1
|
Emanuilov AI, Budnik AF, Masliukov PM. Somatostatin-immunoreactive neurons of the rat gut during the development. Histochem Cell Biol 2024; 162:385-402. [PMID: 39153131 DOI: 10.1007/s00418-024-02322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Somatostatin (SST) is a peptide expressed in the peripheral and central nervous systems, as well as in endocrine and immune cells. The aim of the current study is to determine the percentage of SST immunoreactive (IR) neurons and their colocalization with choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), neuropeptide Y (NPY), and glial fibrillary acidic protein (GFAP) in the myenteric plexus (MP) and submucous plexus (SP) of the small intestine (SI) and large intestine (LI) of rats across different age groups from newborn to senescence using immunohistochemistry. In the MP of the SI and LI, the percentage of SST-IR neurons significantly increased during early postnatal development from 12 ± 2.4 (SI) and 13 ± 3.0 (LI) in newborn rats to 23 ± 1.5 (SI) and 18 ± 1.6 (LI) in 20-day-old animals, remaining stable until 60 days of age. The proportion of SST-IR cells then decreased in aged 2-year-old animals to 14 ± 2.0 (SI) and 10 ± 2.6 (LI). In the SP, the percentage of SST-IR neurons significantly rose from 22 ± 3.2 (SI) and 23 ± 1.7 (LI) in newborn rats to 42 ± 4.0 in 20-day-old animals (SI) and 32 ± 4.9 in 30-day-old animals (LI), before declining in aged 2-year-old animals to 21 ± 2.6 (SI) and 28 ± 7.4 (LI). Between birth and 60 days of age, 97-98% of SST-IR neurons in the MP and SP colocalized with ChAT in both plexuses of the SI and LI. The percentage of SST/ChAT neurons decreased in old rats to 85 ± 5.0 (SI) and 90 ± 3.8 (LI) in the MP and 89 ± 3.2 (SI) and 89 ± 1.6 (LI) in the SP. Conversely, in young rats, only a few SST-IR neurons colocalized with nNOS, but this percentage significantly increased in 2-year-old rats. The percentage of SST/NPY-IR neurons exhibited considerable variation throughout postnatal development, with no significant differences across different age groups in both the MP and SP of both intestines. No colocalization of SST with GFAP was observed in any of the studied animals. In conclusion, the expression of SST in enteric neurons increases in young rats and decreases in senescence, accompanied by changes in SST colocalization with ChAT and nNOS.
Collapse
Affiliation(s)
- Andrey I Emanuilov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia
| | - Antonina F Budnik
- Department of Normal and Pathological Anatomy, Kabardino-Balkarian State University Named After H.M. Berbekov, Nalchik, Russia
| | - Petr M Masliukov
- Department of Human Anatomy, Yaroslavl State Medical University, Yaroslavl, Russia.
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical University, Revoliucionnaya 5, Yaroslavl, Russia, 150000.
| |
Collapse
|
2
|
Cumberland A, Hale N, Azhan A, Gilchrist CP, Chincarini G, Tolcos M. Excitatory and inhibitory neuron imbalance in the intrauterine growth restricted fetal guinea pig brain: Relevance to the developmental origins of schizophrenia and autism. Dev Neurobiol 2023; 83:40-53. [PMID: 36373424 PMCID: PMC10953391 DOI: 10.1002/dneu.22907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Neurodevelopmental disorders such as schizophrenia and autism are thought to involve an imbalance of excitatory and inhibitory signaling in the brain. Intrauterine growth restriction (IUGR) is a risk factor for these disorders, with IUGR onset occurring during critical periods of neurodevelopment. The aim of this study was to determine the impact of IUGR on excitatory and inhibitory neurons of the fetal neocortex and hippocampus. Fetal brains (n = 2) were first collected from an unoperated pregnant guinea pig at mid-gestation (32 days of gestation [dg]; term ∼67 dg) to visualize excitatory (Ctip2) and inhibitory (calretinin [CR] and somatostatin [SST]) neurons via immunohistochemistry. Chronic placental insufficiency (CPI) was then induced via radial artery ablation at 30 dg in another cohort of pregnant guinea pigs (n = 8) to generate IUGR fetuses (52 dg; n = 8); control fetuses (52 dg; n = 7) were from sham surgeries with no radial artery ablation. At 32 dg, Ctip2- and CR-immunoreactive (IR) cells had populated the cerebral cortex, whereas SST-IR cells had not, suggesting these neurons were yet to complete migration. At 52 dg, in IUGR versus control fetuses, there was a reduction in SST-IR cell density in the cerebral cortex (p = .0175) and hilus of the dentate gyrus (p = .0035) but not the striatum (p > .05). There was no difference between groups in the density of Ctip2-IR (cortex) or CR-IR (cortex, hippocampus) neurons (p > 0.05). Thus, we propose that an imbalance in inhibitory (SST-IR) and excitatory (Ctip2-IR) neurons in the IUGR fetal guinea pig brain could lead to excitatory/inhibitory dysfunction commonly seen in neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Angela Cumberland
- School of Health and Biomedical SciencesRMIT UniversityBundooraVictoriaAustralia
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical ResearchMonash UniversityMelbourneVictoriaAustralia
| | - Aminath Azhan
- The Ritchie Centre, Hudson Institute of Medical ResearchMonash UniversityMelbourneVictoriaAustralia
| | - Courtney P. Gilchrist
- School of Health and Biomedical SciencesRMIT UniversityBundooraVictoriaAustralia
- Victorian Infant Brain StudiesMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Ginevra Chincarini
- School of Health and Biomedical SciencesRMIT UniversityBundooraVictoriaAustralia
| | - Mary Tolcos
- School of Health and Biomedical SciencesRMIT UniversityBundooraVictoriaAustralia
| |
Collapse
|
3
|
Spencer NJ, Costa M. The extraordinary partnership of Geoff Burnstock and Mollie Holman. Auton Neurosci 2021; 234:102831. [PMID: 34091324 DOI: 10.1016/j.autneu.2021.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Here, we recognise some of the extraordinary accomplishments of the partnership between Geoff Burnstock and Mollie Holman, and the everlasting impact they both made in autonomic neuroscience in Australia. Much of strength today in autonomic neuroscience can be traced back to a time when Geoff and Mollie commenced their seminal studies on autonomic neuroscience, initially at Oxford, then at The University of Melbourne in the mid 1960's. Mollie and Geoff published their first paper together, at Oxford, with their then mentor, and doyenne of smooth muscle, Professor Edith Bülbring. They did not always agree on the interpretation of their own scientific findings. Geoff was convinced early on that Adenosine triphosphate (ATP), or a related purine, was an excitatory neurotransmitter at peripheral sympathetic neuroeffector junctions. Mollie was reticent for decades. However, she began to take the notion seriously that ATP maybe a neurotransmitter, when receptors for purines were identified in the 1990's. What the partnership between Mollie and Geoff taught us in Australia was to not fear respectful criticism, but rather to be receptive to and embrace objective, collegial and constructive scientific peer-review. One of the many great legacies of Geoff and Mollie was the large number of researchers, who were fortunate disciples of their supervision, and who have now themselves gone on to make significant discoveries in autonomic and visceral neuroscience. This review summarizes some of their major legacies and represents a very personal historical perspective of the two authors, pupils respectively of Mollie and Geoff.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia.
| | - Marcello Costa
- College of Medicine and Public Health, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
4
|
The Influence of a Hyperglycemic Condition on the Population of Somatostatin Enteric Neurons in the Porcine Gastrointestinal Tract. Animals (Basel) 2020; 10:ani10010142. [PMID: 31952333 PMCID: PMC7022948 DOI: 10.3390/ani10010142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Somatostatin (SOM) is the most common agent in the gastrointestinal (GI) tract that is involved in the regulation of several gastric functions, as well as in gastric disorders. Hyperglycemia, which develops as a consequence of improperly treated diabetes, can cause numerous disturbances in the appropriate functioning of the gastrointestinal tract. High glucose level is toxic to neurons. One of the lines of defense of neurons against this glucotoxicity are changes in their chemical coding. To better understood the role of SOM secreted by enteric neurons in neuronal response on elevated glucose level, pancreatic β cells were destroyed using streptozotocin. Due to the close similarity of the pig to humans, especially the GI tract, the current study used pigs as an animal model. The results revealed that the number of enteric neurons immunoreactive to SOM (SOM-IR) in a physiological state clearly depend on the part of the GI tract studied. In turn, experimentally induced diabetes caused changes in the number of SOM-IR neurons. The least visible changes were observed in the stomach, where an increase in SOM-IR neurons was observed, only in the submucosal plexus in the corpus. However, diabetes led to an increase in the population of myenteric and submucosal neurons immunoreactive to SOM in all segments of the small intestine. The opposite situation occurred in the descending colon, where a decrease in the number of SOM-IR neurons was visible. This study underlines the significant role of SOM expressed in enteric nervous system neurons during diabetes.
Collapse
|
5
|
Gonkowski S, Rytel L. Somatostatin as an Active Substance in the Mammalian Enteric Nervous System. Int J Mol Sci 2019; 20:ijms20184461. [PMID: 31510021 PMCID: PMC6769505 DOI: 10.3390/ijms20184461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022] Open
Abstract
Somatostatin (SOM) is an active substance which most commonly occurs in endocrine cells, as well as in the central and peripheral nervous system. One of the parts of the nervous system where the presence of SOM has been confirmed is the enteric nervous system (ENS), located in the wall of the gastrointestinal (GI) tract. It regulates most of the functions of the stomach and intestine and it is characterized by complex organization and a high degree of independence from the central nervous system. SOM has been described in the ENS of numerous mammal species and its main functions in the GI tract are connected with the inhibition of the intestinal motility and secretory activity. Moreover, SOM participates in sensory and pain stimuli conduction, modulation of the release of other neuronal factors, and regulation of blood flow in the intestinal vessels. This peptide is also involved in the pathological processes in the GI tract and is known as an anti-inflammatory agent. This paper, which focuses primarily on the distribution of SOM in the ENS and extrinsic intestinal innervation in various mammalian species, is a review of studies concerning this issue published from 1973 to the present.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 13, 10-718 Olsztyn, Poland.
| | - Liliana Rytel
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 14, 10-718 Olsztyn, Poland.
| |
Collapse
|
6
|
Smolilo DJ, Costa M, Hibberd TJ, Brookes SJH, Wattchow DA, Spencer NJ. Distribution, projections, and association with calbindin baskets of motor neurons, interneurons, and sensory neurons in guinea-pig distal colon. J Comp Neurol 2019; 527:1140-1158. [PMID: 30520048 DOI: 10.1002/cne.24594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/25/2018] [Accepted: 11/18/2018] [Indexed: 11/07/2022]
Abstract
Normal gut function relies on the activity of the enteric nervous system (ENS) found within the wall of the gastrointestinal tract. The structural and functional organization of the ENS has been extensively studied in the guinea pig small intestine, but less is known about colonic circuitry. Given that there are significant differences between these regions in function, observed motor patterns and pathology, it would be valuable to have a better understanding of the colonic ENS. Furthermore, disorders of colonic motor function, such as irritable bowel syndrome, are much more common. We have recently reported specialized basket-like structures, immunoreactive for calbindin, that likely underlie synaptic inputs to specific types of calretinin-immunoreactive neurons in the guinea-pig colon. Based on detailed immunohistochemical analysis, we postulated the recipient neurons may be excitatory motor neurons and ascending interneurons. In the present study, we combined retrograde tracing and immunohistochemistry to examine the projections of circular muscle motor neurons, myenteric interneurons, and putative sensory neurons. We focused on neurons with immunoreactivity for calbindin, calretinin and nitric oxide synthase and their relationship with calbindin baskets. Retrograde tracing using indocarbocyanine dye (DiI) revealed that many of the nerve cell bodies surrounded by calbindin baskets belong to motor neurons and ascending interneurons. Unique functional classes of myenteric neurons were identified based on morphology, neuronal markers and polarity of projection. We provide evidence for three groups of ascending motor neurons based on immunoreactivity and association with calbindin baskets, a finding that may have significant functional implications.
Collapse
Affiliation(s)
- D J Smolilo
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - M Costa
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - T J Hibberd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - S J H Brookes
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - D A Wattchow
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| | - N J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia
| |
Collapse
|
7
|
Ji R, Zhu J, Wang D, Sui QQ, Knight GE, Burnstock G, Yuan H, Xiang Z. Expression of P2X1 receptors in somatostatin-containing cells in mouse gastrointestinal tract and pancreatic islets of both mouse and human. Purinergic Signal 2018; 14:285-298. [PMID: 29974392 DOI: 10.1007/s11302-018-9615-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/07/2018] [Indexed: 12/19/2022] Open
Abstract
With immunohistochemical and Western blot techniques, P2X1 receptors were detected in the whole mouse gastrointestinal tract and pancreatic islets of mouse and human. (1) δ Cells containing somatostatin (SOM) in the stomach corpus, small intestines, distal colon, pancreatic islets of both mouse and human express P2X1 receptors; (2) strong immunofluorescence of P2X1 receptors was detected in smooth muscle fibers and capillary networks of the villus core of mouse intestine; and (3) P2X1 receptor-immunoreactive neurons were also detected widely in both mouse myenteric and submucosal plexuses, all of which express SOM. The present data implies that ATP via P2X1 receptors is involved in SOM release from pancreatic δ cells, enteric neurons, and capillary networks in villi.
Collapse
Affiliation(s)
- Ruihua Ji
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Jiao Zhu
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Dan Wang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Qian-Qian Sui
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
- Department of Pharmacology, Melbourne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
8
|
Smolilo DJ, Costa M, Hibberd TJ, Wattchow DA, Spencer NJ. Morphological evidence for novel enteric neuronal circuitry in guinea pig distal colon. J Comp Neurol 2018; 526:1662-1672. [PMID: 29574743 DOI: 10.1002/cne.24436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
The gastrointestinal (GI) tract is unique compared to all other internal organs; it is the only organ with its own nervous system and its own population of intrinsic sensory neurons, known as intrinsic primary afferent neurons (IPANs). How these IPANs form neuronal circuits with other functional classes of neurons in the enteric nervous system (ENS) is incompletely understood. We used a combination of light microscopy, immunohistochemistry and confocal microscopy to examine the topographical distribution of specific classes of neurons in the myenteric plexus of guinea-pig colon, including putative IPANs, with other classes of enteric neurons. These findings were based on immunoreactivity to the neuronal markers, calbindin, calretinin and nitric oxide synthase. We then correlated the varicose outputs formed by putative IPANs with subclasses of excitatory interneurons and motor neurons. We revealed that calbindin-immunoreactive varicosities form specialized structures resembling 'baskets' within the majority of myenteric ganglia, which were arranged in clusters around calretinin-immunoreactive neurons. These calbindin baskets directly arose from projections of putative IPANs and represent morphological evidence of preferential input from sensory neurons directly to a select group of calretinin neurons. Our findings uncovered that these neurons are likely to be ascending excitatory interneurons and excitatory motor neurons. Our study reveals for the first time in the colon, a novel enteric neural circuit, whereby calbindin-immunoreactive putative sensory neurons form specialized varicose structures that likely direct synaptic outputs to excitatory interneurons and motor neurons. This circuit likely forms the basis of polarized neuronal pathways underlying motility.
Collapse
Affiliation(s)
- D J Smolilo
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - M Costa
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - T J Hibberd
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - D A Wattchow
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Brown DR, Miller RJ. Neurohormonal Control of Fluid and Electrolyte Transport in Intestinal Mucosa. Compr Physiol 2011. [DOI: 10.1002/cphy.cp060424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
|
11
|
|
12
|
|
13
|
Gwynne RM, Bornstein JC. Synaptic transmission at functionally identified synapses in the enteric nervous system: roles for both ionotropic and metabotropic receptors. Curr Neuropharmacol 2010; 5:1-17. [PMID: 18615154 DOI: 10.2174/157015907780077141] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/28/2006] [Accepted: 12/04/2006] [Indexed: 12/18/2022] Open
Abstract
Digestion and absorption of nutrients and the secretion and reabsorption of fluid in the gastrointestinal tract are regulated by neurons of the enteric nervous system (ENS), the extensive peripheral nerve network contained within the intestinal wall. The ENS is an important physiological model for the study of neural networks since it is both complex and accessible. At least 20 different neurochemically and functionally distinct classes of enteric neurons have been identified in the guinea pig ileum. These neurons express a wide range of ionotropic and metabotropic receptors. Synaptic potentials mediated by ionotropic receptors such as the nicotinic acetylcholine receptor, P2X purinoceptors and 5-HT(3) receptors are seen in many enteric neurons. However, prominent synaptic potentials mediated by metabotropic receptors, like the P2Y(1) receptor and the NK(1) receptor, are also seen in these neurons. Studies of synaptic transmission between the different neuron classes within the enteric neural pathways have shown that both ionotropic and metabotropic synaptic potentials play major roles at distinct synapses within simple reflex pathways. However, there are still functional synapses at which no known transmitter or receptor has been identified. This review describes the identified roles for both ionotropic and metabotropic neurotransmission at functionally defined synapses within the guinea pig ileum ENS. It is concluded that metabotropic synaptic potentials act as primary transmitters at some synapses. It is suggested identification of the interactions between different synaptic potentials in the production of complex behaviours will require the use of well validated computer models of the enteric neural circuitry.
Collapse
Affiliation(s)
- R M Gwynne
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
14
|
Bornstein JC, Marks KA, Foong JPP, Gwynne RM, Wang ZH. Nitric oxide enhances inhibitory synaptic transmission and neuronal excitability in Guinea-pig submucous plexus. Front Neurosci 2010; 4:30. [PMID: 20589236 PMCID: PMC2904599 DOI: 10.3389/fnins.2010.00030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 04/23/2010] [Indexed: 11/19/2022] Open
Abstract
Varicosities immunoreactive for nitric oxide synthase (NOS) make synaptic connections with submucosal neurons in the guinea-pig small intestine, but the effects of nitric oxide (NO) on these neurons are unknown. We used intracellular recording to characterize effects of sodium nitroprusside (SNP, NO donor) and nitro-l-arginine (NOLA, NOS inhibitor), on inhibitory synaptic potentials (IPSPs), slow excitatory synaptic potentials (EPSPs) and action potential firing in submucosal neurons of guinea-pig ileum in vitro. Recordings were made from neurons with the characteristic IPSPs of non-cholinergic secretomotor neurons. SNP (100 μM) markedly enhanced IPSPs evoked by single stimuli applied to intermodal strands and IPSPs evoked by trains of 2–10 pulses (30 Hz). Both noradrenergic (idazoxan-sensitive) and non-adrenergic (idazoxan-insensitive) IPSPs were affected. SNP enhanced hyperpolarizations evoked by locally applied noradrenaline or somatostatin. SNP did not affect slow EPSPs evoked by single stimuli, but depressed slow EPSPs evoked by stimulus trains. NOLA (100 μM) depressed IPSPs evoked by one to three stimulus pulses and enhanced slow EPSPs evoked by trains of two to three stimuli (30 Hz). SNP also increased the number of action potentials and the duration of firing evoked by prolonged (500 or 1000 ms) depolarizing current pulses, but NOLA had no consistent effect on action potential firing. We conclude that neurally released NO acts post-synaptically to enhance IPSPs and depress slow EPSPs, but may enhance the intrinsic excitability of these neurons. Thus, NOS neurons may locally regulate several secretomotor pathways ending on common neurons.
Collapse
Affiliation(s)
- Joel C Bornstein
- Department of Physiology, University of Melbourne Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
15
|
Foong JPP, Parry LJ, Gwynne RM, Bornstein JC. 5-HT(1A), SST(1), and SST(2) receptors mediate inhibitory postsynaptic potentials in the submucous plexus of the guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 2010; 298:G384-94. [PMID: 20007849 PMCID: PMC2838515 DOI: 10.1152/ajpgi.00438.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vasoactive intestinal peptide (VIP) immunoreactive neurons are important secretomotor neurons in the submucous plexus. They are the only submucosal neurons to receive inhibitory inputs and exhibit both noradrenergic and nonadrenergic inhibitory synaptic potentials (IPSPs). The former are mediated by alpha(2)-adrenoceptors, but the receptors mediating the latter have not been identified. We used standard intracellular recording, RT-PCR, and confocal microscopy to test whether 5-HT(1A), SST(1), and/or SST(2) receptors mediate nonadrenergic IPSPs in VIP submucosal neurons in guinea pig ileum in vitro. The specific 5-HT(1A) receptor antagonist WAY 100135 (1 microM) reduced the amplitude of IPSPs, an effect that persisted in the presence of the alpha(2)-adrenoceptor antagonist idazoxan (2 microM), suggesting that 5-HT might mediate a component of the IPSPs. Confocal microscopy revealed that there were many 5-HT-immunoreactive varicosities in close contact with VIP neurons. The specific SSTR(2) antagonist CYN 154806 (100 nM) and a specific SSTR(1) antagonist SRA 880 (3 microM) each reduced the amplitude of nonadrenergic IPSPs and hyperpolarizations evoked by somatostatin. In contrast with the other antagonists, CYN 154806 also reduced the durations of nonadrenergic IPSPs. Effects of WAY 100135 and CYN 154806 were additive. RT-PCR revealed gene transcripts for 5-HT(1A), SST(1), and SST(2) receptors in stripped submucous plexus preparations consistent with the pharmacological data. Although the involvement of other neurotransmitters or receptors cannot be excluded, we conclude that 5-HT(1A), SST(1), and SST(2) receptors mediate nonadrenergic IPSPs in the noncholinergic (VIP) secretomotor neurons. This study thus provides the tools to identify functions of enteric neural pathways that inhibit secretomotor reflexes.
Collapse
Affiliation(s)
| | - Laura J. Parry
- 2Zoology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
16
|
Schneider DA, Yan H, Fry LM, Alverson J, White SN, O'Rourke KI. Myenteric neurons of the ileum that express somatostatin are a target of prion neuroinvasion in an alimentary model of sheep scrapie. Acta Neuropathol 2008; 115:651-61. [PMID: 18427817 DOI: 10.1007/s00401-008-0374-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/21/2008] [Accepted: 03/22/2008] [Indexed: 01/11/2023]
Abstract
Neuroinvasion of the enteric nervous system by prions is an important step in dissemination to the brain, yet very little is known about the basic process of enteric neuroinvasion. Using an alimentary model of neonatal disease transmission, neuroinvasion by scrapie prions in the ileum of lambs was detected by immunohistochemical staining for the disease-associated form of the prion protein, PrPSc. Odds ratios (OR) were determined for the frequency of PrPSc staining within enteric somata categorized by plexus location (myenteric, submucosal) and neurochemical staining (PGP 9.5, neural nitric oxide synthase, somatostatin, substance P, and vasoactive intestinal polypeptide). PrPSc was observed in 4.48 +/- 4.26% of myenteric neurons and 2.57 +/- 1.82% of submucosal neurons in five lambs aged 208-226 days but not in a lamb aged 138 days. The relative frequency of PrPSc within enteric somata was interdependent on plexus location and neurochemical type. Interestingly, PrPSc was observed more frequently within myenteric neurons than in submucosal neurons (PGP 9.5; OR = 1.72, 95% confidence interval = 1.21-2.44), and was observed within the myenteric plexus approximately 4x (2.16-6.94) more frequently in somatostatin neurons than in the general neural population stained by PGP 9.5. Nerve fibers stained for somatostatin were present in the mucosa and near PrPSc staining within Peyer's patches. The results suggest that somatostatin-expressing enteric neurons, with fiber projections near Peyer's patches, but with somata present in greatest proportion within the myenteric plexus, are an early target for neuroinvasion by scrapie prions and could serve an important role in neural dissemination.
Collapse
Affiliation(s)
- David A Schneider
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, 3003 ADBF, WSU, PO Box 646630, Pullman, WA 99164-6630, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Distribution and Chemical Coding of Intramural Neurons in the Porcine Ileum During Proliferative Enteropathy. J Comp Pathol 2008; 138:23-31. [DOI: 10.1016/j.jcpa.2007.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 09/19/2007] [Indexed: 11/19/2022]
|
18
|
Reed DE, Vanner S. Mucosal stimulation activates secretomotor neurons via long myenteric pathways in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 2007; 292:G608-14. [PMID: 17008553 DOI: 10.1152/ajpgi.00364.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examined whether mucosal stimulation activates long secretomotor neural reflexes and, if so, how they are organized. The submucosa of in vitro full thickness guinea pig ileal preparations was exposed in the distal portion and intracellular recordings were obtained from electrophysiologically identified secretomotor neurons. Axons in the intact mucosa of the oral segment were stimulated by a large bipolar stimulating electrode. In control preparations, a single stimulus pulse evoked a fast excitatory postsynaptic potential (EPSP) in 86% of neurons located 0.7-1.0 cm anal to the stimulus site. A stimulus train evoked multiple fast EPSPs, but slow EPSPs were not observed. To examine whether mucosal stimulation specifically activated mucosal sensory nerve terminals, the mucosa/submucosa was severed from the underlying layers and repositioned. In these preparations, fast EPSPs could not be elicited in 89% of cells. Superfusion with phorbol dibutyrate enhanced excitability of sensory neurons and pressure-pulse application of serotonin to the mucosa increased the fast EPSPs evoked by mucosal stimulation, providing further evidence that sensory neurons were involved. To determine whether these reflexes projected through the myenteric plexus, this plexus was surgically lesioned between the stimulus site and the impaled neuron. No fast EPSPs were recorded in these preparations following mucosal stimulation whereas lesioning the submucosal plexus had no effect. These results demonstrate that mucosal stimulation triggers a long myenteric pathway that activates submucosal secretomotor neurons. This pathway projects in parallel with motor and vasodilator reflexes, and this common pathway may enable coordination of intestinal secretion, blood flow, and motility.
Collapse
Affiliation(s)
- David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
19
|
Richardson RJ, Grkovic I, Anderson CR. Cocaine- and amphetamine-related transcript peptide and somatostatin in rat intracardiac ganglia. Cell Tissue Res 2005; 324:17-24. [PMID: 16374620 DOI: 10.1007/s00441-005-0087-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 09/23/2005] [Indexed: 12/22/2022]
Abstract
The distribution of somatostatin and cocaine and amphetamine-regulated transcript (CART) was investigated in rat intracardiac ganglia. Somatostatin immunoreactivity was only present in nerve terminals, always colocalised with choline acetyltransferase immunoreactivity, surrounding approximately 10% of intracardiac neurons. Somatostatin-immunoreactive terminals particularly targeted intrinsic cardiac neurons that were immunoreactive for calbindin. Somatostatin was also present in sympathetic cholinergic neurons in the stellate ganglia, but could not be detected in neurons of the nucleus ambiguus and dorsal motor nucleus of the vagus in the brainstem. CART immunoreactivity was present in 46% of intracardiac neuronal somata, including those that expressed either NOS or calbindin immunoreactivity but was never present in terminals forming pericellular baskets around intracardiac neurons. CART immunoreactivity was absent from sympathetic cell bodies in the stellate ganglia, but was present in nerve terminals around sympathetic neurons. Based on the results of this study, additional chemical diversity was identified among elements of the rat cardiac nervous system that may define neural pathways of different function.
Collapse
Affiliation(s)
- Robert J Richardson
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
20
|
Maifrino LBM, Amaral SON, Watanabe I, Liberti EA, De Souza RR. Trypanosoma cruzi: preliminary investigation of NADH-positive and somatostatin-immunoreactive neurons in the myenteric plexus of the mouse colon during the infection. Exp Parasitol 2005; 111:224-9. [PMID: 16202412 DOI: 10.1016/j.exppara.2005.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 08/17/2005] [Accepted: 08/17/2005] [Indexed: 11/30/2022]
Abstract
In this paper, the distribution of NADH-positive and somatostatin (SOM) immunoreactive neurons in the myenteric plexus of the colon of mice infected with Trypanosoma cruzi was studied. Ten young, male, BALB/c mice were inoculated with the Y strain of T. cruzi, 60 days previously (chronic phase of the infection). Another 10 mice were uninfected controls. Distal and proximal colonic neurons from five chronically infected mice and their controls were stained using the NADH-diaphorase method. Quantitative results showed a significant decrease of 39% in the number of neurons in the proximal colon of infected mice and 58% in the distal colon (p<0.05). SOM was localized in five animals from each group by light microscopy, using an indirect immunofluorescence technique. It was observed that there were far fewer nerve cells and fibres and less intensely stained neuron bodies and varicose SOM-positive nerve fibres in both, control and chronic infected mice. These findings could be related to the disturbances in intestinal motility observed in patients in the chronic phase of Chagas' disease.
Collapse
Affiliation(s)
- L B M Maifrino
- Department of Anatomy, Institute of Biomedical Sciences, São Paulo University, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
21
|
De Jonge F, Van Nassauw L, De Man JG, De Winter BY, Van Meir F, Depoortere I, Peeters TL, Pelckmans PA, Van Marck E, Timmermans JP. Effects of Schistosoma mansoni infection on somatostatin and somatostatin receptor 2A expression in mouse ileum. Neurogastroenterol Motil 2003; 15:149-159. [PMID: 12680914 DOI: 10.1046/j.1365-2982.2003.00400.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intestinal schistosomiasis is accompanied by motility-related dysfunctions but the underlying mechanisms are not well-known. Therefore, the presence and effects on intestinal contractility of somatostatin (SOM) and its receptor, SSTR2A, were investigated in the ileum of normal and infected mice. The distribution of SOM and SSTR2A was visualized using immunocytochemistry. Radioimmunoassay combined with oogram studies was performed to determine SOM levels and contractility measurements were determined in organ bath experiments. Schistosomiasis resulted in a significant decrease in somatostatin-positive endocrine cells, whereas the number of somatostatin-immunoreactive (IR) neuronal cell bodies did not change. From 8 weeks postinfection onwards, an increase was noted in somatostatin-IR nerve fibres in both villi and granulomas. The staining intensity for SSTR2A, expressed in somatostatin-negative myenteric cholinergic neurones, increased during infection suggesting an upregulation of this receptor. SOM levels were negatively correlated with the number of eggs during the acute phase, and were elevated during the chronic phase. Pharmacological experiments revealed that schistosomiasis diminished the inhibitory effect of SOM on neurogenic contractions. We can conclude that schistosomiasis influences the distribution and expression levels of SOM and SSTR2A in the murine ileum, which might explain the changed motility pattern.
Collapse
Affiliation(s)
- F De Jonge
- Laboratory of Cell Biology and Histology, Department of Biomedical Sciences, University of Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Allen JP, Canty AJ, Schulz S, Humphrey PPA, Emson PC, Young HM. Identification of cells expressing somatostatin receptor 2 in the gastrointestinal tract of Sstr2 knockout/lacZ knockin mice. J Comp Neurol 2002; 454:329-40. [PMID: 12442323 DOI: 10.1002/cne.10466] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Somatostatin is found in neurons and endocrine cells in the gastrointestinal tract. The actions of somatostatin are mediated by a family of G-protein-coupled receptors that compose five subtypes (SSTR1-5), each of which is encoded by a separate gene. lacZ "knockin" mice, in which the reporter gene lacZ was engineered into the genomic locus of Sstr2 by gene targeting, were used to examine the expression pattern of Sstr2 and identify potential targets for neurally released and hormonal somatostatin in the gastrointestinal tract. In the body of the stomach, a large proportion of epithelial cells and subpopulations of myenteric neurons expressed Sstr2. Double- or triple-labeling with antisera to H(+)K(+)ATPase (to identify parietal cells) and/or histidine decarboxylase (to identify enterochromaffin-like [ECL] cells) combined with beta-galactosidase staining revealed that both parietal cells and ECL cells expressed Sstr2, and these two cell types accounted for almost all of the Sstr2-expressing epithelial cells. Somatostatin inhibits gastric acid secretion. The presence of SSTR2 on both parietal and ECL cells suggests that somatostatin acting on SSTR2 may reduce acid secretion by both acting directly on parietal cells and by reducing histamine release from ECL cells. In the small and large intestine, subpopulations of neurons in the myenteric and submucosal plexuses expressed Sstr2, and many of the Sstr2-expressing myenteric neurons also showed SSTR2(a) immunostaining. Most of Sstr2-expressing neurons in the myenteric plexus showed nitric oxide synthase (NOS) immunoreactivity. Previous studies have shown that NOS neurons are descending interneurons and anally projecting, inhibitory motor neurons. Thus, somatostatin acting at SSTR2 receptors on NOS neurons might modulate descending relaxation.
Collapse
Affiliation(s)
- Jeremy P Allen
- Department of Neurobiology, The Babraham Institute, Babraham, Cambridge, CB2 4AT, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Abdu F, Hicks GA, Hennig G, Allen JP, Grundy D. Somatostatin sst(2) receptors inhibit peristalsis in the rat and mouse jejunum. Am J Physiol Gastrointest Liver Physiol 2002; 282:G624-33. [PMID: 11897621 DOI: 10.1152/ajpgi.00354.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Somatostatin [somatotropin release-inhibitory factor (SRIF)] has widespread actions throughout the gastrointestinal tract, but the receptor mechanisms involved are not fully characterized. We have examined the effect of selective SRIF-receptor ligands on intestinal peristalsis by studying migrating motor complexes (MMCs) in isolated segments of jejunum from rats, mice, and sst(2)-receptor knockout mice. MMCs were recorded in 4- to 5-cm segments of jejunum mounted horizontally in vitro. MMCs occurred in rat and mouse jejunum with intervals of 104.4 +/- 10 and 131.2 +/- 8 s, respectively. SRIF, octreotide, and BIM-23027 increased the interval between MMCs, an effect fully or partially antagonized by the sst(2)-receptor antagonist Cyanamid154806. A non-sst(2) receptor-mediated component was evident in mouse as confirmed by the observation of an inhibitory action of SRIF in sst(2) knockout tissue. Blocking nitric oxide generation abolished the response to SRIF in rat but not mouse jejunum. sst(2) Receptors mediate inhibition of peristalsis in both rat and mouse jejunum, but a non-sst(2) component also exists in the mouse. Nitrergic mechanisms are differentially involved in rat and mouse jejunum.
Collapse
Affiliation(s)
- Faiza Abdu
- Department of Biomedical Science, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Booth CE, Kirkup AJ, Hicks GA, Humphrey PP, Grundy D. Somatostatin sst(2) receptor-mediated inhibition of mesenteric afferent nerves of the jejunum in the anesthetized rat. Gastroenterology 2001; 121:358-69. [PMID: 11487545 DOI: 10.1053/gast.2001.26335] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Octreotide inhibits visceral sensations in clinical studies, but the site of action and the receptor type(s) involved are unknown. Our aim was to investigate the effects of octreotide, the selective sst(2) receptor agonist (BIM 23027), and the sst(2) antagonist (Cyanamid154806) on the activity of mesenteric afferent fibers innervating the rat jejunum. Their effects were investigated on baseline discharge, mechanosensitivity, and responses to algesic chemicals. METHODS Extracellular multiunit recordings of jejunal afferent nerve firing were made in pentobarbitone-anesthetized (60 mg/kg intraperitoneally) male Wistar rats. RESULTS Octreotide and BIM23027 (0.001-100 microg/kg intravenously) each evoked a long-lasting inhibition of baseline discharge, which was blocked by cyanamid 154806 (3 mg/kg) and absent in chronically vagotomized animals. Afferent responses to bradykinin were also inhibited by an sst(2) receptor-mediated mechanism but were unaffected by vagotomy. Ramp distentions of the jejunum evoked a biphasic activation of afferent nerve discharge, the low threshold component of which was attenuated in vagotomized animals. Sst(2) receptor agonists significantly inhibited the mechanosensitivity of spinal, but not vagal, afferents. CONCLUSIONS These data suggest that activation of somatostatin sst(2) receptors inhibit populations of mesenteric afferents likely to be involved in nociceptive transmission.
Collapse
Affiliation(s)
- C E Booth
- Department of Biomedical Science, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN England
| | | | | | | | | |
Collapse
|
25
|
Abstract
Neuroanatomical tracing techniques, and retrograde labelling in particular, are widely used tools for the analysis of neuronal pathways in the central and peripheral nervous system. Over the last 10 years, these techniques have been used extensively to identify enteric neuronal pathways. In combination with multiple-labelling immunohistochemistry, quantitative data about the projections and neurochemical profile of many functional classes of cells have been acquired. These data have revealed a high degree of organization of the neuronal plexuses, even though the different classes of nerve cell bodies appear to be randomly assorted in ganglia. Each class of neurone has a predictable target, length and polarity of axonal projection, a particular combination of neurochemicals in its cell body and distinctive morphological characteristics. The combination of retrograde labelling with targeted intracellular recording has made it possible to target small populations of cells that would rarely be sampled during random impalements. These neuroanatomical techniques have also been applied successfully to human tissue and are gradually unravelling the complexity of the human enteric nervous system.
Collapse
Affiliation(s)
- S Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, South Australia.
| |
Collapse
|
26
|
Moore BA, Vanner S. Properties of synaptic inputs from myenteric neurons innervating submucosal S neurons in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 2000; 278:G273-80. [PMID: 10666052 DOI: 10.1152/ajpgi.2000.278.2.g273] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examined synaptic inputs from myenteric neurons innervating submucosal neurons. Intracellular recordings were obtained from submucosal S neurons in guinea pig ileal preparations in vitro, and synaptic inputs were recorded in response to electrical stimulation of exposed myenteric plexus. Most S neurons received synaptic inputs [>80% fast (f) excitatory postsynaptic potentials (EPSP), >30% slow (s) EPSPs] from the myenteric plexus. Synaptic potentials were recorded significant distances aboral (fEPSPs, 25 mm; sEPSPs, 10 mm) but not oral to the stimulating site. When preparations were studied in a double-chamber bath that chemically isolated the stimulating "myenteric chamber" from the recording side "submucosal chamber," all fEPSPs were blocked by hexamethonium in the submucosal chamber, but not by a combination of nicotinic, purinergic, and 5-hydroxytryptamine-3 receptor antagonists in the myenteric chamber. In 15% of cells, a stimulus train elicited prolonged bursts of fEPSPs (>30 s duration) that were blocked by hexamethonium. These findings suggest that most submucosal S neurons receive synaptic inputs from predominantly anally projecting myenteric neurons. These inputs are poised to coordinate intestinal motility and secretion.
Collapse
Affiliation(s)
- B A Moore
- Gastrointestinal Diseases Research Unit, Departments of Medicine, Physiology, and Biology, Queen's University, Kingston, Ontario, Canada K7L 5G2
| | | |
Collapse
|
27
|
Abstract
Interstitial cells of Cajal (ICCs) are specialized cells of the gastrointestinal tract forming distinct populations depending on their location in the gut wall. Morphological observations and functional data have led to the hypothesis of two functions for the ICCs: (1) as pacemakers of the rhythmic activity; (2) as intermediaries in neural inputs to the muscle. The identification of specific receptors on the ICCs has represented an important step in the knowledge of these cells. Immunohistochemical labeling of these receptors provided information on both ICC morphology and contacts (particularly those with nerve endings) and on the functions of these cells. All ICC possess the Kit receptor, which represents the best tool to identify these cells under the light microscope. It has been demonstrated that this receptor is essential for ICC differentiation, and, by using mutant mice lacking the Kit-related gene, it has been possible to discriminate among all the ICC those with a primary role as pacemakers. The ileal ICC, in particular those at the deep muscular plexus, express the tachykinin receptor NK1 and a subtype of somatostatin receptors and contain nitric oxide synthase. All these data support a primary role of these ICC in neural transmission.
Collapse
Affiliation(s)
- M G Vannucchi
- Department of Anatomy, Histology and Forensic Medicine, Section of Histology "E. Allara," University of Florence, Florence, Italy.
| |
Collapse
|
28
|
Ito H, Maeda S, Hayakawa T, Seki M. A parasympathetic ganglion innervating the harderian gland and lacrimal gland of the musk shrew (Suncus murinus): fluorescent tracing and immunohistochemical studies. Exp Anim 1999; 48:145-52. [PMID: 10480019 DOI: 10.1538/expanim.48.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A small ganglion, named the peri-trigeminal ganglion (PTG), was found in the ventromedial border of the rostral half of the trigeminal ganglion (TG) in the musk shrew (Suncus murinus). In frontal sections, the PTG was semicircular or elliptical in shape. Most of the neurons constituting this ganglion were round in shape and much smaller than those of the TG. The retrograde fluorescent tracer fluoro-gold was injected into various regions of the face in order to investigate innervation by the PTG neurons. When the tracer was injected subcutaneously around the external acoustic meatus and around the circumference of the orbit, a number of labeled neurons were seen not only in the TG but also in the PTG. After applying the tracer to the lacrimal gland (LG) and the harderian gland (HG), numerous labeled neurons were detected only in the PTG. A few labeled neurons were found in the PTG after injection into the palatoglossal arch. Immunohistochemically, most of the neurons constituting the PTG were positive for vasoactive intestinal polypeptide (VIP) antiserum. And a moderate number of somatostatin (SOM)-immunoreactive neurons and a small number of leucine-enkephalin (L-ENK)-immunoreactive neurons were detected. Numerous substance P-immunoreactive nerve fibers and varicosities were found in the PTG, and fewer L-ENK-, SOM- and VIP-immunoreactive fibers were observed. The present results suggest that the PTG is an autonomic ganglion that resembles in part the pterygopalatine ganglion in other species, and mainly innervates the HG and LG.
Collapse
Affiliation(s)
- H Ito
- Department of 1st Anatomy, Hyogo College of Medicine, Japan
| | | | | | | |
Collapse
|
29
|
Moore BA, Vanner S. Organization of intrinsic cholinergic neurons projecting within submucosal plexus of guinea pig ileum. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G490-7. [PMID: 9724260 DOI: 10.1152/ajpgi.1998.275.3.g490] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrophysiological techniques were employed to examine the organization of the projections of submucosal neurons in the submucosal plexus of guinea pig ileum. These neurons were activated by focal pressure-pulse application of 5-hydroxytryptamine (5-HT) to single ganglia in submucosal preparations in vitro, and resulting fast excitatory postsynaptic potentials (EPSPs) were recorded intracellularly in S-type neurons. 5-HT-evoked fast EPSPs were blocked by TTX, hexamethonium, and ICS-205-930 (tropisetron). 5-HT was applied either directly to the ganglion containing the neuron recorded intracellularly or to adjacent ganglia positioned at increasing distances on either side of the impaled cell in circumferential or longitudinal orientations. All S-type neurons recorded in this study (n = 103) received nicotinic fast EPSPs from cholinergic neurons when 5-HT was applied directly to the ganglion containing the impaled neuron. Stimulation of adjacent ganglia also evoked nicotinic fast EPSPs, but the number of neurons that received this input decreased as the distance between the stimulus and the impaled cell increased. Maximal projections were 3 mm in the circumferential and orad-to-aborad orientations. There were no significant projections in the aborad-to-orad direction. These findings suggest that S-type neurons in the submucosal plexus are innervated by intrinsic cholinergic neurons that project over relatively short distances and have a distinct orad-to-aborad polarity.
Collapse
Affiliation(s)
- B A Moore
- Gastrointestinal Diseases Research Group, Queen's University, Kingston, Ontario, Canada K7L 5G2
| | | |
Collapse
|
30
|
Krantis A, Nichols K, Staines W. Neurochemical characterization and distribution of enteric GABAergic neurons and nerve fibres in the human colon. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 68:33-42. [PMID: 9531443 DOI: 10.1016/s0165-1838(97)00113-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GABA, somatostatin and enkephalin are neurotransmitters of enteric interneurons and comprise part of the intrinsic neural circuits regulating peristalsis. Within the relaxation phase of reflex peristalsis, nitric oxide (NO) is released by inhibitory motor neurons and perhaps enteric interneurons as well. Previously, we identified by GABA transaminase (GABA-T) immunohistochemistry, a subpopulation of GABAergic interneurons in the human colon which also contain NO synthase activity and hence produce NO. In this study, we have examined further the capacity for cotransmission within the GABAergic innervation in human colon. The expression of two important neuropeptides within GABAergic neurons was determined by combined double-labelled immunocytochemistry using antibodies for GABA-T, enkephalin and somatostatin, together with the demonstration of NO synthase-related NADPH diaphorase staining in cryosectioned colon. Both neuropeptides were found in GABAergic neurons of the colon. The evidence presented herein confirms the colocalization of NO synthase activity and GABA-T immunoreactivity in subpopulations of enteric neurons and further allows the neurochemical classification of GABAergic neurons of the human colon into three subsets: (i) neurons colocalizing somatostatin-like immunoreactivity representing about 40% of the GABAergic neurons, (ii) neurons colocalizing enkephalin-like immunoreactivity, about 9% of the GABAergic neurons and (iii) neurons colocalizing NO synthase activity, about 23% of the GABAergic neurons. This division of GABAergic interneurons into distinct subpopulations of neuropeptide or NO synthase containing cells is consistent with and provides an anatomical correlate for the pharmacology of these transmitters and the pattern of transmitter release during reflex peristalsis.
Collapse
Affiliation(s)
- A Krantis
- Department of Cellular and Molecular Medicine, University of Ottawa, Ont., Canada.
| | | | | |
Collapse
|
31
|
Sternini C, Wong H, Wu SV, de Giorgio R, Yang M, Reeve J, Brecha NC, Walsh JH. Somatostatin 2A receptor is expressed by enteric neurons, and by interstitial cells of Cajal and enterochromaffin-like cells of the gastrointestinal tract. J Comp Neurol 1997. [PMID: 9303425 DOI: 10.1002/(sici)1096-9861(19970929)386:3%3c396::aid-cne5%3e3.0.co;2-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Somatostatin exerts multiple effects by activating distinct G protein-coupled receptors. Here we report the cellular sites of expression of the somatostatin subtype 2A (sst2A) receptor in the rat enteric nervous system by using a C-terminus-specific, affinity-purified antiserum and immunohistochemistry. Antibody specificity was confirmed by the cell surface staining of human embryonic kidney 293 cells expressing the sst2A receptor, the lack of staining of cells expressing the somatostatin subtype 2B receptor, and the abolition of staining by preincubating the antiserum with the C-terminus peptide used for immunization, SSt2A(361-369). The SSt2A receptor antibody recognized a broad 80 kDa band on Western blots of membranes prepared from cells transfected with sst2A receptor cDNA; following receptor membrane deglycosylation, the antibody detected an additional 40 kDa band. In the enteric nervous system, the sst2A antibody primarily stained neurons of the myenteric and submucosal plexuses, and abundant fibers distributed to the muscle, mucosa, and vasculature. Immunoreactive staining was also observed in non-neuronal cells, including presumed interstitial cells of Cajal of the intestine and enterochromaffin-like cells of the stomach. Fibers expressing sst2A receptor immunoreactivity were often in close proximity to D cells of the gastric and intestinal mucosa. Colocalization of somatostatin and sst2A receptor immunoreactivities was not observed in endocrine cells nor in enteric neurons. Double-label immunohistochemistry revealed colocalization of sst2A and vasoactive intestinal peptide immunoreactivities in enteric neurons. The multiple types of cells expressing the sst2A receptor, including enteric neurons and non-neuronal structures, in addition to the relationship between somatostatin and sst2A receptor elements, provide evidence that the sst2A receptor mediates somatostatin effects in the gastrointestinal tract via neuronal and paracrine pathways.
Collapse
Affiliation(s)
- C Sternini
- Department of Medicine, CURE Digestive Diseases Research Center, University of California, Los Angeles 90073, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Song ZM, Brookes SJ, Ramsay GA, Costa M. Characterization of myenteric interneurons with somatostatin immunoreactivity in the guinea-pig small intestine. Neuroscience 1997; 80:907-23. [PMID: 9276502 DOI: 10.1016/s0306-4522(96)00605-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The projections, connections, morphology and electrophysiological features of the myenteric interneurons with somatostatin immunoreactivity in the guinea-pig small intestine have been established using retrograde tracing, immunohistochemistry, confocal microscopy and intracellular recording. After application of the fluorescent dye, 1,1'-didodecyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (DiI), to the myenteric plexus, up to 900 nerve cell bodies were labelled in each preparation. Somatostatin-immunoreactive neurons accounted for 13% of all retrogradely labelled cells and were located up to 70 mm orally. When DiI was applied to the submucous ganglia, many myenteric neurons were labelled and 8% of all retrogradely labelled cells were somatostatin immunoreactive and were located up to 60 mm oral to the DiI application sites. These neurons had ovoid cell bodies, a single axon, several long filamentous dendrites and received close contacts from 40-200 somatostatin-immunoreactive varicosities. Intracellular recordings revealed that these cells had features of both S (i.e. with Synaptic inputs) and AH (i.e. neurons with After Hyperpolarization) cells, receiving fast excitatory synaptic inputs, having characteristic "sag" in their response to hyperpolarizing current pulses and sometimes a long afterhyperpolarization following soma action potentials. It is concluded that somatostatin-immunoreactive neurons have distinct electrophysiological features and form very long anally directed interneuronal chains that connect with both myenteric and submucous neurons.
Collapse
Affiliation(s)
- Z M Song
- Department of Human Physiology and Centre for Neuroscience, The Flinders University of South Australia, Adelaide
| | | | | | | |
Collapse
|
33
|
Sternini C, Wong H, Wu SV, de Georgio R, Yang M, Reeve, Jr. J, Brecha NC, Walsh JH. Somatostatin 2A receptor is expressed by enteric neurons, and by interstitial cells of Cajal and enterochromaffin-like cells of the gastrointestinal tract. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970929)386:3<396::aid-cne5>3.0.co;2-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Mann PT, Southwell BR, Young HM, Furness JB. Appositions made by axons of descending interneurons in the guinea-pig small intestine, investigated by confocal microscopy. J Chem Neuroanat 1997; 12:151-64. [PMID: 9141647 DOI: 10.1016/s0891-0618(96)00189-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There are four major classes of descending interneurons in the myenteric plexus of the guinea-pig small intestine. In this study, the connections made by two of these classes of descending interneurons with other interneurons and with inhibitory motor neurons have been investigated using confocal, conventional fluorescence and electron microscopy. The terminals of descending interneurons known to contain both bombesin (BN) and nitric oxide synthase (NOS) were identified by BN immunoreactivity (IR). Cholinergic interneurons known to contain somatostatin (SOM) were identified by SOM-IR. The connections of these two groups of interneurons with the following three classes of nerve cell bodies were examined: those with NOS-IR that also contain gamma-aminobutyric acid (GABA) (inhibitory motor neurons), those with only NOS-IR (descending interneurons and inhibitory motor neurons) and those with only GABA-IR (motor neurons). The BN-IR and SOM-IR interneurons were found to form connections with each other, and both types of interneurons provided inputs to motor neurons. Most previous analyses of interconnections in the enteric plexuses have been by conventional fluorescence microscopy and electron microscopy. In the present work these are compared with confocal microscopy. BN-IR varicosities formed pericellular baskets around each class of nerve cell that were easily identifiable with all techniques. Using confocal microscopy, BN-IR varicosities that were in contact with NOS-IR and GABA-IR nerve cells were quantified. Confocal microscopy demonstrated over twice as many contacts as were shown by a previous electron microscopic study. In contrast, conventional fluorescence microscopy showed little indication that SOM-IR varicosities formed inputs to NOS-IR or GABA-IR nerve cells, despite the fact that confocal microscopy revealed direct appositions and electron microscopy revealed synapses. This study has shown that confocal analysis is a valuable adjunct to conventional fluorescence microscopy for determining neuronal circuitry. Moreover, it allows a more rapid collection of data than does electron microscopy. It is concluded that chains of BN-IR and SOM-IR interneurons from descending pathways in the small intestine and that both types of interneuron connect with muscle motor neurons.
Collapse
Affiliation(s)
- P T Mann
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
35
|
Costa M, Brookes SJ, Steele PA, Gibbins I, Burcher E, Kandiah CJ. Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 1996; 75:949-67. [PMID: 8951887 DOI: 10.1016/0306-4522(96)00275-8] [Citation(s) in RCA: 337] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A strategy has been developed to identify and quantify the different neurochemical populations of myenteric neurons in the guinea-pig ileum using double-labelling fluorescence immunohistochemistry of whole-mount preparations. First, six histochemical markers were used to identify exclusive, non-overlapping populations of nerve cell bodies. They included immunoreactivity for the calcium binding proteins calbindin and calretinin, the neuropeptides vasoactive intestinal polypeptide, substance P and somatostatin, and the amine, 5-hydroxytryptamine. The sizes of these populations of neurons were established directly or indirectly in double-labelling experiments using a marker for all nerve cell bodies. Each of these exclusive populations was further subdivided into classes by other markers, including immunoreactivity for enkephalins and neurofilament protein triplet. The size of each class was then established directly or by calculation. These distinct, neurochemically-identified classes were related to other published work on the histochemistry, electrophysiology and retrograde labelling of enteric neurons and to the simple Dogiel morphological classification. A classification scheme, consistent with previous studies, is proposed. It includes 14 distinct classes of myenteric neurons and accounts for nearly all neurons in the myenteric plexus of the guinea-pig ileum.
Collapse
Affiliation(s)
- M Costa
- Department of Human Physiology, Flinders University of South Australia, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
36
|
Furness JB, Bornstein JC, Kunze WA, Bertrand PP, Kelly H, Thomas EA. Experimental basis for realistic large-scale computer simulation of the enteric nervous system. Clin Exp Pharmacol Physiol 1996; 23:786-92. [PMID: 8911714 DOI: 10.1111/j.1440-1681.1996.tb01180.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. The enteric nervous system is perhaps the most accessible part of the mammalian nervous system in which it is feasible to attempt large scale computer simulation that is based closely on experimentally determined data. Here we summarize the data obtained for simulation of motility reflexes in the guinea-pig small intestine. 2. The chemistry, morphology and connectivity of each type of neuron involved in intrinsic reflexes have been investigated and most classes of neurons are physiologically well characterized. This includes primary sensory neurons, ascending and descending interneurons and motor neurons to circular and longitudinal muscle. 3. The responses of primary sensory neurons and the physiology of synaptic transmission from sensory neurons to interneurons and motor neurons, from interneurons to interneurons and from interneurons to motor neurons have been recorded during reflexes and in some cases the pharmacology of transmission has also been investigated. 4. Computer simulation, in which the activities of up to 30,000 neurons are modelled, produces patterns of activity that closely mimic those recorded in physiological experiments.
Collapse
Affiliation(s)
- J B Furness
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Stebbing MJ, Bornstein JC. Electrophysiological mapping of fast excitatory synaptic inputs to morphologically and chemically characterized myenteric neurons of guinea-pig small intestine. Neuroscience 1996; 73:1017-28. [PMID: 8809821 DOI: 10.1016/0306-4522(96)00121-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurons within the myenteric plexus of the guinea-pig ileum were impaled using conventional intracellular electrodes. Points of stimulation within the surrounding ganglia and connectives which gave rise to fast excitatory synaptic potentials were mapped using a movable monopolar stimulating electrode. Cells were then injected with the intracellular marker, biocytin, and processed for multiple label immunohistochemistry to reveal their morphologies, chemical contents and, hence, their functional classes. Of 65 neurons belonging to the S electrophysiological class, 53 received fast excitatory synaptic inputs from stimulation at sites at least 2 mm away in a directly circumferential direction. These inputs almost certainly arise from stimulation of the circumferentially-directed axons of the Dogiel type II/AH-neurons, which are thought to be intrinsic sensory neurons. The majority of cells which projected anally and were immunoreactive for nitric oxide synthase (19/25), all neurons which ramified in the tertiary plexus and were identified as longitudinal muscle motor neurons (6/6) and all neurons identified as excitatory motor neurons innervating the circular muscle (12/12) received inputs from these circumferentially-directed pathways. However only one of six descending filamentous interneurons impaled received such inputs, suggesting they may be differentially innervated. The conduction velocities of circumferentially-directed axons giving rise to fast excitatory post synaptic potentials were estimated to be 0.41 +/- 0.10 m/s (mean +/- standard deviation, n = 21). The conduction velocities estimated for longitudinally-directed pathways were 0.55 +/- 0.25 m/s (n = 29). Thus, the majority of myenteric neurons receive fast excitatory synaptic input from putative intrinsic sensory neurons which project circumferentially around the intestine.
Collapse
Affiliation(s)
- M J Stebbing
- Department of Physiology, University of Melbourne, Parkville, Vic, Australia
| | | |
Collapse
|
38
|
Plaza MA, Arruebo MP, Murillo MD. Effect of motilin, somatostatin and bombesin on gastroduodenal myoelectric activity in sheep. Life Sci 1996; 58:1413-23. [PMID: 8622567 DOI: 10.1016/0024-3205(96)00111-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of motilin, erythromycin, somatostatin and bombesin on antroduodenal myoelectric activity were investigated in conscious sheep. Myoelectric recordings were obtained from electrodes chronically implanted on the antrum and duodenal bulb. Peptides or erythromycin were infused intravenously (i.v.) during 5 min. Antagonists were injected i.v. as a bolus. Neither motilin (2.5-80 ng/kg/min) nor erythromycin (2-16 micrograms/kg/min) modified the antroduodenal myoelectric activity, although a single bolus of these compounds (250 ng/kg and 50 micrograms/kg respectively) increased the antral activity. Somatostatin at 5 ng/kg/min induced a decrease in the myoelectric activity of antrum and duodenum. However, doses of 10 to 40 ng/kg/min evoked a duodenal phase III-like activity with a subsequent quiescence period and a concomitant inhibition of the antral activity. These effects were reproduced by bombesin (2.5 to 40 ng/kg/min). Furthermore, an initial increase in the myoelectric activity and in the frequency of slow waves were recorded in the antrum when the highest doses were used. On the other hand, atropine (0.2 mg/kg) or hexamethonium (2 mg/kg) caused a long-lasting inhibition of antroduodenal myoelectric activity. These cholinergic antagonists abolished the effects induced by somatostatin (20 ng/kg/min) but not those evoked by bombesin but not motilin are putative modulators of the migrating myoelectric complex (MMC) in sheep. Moreover, a cholinergic neural pathway is involved in the somatostatin but not in the bombesin-induced effects.
Collapse
Affiliation(s)
- M A Plaza
- Departamento de Fisiología, Facultad de Veterinaria, Zaragoza, Spain
| | | | | |
Collapse
|
39
|
Cunningham SM, Lees GM. Neuropeptide Y in submucosal ganglia: regional differences in the innervation of guinea-pig large intestine. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1995; 55:135-45. [PMID: 8801263 DOI: 10.1016/0165-1838(95)00035-v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Since information about possible regional differences in the innervation of the guinea-pig large intestine is incomplete, a comparative study was made of the occurrence of neurones and nerve fibres of the submucosa showing immunoreactivity (IR) to neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP). In addition, a quantitative analysis was made of submucosal neurones in regions of guinea-pig large intestine selected for probable differences in their function. There were two principal findings: First, the density of NPY-IR neurone somata was high in the ascending colon (mean +/- SEM 3148 +/- 464 neurones/cm2; n = 5 animals) and progressively declined in an anal direction, the descending colon having 348 +/- 125 neurones/cm2 (in the same 5 animals); immunoreactive cell bodies were rare in the rectum. The reduced density was also reflected in a fall in the number of NPY-IR neurones/ganglion from 3.0 +/- 0.3 in the ascending colon to 0.5 +/- 0.2 in the descending colon. Second, varicose NPY-IR intraganglionic fibres were a conspicuous feature of the duodenum, caecum, transverse colon, descending colon and rectum, but not of the ileum, ascending colon or distal spiral. Moreover, in the descending colon and rectum the fibres were arranged in a loose 'cobweb' structure around non-NPY-IR neurone somata; in the caecum, there was an apparent paucity of NPY-IR somata but the exceptionally dense intraganglionic varicose fibre network may have obscured NPY-IR somata. In all regions, fibre baskets were rare. In the ascending colon, only 25 +/- 5% of ganglia (compared to 92 +/- 2% of ganglia in the descending colon) showed any intraganglionic nerve fibres; furthermore, when they occurred, these were not of the 'cobweb' type but, rather, they gave the ganglia a speckled appearance. In very immature fetuses at a stage of development when no neuropeptide somata could be found in either the myenteric or submucosal plexuses, many NPY-IR nerve fibres were present in the submucosa with a distribution similar to that of adult guinea pigs. With respect to the density of VIP-IR neurones in the large intestine, there was only a 40% reduction in the number of neurones/cm2 from proximal to distal colon, in contrast to the corresponding 90% reduction in the density of NPY-IR neurones. The number of VIP-IR neurones/ganglion (6.4) and the proportion of ganglia with VIP-IR fibres (> 90%) were constant. It is concluded that the striking regional dissimilarities in (i) the occurrence of NPY-IR neurone somata and (ii) in the disposition of intraganglionic NPY-IR nerve fibres indicate potentially important regional differences in the functions of neuropeptide Y as an antisecretory peptide in the local regulation of chloride transport in the mucosa and as a modulator of ganglionic transmission, respectively.
Collapse
Affiliation(s)
- S M Cunningham
- Department of Biomedical Sciences, University of Aberdeen, UK
| | | |
Collapse
|
40
|
Lefebvre RA, Smits GJ, Timmermans JP. Study of NO and VIP as non-adrenergic non-cholinergic neurotransmitters in the pig gastric fundus. Br J Pharmacol 1995; 116:2017-26. [PMID: 8640340 PMCID: PMC1908950 DOI: 10.1111/j.1476-5381.1995.tb16406.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. The contribution of nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) to non-adrenergic non-cholinergic (NANC) relaxations in the pig gastric fundus was investigated. 2. Circular and longitudinal muscle strips were mounted for isotonic registration in the presence of atropine and guanethidine; tone was raised with 5-hydroxytryptamine. Electrical field stimulation with 10 s trains at 5 min intervals induced responses were abolished by tetrodotoxin. 3. The short-lasting as well as the sustained electrically induced NANC relaxations were significantly reduced by NG-nitro-L-arginine methyl ester (L-NAME). Pretreatment with L-arginine but not D-arginine, prevented the inhibitory effect of L-NAME except for sustained relaxations in the longitudinal muscle strips. 4. Sodium nitroprusside, forskolin, zaprinast and 3-isobutyl-l-methylxanthine induced concentration-dependent relaxations. Exogenous NO mimicked the short-lasting electrically induced relaxations, while endogenous VIP evoked sustained relaxations. The responses to exogenous NO and VIP were not influenced by tetrodotoxin and L-NAME. 5. alpha-Chymotrypsin abolished the responses to exogenous VIP but only moderately reduced NANC relaxations induced by continuous electrical stimulation. Zaprinast potentiated the relaxant responses to sodium nitroprusside and increased the duration of the NANC relaxations induced by electrical stimulation with 10 s trains in circular muscle strips but not in longitudinal muscle strips. 6. The cyclic GMP and cyclic AMP response to electrical stimulation, NO and VIP was measured in circular muscle strips. Short-lasting as well as sustained electrical field stimulation induced an approximately 1.5 fold increase in cyclic GMP content, while NO induced nearly a 40 fold increase. An increase in cyclic AMP content was obtained only with sustained electrical field stimulation. 7. Immunocytochemistry for NO synthase (NOS) revealed immunoreactive neuronal cell bodies in the submucous and myenteric plexuses and nerve fibres in both the circular and longitudinal muscle layer; double-labelling for NOS and VIP showed that VIP coexists in a major part of the intrinsic neurones. NADPH diaphorase-histochemistry showed the same pattern of nitrergic neurones and nerves as NOS-immunocytochemistry. 8. It is concluded that a cyclic GMP- and a cyclic AMP-dependent pathway for relaxation is present in both the circular and longitudinal muscle layer of the pig gastric fundus. NO appears to contribute to short-lasting as well as sustained NANC relaxations. A peptide, possibly VIP, may be involved during sustained stimulation at lower frequencies of stimulation.
Collapse
Affiliation(s)
- R A Lefebvre
- Heymans Institute of Pharmacology, University of Gent, Belgium
| | | | | |
Collapse
|
41
|
McKeen ES, Feniuk W, Humphrey PP. Somatostatin receptors mediating inhibition of basal and stimulated electrogenic ion transport in rat isolated distal colonic mucosa. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1995; 352:402-11. [PMID: 8532068 DOI: 10.1007/bf00172777] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this study was to examine the potencies of several recently identified selective somatostatin (SRIF)-receptor ligands as inhibitors of electrogenic ion transport in the rat distal colonic mucosa with the view to identifying the SRIF receptor type involved. Under basal conditions, cumulative administration of SRIF and SRIF28 decreased short circuit current (SCC), a measure of electrogenic ion transport, with EC50 values of 4 nM and 9 nM respectively. The peptidase inhibitors, phosphoramidon (1 microM) and amastatin (10 microM), has no effect on the potencies of either SRIF or SRIF28. The inhibitory action of SRIF on basal SCC was suppressed by piretanide and diphenylamine-2-carboxylate, compatible with the assumption that the Na+K+2Cl- co-transporter and Cl- channels, respectively, may be involved in this antisecretory action of SRIF. Tetrodotoxin (1 microM) had no effect on the antisecretory action of SRIF, suggesting that the process was not neuronally mediated. All of the SRIF analogues examined, with the exception of BIM-23056, maximally inhibited basal SCC to a similar extent as SRIF. Seglitide and octreotide were both more potent antisecretory agents than SRIF (respective EC50 values, 0.4 nM and 1.5 nM) suggesting that this effect was mediated by a receptor belonging to the SRIF1 receptor group. The most distinguishing feature of the rank order of agonist potencies was the high potency of the selective sst2 receptor ligand, BIM-23027 (EC50 value 0.32 nM), the weaker potency exhibited by the selective sst5 receptor ligand, L-362855 (EC50 value 21 nM), and the lack of agonist activity displayed by the selective sst3 receptor ligand, BIM-23056 (EC50 value > 1000 nM). This profile is comparable with that observed in binding studies on the recombinant sst2 receptor. Forskolin-stimulated secretion was suppressed by SRIF analogues with the rank order of agonist potencies BIM-23027 > SRIF > L-362855 >> BIM-23056 which resembled that exhibited under basal conditions. However, the absolute potencies of these agonists were lower (respective EC50 values 2 nM, 14 nM< 38 nM and > 1000 nM) whilst the magnitude of inhibition was about three fold greater. BIM-23027 and SRIF (both 30 nM) also inhibited carbachol-stimulated increases in basal SCC by 60-70%, while a similar concentration of L-362855 inhibited these responses by 11%. BIM-23056 (1 microM) had no effect on carbachol-simulated secretion. Radioligand binding studies on rat colonic mucosal membranes using [125I]-Tyr11-SRIF suggested heterogeneity of SRIF binding sites. Thus, SRIF and SRIF28 competed for binding (IC50 values, 0.32 and 0.63 nM, respectively) with Hill slopes less than unity; while seglitide and BIM-23027 both maximally displaced only 30-40% of specific binding with apparent high affinity (respective pIC50 values, 10.1 nM and 10.0). In conclusion, SRIF decreases basal as well as both cAMP and Ca(2+)-dependent Cl- secretion in rat colonic mucosa. The rank order of agonist potencies suggests that receptors resembling the recombinant sst2 receptor mediate inhibition of basal and forskolin-stimulated secretion. Radioligand binding studies suggest that BIM-23027 interacts with a sub-population of [125I]Tyr11-SRIF binding sites in rat colonic mucosal membranes which probably corresponds to the receptors mediating the antisecretory effects described here.
Collapse
Affiliation(s)
- E S McKeen
- Glaxo Institute of Applied Pharmacology, Department of Pharmacology, University of Cambridge, UK
| | | | | |
Collapse
|
42
|
Kurjak M, Schusdziarra V, Allescher HD. Release of somatostatin-like immunoreactivity from enriched enteric nerve varicosities of rat ileum. Eur J Pharmacol 1995; 281:295-301. [PMID: 8521913 DOI: 10.1016/0014-2999(95)00261-i] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Synaptosomes were isolated from rat ileum by various steps of differential centrifugation. The peptide content for somatostatin-like immunoreactivity was used as marker for neuronal membranes. The enriched synaptosomal fraction (P2) showed a good enrichment of somatostatin content (4-fold) in comparison to the post-nuclear supernatant. The basal release of somatostatin-like immunoreactivity was 26 +/- 3 pg/mg tissue protein. KCl-evoked depolarization (65 mM) caused a significant increase of somatostatin-like immunoreactivity release (72 +/- 11 pg/mg, n = 12, P < 0.001) compared to basal release. In Ca(2+)-free medium the evoked release of somatostatin-like immunoreactivity was abolished. A substantial increase of somatostatin-like immunoreactivity release (52 +/- 7 pg/mg, n = 12, P < 0.05) was also observed in the presence of the Ca2+ ionophore A-23187. The cholinergic agonist carbachol elicited a dose-dependent release of somatostatin-like immunoreactivity (10(-7) M: 54 +/- 8 pg/mg, 10(-6) M: 63 +/- 6 pg/mg, 10(-5) M: 53 +/- 5 pg/mg, n = 12, P < 0.001), which was blocked by atropine (10(-6) M: 35 +/- 6 pg/mg, n = 12, P < 0.001), but not by hexamethonium. Other presynaptic modulating substances such as serotonin, the selective neurokinin-B agonist [beta Asp4,MePhe7]neurokinin B-(4-10), neurotensin, cholecystokinin-8, caerulein and pentagastrin had no stimulatory effect on release of somatostatin-like immunoreactivity. In summary, somatostatin-like immunoreactivity can be released from enteric synaptosomes by both depolarization with KCl and cholinergic stimulation via a muscarinic mechanism. The synaptosomes of intrinsic nerves offer an approach to study release of neuronal somatostatin on the subcellular level.
Collapse
Affiliation(s)
- M Kurjak
- Department of Internal Medicine II, Technical University of Munich, Germany
| | | | | |
Collapse
|
43
|
Pompolo S, Furness JB. Sources of inputs to longitudinal muscle motor neurons and ascending interneurons in the guinea-pig small intestine. Cell Tissue Res 1995; 280:549-60. [PMID: 7606768 DOI: 10.1007/bf00318359] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Light- and electron-microscopic studies were used to investigate connections between specific subgroups of neurons in the myenteric plexus of the guinea-pig small intestine. Inputs to two classes of calretinin-immunoreactive (IR) nerve cells, longitudinal muscle motor neurons and ascending interneurons, were examined. Inputs from calbindin-IR primary sensory neurons and from three classes of descending interneurons were studied. Electron-microscopic analysis showed that calbindin-IR axons formed two types of inputs, synapses and close contacts, on calretinin-IR neurons. About 40% of inputs to the longitudinal muscle motor neurons and 70% to ascending interneurons were calbindin-IR. Approximately 50% of longitudinal muscle motor neurons were surrounded by bombesin-IR dense pericellular baskets and 40% by closely apposed varicosities. At the electron-microscope level, the bombesin-IR varicosities were found to form synapses and close contacts with the motor neurons. Dense pericellular baskets with bombesin-IR surrounded 36% of all ascending interneurons, and a further 17% had closely apposed varicosities. Somatostatin- and 5-HT-IR descending interneurons provided no dense pericellular baskets to calretinin-IR nerve cells. Thus, calretinin-IR, longitudinal muscle motor neurons and ascending interneurons receive direct synaptic inputs from intrinsic primary sensory neurons and from non-cholinergic, bombesin-IR, descending interneurons.
Collapse
Affiliation(s)
- S Pompolo
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
44
|
Young HM, Furness JB. Ultrastructural examination of the targets of serotonin-immunoreactive descending interneurons in the guinea pig small intestine. J Comp Neurol 1995; 356:101-14. [PMID: 7629305 DOI: 10.1002/cne.903560107] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Serotonin neurons are descending interneurons in the myenteric plexus of the guinea pig small intestine. Preembedding single- and double-label immunocytochemistries at the ultrastructural level were used to identify the targets of these serotonin interneurons. Serial ultrathin sections were taken through a myenteric ganglion that had been processed for serotonin immunocytochemistry. The ganglion contained the cell bodies of 69 neurons, including 2 serotonin neurons and 6 neurons with the ultrastructural features of Dogiel type II cells. For each cell body in the ganglion, the number of serotonin inputs (synapses and close contacts) was determined. About 59% of the cell bodies did not receive any serotonin inputs. The most abundant serotonin terminals were related to two targets: other serotonin descending interneurons and a population of neurons with Dogiel type I morphology, but whose neurochemistry and function is unknown. The serotonin inputs to the serotonin cell bodies were located predominantly on the lamellar dendrites. Each of the Dogiel type II neurons received 3 or fewer serotonin inputs, and none of the serotonin inputs to Dogiel type II neurons formed a synapse. Overall, about 40% of the serotonin inputs formed synapses. The serotonin inputs to neurons that received many serotonin inputs were more likely to show synaptic specializations than serotonin inputs to neurons that received few serotonin inputs. Inhibitory motor neurons contain nitric oxide synthase (NOS). At the light microscope level, serotonin nerve fibers do not form dense pericellular baskets around NOS cell bodies. To determine whether there are serotonin inputs to NOS neurons, serial ultrathin sections were taken through a myenteric ganglion that had been processed for preembedding double-label immunocytochemistry, in which the NOS neurons were labeled with peroxidase-diaminobenzidine and the serotonin neurons with silver-intensified 1 nm gold. Only 1 out of 9 NOS cells examined in serial section received more than 5 serotonin inputs. The results suggest that, in the guinea pig small intestine, the serotonin descending interneurons are not an essential element of the descending inhibitory reflex.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
45
|
McKeen ES, Feniuk W, Humphrey PP. Mediation by SRIF1 receptors of the contractile action of somatostatin in rat isolated distal colon; studies using some novel SRIF analogues. Br J Pharmacol 1994; 113:628-34. [PMID: 7834217 PMCID: PMC1510125 DOI: 10.1111/j.1476-5381.1994.tb17036.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The motor effects of somatostatin-14 (SRIF), and several SRIF peptide analogues were investigated on the rat isolated distal colon. The objective of these studies was to characterize the receptor mediating the contractile action of SRIF by comparing the relative agonist potencies of a range of SRIF analogues. 2. SRIF (1 nM-1 microM) produced concentration-dependent contractions with an EC50 value of approximately 10 nM. Contractile responses induced by SRIF were insensitive to atropine (1 microM) or naloxone (1 microM) but abolished by tetrodotoxin (1 microM). Somatostatin-28 (SRIF28), also induced concentration-dependent contractions and was equipotent with SRIF. Phosphoramidon (1 microM) and amastatin (10 microM) did not increase the potency of either SRIF or SRIF28. 3. The SRIF peptide analogues, octreotide, SRIF25, seglitide, angiopeptin and CGP23996 (1 nM-1 microM) produced contractile responses in the rat distal colon, each having similar potency and maximal activity relative to SRIF. The SSTR2 receptor-selective hexapeptide, BIM23027 (0.1 nM-1 microM), and the SRIF stereoisomer, D-Trp8-SRIF (0.1 nM-1 microM), were the most potent agonists examined being approximately 12 and 7 times more potent than SRIF, respectively. In contrast, the SSTR5 receptor-selective analogue, L362,855, was approximately 120 times weaker than SRIF, whilst the SSTR3 receptor-selective analogue, BIM23056, was inactive at concentrations up to 3 microM. 4. The putative SRIF receptor antagonist, (cyclo(7-aminoheptanoyl Phe-D-Trp-Lys-Thr[Bzl]))(CPP) (1 microM), had no agonist activity and had no effect on contractions induced by SRIF. 5. The contractile actions of BIM23027 and seglitide were subject to pronounced desensitization. Desensitization of preparations by BIM23027 (0.3 JIM) abolished the contractile action of SRIF andSRIF28 but had no effect on contractions produced by acetylcholine (0.1 nM-I1M), suggesting thatBIM23027, SRIF and SRIF28 act via a common receptor mechanism.6. In conclusion, the rat isolated distal colon contracts in response to SRIF and a number of SRIF analogues. Seglitide and octreotide exhibited similar potency and maximal activity relative to SRIF,suggesting that in the rat colon the receptor mediating contraction belongs to the SRIF,-receptor group,of which the recombinant SSTR2, SSTR3 and SSTR5 receptors appear to be subtypes. The high potency of BIM23027, the weak agonist activity of L362,855 and the lack of activity exhibited by BIM23056suggests that the SRIF receptor mediating contraction in the rat distal colon is similar to there combinant SSTR2 receptor.
Collapse
Affiliation(s)
- E S McKeen
- Glaxo Institute of Applied Pharmacology, Department of Pharmacology, University of Cambridge
| | | | | |
Collapse
|
46
|
Tokui K, Sakanaka M, Kimura S. Progressive reorganization of the myenteric plexus during one year following reanastomosis of the ileum of the guinea pig. Cell Tissue Res 1994; 277:259-72. [PMID: 8082120 DOI: 10.1007/bf00327773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The enteric nervous system appears to play a pivotal role in the functional recovery of the gastrointestinal tract after partial resection and reanastomosis, but the structural changes following surgery are not fully understood. The present study was designed to clarify the processes of myenteric plexus regeneration up to one year after transection and reanastomosis of the ileum of the guinea pig. The following techniques were used: nicotinamide adenine dinucleotide (NADH) diaphorase histochemistry, immunostaining of neuron-specific enolase (NSE) in whole-mount preparations, and transmission electron microscopy. Two months after transection and reanastomosis, myenteric ganglion cells with NADH diaphorase reactions were scarce in the center of the lesion, and were less numerous in adjacent areas (3 mm in width) than in the control ileum. In the areas adjacent to the lesion, a few large extraganglionic neurons that did not completely compensate for the loss of ganglion neurons were observed. The remaining ileum showed no changes in NADH diaphorase staining pattern at this stage. Two to 12 months after transection and reanastomosis, ectopic large neurons gradually increased in number not only in the areas adjacent to the lesion but also in part of the remaining ileum, up to 10 cm from the lesion. Concomitantly, large ganglion neurons decreased in number in these areas. In other ileal regions (more than 10 cm distant from the site of transection), no obvious changes in NADH diaphorase staining were noted throughout the observation period. The outgrowth of NSE-containing nerve fibers from the severed stumps was seen two weeks after transection. Six weeks later, numerous bundles of fine nerve fibers with NSE were shown to interconnect the oral and anal cut ends of the myenteric plexus, but they exhibited no subsequent alterations. Transmission electron microscopy revealed that regenerating nerve fiber bundles appeared initially among irregularly arranged smooth muscle cells eight weeks after the operation, as expected from light-microscopic observations. These findings suggest that myenteric ganglion cell bodies, unlike myenteric nerve fibers, require a longer term of reconstruction than previously believed after transection and reanastomosis of the ileum of the guinea pig.
Collapse
Affiliation(s)
- K Tokui
- Department of Surgery (Second Division), Ehime University School of Medicine, Japan
| | | | | |
Collapse
|
47
|
Bornstein JC. Local neural control of intestinal motility: nerve circuits deduced for the guinea-pig small intestine. Clin Exp Pharmacol Physiol 1994; 21:441-52. [PMID: 7982274 DOI: 10.1111/j.1440-1681.1994.tb02540.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. Propulsion of digesta along the intestine appears to occur by the action of a series of local reflexes which cause contraction oral to the digesta and relaxation of circular muscle on the anal side. 2. There is now substantial evidence available about the identities of the enteric neurons that mediate these reflexes. 3. The motor neurons and interneurons of the reflex pathways lie within the myenteric plexus. These neurons can be classified electrophysiologically as S-neurons and have distinctive projections and neurochemistries. 4. The sensory neurons may lie in the myenteric plexus, but there is some evidence for sensory neurons in the submucous plexus. A contribution from extrinsic sensory neurons to local motility reflexes cannot be ruled out. Intrinsic sensory neurons are probably AH-neurons and are large multi-axonal cells.
Collapse
Affiliation(s)
- J C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
48
|
Tamaoki J, Tagaya E, Yamauchi F, Chiyotani A, Konno K. Pertussis toxin-sensitive airway beta-adrenergic dysfunction by somatostatin. RESPIRATION PHYSIOLOGY 1994; 95:99-108. [PMID: 7908748 DOI: 10.1016/0034-5687(94)90050-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To elucidate the effect of somatostatin and its mechanism of action on airway beta-adrenergic function, we studied canine bronchial smooth muscle under isometric conditions in vitro. Somatostatin (10(-6) M) inhibited the salbutamol-induced relaxation, so that the salbutamol concentration-response curves were displaced to higher concentrations (P < 0.01). This inhibition was dose dependent, the concentration of somatostatin required to produce a half-maximal effect being 10(-8) M. The relaxant responses to forskolin were likewise inhibited by somatostatin, but those to dibutyryl 3',5'--adenosine cyclic monophosphate (DB-cAMP), verapamil and nitroprusside were not. Somatostatin inhibited the salbutamol-induced accumulation of intracellular cAMP. These effects were abolished by the somatostatin antagonist cyclo [7-aminoheptanoyl-Phe-D-Trp-Lys-Thr (Bz)] or pertussis toxin. These observations suggest that somatostatin down-regulates beta-adrenergic function of airway smooth muscle through activation of an inhibitory guanine nucleotide (GTP)-binding regulatory protein, Gi, coupled to adenylate cyclase.
Collapse
Affiliation(s)
- J Tamaoki
- First Department of Medicine, Tokyo Women's Medical College, Japan
| | | | | | | | | |
Collapse
|
49
|
Fang S, Wu R, Christensen J. Intramucosal nerve cells in human small intestine. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1993; 44:129-36. [PMID: 8227952 DOI: 10.1016/0165-1838(93)90025-p] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We investigated the intramucosal nerve cells of the human small intestine with histochemical methods to demonstrate nicotinamide adenine dinucleotide diaphorase and acetylcholinesterase and with morphometry. Intramucosal neurons appeared as solitary cells or in small groups, especially in the ileum. Most intramucosal nerve cell bodies were round or oval; some were flat or spindle-shaped. They mostly lay close to the muscularis mucosae, but some were located within the muscularis mucosae and others were some distance away from it. The processes of some mucosal neurons projected towards the submucosa. Most mucosal nerve cells showed acetylcholinesterase activity. The frequency distribution of nerve cell profile areas in the intramucosal cells in the duodenum differed from that of cells in the ileum (P < 0.001). There were more large mucosal nerve cells in the mucosa of the duodenum than in the ileum. There was no significant difference between the frequency distributions of cell profile areas of cells of the mucosa and cells of Meissner's and Henle's plexuses in the same region. We conclude that intramucosal nerve cells, similar to those of the submucosal plexus, exist in the human small intestine. The size of intramucosal nerve cell profiles differs between the duodenum and ileum. This is consistent with their possible different functions.
Collapse
Affiliation(s)
- S Fang
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
| | | | | |
Collapse
|
50
|
Smet PJ, Rush RA. Effect of ciliary neuronotrophic factor on somatostatin expression in chick ciliary ganglion neurons. Brain Res 1993; 609:351-6. [PMID: 8099525 DOI: 10.1016/0006-8993(93)90896-u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The normal development of somatostatin (SOM) expression in neurons of the chick ciliary ganglion and the effects of ciliary neuronotrophic factor (CNTF) on SOM induction in cultured ciliary ganglion neurons, were studied by immunocytochemical techniques. SOM immunoreactivity was first detectable in some neurons of the ganglion at embryonic day (E)8 and between E14 to hatch. 44-46% of the neuronal population contained the peptide. It was inferred that essentially all choroid neurons, which constitute 50% of the neuronal population, contain SOM. Culture studies indicated that CNTF supported both the SOM positive choroid neurons and the SOM negative ciliary neurons. Although CNTF was necessary for the survival and maturation of cultured ciliary ganglion neurons, it did not influence either the induction or maintenance of SOM expression in these neurons. CNTF may instead act as a permissive factor, allowing the induction of SOM in neurons of the ciliary ganglion by other, more specific, factors.
Collapse
Affiliation(s)
- P J Smet
- Centre for Neuroscience, Flinders University of South Australia, Bedford Park
| | | |
Collapse
|