1
|
Aggarwal J, Ladha R, Liu WY, Liu H, Horner RL. Optical and pharmacological manipulation of hypoglossal motor nucleus identifies differential effects of taltirelin on sleeping tonic motor activity and responsiveness. Sci Rep 2023; 13:12299. [PMID: 37516800 PMCID: PMC10387086 DOI: 10.1038/s41598-023-39562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/27/2023] [Indexed: 07/31/2023] Open
Abstract
Pharyngeal muscle activity and responsiveness are key pathophysiological traits in human obstructive sleep apnea (OSA) and strong contributors to improvements with pharmacotherapy. The thyrotropin-releasing hormone (TRH) analog taltirelin is of high pre-clinical interest given its neuronal-stimulant properties, minimal endocrine activity, tongue muscle activation following microperfusion into the hypoglossal motor nucleus (HMN) or systemic delivery, and high TRH receptor expression at the HMN compared to rest of the brain. Here we test the hypothesis that taltirelin increases HMN activity and/or responsivity to excitatory stimuli applied across sleep-wake states in-vivo. To target hypoglossal motoneurons with simultaneous pharmacological and optical stimuli we used customized "opto-dialysis" probes and chronically implanted them in mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2, n = 12) and wild-type mice lacking the opsin (n = 10). Both optical stimuli applied across a range of powers (P < 0.001) and microperfusion of taltirelin into the HMN (P < 0.020) increased tongue motor activity in sleeping ChAT-ChR2 mice. Notably, taltirelin increased tonic background tongue motor activity (P < 0.001) but not responsivity to excitatory optical stimuli across sleep-wake states (P > 0.098). This differential effect on tonic motor activity versus responsivity informs human studies of the potential beneficial effects of taltirelin on pharyngeal motor control and OSA pharmacotherapy.
Collapse
Affiliation(s)
- Jasmin Aggarwal
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Raina Ladha
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Wen-Ying Liu
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Hattie Liu
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Richard L Horner
- Department of Physiology, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Medicine, University of Toronto, 3206 Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
2
|
Horner RL. Targets for obstructive sleep apnea pharmacotherapy: principles, approaches, and emerging strategies. Expert Opin Ther Targets 2023; 27:609-626. [PMID: 37494064 DOI: 10.1080/14728222.2023.2240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is a common and serious breathing disorder. Several pathophysiological factors predispose individuals to OSA. These factors are quantifiable, and modifiable pharmacologically. AREAS COVERED Four key pharmacotherapeutic targets are identified and mapped to the major determinants of OSA pathophysiology. PubMed and Clinicaltrials.gov were searched through April 2023. EXPERT OPINION Target #1: Pharyngeal Motor Effectors. Increasing pharyngeal muscle activity and responsivity with noradrenergic-antimuscarinic combination is central to recent breakthrough OSA pharmacotherapy. Assumptions, knowledge gaps, future directions, and other targets are identified. #2: Upper Airway Sensory Afferents. There is translational potential of sensitizing and amplifying reflex pharyngeal dilator muscle responses to negative airway pressure via intranasal delivery of new potassium channel blockers. Rationales, advantages, findings, and potential strategies to enhance effectiveness are identified. #3: Chemosensory Afferents and Ventilatory Control. Strategies to manipulate ventilatory control system sensitivity by carbonic anhydrase inhibitors are supported in theory and initial studies. Intranasal delivery of agents to stimulate central respiratory activity are also introduced. #4: Sleep-Wake Mechanisms. Arousability is the fourth therapeutic target rationalized. Evolving automated tools to measure key pathophysiological factors predisposing to OSA will accelerate pharmacotherapy. Although not currently ready for general clinical settings, the identified targets are of future promise.
Collapse
Affiliation(s)
- Richard L Horner
- Departments of Physiology and Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Singhal P, Senecal JMM, Senecal JEM, Silwal P, Lynn BD, Nagy JI. Characteristics of Electrical Synapses, C-terminals and Small-conductance Ca 2+ activated Potassium Channels in the Sexually Dimorphic Cremaster Motor Nucleus in Spinal Cord of Mouse and Rat. Neuroscience 2023; 521:58-76. [PMID: 37100373 DOI: 10.1016/j.neuroscience.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Sexually dimorphic motoneurons (MNs) located in lower lumbar spinal cord are involved in mating and reproductive behaviours and are known to be coupled by electrical synapses. The cremaster motor nucleus in upper lumbar spinal cord has also been suggested to support physiological processes associated with sexual behaviours in addition to its thermoregulatory and protective role in maintaining testes integrity. Using immunofluorescence approaches, we investigated whether cremaster MNs also exhibit features reflecting their potential for electrical synaptic communication and examined some of their other synaptic characteristics. Both mice and rats displayed punctate immunolabelling of Cx36 associated with cremaster MNs, indicative of gap junction formation. Transgenic mice with enhanced green fluorescent protein (eGFP) reporter for connexin36 expression showed that subpopulations of cremaster MNs in both male and female mice express eGFP, with greater proportions of those in male mice. The eGFP+ MNs within the cremaster nucleus vs. eGFP- MNs inside and outside this nucleus displayed a 5-fold greater density of serotonergic innervation and exhibited a paucity of innervation by C-terminals arising from cholinergic V0c interneurons. All MNs within the cremaster motor nucleus displayed prominent patches of immunolabelling for SK3 (K+) channels around their periphery, suggestive of their identity as slow MNs, many though not all of which were in apposition to C-terminals. The results provide evidence for electrical coupling of a large proportion of cremaster MNs and suggest the existence of two populations of these MNs with possibly differential innervation of their peripheral target muscles serving different functions.
Collapse
Affiliation(s)
- P Singhal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J E M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - P Silwal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - B D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada.
| |
Collapse
|
4
|
Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Intercellular Communication in the Central Nervous System as Deduced by Chemical Neuroanatomy and Quantitative Analysis of Images: Impact on Neuropharmacology. Int J Mol Sci 2022; 23:5805. [PMID: 35628615 PMCID: PMC9145073 DOI: 10.3390/ijms23105805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
In the last decades, new evidence on brain structure and function has been acquired by morphological investigations based on synergic interactions between biochemical anatomy approaches, new techniques in microscopy and brain imaging, and quantitative analysis of the obtained images. This effort produced an expanded view on brain architecture, illustrating the central nervous system as a huge network of cells and regions in which intercellular communication processes, involving not only neurons but also other cell populations, virtually determine all aspects of the integrative function performed by the system. The main features of these processes are described. They include the two basic modes of intercellular communication identified (i.e., wiring and volume transmission) and mechanisms modulating the intercellular signaling, such as cotransmission and allosteric receptor-receptor interactions. These features may also open new possibilities for the development of novel pharmacological approaches to address central nervous system diseases. This aspect, with a potential major impact on molecular medicine, will be also briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
5
|
Jung HJ, Priefer R. Tachykinin NK 2 antagonist for treatments of various disease states. Auton Neurosci 2021; 235:102865. [PMID: 34358844 DOI: 10.1016/j.autneu.2021.102865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022]
Abstract
Tachykinin NK2 receptors are distributed in periphery, in the smooth muscle of the respiratory, gastrointestinal, genitourinary tract, and within the brain. Substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) are endogenous ligands for NK2 receptors and are active in the peripheral and central nervous systems. NK2 antagonists have the potential to reduce airway motor responses and prevent hyperactivity by inhibiting NKA-induced bronchoconstriction in asthmatic patients. Due to its abundance, peripherally and centrally, tachykinin NK2 receptor antagonists have high potential in treating various disease states ranging from asthma to irritable bowel syndrome, to detrusor hyperactivity, to anxiety. This review is an evaluation of NK2 receptor antagonists as possible therapeutics for a myriad of pharmacological treatments.
Collapse
Affiliation(s)
- Hyun Jin Jung
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States of America
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA, United States of America.
| |
Collapse
|
6
|
Liu WY, Liu H, Aggarwal J, Huang ZL, Horner RL. Differential activating effects of thyrotropin-releasing hormone and its analog taltirelin on motor output to the tongue musculature in vivo. Sleep 2021; 43:5813557. [PMID: 32227104 PMCID: PMC7487885 DOI: 10.1093/sleep/zsaa053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is produced by the hypothalamus but most brain TRH is located elsewhere where it acts as a neuromodulator. TRH-positive neurons project to the hypoglossal motoneuron pool where TRH receptor RNA shows a high degree of differential expression compared with the rest of the brain. Strategies to modulate hypoglossal motor activity are of physiological and clinical interest given the potential for pharmacotherapy for obstructive sleep apnea (OSA), a common and serious respiratory disorder. Here, we identified the effects on tongue motor activity of TRH and a specific analog (taltirelin) applied locally to the hypoglossal motoneuron pool and systemically in vivo. Studies were performed under isoflurane anesthesia and across sleep–wake states in rats. In anesthetized rats, microperfusion of TRH (n = 8) or taltirelin (n = 9) into the hypoglossal motoneuron pool caused dose-dependent increases in tonic and phasic tongue motor activity (both p < 0.001). However, the motor responses to TRH were biphasic, being significantly larger “early” in the response versus at the end of the intervention (p ≤ 0.022). In contrast, responses to taltirelin were similar “early” versus “late” (p ≥ 0.107); i.e. once elicited, the motor responses to taltirelin were sustained and maintained. In freely behaving conscious rats (n = 10), microperfusion of 10 μM taltirelin into the hypoglossal motoneuron pool increased tonic and phasic tongue motor activity in non-rapid-eye-movement (REM) sleep (p ≤ 0.038). Intraperitoneal injection of taltirelin (1 mg/kg, n = 16 rats) also increased tonic tongue motor activity across sleep–wake states (p = 0.010). These findings inform the studies in humans to identify the potential beneficial effects of taltirelin for breathing during sleep and OSA.
Collapse
Affiliation(s)
- Wen-Ying Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmacology, Institute of Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Hattie Liu
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jasmin Aggarwal
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhi-Li Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmacology, Institute of Brain Science, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Richard L Horner
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Dorsal raphe organization. J Chem Neuroanat 2020; 110:101868. [PMID: 33031916 DOI: 10.1016/j.jchemneu.2020.101868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/11/2023]
Abstract
A recent cluster of reports have considerably deepened our understanding of the transcriptional diversity of serotonin neurons of the dorsal raphe nucleus (DR). In this commentary a subset of implications from these studies is highlighted such as: serotonin neurons in the lateral wings have a newly discovered close relationship with those in rostral and dorsal locations and that cre-lines may be just as likely to cut across several transcriptional subtypes as to define a single subtype. To evolve understanding of DR organization, it may be prudent to correlate transcriptional snapshots in time with other known features of DR neurons. Here we bring together new and old information on serotonin neuron diversity with the goal of developing increasingly useful schemes of DR organization.
Collapse
|
8
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
9
|
Sinh V, Ootsuka Y. Blockade of 5-HT2A receptors inhibits emotional hyperthermia in mice. J Physiol Sci 2019; 69:1097-1102. [PMID: 31432430 PMCID: PMC10717664 DOI: 10.1007/s12576-019-00703-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 08/09/2019] [Indexed: 01/20/2023]
Abstract
This study determined whether blockade of 5-hydroxytryptamine 2A (5-HT2A) receptors attenuated hyperthermia and tachycardia responses to psychological stress in mice. For this purpose, male mice (C57BL/6N) were pre-instrumented with a telemetric probe to measure core body temperature and heart rate prior to experimentation. Vehicle or 5-HT2A antagonist, eplivanserin hemifumarate (SR-46349B) ((1Z,2E)-1-(2-fluorophenyl)-3-(4-hydroxyphenyl)-2-propen-1-one O-[2-(dimethylamino) ethyl] oxime hemifumarate) (0.5, 1.0, 5.0 mg/kg), was injected intraperitoneally. To elicit psychological stress, an intruder male mouse confined to a small cage was introduced into the resident mouse's cage 30 min after administration of the injection. The application of this psychological stress increased body temperature by ~ 1.0 °C and heart rate by ~ 150 bpm in the vehicle group. In contrast, SR-46349B was shown to reduce this psychological stress-induced increase in body temperature in a dose-dependent manner (P < 0.05). However, the SR-46349B treatment groups had no influence on the intruder-elicited increase in heart rate. This study, therefore, suggests that 5-HT2A receptors play a significant role in mediating hyperthermia, but not tachycardia, during intruder-elicited psychological stress.
Collapse
Affiliation(s)
- Vanshika Sinh
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Youichirou Ootsuka
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| |
Collapse
|
10
|
Neural Cotransmission in Spinal Circuits Governing Locomotion. Trends Neurosci 2018; 41:540-550. [DOI: 10.1016/j.tins.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/06/2018] [Accepted: 04/17/2018] [Indexed: 01/08/2023]
|
11
|
Bright FM, Byard RW, Vink R, Paterson DS. Normative distribution of substance P and its tachykinin neurokinin-1 receptor in the medullary serotonergic network of the human infant during postnatal development. Brain Res Bull 2018; 137:319-328. [PMID: 29331576 DOI: 10.1016/j.brainresbull.2018.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
Substance P (SP) and its tachykinin NK1 receptor (NK1R) function within key medullary nuclei to regulate cardiorespiratory and autonomic control. We examined the normative distribution of SP and NK1R in the serotonergic (5-Hydroxytryptamine, [5-HT]) network of the human infant medulla during postnatal development, to provide a baseline to facilitate future analysis of the SP/NK1R system and its interaction with 5-HT within pediatric brainstem disorders in early life. [125I] labelled Bolton Hunter SP (BH-SP) tissue receptor autoradiography (n = 15), single label immunohistochemistry (IHC) and double label immunofluorescence (IF) (n = 10) were used to characterize the normative distribution profile of SP and NK1R in the 5-HT network of the human infant medulla during postnatal development. Tissue receptor autoradiography revealed extensive distribution of SP and NK1R in nuclei intimately related to cardiorespiratory function and autonomic control, with significant co-distribution and co-localization with 5-HT in the medullary network in the normal human infant during development. A trend for NK1R binding to decrease with age was observed with significantly higher binding in premature and male infants. We provide further evidence to suggest a significant role for SP/NK1R in the early postnatal period in the modulation of medullary cardiorespiratory and autonomic control in conjunction with medullary 5-HT mediated pathways and provide a baseline for future analysis of the potential consequences of abnormalities in these brainstem neurotransmitter networks during development.
Collapse
Affiliation(s)
- Fiona M Bright
- Harvard University Medical School, Boston, MA, USA; School of Medicine, University of Adelaide SA, Australia; Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Roger W Byard
- School of Medicine, University of Adelaide SA, Australia
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - David S Paterson
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Holstege G. How the Emotional Motor System Controls the Pelvic Organs. Sex Med Rev 2016; 4:303-328. [DOI: 10.1016/j.sxmr.2016.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 11/27/2022]
|
13
|
Ruiz M, Martínez-Vidal AF, Morales JM, Monleón D, Giménez Y Ribotta M. Neurodegenerative changes are prevented by Erythropoietin in the pmn model of motoneuron degeneration. Neuropharmacology 2014; 83:137-53. [PMID: 24769002 DOI: 10.1016/j.neuropharm.2014.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 03/02/2014] [Accepted: 04/10/2014] [Indexed: 11/29/2022]
Abstract
Motoneuron diseases are fatal neurodegenerative disorders characterized by a progressive loss of motoneurons, muscle weakness and premature death. The progressive motor neuronopathy (pmn) mutant mouse has been considered a good model for the autosomal recessive childhood form of spinal muscular atrophy (SMA). Here, we investigated the therapeutic potential of Erythropoietin (Epo) on this mutant mouse. Symptomatic or pre-symptomatic treatment with Epo significantly prolongs lifespan by 84.6% or 87.2% respectively. Epo preserves muscle strength and significantly attenuates behavioural motor deficits of mutant pmn mice. Histological and metabolic changes in the spinal cord evaluated by immunohistochemistry, western blot, and high-resolution (1)H-NMR spectroscopy were also greatly prevented by Epo-treatment. Our results illustrate the efficacy of Epo in improving quality of life of mutant pmn mice and open novel therapeutic pathways for motoneuron diseases.
Collapse
Affiliation(s)
- Marta Ruiz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández (UMH), Av. Ramón y Cajal s/n, 03550 San Juan de Alicante, Alicante, Spain
| | - Ana Fe Martínez-Vidal
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández (UMH), Av. Ramón y Cajal s/n, 03550 San Juan de Alicante, Alicante, Spain
| | - José Manuel Morales
- Unidad Central de Investigación en Medicina, Universidad de Valencia, Valencia, Spain
| | - Daniel Monleón
- Fundación de Investigación del Hospital Clínico Universitario de Valencia (FIHCUV), Valencia, Spain
| | - Minerva Giménez Y Ribotta
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Miguel Hernández (UMH), Av. Ramón y Cajal s/n, 03550 San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
14
|
The midbrain periaqueductal gray changes the eupneic respiratory rhythm into a breathing pattern necessary for survival of the individual and of the species. PROGRESS IN BRAIN RESEARCH 2014; 212:351-84. [PMID: 25194206 DOI: 10.1016/b978-0-444-63488-7.00017-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Modulation of respiration is a prerequisite for survival of the individual and of the species. For example, respiration has to be adjusted in case of speech, strenuous exercise, laughing, crying, or sudden escape from danger. Respiratory centers in pons and medulla generate the basic respiratory rhythm or eupnea, but they cannot modulate breathing in the context of emotional challenges, for which they need input from higher brain centers. In simple terms, the prefrontal cortex integrates visual, auditory, olfactory, and somatosensory information and informs subcortical structures such as amygdala, hypothalamus, and finally the midbrain periaqueductal gray (PAG) about the results. The PAG, in turn, generates the final motor output for basic survival, such as setting the level of all cells in the brain and spinal cord. Best known in this framework is determining the level of pain perception. The PAG also controls heart rate, blood pressure, micturition, sexual behavior, vocalization, and many other basic motor output systems. Within this context, the PAG also changes the eupneic respiratory rhythm into a breathing pattern necessary for basic survival. This review examines the latest developments regarding of how the PAG controls respiration.
Collapse
|
15
|
|
16
|
Yan R, Huang T, Xie Z, Xia G, Qian H, Zhao X, Cheng L. Lmx1b controls peptide phenotypes in serotonergic and dopaminergic neurons. Acta Biochim Biophys Sin (Shanghai) 2013; 45:345-52. [PMID: 23532063 DOI: 10.1093/abbs/gmt023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-HT) neurons synthesize a variety of peptides. How these peptides are controlled during development remains unclear. It has been reported that the co-localization of peptides and 5-HT varies by species. In contrast to the situations in the rostral 5-HT neurons of human and rat brains, several peptides do not coexist with 5-HT in the rostral 5-HT neurons of mouse brain. In this study, we found that the peptide substance P and peptide genes, including those encoding peptides thyrotropin-releasing hormone, enkephalin, and calcitonin gene-related peptide, were expressed in the caudal 5-HT neurons of mouse brain; these findings are in line with observations in rat and monkey 5-HT neurons. We also revealed that these peptides/peptide genes partially overlapped with the transcription factor Lmx1b that specifies the 5-HT cell fate. Furthermore, we found that the peptide cholecystokinin was expressed in developing dopaminergic neurons and greatly overlapped with Lmx1b that specifies the dopaminergic cell fate. By examining the phenotype of Lmx1b deletion mice, we found that Lmx1b was required for the expression of above peptides expressed in 5-HT or dopaminergic neurons. Together, our results indicate that Lmx1b, a key transcription factor for the specification of 5-HT and dopaminergic transmitter phenotypes during embryogenesis, determines some peptide phenotypes in these neurons as well.
Collapse
Affiliation(s)
- Rui Yan
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Morales-Delgado N, Castro-Robles B, Ferrán JL, Martinez-de-la-Torre M, Puelles L, Díaz C. Regionalized differentiation of CRH, TRH, and GHRH peptidergic neurons in the mouse hypothalamus. Brain Struct Funct 2013; 219:1083-111. [PMID: 24337236 PMCID: PMC4013449 DOI: 10.1007/s00429-013-0554-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/11/2013] [Indexed: 01/25/2023]
Abstract
According to the updated prosomeric model, the hypothalamus is subdivided rostrocaudally into terminal and peduncular parts, and dorsoventrally into alar, basal, and floor longitudinal zones. In this context, we examined the ontogeny of peptidergic cell populations expressing Crh, Trh, and Ghrh mRNAs in the mouse hypothalamus, comparing their distribution relative to the major progenitor domains characterized by molecular markers such as Otp, Sim1, Dlx5, Arx, Gsh1, and Nkx2.1. All three neuronal types originate mainly in the peduncular paraventricular domain and less importantly at the terminal paraventricular domain; both are characteristic alar Otp/Sim1-positive areas. Trh and Ghrh cells appeared specifically at the ventral subdomain of the cited areas after E10.5. Additional Ghrh cells emerged separately at the tuberal arcuate area, characterized by Nkx2.1 expression. Crh-positive cells emerged instead in the central part of the peduncular paraventricular domain at E13.5 and remained there. In contrast, as development progresses (E13.5-E18.5) many alar Ghrh and Trh cells translocate into the alar subparaventricular area, and often also into underlying basal neighborhoods expressing Nkx2.1 and/or Dlx5, such as the tuberal and retrotuberal areas, becoming partly or totally depleted at the original birth sites. Our data correlate a topologic map of molecularly defined hypothalamic progenitor areas with three types of specific neurons, each with restricted spatial origins and differential migratory behavior during prenatal hypothalamic development. The study may be useful for detailed causal analysis of the respective differential specification mechanisms. The postulated migrations also contribute to our understanding of adult hypothalamic complexity.
Collapse
Affiliation(s)
- Nicanor Morales-Delgado
- Department of Medical Sciences, School of Medicine, Regional Centre for Biomedical Research and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Calle Almansa, 14, 02006, Albacete, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Noxious stimulation excites serotonergic neurons: a comparison between the lateral paragigantocellular reticular and the raphe magnus nuclei. Pain 2012; 154:647-659. [PMID: 23142143 DOI: 10.1016/j.pain.2012.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 08/28/2012] [Accepted: 09/21/2012] [Indexed: 11/22/2022]
Abstract
The present study was designed to record electrophysiological responses to graded noxious thermal stimuli of serotonergic and nonserotonergic neurons in the lateral paragigantocellular reticular (LPGi) and the raphe magnus (RMg) nuclei in rats. All of the neurons recorded were juxtacellularly filled with neurobiotin and identified with double immunofluorescent labeling for both neurobiotin and serotonin. Under halothane anesthesia (0.75%), noxious thermal stimuli ⩾48°C activated almost all (88%) of the serotonergic neurons located within the LPGi (n=16). The increase in firing was clear (3.4±0.3spike/s: mean of responses above the population median) and sustained during the whole application of strong thermal noxious stimuli, with a high mean threshold (48.3±0.3°C) and large receptive fields. Recording of serotonergic neurons in the RMg (n=21) demonstrated that the proportion of strongly activated (>2spike/s) neurons (19% vs 59% for the LPGi) as well as the magnitude of the activation (2.1±0.4spike/s: mean of responses above the population median) to thermal noxious stimuli were significantly lower than in the LPGi (P<.05). Within the boundaries of both the LPGi and the RMg (B3 group), nonserotonergic neurons were also predominantly excited (75%) by noxious stimuli, and the resulting activation (7.9±1.2spike/s) was even greater than that of serotonergic neurons. Thermal noxious stimuli-induced activation of LPGi serotonergic cells probably plays a key role in serotonin-mediated modulations of cardiac baroreflex and transmission of nociceptive messages occurring under such intense noxious conditions.
Collapse
|
19
|
Zhao WJ, Sun QJ, Lung MSY, Birch D, Guo RC, Pilowsky PM. Substance P, tyrosine hydroxylase and serotonin terminals in the rat caudal nucleus ambiguus. Respir Physiol Neurobiol 2011; 178:337-40. [PMID: 21689789 DOI: 10.1016/j.resp.2011.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/23/2011] [Accepted: 06/03/2011] [Indexed: 01/18/2023]
Abstract
Substance P (SP), tyrosine hydroxylase (TH) and serotonin inputs onto laryngeal motoneurons (LMNs) are known to exist, but the distribution of their terminals in the caudal nucleus ambiguus (NA), remains unclear. Using immunofluorescence and confocal microscopy, we assessed simultaneously the distribution of SP, TH, serotonin and synaptophysin immunoreactive (ir) terminals in the caudal NA. SP, TH and serotonin-ir varicosities were considered to represent immunoreactive synapses if, using confocal microscopy, they were co-localized with the presynaptic protein, synaptophysin. Relative to the total number of synapses, we found only a modest number of SP, TH or serotonin-ir synaptic terminals in the caudal NA. The density of SP-ir synaptic terminals was higher than that of TH-ir and serotonin-ir synaptic terminals. Our results suggest that SP, TH, and serotonin-ir inputs may play only a modest role in regulating the activity of LMN. We conclude that SP, TH and serotonin are not always co-localized in terminals forming inputs with LMN and that they arise from separate subpopulations of neurons.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Functional organization of the dorsal raphe efferent system with special consideration of nitrergic cell groups. J Chem Neuroanat 2011; 41:281-93. [PMID: 21640185 DOI: 10.1016/j.jchemneu.2011.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/10/2011] [Accepted: 05/16/2011] [Indexed: 11/22/2022]
Abstract
The serotonin (5HT) system of the brain is involved in many CNS functions including sensory perception, stress responses and psychological disorders such as anxiety and depression. Of the nine 5HT nuclei located in the mammalian brain, the dorsal raphe nucleus (DRN) has the most extensive forebrain connectivity and is implicated in the manifestation of stress-related psychological disturbances. Initial investigations of DRN efferent connections failed to acknowledge the rostrocaudal and mediolateral organization of the nucleus or its neurochemical heterogeneity. More recent studies have focused on the non-5HT contingent of DRN cells and have revealed an intrinsic intranuclear organization of the DRN which has specific implications for sensory signal processing and stress responses. Of particular interest are spatially segregated subsets of nitric oxide producing neurons that are activated by stressors and that have unique efferent projection fields. In this regard, both the midline and lateral wing subregions of the DRN have emerged as prominent loci for future investigation of nitric oxide function and modulation of sensory- and stressor-related signals in the DRN and coinciding terminal fields.
Collapse
|
21
|
|
22
|
|
23
|
Fu W, Le Maître E, Fabre V, Bernard JF, David Xu ZQ, Hökfelt T. Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain. J Comp Neurol 2010; 518:3464-94. [PMID: 20589909 DOI: 10.1002/cne.22407] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin neurons play a major role in many normal and pathological brain functions. In the rat these neurons have a varying number of cotransmitters, including neuropeptides. Here we studied, with histochemical techniques, the relation between serotonin, some other small-molecule transmitters, and a number of neuropeptides in the dorsal raphe nucleus (DRN) and the adjacent ventral periaqueductal gray (vPAG) of mouse, an important question being to establish possible differences from rat. Even if similarly distributed, the serotonin neurons in mouse lacked the extensive coexpression of nitric oxide synthase and galanin seen in rat. Although partly overlapping in the vPAG, no evidence was obtained for the coexistence of serotonin with dopamine, substance P, cholecystokinin, enkephalin, somatostatin, neurotensin, dynorphin, thyrotropin-releasing hormone, or corticotropin-releasing hormone. However, some serotonin neurons expressed the gamma-aminobutyric acid (GABA)-synthesizing enzyme glutamic acid decarboxylase (GAD). Work in other laboratories suggests that, as in rat, serotonin neurons in the mouse midline DRN express the vesicular glutamate transporter 3, presumably releasing glutamate. Our study also shows that many of the neuropeptides studied (substance P, galanin, neurotensin, dynorphin, and corticotropin-releasing factor) are present in nerve terminal networks of varying densities close to the serotonin neurons, and therefore may directly or indirectly influence these cells. The apparently low numbers of coexisting messengers in mouse serotonin neurons, compared to rat, indicate considerable species differences with regard to the chemical neuronatomy of the DRN. Thus, extrapolation of DRN physiology, and possibly pathology, from rat to mouse, and even human, should be made with caution.
Collapse
Affiliation(s)
- Wenyu Fu
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Stornetta RL. Neurochemistry of bulbospinal presympathetic neurons of the medulla oblongata. J Chem Neuroanat 2009; 38:222-30. [PMID: 19665549 DOI: 10.1016/j.jchemneu.2009.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 01/19/2023]
Abstract
This review focuses on presympathetic neurons in the medulla oblongata including the adrenergic cell groups C1-C3 in the rostral ventrolateral medulla and the serotonergic, GABAergic and glycinergic neurons in the ventromedial medulla. The phenotypes of these neurons including colocalized neuropeptides (e.g., neuropeptide Y, enkephalin, thyrotropin-releasing hormone, substance P) as well as their relative anatomical location are considered in relation to predicting their function in control of sympathetic outflow, in particular the sympathetic outflows controlling blood pressure and thermoregulation. Several explanations are considered for how the neuroeffectors coexisting in these neurons might be functioning, although their exact purpose remains unknown. Although there is abundant data on potential neurotransmitters and neuropeptides contained in the presympathetic neurons, we are still unable to predict function and physiology based solely on the phenotype of these neurons.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States of America.
| |
Collapse
|
25
|
Abstract
Peptides released in the spinal cord from the central terminals of nociceptors contribute to the persistent hyperalgesia that defines the clinical experience of chronic pain. Using substance P (SP) and calcitonin gene-related peptide (CGRP) as examples, this review addresses the multiple mechanisms through which peptidergic neurotransmission contributes to the development and maintenance of chronic pain. Activation of CGRP receptors on terminals of primary afferent neurons facilitates transmitter release and receptors on spinal neurons increases glutamate activation of AMPA receptors. Both effects are mediated by cAMP-dependent mechanisms. Substance P activates neurokinin receptors (3 subtypes) which couple to phospholipase C and the generation of the intracellular messengers whose downstream effects include depolarizing the membrane and facilitating the function of AMPA and NMDA receptors. Activation of neurokinin-1 receptors also increases the synthesis of prostaglandins whereas activation of neurokinin-3 receptors increases the synthesis of nitric oxide. Both products act as retrograde messengers across synapses and facilitate nociceptive signaling in the spinal cord. Whereas these cellular effects of CGRP and SP at the level of the spinal cord contribute to the development of increased synaptic strength between nociceptors and spinal neurons in the pathway for pain, the different intracellular signaling pathways also activate different transcription factors. The activated transcription factors initiate changes in the expression of genes that contribute to long-term changes in the excitability of spinal and maintain hyperalgesia.
Collapse
Affiliation(s)
- V S Seybold
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St., S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
López JM, Domínguez L, González A. Immunohistochemical localization of thyrotropin-releasing hormone in the brain of reptiles. J Chem Neuroanat 2008; 36:251-63. [DOI: 10.1016/j.jchemneu.2008.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 01/31/2023]
|
27
|
Horner RL. Neuromodulation of hypoglossal motoneurons during sleep. Respir Physiol Neurobiol 2008; 164:179-96. [DOI: 10.1016/j.resp.2008.06.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 05/27/2008] [Accepted: 06/05/2008] [Indexed: 01/13/2023]
|
28
|
Cuello AC, Priestley JV, Matthews MR. Localization of substance P in neuronal pathways. CIBA FOUNDATION SYMPOSIUM 2008:55-83. [PMID: 6183080 DOI: 10.1002/9780470720738.ch5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The main neuronal systems containing substance P are summarized on the basis of immunohistochemical evidence. The substance P striatonigral projection is one of the most conspicuous of these. Electron microscopic studies using the peroxidase-antiperoxidase technique reveal some heterogeneity in the substance P-immunostained material in the substantia nigra. Immunoreactivity for the peptide is found in terminals establishing both symmetrical and asymmetrical synapses with substantia nigra dendrites. Substance P immunoreactivity in the substantia gelatinosa of the trigeminal nerve and in the skin of the trigeminal territory was found to be depleted after sensory denervation. Electron microscopy showed that in this area of the rat brain substance P-immunoreactive elements are largely associated with dendrites and establish asymmetrical axo-dendritic synapses. Substance P-immunoreactive terminals synapsing with presynaptic dendrites were also observed (i.e. dendrites that themselves are presynaptic to other dendrites). The origin of substance P-containing fibres in the prevertebral ganglia has been investigated in the guinea-pig by combining surgical procedures and immunohistochemistry. Only procedures which disconnected dorsal root ganglia from prevertebral ganglia depleted substance P immunofluorescence in the latter. This substance P-immunoreactive material disappeared after administration of capsaicin. Electron microscopic studies in prevertebral ganglia show that substance P-immunoreactive varicosities establish axodendritic contacts with the sympathetic neurons. These observations provide strong evidence for direct synaptic sensory-autonomic interactions in the prevertebral ganglia involving substance P-containing collaterals of peripheral sensory nerve fibres.
Collapse
|
29
|
Hökfelt T, Vincent S, Dalsgaard CJ, Skirboll L, Johansson O, Schultzberg M, Lundberg JM, Rosell S, Pernow B, Jancsó G. Distribution of substance P in brain and periphery and its possible role as a co-transmitter. CIBA FOUNDATION SYMPOSIUM 2008:84-106. [PMID: 6183081 DOI: 10.1002/9780470720738.ch6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Substance P is widely distributed in the nervous system. In brain and spinal cord it may act as a transmitter, for example at the central branches of primary sensory neurons. It may also be released from the sensory nerve endings and is thought to be involved in antidromic vasodilatation and in synaptic transmission in autonomic ganglia. In some central neurons substance P is stored together with 5-hydroxytryptamine and thyrotropin-releasing hormone. These neurons project to the ventral horn of the spinal cord, amongst other places. In another system substance P coexists with a cholecystokinin-like peptide. These neurons are localized in the periaqueductal central grey matter and also project to the spinal cord. Finally, injection of a substance P antagonist into the ventral mesencephalon causes marked morphological changes in neurons that contain dopamine, substance P and gamma-aminobutyric acid (GABA).
Collapse
|
30
|
Domínguez L, López JM, González A. Distribution of Thyrotropin-Releasing Hormone (TRH) Immunoreactivity in the Brain of Urodele Amphibians. BRAIN, BEHAVIOR AND EVOLUTION 2008; 71:231-46. [DOI: 10.1159/000122835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 12/13/2007] [Indexed: 01/28/2023]
|
31
|
Lechan RM, Kakucska I. Feedback regulation of thyrotropin-releasing hormone gene expression by thyroid hormone in the hypothalamic paraventricular nucleus. CIBA FOUNDATION SYMPOSIUM 2007; 168:144-58; discussion 158-64. [PMID: 1425022 DOI: 10.1002/9780470514283.ch10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypothyroidism caused by chemical or surgical thyroidectomy or hypophysectomy causes a substantial increase in the content of thyrotropin-releasing hormone (TRH) mRNA and proTRH exclusively in cells of the medial and periventricular paravocellular subdivisions of the hypothalamic paraventricular nucleus (PVN). This response may be important to raise the anterior pituitary thyrostat to promote increased secretion of thyroid-stimulating hormone (TSH) and to induce the secretion of a more biologically active TSH. The increase in TRH mRNA can be obliterated by stereotaxic implants of hormonally active L-triiodothyronine (T3) placed into the anterior hypothalamus but not by implants of the hormonally inactive 3,5'-diiodo-L-thyronine (T2); we therefore suggested that T3 has a direct action on TRH-containing cells of the PVN. Ablation of brainstem catecholaminergic projection fields to the PVN (known to stimulate TRH secretion) has no effect on TRH mRNA expression; beta 1 thyroid hormone receptor mRNA is present in extracts of the PVN. Euthyroid levels of serum T3 in hypothyroid animals achieved via intraperitoneally implanted osmotic minipumps are not associated with a return of PVN levels of TRH mRNA to normal unless circulating T3 levels are raised into the hyperthyroid range (1.7 times normal). This requirement is similar to that needed to normalize nuclear thyroid hormone receptor levels in the anterior pituitary of hypothyroid animals, suggesting that in addition to circulating T3 monodeiodination of T4 to T3 within the brain must also contribute to feedback inhibition of TRH mRNA. As Type II deiodinase activity is absent or very low in the PVN and does not rise with hypothyroidism, we propose that an alternative source for T4 monodeiodination exists within the central nervous system.
Collapse
Affiliation(s)
- R M Lechan
- Department of Medicine, New England Medical Center, Boston, MA 02111
| | | |
Collapse
|
32
|
Postnatal changes in 5HT and NK1 receptors in rat trigeminal motor nucleus and surroundings. Int J Dev Neurosci 2007; 25:427-32. [DOI: 10.1016/j.ijdevneu.2007.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/04/2007] [Accepted: 09/04/2007] [Indexed: 11/21/2022] Open
|
33
|
Aoki Y, Ono H, Yasuo S, Masuda T, Yoshimura T, Ebihara S, Iigo M, Yanagisawa T. Molecular Evolution of Prepro-Thyrotropin-Releasing Hormone in the Chicken (Gallus gallus) and Its Expression in the Brain. Zoolog Sci 2007; 24:686-92. [PMID: 17824776 DOI: 10.2108/zsj.24.686] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 01/28/2007] [Indexed: 11/17/2022]
Abstract
A cDNA encoding prepro-thyrotropin-relaesing hormone (ppTRH) in chicken (Gallus gallus) was isolated and the sites of expression in the brain were determined. The chicken ppTRH cDNA encodes 260 amino acids, including four TRH progenitor sequences (-Lys/Arg-Arg-Gln-His-Pro-Gly-Lys/Arg-Arg-). It is interesting to note that chicken ppTRH harbors four TRH progenitor-like sequences. According to the hydropathy profile of chicken ppTRH, not only the TRH progenitor sequences but also the TRH progenitor-like sequences are localized in hydrophilic regions. The TRH progenitor-like sequences might be related to structural conservation in the evolution of ppTRH, although they cannot be processed into TRH due to the mutation of several amino acids. According to the alignment of the deduced amino-acid sequences of known vertebrate ppTRHs and the molecular phylogenetic tree we constructed, we speculate on the molecular evolution of ppTRH in vertebrates. In situ hybridization demonstrated experession of the ppTRH gene in the nucleus preopticus periventricularis, nucleus preopticus medialis, regio lateralis hypothalami, paraventricular nucleus, nucleus periventricularis hypothalami, and nucleus ventromedialis hypothalami in the chicken brain.
Collapse
Affiliation(s)
- Yasuhiro Aoki
- Department of Biotechnology, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hampton DW, Steeves JD, Fawcett JW, Ramer MS. Spinally upregulated noggin suppresses axonal and dendritic plasticity following dorsal rhizotomy. Exp Neurol 2007; 204:366-79. [PMID: 17258709 DOI: 10.1016/j.expneurol.2006.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 11/06/2006] [Accepted: 11/29/2006] [Indexed: 01/20/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their antagonists, including noggin, are required for nervous system development, but their potential roles in the reactions of the adult central nervous system to injury are unknown. Here we have examined the expression of noggin and BMPs in the spinal cord following dorsal rhizotomy. Through the use of a function-blocking antibody, we have also investigated the role of endogenous noggin in the neuritic plasticity which follows rhizotomy. Dorsal rhizotomy resulted in the upregulation of BMPs 2/4, 7 and noggin in the superficial white matter and in the dorsal neuropil of the spinal cord. These co-localized with glial fibrillary acidic protein, indicating their expression by astrocytes. Because BMPs induce dendritic sprouting and synaptogenesis in some neuronal populations in vitro, we hypothesized that administration of a noggin function-blocking antibody (FbAb) in vivo would augment rhizotomy-induced sprouting in the spinal cord. Topical application of noggin-FbAb to the dorsal surface of the spinal cord following rhizotomy resulted in significant increases in the density of microtubule-associated protein 2 (MAP-2) and substance P (SP)-positive processes within the lateral spinal nucleus. In the deafferented dorsal horn, noggin-FbAb treatment induced significant increases in the density of SP, calcitonin gene-related peptide (CGRP)- and 5-hydroxytryptamine (5-HT)-positive axons. These results suggest a novel mechanism by which endogenous plasticity of spared axons is suppressed following dorsal rhizotomy, and which might be exploited to improve the outcome of spinal cord injury and other CNS trauma.
Collapse
Affiliation(s)
- David W Hampton
- ICORD, University of British Columbia, 6270 University Blvd., Vancouver, BC, Canada V6T 1Z4
| | | | | | | |
Collapse
|
35
|
Tan-No K, Takahashi K, Shimoda M, Sugawara M, Nakagawasai O, Niijima F, Sato T, Satoh S, Tadano T. S-(+)-fenfluramine-induced nociceptive behavior in mice: Involvement of interactions between spinal serotonin and substance P systems. Neuropeptides 2007; 41:33-8. [PMID: 17140659 DOI: 10.1016/j.npep.2006.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 09/30/2006] [Accepted: 10/11/2006] [Indexed: 11/19/2022]
Abstract
Intrathecal (i.t.) administration into mice of S-(+)-fenfluramine (0.01-0.1nmol), a serotonin (5-hydroxytryptamine, 5-HT) releaser, produced a behavioral response consisting of scratching, biting and licking. Here, we report the behavioral characteristics and the involvement of interactions between 5-HT and substance P (SP) systems in the S-(+)-fenfluramine-induced behavioral response. The S-(+)-fenfluramine-induced behavioral response peaked at 5-15min and almost disappeared at 20min after injection. The behavior induced by S-(+)-fenfluramine (0.1nmol) was dose-dependently inhibited by an intraperitoneal injection of morphine (0.02-0.5mg/kg), suggesting that the behavioral response is related to nociception. The S-(+)-fenfluramine-induced nociceptive behavior was significantly inhibited by pretreatment with 5-HT antiserum and co-administration of ketanserin, a selective 5-HT2 receptor antagonist. However, WAY-100635, a selective 5-HT1A receptor antagonist, and ramosetron, a selective 5-HT3 receptor antagonist, were not active. On the other hand, SP antiserum and RP67580, a selective neurokinin-1 (NK1) receptor antagonist, significantly inhibited S-(+)-fenfluramine-induced nociceptive behavior. These results suggest that i.t.-administered S-(+)-fenfluramine releases SP through the activation of 5-HT2 receptors subsequent to 5-HT release, and, as a result, produces nociceptive behavior.
Collapse
Affiliation(s)
- Koichi Tan-No
- Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Silverman DH, Karnovsky ML. Serotonin and peptide immunoneuromodulators: recent discoveries and new ideas. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 62:203-26. [PMID: 2567107 DOI: 10.1002/9780470123089.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- D H Silverman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
37
|
Sood S, Raddatz E, Liu X, Liu H, Horner RL. Inhibition of serotonergic medullary raphe obscurus neurons suppresses genioglossus and diaphragm activities in anesthetized but not conscious rats. J Appl Physiol (1985) 2006; 100:1807-21. [PMID: 16484356 DOI: 10.1152/japplphysiol.01508.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although exogenous serotonin at the hypoglossal motor nucleus (HMN) activates the genioglossus muscle, endogenous serotonin plays a minimal role in modulating genioglossus activity in awake and sleeping rats (Sood S, Morrison JL, Liu H, and Horner RL. Am J Respir Crit Care Med 172: 1338–1347, 2005). This result therefore implies that medullary raphe neurons also play a minimal role in the normal physiological control of the HMN, but this has not yet been established because raphe neurons release other excitatory neurotransmitters onto respiratory motoneurons in addition to serotonin. This study tests the hypothesis that inhibition of medullary raphe serotonergic neurons with 8-hydroxy-2-(di- n-propylamino)tetralin (8-OH-DPAT) suppresses genioglossus and diaphragm activities in awake and sleeping rats. Ten rats were implanted with electrodes to record sleep-wake states and genioglossus and diaphragm activities. Microdialysis probes were also implanted into the nucleus raphe obscurus (NRO). Experiments in 10 anesthetized and vagotomized rats were also performed using the same methodology. In anesthetized rats, microdialysis perfusion of 0.1 mM 8-OH-DPAT into the NRO decreased genioglossus activity by 60.7 ± 9.0% and diaphragm activity by 13.3 ± 3.4%. Diaphragm responses to 7.5% CO2 were also significantly reduced by 8-OH-DPAT. However, despite the robust effects observed in anesthetized and vagotomized rats, there was no effect of 0.1 mM 8-OH-DPAT on genioglossus or diaphragm activities in conscious rats awake or asleep. The results support the concept that endogenously active serotonergic medullary raphe neurons play a minimal role in modulating respiratory motor activity across natural sleep-wake states in freely behaving rodents. This result has implications for pharmacological strategies aiming to manipulate raphe neurons and endogenous serotonin in obstructive sleep apnea.
Collapse
Affiliation(s)
- Sandeep Sood
- Department of Medicine, Rm. 6368, Medical Sciences Bldg., 1 Kings College Circle, University of Toronto, ON, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
38
|
Tóth IE, Tóth DE, Boldogkoi Z, Hornyák A, Palkovits M, Blessing WW. Serotonin-Synthesizing Neurons in the Rostral Medullary Raphé/Parapyramidal Region Transneuronally Labelled After Injection of Pseudorabies Virus into the Rat Tail. Neurochem Res 2006; 31:277-86. [PMID: 16570210 DOI: 10.1007/s11064-005-9018-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2005] [Indexed: 11/29/2022]
Abstract
Serotonin-synthesizing raphé/parapyramidal neurons (5-HT neurons) may function as sympathetic premotor neurons regulating sympathetic outflow to the cutaneous vascular bed. In the present study a genetically engineered pseudorabies virus (PRV) expressing green fluorescent protein (GFP) was injected into the rat tail. After survival for 3-4 days the medulla oblongata was examined using double-label immunohistochemistry, with an antibody against GFP for the virus and an antibody against phenylalanine hydroxylase 8 (PH8) for 5-HT synthesis. Sections were examined using light microscopy, and conventional and confocal fluorescence microscopy. There were two subpopulations of PRV+ve neurons in the raphé/parapyramidal region: a more dorsally and laterally located subgroup of medium-sized and large neurons, mainly non-serotonergic, and a more ventrally located subgroup of small mainly serotonin-synthesizing neurons, including those just dorsal to the pyramids, those in raphé pallidus, and those in close relationship to the ventral surface in the parapyramidal-subependymal zone.
Collapse
Affiliation(s)
- Ida E Tóth
- Joint Research Laboratory of Neuromorphology, Semmelweis University of Medicine and Hungarian Academy of Sciences, H-1094 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
39
|
Wong-Riley MTT, Liu Q. Neurochemical development of brain stem nuclei involved in the control of respiration. Respir Physiol Neurobiol 2005; 149:83-98. [PMID: 16203213 DOI: 10.1016/j.resp.2005.01.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Revised: 01/28/2005] [Accepted: 01/28/2005] [Indexed: 02/03/2023]
Abstract
The first two postnatal weeks are the most dynamic in the development of brain stem respiratory nuclei in the rat, the primary model for this review. Several neurochemicals (glutamate, glycine receptors, choline acetyltransferase, serotonin, norepinephrine, and thyrotropin-releasing hormone) increase expression with age, while others (GABA, serotonin receptor 1A, substance P, neurokinin 1 receptor, and somatostatin) decrease their expression. Surprisingly, a dramatic shift occurs at postnatal day (P) 12 in the rat. Excitatory neurotransmitter glutamate and its NMDA receptors fall precipitously, whereas inhibitory neurotransmitter GABA, GABA(B), and glycine receptors rise sharply. A concomitant drop in cytochrome oxidase activity occurs in respiratory neurons. Several receptor types undergo subunit switches during development. Notably, GABA(A) receptors switch prevalence from alpha3- to an alpha1-dominant form at P12 in the pre-Bötzinger complex of the rat. The transient dominance of inhibitory over excitatory neurotransmission around P12 may render the respiratory system sensitive to failure when stressed. Relating these neurochemical changes to physiological responses in animals and to sudden infant death syndrome in humans will be a challenge for future research.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
40
|
Nakamura M, Yasuda K, Hasumi-Nakayama Y, Sugiura M, Tomita I, Mori R, Tanaka S, Furusawa K. Colocalization of serotonin and substance P in the postnatal rat trigeminal motor nucleus and its surroundings. Int J Dev Neurosci 2005; 24:61-4. [PMID: 16326064 DOI: 10.1016/j.ijdevneu.2005.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 10/17/2005] [Accepted: 10/26/2005] [Indexed: 11/22/2022] Open
Abstract
Trigeminal motoneurons are involved in a variety of oral motor activities, including mastication and breathing, which must be adapted to postnatal environmental change. Serotonin has both an excitatory and an inhibitory effect on trigeminal motor function, whereas substance P has mainly an excitatory effect. In the present study, we measured the density of serotonin- and substance P-immunoreactive nerve terminals in the trigeminal motor nucleus and the area 300 microm surrounding it in rats from embryonic day 19 to postnatal day 70. The density of these terminals gradually increased from embryonic day 19 to postnatal day 7 and decreased thereafter. The density was greatest in the ventromedial subnucleus of the trigeminal motor nucleus at embryonic day 19 and postnatal day 0 and in the area 300 microm surrounding trigeminal motor nucleus at postnatal day 4 and older. Two-color fluorescence immunohistochemistry was used to identify nerve processes immunoreactive for both substance P and serotonin. Approximately, 90% of serotonergic terminals also contained substance P at all ages examined, which suggests that the physiological function of terminals in which these neurotransmitters are colocalized is similar throughout development.
Collapse
Affiliation(s)
- Masaaki Nakamura
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University School of Dentistry, Shiojiri, Nagano 399-0781, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Coote JH. The organisation of cardiovascular neurons in the spinal cord. Rev Physiol Biochem Pharmacol 2005; 110:147-285. [PMID: 3285441 DOI: 10.1007/bfb0027531] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Wu LJ, Xu H, Ko SW, Yoshimura M, Zhuo M. Feed-forward inhibition: a novel cellular mechanism for the analgesic effect of substance P. Mol Pain 2005; 1:34. [PMID: 16297242 PMCID: PMC1315348 DOI: 10.1186/1744-8069-1-34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 11/18/2005] [Indexed: 11/10/2022] Open
Abstract
Substance P (SP) is a neuropeptide well known for its contribution to pain transmission in the spinal cord, however, less is known about the possible modulatory effects of SP. A new study by Gu and colleagues, published in Molecular Pain (2005, 1:20), describes its potential role in feed-forward inhibition in lamina V of the dorsal horn of the spinal cord. This inhibition seems to function through a direct excitation of GABAergic interneurons by substance P released from primary afferent fibers and has a distinct temporal phase of action from the well-described glutamate-dependent feed-forward inhibition. It is believed that through this inhibition, substance P can balance nociceptive output from the spinal cord.
Collapse
Affiliation(s)
- Long-Jun Wu
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, Medical Science Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Hui Xu
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, Medical Science Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Shanelle W Ko
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, Medical Science Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Megumu Yoshimura
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, Medical Science Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, Medical Science Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
43
|
Sood S, Morrison JL, Liu H, Horner RL. Role of Endogenous Serotonin in Modulating Genioglossus Muscle Activity in Awake and Sleeping Rats. Am J Respir Crit Care Med 2005; 172:1338-47. [PMID: 16020803 DOI: 10.1164/rccm.200502-258oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Exogenous serotonin at the hypoglossal motor nucleus (HMN) stimulates genioglossus (GG) muscle activity. However, whether endogenous serotonin contributes to GG activation across natural sleep-wake states has not been determined, but is relevant given that serotonergic neurons have decreased activity in sleep and project to pharyngeal motoneurons. OBJECTIVES To determine the role of endogenous serotonin at the HMN in modulating GG activity across natural sleep-wake states. METHODS Ten rats were implanted with electroencephalogram and neck muscle electrodes to record sleep-wake states, and GG and diaphragm wires for respiratory muscle recordings. Microdialysis probes were implanted into the HMN for perfusion of artificial cerebrospinal fluid and the serotonin receptor antagonist mianserin (100 microM). MEASUREMENTS AND MAIN RESULTS In room air, there was no effect of mianserin on respiratory-related or tonic GG activities across sleep-wake states (p > 0.300). In hypercapnia, however, the normal declines in GG activity from non-REM to REM sleep, and wakefulness to REM sleep, were reduced with mianserin (p < 0.005). These data demonstrate a normally low endogenous serotonergic drive modulating GG activity unless augmented by reflex inputs. We also demonstrated a significant serotonergic drive modulating GG activity in vagotomized rats, but not in vagi-intact rats, under anesthesia, suggesting that previous results in reduced preparations may have been influenced by vagotomy. CONCLUSIONS The results show a minimal endogenous serotonergic drive at the HMN modulating GG activity across sleep-wake states, unless augmented by reflex inputs. This result has implications for pharmacologic strategies aiming to increase GG activity by manipulating endogenous serotonin in patients with obstructive sleep apnea.
Collapse
Affiliation(s)
- Sandeep Sood
- Department of Medicine, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
44
|
Fenik VB, Davies RO, Kubin L. REM sleep-like atonia of hypoglossal (XII) motoneurons is caused by loss of noradrenergic and serotonergic inputs. Am J Respir Crit Care Med 2005; 172:1322-30. [PMID: 16100007 PMCID: PMC5222563 DOI: 10.1164/rccm.200412-1750oc] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Studies of hypoglossal (XII) motoneurons that innervate the genioglossus muscle, an upper airway dilator, suggested that the suppression of upper airway motor tone during REM sleep is caused by withdrawal of excitation mediated by norepinephrine and serotonin. OBJECTIVES Our objectives were to determine whether antagonism of aminergic receptors located in the XII nucleus region can abolish the REM sleep-like atonia of XII motoneurons, and whether both serotonergic and noradrenergic antagonists are required to achieve this effect. METHODS REM sleep-like episodes were elicited in anesthetized rats by pontine carbachol injections before and at various times after microinjection of prazosin and methysergide combined, or of only one of the drugs, into the XII nucleus. MEASUREMENTS AND MAIN RESULTS Spontaneous XII nerve activity was significantly reduced, by 35 to 81%, by each antagonist alone and in combination, indicating that XII motoneurons were under both noradrenergic and serotonergic endogenous excitatory drives. During the 32 to 81 min after microinjections of both antagonists, pontine carbachol caused no depression of XII nerve activity, whereas other characteristic effects (activation of the hippocampal and cortical EEG, and slowing of the respiratory rate) remained intact. A partial recovery of the depressant effect of carbachol then occurred parallel to the recovery of spontaneous XII nerve activity from the depressant effect of the antagonists. Microinjections of either antagonist alone did not eliminate the depressant effect of carbachol. CONCLUSIONS The REM sleep-like depression of XII motoneuronal activity induced by pontine carbachol can be fully accounted for by the combined withdrawal of noradrenergic and serotonergic effects on XII motoneurons.
Collapse
Affiliation(s)
- Victor B Fenik
- Department of Animal Biology, 209E/VET, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, Pennsylvania 19104-6046, USA
| | | | | |
Collapse
|
45
|
Ranson RN, Priestley DJ, Santer RM, Watson AHD. Changes in the substance P-containing innervation of the lumbosacral spinal cord in male Wistar rats as a consequence of ageing. Brain Res 2005; 1036:139-44. [PMID: 15725411 DOI: 10.1016/j.brainres.2004.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 12/09/2004] [Accepted: 12/11/2004] [Indexed: 01/01/2023]
Abstract
Quantitative image analysis was used to determine age-related changes in the substance P-containing innervation of autonomic and somatic nuclei in the lumbosacral spinal cord, which are associated with the control of micturition and sexual reflexes. In the upper lumbar segments (L1-L2), significant declines in the distribution density of substance P-containing processes were observed in the dorsal grey commissure, the intermediolateral cell column and the ventral horn. More caudally, at levels corresponding to L5 through S1, significant reductions were seen in the dorsal grey commissure and within the sacral parasympathetic nucleus. In contrast to these observations, the substance P-immunoreactive innervation of the dorsolateral nucleus remained robust in aged animals and was not significantly different from young adults. It is possible that these distinct age-related patterns of change in substance P-containing innervation, are reflected in the urinary/sexual dysfunction's in aged animals.
Collapse
Affiliation(s)
- Richard N Ranson
- Cardiff School of Biosciences, Biomedical Sciences Buildings, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| | | | | | | |
Collapse
|
46
|
Waterhouse BD, Devilbiss D, Seiple S, Markowitz R. Sensorimotor-related discharge of simultaneously recorded, single neurons in the dorsal raphe nucleus of the awake, unrestrained rat. Brain Res 2004; 1000:183-91. [PMID: 15053966 DOI: 10.1016/j.brainres.2003.11.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2003] [Indexed: 02/05/2023]
Abstract
Multi-channel, multi-neuron recording procedures were used to monitor simultaneously the spike train activity of single neurons (n=7-16 cells/animal) in the dorsal raphe (DR) nucleus of the awake, freely moving rat. Putative serotonergic and non-serotonergic neurons were distinguished from one another on the basis of established criteria, i.e. waveform shape and duration, firing pattern and firing frequency. As a group, presumed serotonergic neurons exhibited low tonic discharge rates, depressed firing after serotonin (5HT)-1a agonist administration, and, except for the transition from sleep to waking, a general insensitivity to specific sensory or motor events. By contrast, non-serotonergic cells in midline and lateral wing sub-regions of the nucleus displayed responses to a variety of sensorimotor events including locomotion, grooming, head movement, chewing, auditory stimuli, and whisker movement (both passive and active). However, within this latter group, the sensorimotor response repertoire of individual cells was not uniform. Likewise, non-5HT cells with diverse response profiles were identified in both medial and lateral sub-regions of the nucleus. Cells categorized as non-serotonergic also had varied responses to 5HT1a agonist administration. These results emphasize the diverse input/output relationships of individual DR neurons and underscore the need for a more comprehensive analysis of such properties under waking conditions in order to obtain a better understanding of the role of the DR nucleus in brain function.
Collapse
Affiliation(s)
- Barry D Waterhouse
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | | | | | |
Collapse
|
47
|
Oliveira ALR, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, Kaneko T, Hökfelt T, Cullheim S, Meister B. Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse 2003; 50:117-29. [PMID: 12923814 DOI: 10.1002/syn.10249] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate is transported into synaptic vesicles by vesicular glutamate transporter (VGLUT) proteins. Three different VGLUTs, VGLUT1, VGLUT2, and VGLUT3, have recently been characterized, and they are considered to represent the most specific marker so far for neurons using glutamate as transmitter. We analyzed the cellular localization of VGLUT1-3 in the rat spinal cord and dorsal root ganglia (DRGs) in control rats and after dorsal rhizotomy. Using in situ hybridization, VGLUT1 mRNA containing neurons were shown in the dorsomedial part of the intermediate zone, whereas VGLUT2 mRNA-expressing neurons were present in the entire intermediate zone, both populations most likely representing interneurons. VGLUT3 mRNA could not be detected in the spinal cord. In the ventral horn, a dense plexus of VGLUT1-immunoreactive (ir) nerve terminals was present, with large varicosities abutting on presumed motoneurons. In the dorsal horn a similarly dense plexus was seen, except in laminae I and II. A very dense plexus of VGLUT2-ir fibers was distributed in the entire gray matter of the spinal cord, with many fibers lying close to presumed motoneurons. Few VGLUT3-ir fibers were distributed in the white and gray matter, including lamina IX. However, a dense VGLUT3-ir plexus was seen in the sympathetic intermedio-lateral column (IML). Multiple-labeling immunohistochemistry revealed that the VGLUT1-, VGLUT2-, and VAChT-containing varicosities in lamina IX all represent separate entities. There was no colocalization of VGLUT3 with VAChT or 5-HT in varicose fibers of the ventral horn, but some VGLUT3-ir fibers in the IML were 5-HT-positive. Lesioning of the dorsal roots resulted in an almost complete disappearance of VGLUT1-ir fibers around motoneurons and a less pronounced decrease in the remaining gray matter, whereas the density of VGLUT2- and VAChT-ir fibers appeared unaltered after lesion. Many VGLUT1-ir neurons were observed in DRGs; they were almost all large and did not colocalize calcitonin gene-related peptide (CGRP), and there was no overlap between these markers in fibers in the superficial dorsal horn. VGLUT2 was, at most, seen in a few DRG neurons. Taken together, these results suggest that the VGLUTs mRNAs are present in distinct subsets of neuronal populations at the spinal level. VGLUT1 is mainly present in primary afferents from large, CGRP-negative DRG neurons, VGLUT2 has mainly a local origin, and VGLUT3 fibers probably have a supraspinal origin.
Collapse
Affiliation(s)
- Alexandre L R Oliveira
- Department of Neuroscience, The Retzius Laboratory, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sun QJ, Berkowitz RG, Goodchild AK, Pilowsky PM. Substance P inputs to laryngeal motoneurons in the rat. Respir Physiol Neurobiol 2003; 137:11-8. [PMID: 12871673 DOI: 10.1016/s1569-9048(03)00136-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Substance P terminals have previously been demonstrated around retrogradely labelled posterior cricoarytenoid (PCA) motoneurons, but little is known regarding substance P inputs to other functionally identified laryngeal motoneurons. In the present study, we determined the number and distribution of close appositions between substance P immunoreactive boutons and three types of laryngeal motoneuron by using a combination of intracellular recording, dye-filling and immunocytochemistry in the rat. Cricothyroid (CT) motoneurons received 15+/-5 substance P appositions/neuron (mean+/-S.D., n = 6), PCA motoneurons received 13+/-5 (n = 6), and laryngeal constrictor (LCS) motoneurons received 11+/-4 (n = 5). In contrast to our previous finding of a preferential serotonin innervation of CT motoneurons, we found no significant difference between the substance P inputs to CT, PCA and LCS motoneurons. Our results indicate a modest role for substance P in control of laryngeal motoneuronal function.
Collapse
Affiliation(s)
- Qi-Jian Sun
- Hypertension and Stroke Research Laboratories, Department of Physiology, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
49
|
Ranson RN, Dodds AL, Smith MJ, Santer RM, Watson AHD. Age-associated changes in the monoaminergic innervation of rat lumbosacral spinal cord. Brain Res 2003; 972:149-58. [PMID: 12711088 DOI: 10.1016/s0006-8993(03)02521-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of ageing on the innervation patterns of lumbosacral spinal nuclei involved in controlling lower urinary tract functions, including micturition, were studied using immunohistochemistry for serotonin (5-HT) and tyrosine hydroxylase (TH) in male Wistar rats of 3 and 24 months. Quantitative image analysis revealed significant age-associated declines in the innervation of most regions including the intermediolateral cell nucleus, sacral parasympathetic nucleus, dorsal grey commissure and in the ventral horn including the dorsolateral nucleus which in the rat is one of the component nuclei homologous to Onuf's nucleus in man. Notable exceptions to this generalised decline were observed in the 5-HT innervation of the sacral parasympathetic nucleus, which was maintained, and in the region of the dorsolateral motor nucleus where TH-like immunoreactivity did not significantly decline. These results suggest that the changes in micturition characteristics observed in aged rats may in part be a consequence of the alterations in, and decline of, aminergic inputs to both autonomic and somatic spinal nuclei associated with bladder function.
Collapse
Affiliation(s)
- Richard N Ranson
- Cardiff School of Biosciences, Biomedical Sciences Building, Cardiff University, Museum Avenue, Cardiff CF10 3US, Wales, UK.
| | | | | | | | | |
Collapse
|
50
|
Orsal D, Barthe JY, Antri M, Feraboli-Lohnherr D, Yakovleff A, Giménez y Ribotta M, Privat A, Provencher J, Rossignol S. Locomotor recovery in chronic spinal rat: long-term pharmacological treatment or transplantation of embryonic neurons? PROGRESS IN BRAIN RESEARCH 2002; 137:213-30. [PMID: 12440370 DOI: 10.1016/s0079-6123(02)37018-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- D Orsal
- Neurobiologie des Signaux Intercellulaires (NSI), Institut de Biologie Intégrative (IFR 83), Université Pierre et Marie Curie, 7 quai Saint Bernard, CNRS UMR 7101, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|