were only anesthetized by 1.2% isoflurane for the same duration. The microdialysate samples for NA determination were collected before anesthesia, 3 h and 1, 2 and 3 days after incision (or isoflurane anesthesia in Group B) in both groups. The cumulative pain scores were assessed at the above time points. RESULTS The spinal release of NA increased gradually, peaked at 2 days after the incision and remained at the peak level up to the third day after the incision. The cumulative pain scores peaked 3 h after the incision, and gradually decreased afterwards and returned to the baseline values 3 days after the incision. CONCLUSIONS The descending NA tone might be apparently more active in the post-operative period. The descending noradrenergic inhibitory pathway plays an important role in post-operative neuroplasticity.
Collapse
Affiliation(s)
- Y Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | | | | | | | | |
Collapse
|
33
|
Sand T, Zhitniy N, Nilsen KB, Helde G, Hagen K, Stovner LJ. Thermal pain thresholds are decreased in the migraine preattack phase. Eur J Neurol 2008; 15:1199-205. [DOI: 10.1111/j.1468-1331.2008.02276.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Min MY, Wu YW, Shih PY, Lu HW, Lin CC, Wu Y, Li MJ, Yang HW. Physiological and morphological properties of, and effect of substance P on, neurons in the A7 catecholamine cell group in rats. Neuroscience 2008; 153:1020-33. [PMID: 18440151 DOI: 10.1016/j.neuroscience.2008.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 03/02/2008] [Accepted: 03/03/2008] [Indexed: 11/26/2022]
Abstract
The A7 catecholamine cell group consists of noradrenergic (NAergic) neurons that project to the dorsal horn of the spinal cord. Here, we characterized their morphology and physiology properties and tested the effect of substance P (Sub-P) on them, since the results of many morphological studies suggest that A7 neurons are densely innervated by Sub-P-releasing terminals from nuclei involved in the descending inhibitory system, such as the lateral hypothalamus and periaqueductal gray area. Whole cell recordings were made from neurons located approximately 200 microm rostral to the trigeminal motor nucleus (the presumed A7 area) in sagittal brainstem slices from rats aged 7-10 days. After recording, the neurons were injected with biocytin and immunostained with antibody against dopamine-beta-hydroxylase (DBH). DBH-immunoreactive (ir) cells were presumed to be NAergic neurons. They had a large somata diameter ( approximately 20 microm) and relatively simple dendritic branching patterns. They fired action potentials (AP) spontaneously with or without blockade of synaptic inputs, and had similar properties to those of NAergic neurons in other areas, including the existence of calcium channel-mediated APs and a voltage-dependent delay in initiation of the AP (an indicator of the existence of A-type potassium currents) and an ability to be hyperpolarized by norepinephrine. Furthermore, in all DBH-ir neurons tested, Sub-P caused depolarization of the membrane potential and an increase in neuronal firing rate by acting on neurokinin-1 receptors. Non-DBH-ir neurons with a smaller somata size were also found in the A7 area. These showed great diversity in firing patterns and about half were depolarized by Sub-P. Morphological examination suggested that the non-DBH-ir neurons form contacts with DBH-ir neurons. These results provide the first description of the intrinsic regulation of membrane properties of, and the excitatory effect of Sub-P on, A7 area neurons, which play an important role in pain regulation.
Collapse
Affiliation(s)
- M-Y Min
- Department of Life Science, College of Life Science, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fukuda T, Furukawa H, Hisano S, Toyooka H. Systemic clonidine activates neurons of the dorsal horn, but not the locus ceruleus (A6) or the A7 area, after a formalin test: the importance of the dorsal horn in the antinociceptive effects of clonidine. J Anesth 2007; 20:279-83. [PMID: 17072692 DOI: 10.1007/s00540-006-0426-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 07/04/2006] [Indexed: 11/24/2022]
Abstract
PURPOSE In order to clarify the principal site for the antinociceptive effects of clonidine, we investigated the nociceptive behavior and neural activity (c-fos staining) of the dorsal horn (DH), locus ceruleus (LC), and A7 area after a formalin test in normal saline- or clonidine-injected rats. METHODS Thirty-six rats were divided into 6 groups as follows: formalin test + saline (FS); formalin test + clonidine (1 mg.kg(-1)) (FC1); formalin test + clonidine (10 mg.kg(-1)) (FC10); saline (S); clonidine (1 mg.kg(-1)) (C1); and clonidine (10 mg.kg(-1)) (C10). Normal saline or clonidine was injected intraperitoneally 30 min before the formalin test. In the FS, FC1, and FC10 groups, 10% formalin was injected into the left rear paw. All rats were killed 2.5 h after normal saline or clonidine injection. Sections of the lumbar spinal cord, LC, and A7 area were processed for c-fos immunohistochemistry using the avidin-biotin peroxidase complex method. To evaluate the sedative effects of clonidine, we investigated the loss of righting reflex (LORR) for 90 min in 6 other rats as follows: clonidine (1 mg.kg(-1)) (n = 3) and clonidine (10 mg.kg(-1)) (n = 3). RESULTS The FC10 group showed fewer nociceptive behaviors and higher c-fos expression in the DH, but not in the A7 area, as well as lower c-fos expression in the LC than rats in the FS and FC1 groups (P < 0.05). The C10 group showed lower c-fos expression in the LC than that of rats in the S and C1 groups (P < 0.05). No rats exhibited LORR. CONCLUSION The antinociceptive effects of clonidine might be mediated primarily by neural activity in the DH.
Collapse
Affiliation(s)
- Taeko Fukuda
- Department of Anesthesiology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, Tsukuba University, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | |
Collapse
|
36
|
Tanabe M, Tokuda Y, Takasu K, Ono K, Honda M, Ono H. The synthetic TRH analogue taltirelin exerts modality-specific antinociceptive effects via distinct descending monoaminergic systems. Br J Pharmacol 2007; 150:403-14. [PMID: 17220907 PMCID: PMC2189720 DOI: 10.1038/sj.bjp.0707125] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Exogenously administered thyrotropin-releasing hormone (TRH) is known to exert potent but short-acting centrally-mediated antinociceptive effects. We sought to investigate the mechanisms underlying these effects using the synthetic TRH analogue taltirelin, focusing on the descending monoaminergic systems in mice. EXPERIMENTAL APPROACH The mice received systemic or local injections of taltirelin combined with either central noradrenaline (NA) or 5-hydroxytryptamine (5-HT) depletion by 6-hydroxydopamine (6-OHDA) or DL-p-chlorophenylalanine (PCPA), respectively, or blockade of their receptors. The degree of antinociception was determined using the tail flick and tail pressure tests. KEY RESULTS Subcutaneously (s.c.) administered taltirelin exhibited dose-dependent antinociceptive effects in the tail flick and tail pressure tests. These effects appeared to be primarily supraspinally mediated, since intracerebroventricularly (i.c.v.) but not intrathecally (i.t.) injected taltirelin generated similar effects. Depletion of central NA abolished only the analgesic effect of taltirelin (s.c. and i.c.v.) on mechanical nociception. By contrast, depletion of central 5-HT abolished only its analgesic effect on thermal nociception. Intraperitoneal (i.p.) and i.t. injection of the alpha2-adrenoceptor antagonist yohimbine respectively reduced the analgesic effect of taltirelin (s.c. and i.c.v.) on mechanical nociception. By contrast, the 5-HT1A receptor antagonist WAY-100635 (i.p. and i.t.) reduced the effect of taltirelin (s.c. and i.c.v.) on thermal nociception. Neither the 5-HT2 receptor antagonist ketanserin nor the opioid receptor antagonist naloxone altered the antinociceptive effect of taltirelin. CONCLUSIONS AND IMPLICATIONS These findings suggest that taltirelin activates the descending noradrenergic and serotonergic pain inhibitory systems, respectively, to exert its analgesic effects on mechanical and thermal nociception.
Collapse
Affiliation(s)
- M Tanabe
- Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol 2006; 80:53-83. [PMID: 17030082 DOI: 10.1016/j.pneurobio.2006.08.001] [Citation(s) in RCA: 400] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 08/25/2006] [Accepted: 08/30/2006] [Indexed: 11/18/2022]
Abstract
Norepinephrine is involved in intrinsic control of pain. Main sources of norepinephrine are sympathetic nerves peripherally and noradrenergic brainstem nuclei A1-A7 centrally. Peripheral norepinephrine has little influence on pain in healthy tissues, whereas in injured tissues it has variable effects, including aggravation of pain. Its peripheral pronociceptive effect has been associated with injury-induced expression of novel noradrenergic receptors, sprouting of sympathetic nerve fibers, and pronociceptive changes in the ionic channel properties of primary afferent nociceptors, while an interaction with the immune system may contribute in part to peripheral antinociception induced by norepinephrine. In the spinal cord, norepinephrine released from descending pathways suppresses pain by inhibitory action on alpha-2A-adrenoceptors on central terminals of primary afferent nociceptors (presynaptic inhibition), by direct alpha-2-adrenergic action on pain-relay neurons (postsynaptic inhibition), and by alpha-1-adrenoceptor-mediated activation of inhibitory interneurons. Additionally, alpha-2C-adrenoceptors on axon terminals of excitatory interneurons of the spinal dorsal horn possibly contribute to spinal control of pain. At supraspinal levels, the pain modulatory effect by norepinephrine and noradrenergic receptors has varied depending on many factors such as the supraspinal site, the type of the adrenoceptor, the duration of the pain and pathophysiological condition. While in baseline conditions the noradrenergic system may have little effect, sustained pain induces noradrenergic feedback inhibition of pain. Noradrenergic systems may also contribute to top-down control of pain, such as induced by a change in the behavioral state. Following injury or inflammation, the central as well as peripheral noradrenergic system is subject to various plastic changes that influence its antinociceptive efficacy.
Collapse
Affiliation(s)
- Antti Pertovaara
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, PO Box 63, University of Helsinki, FIN-00014 Helsinki, Finland.
| |
Collapse
|
38
|
Couto LB, Moroni CR, dos Reis Ferreira CM, Elias-Filho DH, Parada CA, Pelá IR, Coimbra NC. Descriptive and functional neuroanatomy of locus coeruleus-noradrenaline-containing neurons involvement in bradykinin-induced antinociception on principal sensory trigeminal nucleus. J Chem Neuroanat 2006; 32:28-45. [PMID: 16678997 DOI: 10.1016/j.jchemneu.2006.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 03/28/2006] [Accepted: 03/29/2006] [Indexed: 11/24/2022]
Abstract
The present study was carried out in Wistar rats, using the jaw-opening reflex and dental pulp stimulation, to investigate noradrenaline- and serotonin-mediated antinociceptive circuits. The effects of microinjections of bradykinin into the principal sensory trigeminal nucleus (PSTN) before and after neurochemical lesions of the locus coeruleus noradrenergic neurons were studied. Neuroanatomical experiments showed evidence for reciprocal neuronal pathways connecting the locus coeruleus (LC) to trigeminal sensory nuclei and linking monoaminergic nuclei of the pain inhibitory system to spinal trigeminal nucleus (STN). Fast blue (FB) injections in the locus coeruleus/subcoeruleus region retrogradely labeled neurons in the contralateral PSTN and LC. Microinjections of FB into the STN showed neurons labeled in both ipsilateral and contralateral LC, as well as in the ipsilateral Barrington's nucleus and subcoeruleus area. Retrograde tract-tracing with FB also showed that the mesencephalic trigeminal nucleus sends neural pathways towards the ipsilateral PSTN, with outputs from cranial and caudal aspects of the brainstem. In addition, neurons from the lateral and dorsolateral columns of periaqueductal gray matter also send outputs to the ipsilateral PSTN. Microinjections of FB in the interpolar and caudal divisions of the STN labeled neurons in the caudal subdivision of STN. Microinjections in the STN interpolar and caudal divisions also retrogradely labeled serotonin- and noradrenaline-containing nucleus of the brainstem pain inhibitory system. Finally, the gigantocellularis complex (nucleus reticularis gigantocellularis/paragigantocellularis), nucleus raphe magnus and nucleus raphe pallidus also projected to the caudal divisions of the STN. Microinjections of bradykinin in the PSTN caused a statistically significant long-lasting antinociception, antagonized by the damage of locus coeruleus-noradrenergic neuronal fibres with (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) (DSP4), a neurotoxin that specifically depleted noradrenaline from locus coeruleus terminal fields. These data suggest that serotonin- and noradrenaline-containing nuclei of the endogenous pain inhibitory system exert a key-role in the antinociceptive mechanisms of bradykinin and the locus coeruleus is crucially involved in this effect.
Collapse
Affiliation(s)
- Lucélio Bernardes Couto
- Laboratory of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 3900, Ribeirão Preto (SP), 14049-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Curatolo M, Arendt-Nielsen L, Petersen-Felix S. Central Hypersensitivity in Chronic Pain: Mechanisms and Clinical Implications. Phys Med Rehabil Clin N Am 2006; 17:287-302. [PMID: 16616268 DOI: 10.1016/j.pmr.2005.12.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The available literature consistently shows increased pain sensitivity after sensory stimulation of healthy tissues in patients who have various chronic pain conditions. This indicates a state of hypersensitivity of the CNS that amplifies the nociceptive input arising from damaged tissues. Experimental data indicate that central hypersensitivity is probably induced primarily by nociceptive input arising from a diseased tissue. In patients, imbalance of descending modulatory systems connected with psychologic distress may play a role. There is experimental support in animal studies for the persistence of central hypersensitivity after complete resolution of tissue damage. This is particularly true for neuropathic pain conditions, whereby potentially irreversible plasticity changes of the CNS have been documented in animal studies. Whether such changes are present in musculoskeletal pain states is at present uncertain. Despite the likely importance of central hypersensitivity in the pathophysiology of chronic pain, this mechanism should not be used to justify the lack of understanding on the anatomic origin of the pain complaints in several pain syndromes, which is mostly due to limitations of the available diagnostic tools. Treatment strategies for central hypersensitivity in patients have been investigated mostly in neuropathic pain states. Possible therapy modalities for central hypersensitivity in chronic pain of musculoskeletal origin are largely unexplored. The limited evidence available and everyday practice show, at best, modest efficacy of the available treatment modalities for central hypersensitivity. The gap between basic knowledge and clinical benefits remains large and should stimulate further intensive research.
Collapse
Affiliation(s)
- Michele Curatolo
- Department of Anesthesiology, Division of Pain Therapy, Inselspital, 3010 Bern, Switzerland.
| | | | | |
Collapse
|
40
|
Hantman AW, Perl ER. Molecular and genetic features of a labeled class of spinal substantia gelatinosa neurons in a transgenic mouse. J Comp Neurol 2006; 492:90-100. [PMID: 16175558 DOI: 10.1002/cne.20709] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic incorporation in a mouse of a transgene containing the prion promoter and the green fluorescent protein (GFP) coding sequence labels a set of substantia gelatinosa (SG) neurons (SG-GFP) homogenous in morphology, electrophysiology, and gamma-amino-butyric acid expression. In the present analysis the SG-GFP neurons are established to have protein kinase C-betaII immunoreactivity and to lack evidence for the presence of calbindin D-28k, parvalbumin, and protein kinase C-gamma. These neurons were hyperpolarized by mediators of descending control, norepinephrine and serotonin. Sequential polymerase chain reactions established the insertion of the transgene to be in the receptor protein tyrosine phosphatase kappa (RPTP-kappa) and the laminin receptor 1 (ribosomal protein SA) pseudogene 1 locus. RPTP-kappa expression in both GFP-labeled dorsal root ganglia and SG neurons raises the possibility that homophilic interactions of RPTP-kappa contribute to establishment of connections between specific classes of primary afferent and SG neurons.
Collapse
Affiliation(s)
- Adam W Hantman
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
41
|
Pertovaara A, Almeida A. Chapter 13 Descending inhibitory systems. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:179-192. [PMID: 18808835 DOI: 10.1016/s0072-9752(06)80017-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
42
|
Kim SK, Park JH, Bae SJ, Kim JH, Hwang BG, Min BI, Park DS, Na HS. Effects of electroacupuncture on cold allodynia in a rat model of neuropathic pain: mediation by spinal adrenergic and serotonergic receptors. Exp Neurol 2005; 195:430-6. [PMID: 16054138 DOI: 10.1016/j.expneurol.2005.06.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/12/2005] [Accepted: 06/06/2005] [Indexed: 12/14/2022]
Abstract
The present study was performed to examine the effects of electroacupuncture (EA) on cold allodynia and its mechanisms related to the spinal adrenergic and serotonergic systems in a rat model of neuropathic pain. For the neuropathic surgery, the right superior caudal trunk was resected at the level between S1 and S2 spinal nerves innervating the tail. Two weeks after the nerve injury, EA stimulation (2 or 100 Hz) was delivered to Zusanli (ST36) for 30 min. The behavioral signs of cold allodynia were evaluated by the tail immersion test [i.e., immersing the tail in cold water (4 degrees C) and measuring the latency to an abrupt tail movement] before and after the stimulation. And then, we examined the effects of intrathecal injection of prazosin (alpha1-adrenoceptor antagonist, 30 microg), yohimbine (alpha2-adrenoceptor antagonist, 30 microg), NAN-190 (5-HT1A antagonist, 15 microg), ketanserin (5-HT2A antagonist, 30 microg), and MDL-72222 (5-HT3 antagonist, 12 microg) on the action of EA stimulation. Although both 2 Hz and 100 Hz EA significantly relieved the cold allodynia signs, 2 Hz EA induced more robust effects than 100 Hz EA. In addition, intrathecal injection of yohimbine, NAN-190, and MDL-72222, but not prazosin and ketanserin, significantly blocked the relieving effects of 2 Hz EA on cold allodynia. These results suggest that low-frequency (2 Hz) EA is more suitable for the treatment of cold allodynia than high-frequency (100 Hz) EA, and spinal alpha2-adrenergic, 5-HT1A and 5-HT3, but not alpha1-adrenergic and 5-HT2A, receptors play important roles in mediating the relieving effects of 2 Hz EA on cold allodynia in neuropathic rats.
Collapse
Affiliation(s)
- Sun Kwang Kim
- Department of East-West Medicine, Graduate School, Kyung-Hee University, Dongdaemoon-Gu, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Obata H, Conklin D, Eisenach JC. Spinal noradrenaline transporter inhibition by reboxetine and Xen2174 reduces tactile hypersensitivity after surgery in rats. Pain 2005; 113:271-276. [PMID: 15661433 DOI: 10.1016/j.pain.2004.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 09/16/2004] [Accepted: 10/18/2004] [Indexed: 11/21/2022]
Abstract
Spinal noradrenaline (NA) released in response to noxious stimuli may play an important role in suppression of nociceptive transmission. Here, we investigated the efficacy of a competitive NA transporter inhibitor (reboxetine) and a noncompetitive NA transporter inhibitor peptide, Xen2174, isolated from the Pacific cone snail, to treat tactile hypersensitivity following paw incisional surgery. Male Sprague-Dawley rats were anesthetized, an incision of the plantar aspect of the hind paw was performed, and withdrawal threshold to von Frey filaments near the surgical site determined. Reboxetine (0.5-5 microg) and Xen2174 (0.3-100 microg) increased withdrawal threshold when injected 24h after paw incision, with a peak effect at 15-60 min, for Xen2174, an ED50 value of 0.64 microg. Administration of Xen2174 (3-30 microg) 15 min before incision also reduced hypersensitivity in a dose-dependent manner. Withdrawal threshold after the single 30 microg dose was greater than vehicle control even at 2, 3, and 5 days after incision. Doses <or=30 microg did not alter spontaneous behavior. The anti-hypersensitivity effect of 10 microg of Xen2174 was totally blocked by the alpha2-adrenoceptor antagonist, idazoxan, and partially blocked by the muscarinic antagonist, atropine. These data suggest that selective NA transporter inhibition suppresses post-incisional hypersensitivity through a different mechanism from that of neuropathic pain, since we previously reported that reversal of hypersensitivity by intrathecal clonidine, an alpha2-adrenoceptor agonist, following spinal nerve ligation is completely blocked by intrathecal atropine. Finally, these data suggest that intrathecal administration of Xen2174 at the time of spinal anesthesia might produce postoperative analgesia in humans.
Collapse
Affiliation(s)
- Hideaki Obata
- Department of Anesthesiology and Center for the Pharmacologic Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157 Department of Anesthesiology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan
| | | | | |
Collapse
|
44
|
Nag S, Mokha SS. Estrogen attenuates antinociception produced by stimulation of Kölliker-Fuse nucleus in the rat. Eur J Neurosci 2004; 20:3203-7. [PMID: 15579177 DOI: 10.1111/j.1460-9568.2004.03775.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This is the first demonstration of sex-related differences in the alpha2-adrenoceptor-mediated antinociceptive effects produced by stimulation of an endogenous noradrenergic pathway. Electrical or chemical (substance P) stimulation of Kölliker-Fuse nucleus (KF, A7) is known to produce antinociception mediated by alpha2-adrenoceptors in the spinal cord. KF stimulation has also been shown to inhibit the responses of nociceptive neurons in the dorsal horn of the medulla and the spinal cord. We investigated whether KF stimulation produces sex-specific modulation of trigeminal nociception. The N-methyl-D-aspartic acid (NMDA)-induced nociceptive behavior was employed as an index of nociception. Microinjection of NMDA (2 nmol/10 microL) in the trigeminal region produced nociceptive scratching behavior that was confined to the orofacial region. Male and ovariectomized (OVX) Sprague-Dawley rats were implanted with a guide cannula dorsal to the KF nucleus and a PE-10 cannula in the trigeminal region dorsal to obex. Nociceptive testing was conducted after 5-7 days of recovery. A group of ovariectomized rats (OVX+E) was treated with estradiol benzoate 48 h prior to nociceptive testing. There were no significant differences in the number of NMDA-induced scratches or duration between the male, OVX and OVX+E groups. Microinjection of substance P (3.7 pmol/0.5 microL) in the KF significantly reduced the number of NMDA-induced scratches and their duration in male and OVX groups; these were restored to control levels by yohimbine (30 microg/15 microL), an alpha2-adrenoceptor antagonist. However, KF stimulation failed to inhibit the NMDA-induced scratching behavior in the OVX+E group. We conclude that stimulation of KF produces estrogen-dependent modulation of nociception.
Collapse
Affiliation(s)
- S Nag
- Department of Physiology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN-37208, USA
| | | |
Collapse
|
45
|
Curatolo M, Arendt-Nielsen L, Petersen-Felix S. Evidence, Mechanisms, and Clinical Implications of Central Hypersensitivity in Chronic Pain After Whiplash Injury. Clin J Pain 2004; 20:469-76. [PMID: 15502692 DOI: 10.1097/00002508-200411000-00013] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To provide insights into the mechanisms underlying central hypersensitivity, review the evidence on central hypersensitivity in chronic pain after whiplash injury, highlight reflections on the clinical relevance of central hypersensitivity, and offer a perspective of treatment of central hypersensitivity. METHODS A review of animal and human studies focusing on the mechanisms of postinjury central sensitization, an analysis of psychophysical investigations on central hypersensitivity in patients with chronic pain after whiplash injury, and a review of possible treatment modalities. RESULTS Animal data show that tissue damage produces plasticity changes at different neuronal structures that are responsible for amplification of nociception and exaggerated pain responses. Some of these changes are potentially irreversible. There is consistent psychophysical evidence for hypersensitivity of the central nervous system to sensory stimulation in chronic pain after whiplash injury. Tissue damage, detected or not by the available diagnostic methods, is probably the main determinant of central hypersensitivity. Psychologic distress could contribute to central hypersensitivity via imbalance of supraspinal and descending modulatory mechanisms. Although specific treatment strategies are limited, they are largely unexplored. IMPLICATIONS Central hypersensitivity may explain exaggerated pain in the presence of minimal nociceptive input arising from minimally damaged tissues. This could account for pain and disability in the absence of objective signs of tissue damage in patients with whiplash. Central hypersensitivity may provide a common neurobiological framework for the integration of peripheral and supraspinal mechanisms in the pathophysiology of chronic pain after whiplash. Therapy studies are needed.
Collapse
Affiliation(s)
- Michele Curatolo
- Department of Anesthesiology, University Hospital of Bern, Switzerland.
| | | | | |
Collapse
|
46
|
Buhler AV, Proudfit HK, Gebhart GF. Separate populations of neurons in the rostral ventromedial medulla project to the spinal cord and to the dorsolateral pons in the rat. Brain Res 2004; 1016:12-9. [PMID: 15234247 DOI: 10.1016/j.brainres.2004.04.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2004] [Indexed: 11/24/2022]
Abstract
Activation of neurons in the rostral ventromedial medulla (RVM) directly modulates spinal nociceptive transmission by projections to the spinal cord dorsal horn and indirectly by projections to neurons in the dorsolateral pons (DLP) that project to the spinal cord dorsal horn. However, it is not known whether the same neurons in the RVM produce both direct and indirect modulation of nociception. Deposits of the retrograde tracers Fluoro-Gold (FG) in the spinal cord dorsal horn and DiI in the DLP were used to determine whether the same RVM neurons project to both of these regions. Only 0.9+/-0.1% of RVM neurons retrogradely labeled with Fluoro-Gold from the spinal cord were also labeled with DiI placed in the DLP. In addition, spinally projecting RVM neurons were significantly larger than RVM neurons that project to the DLP. Finally, spinally projecting neurons were found predominantly on the midline and within the RVM; neurons that project to the DLP had a wider distribution and were present both within and outside of the RVM. Thus, separate and morphologically distinct populations of RVM neurons appear to modulate nociception by direct and indirect descending pathways.
Collapse
Affiliation(s)
- A V Buhler
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Bowen Science BLD 2-351, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
47
|
Skyba D, Radhakrishnan R, Rohlwing J, Wright A, Sluka K. Joint manipulation reduces hyperalgesia by activation of monoamine receptors but not opioid or GABA receptors in the spinal cord. Pain 2004; 106:159-68. [PMID: 14581123 PMCID: PMC2732015 DOI: 10.1016/s0304-3959(03)00320-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Joint manipulation has long been used for pain relief. However, the underlying mechanisms for manipulation-related pain relief remain largely unexplored. The purpose of the current study was to determine which spinal neurotransmitter receptors mediate manipulation-induced antihyperalgesia. Rats were injected with capsaicin (50 microl, 0.2%) into one ankle joint and mechanical withdrawal threshold measured before and after injection. The mechanical withdrawal threshold decreases 2 h after capsaicin injection. Two hours after capsaicin injection, the following drugs were administered intrathecally: bicuculline, blocks gamma-aminobutyric acid (GABAA) receptors; naloxone, blocks opioid receptors; yohimbine blocks, alpha2-adrenergic receptors; and methysergide, blocks 5-HT(1/2) receptors. In addition, NAN-190, ketanserin, and MDL-72222 were administered to selectively block 5-HT1A, 5-HT2A, and 5-HT3 receptors, respectively. Knee joint manipulation was performed 15 min after administration of drug. The knee joint was flexed and extended to end range of extension while the tibia was simultaneously translated in an anterior to posterior direction. The treatment group received three applications of manipulation, each 3 min in duration separated by 1 min of rest. Knee joint manipulation after capsaicin injection into the ankle joint significantly increases the mechanical withdrawal threshold for 45 min after treatment. Spinal blockade of 5-HT(1/2) receptors with methysergide prevented, while blockade of alpha2-adrenergic receptors attenuated, the manipulation-induced antihyperalgesia. NAN-190 also blocked manipulation-induced antihyperalgesia suggesting that effects of methysergide are mediated by 5-HT1A receptor blockade. However, spinal blockade of opioid or GABAA receptors had no effect on manipulation induced-antihyperalgesia. Thus, the antihyperalgesia produced by joint manipulation appears to involve descending inhibitory mechanisms that utilize serotonin and noradrenaline.
Collapse
Affiliation(s)
- D.A. Skyba
- Neuroscience Graduate Program, University of Iowa, Iowa City, IA, USA
- Pain Research Program, University of Iowa, Iowa City, IA, USA
| | - R. Radhakrishnan
- Physical Therapy and Rehabilitation Science Graduate Program, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
- Pain Research Program, University of Iowa, Iowa City, IA, USA
| | - J.J. Rohlwing
- Physical Therapy and Rehabilitation Science Graduate Program, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
| | - A. Wright
- School of Physiotherapy, Curtin University of Technology, Perth, WA, Australia
| | - K.A. Sluka
- Neuroscience Graduate Program, University of Iowa, Iowa City, IA, USA
- Physical Therapy and Rehabilitation Science Graduate Program, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
- Pain Research Program, University of Iowa, Iowa City, IA, USA
- Corresponding author. Address: Physical Therapy and Rehabilitation Science Graduate Program, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA. Tel.: +1-319-335-9791; fax: +1-319-335-9707. E-mail address: (K.A. Sluka)
| |
Collapse
|
48
|
Ossipov MH, Lai J, King T, Vanderah TW, Malan TP, Hruby VJ, Porreca F. Antinociceptive and nociceptive actions of opioids. ACTA ACUST UNITED AC 2004; 61:126-48. [PMID: 15362157 DOI: 10.1002/neu.20091] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the opioids are the principal treatment options for moderate to severe pain, their use is also associated with the development of tolerance, defined as the progressive need for higher doses to achieve a constant analgesic effect. The mechanisms which underlie this phenomenon remain unclear. Recent studies revealed that cholecystokinin (CCK) is upregulated in the rostral ventromedial medulla (RVM) during persistent opioid exposure. CCK is both antiopioid and pronociceptive, and activates descending pain facilitation mechanisms from the RVM enhancing nociceptive transmission at the spinal cord and promoting hyperalgesia. The neuroplastic changes elicited by opioid exposure reflect adaptive changes to promote increased pain transmission and consequent diminished antinociception (i.e., tolerance).
Collapse
Affiliation(s)
- Michael H Ossipov
- Departments of Pharmacology, Anesthesiology and Chemistry, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Harasawa I, Honda K, Tanoue A, Shinoura H, Ishida Y, Okamura H, Murao N, Tsujimoto G, Higa K, Kamiya HO, Takano Y. Responses to noxious stimuli in mice lacking alpha(1d)-adrenergic receptors. Neuroreport 2003; 14:1857-60. [PMID: 14534435 DOI: 10.1097/00001756-200310060-00020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nociceptive behaviors were examined in the mice lacking alpha1d-adrenergic receptor (alpha1d-AR) and wild type littermates using tail-flick, hot-plate (hindpaw-licking and jumping), tail-pinch and formalin tests. The distribution of alpha1d-AR was studied using in situ hybridization in the wild type mice. Mutant mice showed longer tail-flick and hindpaw-licking latencies while their jumping latency was shorter. Mechanical and chemical nociception was not altered in alpha1d-knockout mice. In situ hybridization study revealed dense alpha1d-AR mRNA expression in the reticular thalamic nucleus, the hippocampus, the cingulate cortex and the spinal cord. These results suggest that alpha1d-AR in the spinal cord contributes to thermal pronociception; and that the jump behavior seen when escaping from heat is inhibited via the supraspinal alpha1d-AR.
Collapse
Affiliation(s)
- Ichiro Harasawa
- Department of Anesthesiology, School of Medicine, Faculty of Pharmaceutical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
McCulloch PF, Panneton WM. Activation of brainstem catecholaminergic neurons during voluntary diving in rats. Brain Res 2003; 984:42-53. [PMID: 12932838 DOI: 10.1016/s0006-8993(03)03051-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Underwater submergence produces a complex autonomic response that includes apnea, a parasympathetically-mediated bradycardia, and a sympathetically-mediated increase in total peripheral resistance (TPR). The present study was designed to identify brainstem catecholaminergic neurons that may be involved in producing the increased TPR during underwater submergence. Twelve male Sprague-Dawley rats were trained to voluntarily dive 5 m through an underwater maze. On the day of the experiment the rats were randomly separated into a Diving group that repetitively dived underwater, a Swimming group that repetitively swam on the surface of the water, and a Control group that remained in their cages. After the experiment the brainstems of the rats were immunohistologically processed for Fos as an indicator of neuronal activation, and for tyrosine hydroxylase (TH) as an indentifier of catecholaminergic neurons. Neurons labeled with both Fos and TH identified activated catecholaminergic neurons. In Diving rats there was increased Fos+TH labeling in A1, C1, A2, A5, and sub-coeruleus, as well as globosa neurons in the lateral A7 region compared with Control rats, and in A1, C1 and A5 compared with Swimming rats. In Swimming rats Fos+TH labeling was significantly increased in caudal A1, A5, sub-coeruleus and globosa neurons compared with Control rats. These data suggest that selective groups of catecholaminergic neurons within the brainstem are activated by voluntary underwater submergence, and some probably contribute to the sympathetically-mediated increase in vascular tone during diving.
Collapse
Affiliation(s)
- Paul F McCulloch
- Department of Physiology, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | | |
Collapse
|