1
|
Wilson MA, Fadel JR. Cholinergic regulation of fear learning and extinction. J Neurosci Res 2016; 95:836-852. [PMID: 27704595 DOI: 10.1002/jnr.23840] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023]
Abstract
Cholinergic activation regulates cognitive function, particularly long-term memory consolidation. This Review presents an overview of the anatomical, neurochemical, and pharmacological evidence supporting the cholinergic regulation of Pavlovian contextual and cue-conditioned fear learning and extinction. Basal forebrain cholinergic neurons provide inputs to neocortical regions and subcortical limbic structures such as the hippocampus and amygdala. Pharmacological manipulations of muscarinic and nicotinic receptors support the role of cholinergic processes in the amygdala, hippocampus, and prefrontal cortex in modulating the learning and extinction of contexts or cues associated with threat. Additional evidence from lesion studies and analysis of in vivo acetylcholine release with microdialysis similarly support a critical role of cholinergic neurotransmission in corticoamygdalar or corticohippocampal circuits during acquisition of fear extinction. Although a few studies have suggested a complex role of cholinergic neurotransmission in the cellular plasticity essential for extinction learning, more work is required to elucidate the exact cholinergic mechanisms and physiological role of muscarinic and nicotinic receptors in these fear circuits. Such studies are important for elucidating the role of cholinergic neurotransmission in disorders such as posttraumatic stress disorder that involve deficits in extinction learning as well as for developing novel therapeutic approaches for such disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| | - Jim R Fadel
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina
| |
Collapse
|
2
|
Kondo H, Zaborszky L. Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. J Comp Neurol 2016; 524:2503-15. [PMID: 26780730 PMCID: PMC4900916 DOI: 10.1002/cne.23967] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 07/02/2015] [Accepted: 01/13/2016] [Indexed: 11/11/2022]
Abstract
Previous studies have shown that the basal forebrain (BF) modulates cortical activation via its projections to the entire cortical mantle. However, the organization of these projections is only partially understood or, for certain areas, unknown. In this study, we examined the topographic organization of cholinergic and noncholinergic projections from the BF to the perirhinal, postrhinal, and entorhinal cortex by using retrograde tracing combined with choline acetyltransferase (ChAT) immunohistochemistry in rats. The perirhinal and postrhinal cortex receives major cholinergic and noncholinergic input from the caudal BF, including the caudal globus pallidus and substantia innominata and moderate input from the horizontal limb of the diagonal band, whereas the entorhinal cortex receives major input from the rostral BF, including the medial septum and the vertical and horizontal limbs of the diagonal band. In the perirhinal cases, cholinergic projection neurons are distributed more caudally in the caudal globus pallidus than noncholinergic projection neurons. Compared with the perirhinal cases, the distribution of cholinergic and noncholinergic neurons projecting to the postrhinal cortex shifts slightly caudally in the caudal globus pallidus. The distribution of cholinergic and noncholinergic neurons projecting to the lateral entorhinal cortex extends more caudally in the BF than to the medial entorhinal cortex. The ratio of ChAT-positive projection neurons to total projection neurons is higher in the perirhinal/postrhinal cases (26-48%) than in the entorhinal cases (13-30%). These results indicate that the organization of cholinergic and noncholinergic projections from the BF to the parahippocampal cortex is more complex than previously described. J. Comp. Neurol. 524:2503-2515, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hideki Kondo
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
3
|
Abstract
Basal forebrain cholinergic neurons constitute a way station for many ascending and descending pathways. These cholinergic neurons have a role in eliciting cortical activation and arousal. It is well established that they are mainly involved in cognitive processes requiring increased levels of arousal, attentive states and/or cortical activation with desynchronized activity in the EEG. These cholinergic neurons are modulated by several afferents of different neurotransmitter systems. Of particular importance within the cortical targets of basal forebrain neurons is the hippocampal cortex. The septohippocampal pathway is a bidirectional pathway constituting the main septal efferent system, which is widely known to be implicated in every memory process investigated. The present work aims to review the main neurotransmitter systems involved in modulating cognitive processes related to learning and memory through modulation of basal forebrain neurons.
Collapse
|
4
|
Devore S, Pender-Morris N, Dean O, Smith D, Linster C. Basal forebrain dynamics during nonassociative and associative olfactory learning. J Neurophysiol 2015; 115:423-33. [PMID: 26561601 DOI: 10.1152/jn.00572.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/10/2015] [Indexed: 12/28/2022] Open
Abstract
Cholinergic and GABAergic projections from the horizontal diagonal band (HDB) and medial preoptic area (MCPO) of the basal forebrain to the olfactory system are associated with odor discrimination and odor learning, as well as modulation of neural responses in olfactory structures. Whereas pharmacological and lesion studies give insights into the functional role of these modulatory inputs on a slow timescale, the response dynamics of neurons in the HDB/MCPO during olfactory behaviors have not been investigated. In this study we examined how these neurons respond during two olfactory behaviors: spontaneous investigation of odorants and odor-reward association learning. We observe rich heterogeneity in the response dynamics of individual HDB/MCPO neurons, with a substantial fraction of neurons exhibiting task-related modulation. HDB/MCPO neurons show both rapid and transient responses during bouts of odor investigation and slow, long-lasting modulation of overall response rate based on behavioral demands. Specifically, baseline rates were higher during the acquisition phase of an odor-reward association than during spontaneous investigation or the recall phase of an odor reward association. Our results suggest that modulatory projections from the HDB/MCPO are poised to influence olfactory processing on multiple timescales, from hundreds of milliseconds to minutes, and are therefore capable of rapidly setting olfactory network dynamics during odor processing and learning.
Collapse
Affiliation(s)
- Sasha Devore
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York; and
| | | | - Owen Dean
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York; and
| | - David Smith
- Department of Psychology, Cornell University, Ithaca, New York
| | - Christiane Linster
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York; and
| |
Collapse
|
5
|
Weible AP. Remembering to attend: the anterior cingulate cortex and remote memory. Behav Brain Res 2013; 245:63-75. [PMID: 23453992 DOI: 10.1016/j.bbr.2013.02.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/08/2013] [Accepted: 02/10/2013] [Indexed: 11/26/2022]
Abstract
Damage to the hippocampus, as first demonstrated with patient HM, results in a profound anterograde and temporally-graded retrograde amnesia. The observation that older memories could still be consciously recollected led to the proposal that, over time, information initially processed in the hippocampus is stored in a distributed cortical network. The anterior cingulate cortex (ACC) has recently been implicated in this process. Studies in rodents have demonstrated that the ACC is necessary for recalling behaviors learned a month or more in the past, but not for the same behaviors learned the previous day. Precisely how the ACC contributes to the recall of remote memories is unknown. Is this role distinct from myriad others proposed for the ACC, or has the approach taken in these studies of assessing function at different points after learning provided a new window through which to view established processes? The present review seeks to address this question. First, the data will be presented implicating the ACC in recall of remote memory. This will be followed by a discussion of studies describing two other primary roles of the ACC, mediating attention and premotor planning, with an emphasis on data collected in rodents, as these will be most directly comparable to the memory studies presented. The available evidence supports a connection among these roles, and suggests a possible synthesis for otherwise seemingly disparate functions reported for the ACC.
Collapse
Affiliation(s)
- Aldis P Weible
- Institute of Neuroscience, 212 Lewis Integrative Science Building, University of Oregon, Eugene 97405, OR, USA.
| |
Collapse
|
6
|
Matsuyama N, Uwano T, Hori E, Ono T, Nishijo H. Reward Contingency Modulates Neuronal Activity in Rat Septal Nuclei during Elemental and Configural Association Tasks. Front Behav Neurosci 2011; 5:26. [PMID: 21633493 PMCID: PMC3100519 DOI: 10.3389/fnbeh.2011.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that septal nuclei are important in the control of behavior during various reward and non-reward situations. In the present study, neuronal activity was recorded from rat septal nuclei during discrimination of conditioned sensory stimuli (CSs) of the medial forebrain bundle associated with or without a reward (sucrose solution or intracranial self-stimulation, ICSS). Rats were trained to lick a spout protruding close to the mouth just after a CS to obtain a reward stimulus. The CSs included both elemental and configural stimuli. In the configural condition, the reward contingency of the stimuli presented together was opposite to that of each elemental stimulus presented alone, although the same sensory stimuli were involved. Of the 72 responsive septal neurons, 18 responded selectively to the CSs predicting reward (CS(+)-related), four to the CSs predicting non-reward (CS(0)-related), nine to some CSs predicting reward or non-reward, and 15 non-differentially to all CSs. The remaining 26 neurons responded mainly during the ingestion/ICSS phase. A multivariate analysis of the septal neuronal responses to elemental and configural stimuli indicated that septal neurons encoded the CSs based on reward contingency, regardless of the stimulus physical properties and were categorized into three groups; CSs predicting the sucrose solution, CSs predicting a non-reward, and CSs predicting ICSS. The results suggest that septal nuclei are deeply involved in discriminating the reward contingency of environmental stimuli to manifest appropriate behaviors in response to changing stimuli.
Collapse
Affiliation(s)
- Nozomu Matsuyama
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
- Department of Neurosurgery, Faculty of Medicine, Kagoshima UniversityKagoshima, Japan
| | - Teruko Uwano
- Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Taketoshi Ono
- Judo Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| |
Collapse
|
7
|
Saper CB. Diffuse Cortical Projection Systems: Anatomical Organization and Role in Cortical Function. Compr Physiol 2011. [DOI: 10.1002/cphy.cp010506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Ikemoto S. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev 2010; 35:129-50. [PMID: 20149820 PMCID: PMC2894302 DOI: 10.1016/j.neubiorev.2010.02.001] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/31/2010] [Accepted: 02/03/2010] [Indexed: 12/22/2022]
Abstract
Reductionist attempts to dissect complex mechanisms into simpler elements are necessary, but not sufficient for understanding how biological properties like reward emerge out of neuronal activity. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures-the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. In addition, studies found roles of non-dopaminergic mechanisms of the supramammillary, rostromedial tegmental and midbrain raphe nuclei in reward. To explain intracranial self-administration and related effects of various drug manipulations, I outlined a neurobiological theory claiming that there is an intrinsic central process that coordinates various selective functions (including perceptual, visceral, and reinforcement processes) into a global function of approach. Further, this coordinating process for approach arises from interactions between brain structures including those structures mentioned above and their closely linked regions: the medial prefrontal cortex, septal area, ventral pallidum, bed nucleus of stria terminalis, preoptic area, lateral hypothalamic areas, lateral habenula, periaqueductal gray, laterodorsal tegmental nucleus and parabrachical area.
Collapse
Affiliation(s)
- Satoshi Ikemoto
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States.
| |
Collapse
|
9
|
Quinn LK, Nitz DA, Chiba AA. Learning-dependent dynamics of beta-frequency oscillations in the basal forebrain of rats. Eur J Neurosci 2010; 32:1507-15. [PMID: 21039960 DOI: 10.1111/j.1460-9568.2010.07422.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholinergic, GABAergic and glutamatergic projection neurons of the basal forebrain (BF) innervate widespread regions of the neocortex and are thought to modulate learning and attentional processes. Although it is known that neuronal cell types in the BF exhibit oscillatory firing patterns, whether the BF as a whole shows oscillatory field potential activity, and whether such neuronal patterns relate to components of cognitive tasks, has yet to be determined. To this end, local field potentials (LFPs) were recorded from the BF of rats performing an associative learning task wherein neutral objects were paired with differently valued reinforcers (pellets). Over time, rats developed preferences for the different objects based on pellet-value, indicating that the pairings had been well learned. LFPs from all rats revealed robust, short-lived bursts of beta-frequency oscillations (∼25 Hz) around the time of object encounter. Beta-frequency LFP events were found to be learning-dependent, with beta-frequency peak amplitudes significantly greater on the first day of the task when object-reinforcement pairings were novel than on the last day when pairings were well learned. The findings indicate that oscillatory bursting field potential activity occurs in the BF in freely behaving animals. Furthermore, the temporal distribution of these bursts suggests that they are probably relevant to associative learning.
Collapse
Affiliation(s)
- Laleh K Quinn
- Department of Cognitive Science, University of California at San Diego.
| | | | | |
Collapse
|
10
|
Regulation of cortical acetylcholine release: insights from in vivo microdialysis studies. Behav Brain Res 2010; 221:527-36. [PMID: 20170686 DOI: 10.1016/j.bbr.2010.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/10/2010] [Indexed: 01/12/2023]
Abstract
Acetylcholine release links the activity of presynaptic neurons with their postsynaptic targets and thus represents the intercellular correlate of cholinergic neurotransmission. Here, we review the regulation and functional significance of acetylcholine release in the mammalian cerebral cortex, with a particular emphasis on information derived from in vivo microdialysis studies over the past three decades. This information is integrated with anatomical and behavioral data to derive conclusions regarding the role of cortical cholinergic transmission in normal behavioral and how its dysregulation may contribute to cognitive correlates of several neuropsychiatric conditions. Some unresolved issues regarding the regulation and significance of cortical acetylcholine release and the promise of new methodology for advancing our knowledge in this area are also briefly discussed.
Collapse
|
11
|
Weible AP, Weiss C, Disterhoft JF. Connections of the caudal anterior cingulate cortex in rabbit: neural circuitry participating in the acquisition of trace eyeblink conditioning. Neuroscience 2007; 145:288-302. [PMID: 17224240 DOI: 10.1016/j.neuroscience.2006.11.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/17/2006] [Accepted: 11/21/2006] [Indexed: 11/16/2022]
Abstract
The caudal anterior cingulate cortex (cAC) is an essential component of the circuitry involved in acquisition of forebrain-dependent trace eyeblink conditioning. Lesions of the cAC prevent trace eyeblink conditioning [Weible AP, McEchron MD, Disterhoft JF (2000) Cortical involvement in acquisition and extinction of trace eyeblink conditioning. Behav Neurosci 114(6):1058-1067]. The patterns of activation of cAC neurons recorded in vivo suggest an attentional role for this structure early in training [Weible AP, Weiss C, Disterhoft JF (2003) Activity profiles of single neurons in caudal anterior cingulate cortex during trace eyeblink conditioning in the rabbit. J Neurophysiol 90(2):599-612]. The goal of the present study was to identify connections of the portion of the rabbit cAC previously demonstrated to be involved in trace eyeblink conditioning, using the neuronal tract tracer wheat germ agglutinin conjugated to horseradish peroxidase, to better understand how the cAC contributes to the process of associative learning. Reciprocal connections with the claustrum provide a route for the transfer of sensory information between the cAC and neocortical and allocortical regions also involved in learning. Connections with components of the basal forebrain cholinergic system are described, with relevance to the proposed attentional role of the cAC. Reciprocal and unidirectional connections were in evidence in multiple thalamic regions, including the medial dorsal nucleus, which have been implicated in a variety of conditioning paradigms. Anterograde connections with the caudate and lateral pontine nuclei provide access to forebrain motor and brainstem sensory circuitry, respectively. The relevance of these connections to acquisition of the trace conditioned reflex is discussed.
Collapse
Affiliation(s)
- A P Weible
- Department of Physiology, Northwestern University Institute for Neuroscience, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
12
|
McQuail JA, Burk JA. Evaluation of muscarinic and nicotinic receptor antagonists on attention and working memory. Pharmacol Biochem Behav 2006; 85:796-803. [PMID: 17196638 DOI: 10.1016/j.pbb.2006.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 11/09/2006] [Accepted: 11/21/2006] [Indexed: 02/05/2023]
Abstract
Cholinergic receptor antagonists are commonly used to model attentional and mnemonic impairments associated with neuropsychiatric disorders such as Alzheimer's disease. However, few studies have systematically assessed the effects of these drugs following manipulations that affect attention or working memory within the same task. In the present experiment, rats were trained to discriminate visual signals from "blank" trials when no signal was presented. This task was modified to include retention intervals on some trials to tax working memory. During standard task performance, rats received systemic injections of the muscarinic receptor antagonist, scopolamine, or of the nicotinic receptor antagonist, mecamylamine. A second experiment tested the effects on this task of co-administering doses of scopolamine and mecamylamine that, when administered alone, did not significantly affect task performance. Scopolamine (0.3 and 1.0 mg/kg) decreased detection of 500 ms signals but did not affect accurate identification of non-signals. Scopolamine did not differentially affect performance across the retention interval. Elevated omission rates were associated with high doses of scopolamine or mecamylamine. Combination drug treatment was associated with decreased signal detection and elevated omission rates. Collectively, the data suggest that muscarinic and nicotinic receptor antagonists do not exclusively impair working memory.
Collapse
Affiliation(s)
- Joseph A McQuail
- Department of Psychology, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187, USA
| | | |
Collapse
|
13
|
Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003; 27:555-79. [PMID: 14599436 DOI: 10.1016/j.neubiorev.2003.09.003] [Citation(s) in RCA: 653] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The prefrontal cortex in rats can be distinguished anatomically from other frontal cortical areas both in terms of cytoarchitectonic characteristics and neural connectivity, and it can be further subdivided into subterritories on the basis of such criteria. Functionally, the prefrontal cortex of rats has been implicated in working memory, attention, response initiation and management of autonomic control and emotion. In humans, dysfunction of prefrontal cortical areas with which the medial prefrontal cortex of the rat is most likely comparable is related to psychopathology including schizophrenia, sociopathy, obsessive-compulsive disorder, depression, and drug abuse. Recent literature points to the relevance of conducting a functional analysis of prefrontal subregions and supports the idea that the area of the medial prefrontal cortex in rats is characterized by its own functional heterogeneity, which may be related to neuroanatomical and neurochemical dissociations. The present review covers recent findings with the intent of correlating these distinct functional differences in the dorso-ventral axis of the rat medial prefrontal cortex with anatomical and neurochemical patterns.
Collapse
Affiliation(s)
- Christian A Heidbreder
- Department of Biology, Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, Via A Fleming 4, 37135 Verona, Italy.
| | | |
Collapse
|
14
|
Soncrant TT, Holloway HW, Horwitz B, Rapoport SI, Lamour YA. Effect of Nucleus Basalis Magnocellularis Ablation on Local Brain Glucose Utilization in the Rat: Functional Brain Reorganization. Eur J Neurosci 2002; 4:653-662. [PMID: 12106329 DOI: 10.1111/j.1460-9568.1992.tb00174.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After unilateral destruction of the nucleus basalis magnocellularis (NBM) in 3-month-old rats, which reduces cholinergic inputs to the ipsilateral frontoparietal neocortex, regional cerebral metabolic rates for glucose (rCMRglc) of denervated cortex are initially reduced, but nearly normalize by 2 weeks. To examine functional reorganization of the brain after unilateral destruction of the NBM, a correlation analysis of rCMRglc was performed on two groups of 16 young rats 2 weeks after stereotaxic ablation of the right NBM with ibotenate or sham surgery. rCMRglc was measured in 117 brain regions of awake rats with the [14C]deoxyglucose method. For each region pair, a partial correlation coefficient was calculated for rCMRglc across animals. Most correlations between cholinergic nuclei of both left and right forebrain (medial septum and diagonal band) and right (66/72, mean increase 0.44) but not left (39/72) frontoparietal cortical regions were larger (P < 0.001) in lesioned rats, as were those between most frontoparietal region pairs (516/630, P < 0.001). These results suggest that, after unilateral NBM ablation, (1) functional interactions are established between the remaining cholinergic forebrain and the deafferented cortex, (2) the neocortex becomes more integrated, and (3) functional reorganization involves both cortical hemispheres. These changes do not correspond to those reported to occur in Alzheimer's disease.
Collapse
Affiliation(s)
- Timothy T. Soncrant
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
15
|
Villalobos J, Rios O, Barbosa M. Postnatal development of cholinergic system in mouse basal forebrain: acetylcholinesterase histochemistry and choline-acetyltransferase immunoreactivity. Int J Dev Neurosci 2001; 19:495-502. [PMID: 11470379 DOI: 10.1016/s0736-5748(01)00034-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The distribution of acetylcholinesterase histochemistry and choline-O-acetyltransferase immunohistochemistry in the basal forebrain was studied in newborn mice (P0) and until 60 days of postnatal life (P60). A weak acetylcholinesterase activity was found at P0 and P2 in the anterior and intermediate parts of the basal forebrain, and higher in the posterior region. The intensity of labeling, neuronal size and dendritic growth seems to increase progressively in all regions of basal forebrain from P4 to P10. The AChE+ cell count shows that in the anterior portion of the magnocellular basal nucleus the number of cells does not vary significantly from birth to the second month of postnatal life. However, in the intermediate and posterior portions of the nucleus the mean number of labeled cells increases significantly from birth to the end of the second week of postnatal life (P13). The choline-acetyltransferase immunoreactivity appears only detectable at the end of the first week (P6) as a slight immunoreaction, which increases progressively in intensity at P8, and at P10 seems to attain the same intensity of labeling found at P60. These results seem to indicate that the acetylcholinesterase could have a non-classic cholinergic role in the first stages of postnatal development, acting as a growth and cellular differentiation factor.
Collapse
Affiliation(s)
- J Villalobos
- Centro de Neurociencias, Facultad de Salud, Universidad del Valle, Apartado Aéreo 25360, Cali, Colombia.
| | | | | |
Collapse
|
16
|
Künzle H, Radtke-Schuller S. Basal telencephalic regions connected with the olfactory bulb in a Madagascan hedgehog tenrec. J Comp Neurol 2000; 423:706-26. [PMID: 10880998 DOI: 10.1002/1096-9861(20000807)423:4<706::aid-cne13>3.0.co;2-#] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In an attempt to gain insight into the organization and evolution of the basal forebrain, the region was analysed cytoarchitecturally, chemoarchitecturally, and hodologically in a lower placental mammal, the lesser hedgehog tenrec. Particular emphasis was laid on the subdivision of the olfactory tubercle, the nuclear complex of the diagonal band, and the cortical amygdala. The proper tubercule and the rostrolateral tubercular seam differed from each other with regard to their immunoreactivity to calbindin and calretinin, as well as their afferents from the piriform cortex. Interestingly, the tubercular seam showed similar properties to the dwarf cell compartment, located immediately adjacent to the islands of Calleja. The most prominent input to the olfactory bulb (OfB) originated from the diagonal nuclear complex. This projection was ipsilateral, whereas the bulbar afferents from the hypothalamus and the mesopontine tegmentum were bilateral. The amygdala projected only sparsely to the OfB, but received a prominent bulbar projection. An exception was the nucleus of the lateral olfactory tract, which was poorly connected with the OfB. Unlike other species with an accessory OfB, the projections from the tenrec's main OfB did not show a topographic organization upon the lateral and medial olfactory amygdala. However, there was an accessory amygdala, which could be differentiated from the lateral nuclei by its intense reaction to NADPh-diaphorase. This reaction was poor in the diagonal nuclear complex as in monkey but unlike in rat. The variability of cell populations and olfactory bulb connections shown here may help to clarify both phylogenetic relationships and the significance of individual basal telencephalic subdivisions.
Collapse
Affiliation(s)
- H Künzle
- Institute of Anatomy, University of Munich, D-80336 Munich, Germany
| | | |
Collapse
|
17
|
Hedou G, Homberg J, Martin S, Wirth K, Feldon J, Heidbreder CA. Effect of amphetamine on extracellular acetylcholine and monoamine levels in subterritories of the rat medial prefrontal cortex. Eur J Pharmacol 2000; 390:127-36. [PMID: 10708716 DOI: 10.1016/s0014-2999(00)00038-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study sought to investigate the contributions of the dorsal prelimbic/anterior cingulate and ventral prelimbic/infralimbic cortices to the reverse microdialysis of amphetamine (1, 10, 100, 500, and 1000 microM) on dialysate acetylcholine, choline, norepinephrine, and serotonin levels. The results demonstrate that basal levels of acetylcholine, choline, and serotonin were homogeneous within subregions of the medial prefrontal cortex. In contrast, dialysate norepinephrine levels were significantly higher in the anterior cingulate cortex compared with the infralimbic cortex. Reverse microdialysis of amphetamine in both subareas of the medial prefrontal cortex produced a dose-dependent increase in norepinephrine and serotonin levels; the magnitude of this effect was similar in both subterritories of the medial prefrontal cortex. Microinfusion of amphetamine increased dialysate acetylcholine levels in a dose-dependent manner only in the infralimbic cortex. Finally, amphetamine decreased choline levels in both subregions of the medial prefrontal cortex. The magnitude of this effect was larger in the anterior cingulate cortex compared with its infralimbic counterpart. Since depletions of frontal cortical acetylcholine result in severe cognitive deficits, the present data raise the possibility that the type of neural integrative processes that acetylcholine mediates depends, at least in part, on the subterritories that characterize the medial prefrontal cortex.
Collapse
Affiliation(s)
- G Hedou
- The Swiss Federal Institute of Technology Zürich (ETH), Laboratory of Behavioral Biology, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Tatsumi H, Katayama Y. Growth cones exhibit enhanced cell-cell adhesion after neurotransmitter release. Neuroscience 1999; 92:855-65. [PMID: 10426527 DOI: 10.1016/s0306-4522(99)00055-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evoked release of acetylcholine and subsequent cell-cell adhesive contacts between growth cones and acetylcholine sensing neurons were observed using cultured neurons dissociated from the diagonal band of Broca of the rat. Stimulation to the soma of the diagonal band of Broca neurons evoked release of acetylcholine from the growth cones. The release of acetylcholine was monitored using whole-cell patch-clamp recording from acetylcholine receptor-rich superior cervical ganglion neuron positioned on the growth cone as a sensor of acetylcholine release. By measuring changes in fluorescence from the growth cone using Ca2(+)-sensitive dye while voltage-clamping the superior cervical ganglion neuron, transient intracellular Ca2+ concentration increase and acetylcholine release from growth cone were recorded simultaneously. Video-enhanced differential interference contrast imaging of the growth cones demonstrated tether formation between the growth cone and superior cervical ganglion cell soma when the superior cervical ganglion cell soma was moved away from the growth cone after acetylcholine release, suggesting formation of adhesive contacts between the growth cone and the sensor neuron. Adhesive contacts between growth cones and sensor neurons were also detected when a high K+ solution or alpha-latrotoxin was applied to the growth cone. Adhesions were also observed between growth cones and latex beads, when growth cones were exposed to high K+ solution. The properties of the adhesive contacts at the growth cone were studied by optically manipulating a latex bead attached to the growth cone surface. These results suggest that growth cones exhibit cell-cell adhesion after neurotransmitter release.
Collapse
Affiliation(s)
- H Tatsumi
- Department of Autonomic Physiology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | |
Collapse
|
19
|
Zimmer LA, Ennis M, Shipley MT. Diagonal band stimulation increases piriform cortex neuronal excitability in vivo. Neuroreport 1999; 10:2101-5. [PMID: 10424682 DOI: 10.1097/00001756-199907130-00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of diagonal band (NDB) stimulation on the spontaneous discharge of pyramidal cells and evoked field potentials (FPs) in piriform cortex (PC) were investigated in vivo. NDB stimulation increased the spontaneous firing rate of PC cells, and increased the disynaptic excitatory (B1) and decreased the disynaptic inhibitory (P2) FP components following lateral olfactory tract (LOT) stimulation. NDB stimulation decreased the P2 component following activation of association fibers in caudal PC. NDB stimulation reduced the paired-pulse inhibition of the P2 component following LOT and caudal PC shocks. The effects of NDB stimulation were reversed by scopolamine, suggesting the involvement of muscarinic receptors. These results suggest that activation of cholinergic inputs to PC increases the excitability of pyramidal cells, probably by a disinhibitory mechanism.
Collapse
Affiliation(s)
- L A Zimmer
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
20
|
Bayer L, Risold PY, Griffond B, Fellmann D. Rat diencephalic neurons producing melanin-concentrating hormone are influenced by ascending cholinergic projections. Neuroscience 1999; 91:1087-101. [PMID: 10391486 DOI: 10.1016/s0306-4522(98)00678-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Innervation of diencephalic neurons producing melanin-concentrating hormone by choline acetyltransferase-containing axons was examined using double immunohistochemistry. In the rostromedial zona incerta and perifornical regions of the lateral hypothalamic area, many choline acetyltransferase-positive fibers were detected in the immediate vicinity of melanin-concentrating hormone perikarya and their proximal dendrites. Putative contact sites were less abundant in the far lateral hypothalamus, and only scattered close to the third ventricle. After injections of the retrograde tracer FluoroGold, most of these projections appeared to originate in the pedunculopontine and laterodorsal tegmental nuclei. Finally, to determine the putative effect of acetylcholine on the melanin-concentrating hormone neuron population, the cholinergic agonist carbachol was added to the medium of hypothalamic slices in culture. Using competitive reverse transcriptase-polymerase chain reaction, carbachol was found to induce a rapid increase in the melanin-concentrating hormone messenger RNA expression. This response was abolished by both atropine, a muscarinic antagonist, and hexamethonium, a nicotinic antagonist. Thus, the bulk of these results indicates that the diencephalic melanin-concentrating hormone neurons are targeted by activating ascending cholinergic projections.
Collapse
Affiliation(s)
- L Bayer
- CNRS ESA 6025, Laboratoire d'Histologie, Embryologie, Cytogénétique, CNRS FR 51 Institut d'Etude et de Transfert de Gènes, Faculté de Médecine et de Pharmacie, Besançon, France
| | | | | | | |
Collapse
|
21
|
Ambrogi Lorenzini CG, Baldi E, Bucherelli C, Sacchetti B, Tassoni G. Neural topography and chronology of memory consolidation: a review of functional inactivation findings. Neurobiol Learn Mem 1999; 71:1-18. [PMID: 9889069 DOI: 10.1006/nlme.1998.3865] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Findings on the role of subcortical and cortical structures in mnemonic processes, obtained by means of the reversible functional inactivation technique, are reviewed. The main advantage of this method (subcortical or cortical administration of local anesthetics or tetrodotoxin) is that it provides information not only on "where" but also "when" and for "how long" these processes take place, thus adding to the topographical dimension the chronological one. The review covers several types of memory (e.g., passive avoidance and spatial memory) studies examining the neural substrates of memory consolidation on the basis of the functional inactivation of the nucleus of the solitary tract, parabrachial nuclei, substantia nigra, hippocampus (dorsal and ventral), nucleus basalis magnocellularis, amygdala, medial septal area, striatum, olfactory bulb, and neocortex. The data are discussed in relation to earlier research and with respect to the anatomical and functional connectivity of the examined centers.
Collapse
Affiliation(s)
- C G Ambrogi Lorenzini
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Viale G. B. Morgagni 63, Florence, I-50134, Italy
| | | | | | | | | |
Collapse
|
22
|
Himmelheber AM, Fadel J, Sarter M, Bruno JP. Effects of local cholinesterase inhibition on acetylcholine release assessed simultaneously in prefrontal and frontoparietal cortex. Neuroscience 1998; 86:949-57. [PMID: 9692730 DOI: 10.1016/s0306-4522(98)00097-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To investigate whether acetylcholine is released in a similar fashion in different regions of the cortex, in vivo microdialysis was used to measure acetylcholine efflux simultaneously in the medial prefrontal and the frontoparietal cortex, under both basal conditions and following tactile stimulation. Additionally, the effects of including two different concentrations (0.05 microM and 0.5 microM) of a cholinesterase inhibitor (neostigmine) in the perfusion fluid were assessed. Basal levels of acetylcholine (i.e. during non-stimulated sessions) were similar in medial prefrontal and frontoparietal areas. Tactile stimulation reliably increased acetylcholine efflux in a similar fashion (up to 140% increase above baseline) in both cortical areas studied. Predictably, the higher concentration of neostigmine (0.5 microM) increased basal acetylcholine efflux by about 150% from levels observed with the lower neostigmine concentration (0.05 microM), but the concentration of local neostigmine had no effect on either the magnitude or the duration of the increased acetylcholine efflux following tactile stimulation. These results suggest that the pattern of acetylcholine release may be comparable in different areas of the cortex, supporting the idea that cholinergic projections from the basal forebrain to the cortex represent a globally regulated system. Furthermore, while the inclusion of neostigmine in perfusion fluid must be taken into account when interpreting acetylcholine efflux data, it appears that concentrations of up to 0.5 microM do not interfere fundamentally with the lability of cortical acetylcholine efflux in response to behavioural stimulation.
Collapse
Affiliation(s)
- A M Himmelheber
- Department of Psychology and Neuroscience Program, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
23
|
Nerve gas-induced seizures: role of acetylcholine in the rapid induction of Fos and glial fibrillary acidic protein in piriform cortex. J Neurosci 1998. [PMID: 9570817 DOI: 10.1523/jneurosci.18-10-03897.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Soman (pinacolymethylphosphonofluoridate), a highly potent irreversible inhibitor of acetylcholinesterase (AChE), causes seizures and rapidly increases Fos and glial fibrillary acidic protein (GFAP) staining in piriform cortex (PC). This suggests that the inhibition of AChE by soman leads to increased acetylcholine (ACh) and neuronal excitability in PC. The sole source of cholinergic input to PC is from the nucleus of the diagonal band (NDB). To investigate the role of ACh in soman-induced seizures, we lesioned cholinergic neurons in NDB unilaterally with 192-IgG-saporin. By 10 d, saporin eliminated staining for choline acetyltransferase (ChAT), the synthetic enzyme for ACh, in NDB ipsilateral to the lesion. Staining for AChE, the degradative enzyme for ACh, was eliminated in PC ipsilateral to the lesioned NDB. By 45-60 min after soman, increased Fos and GFAP staining in PC was evident only ipsilateral to the unlesioned NDB. By 90-120 min after soman, Fos and GFAP staining increased bilaterally in PC. In a second experiment, electrical stimulation electrodes were implanted unilaterally in the NDB to activate focally the projections to PC in unanesthetized rats. Within 5 min of NDB stimulation, there were clear behavioral and EEG signs of convulsions. After 45-60 min of NDB stimulation, there was increased Fos and GFAP staining in layer II of PC ipsilateral to the stimulation site. Pretreatment with the selective muscarinic receptor antagonist scopolamine blocked the convulsions and prevented increased Fos and GFAP staining in PC. These results suggest that ACh release in PC triggers the initiation of seizures and gliosis after soman administration, predominantly by the activation of muscarinic receptors.
Collapse
|
24
|
Holschneider DP, Leuchter AF, Scremin OU, Treiman DM, Walton NY. Effects of cholinergic deafferentation and NGF on brain electrical coherence. Brain Res Bull 1998; 45:531-41. [PMID: 9570724 DOI: 10.1016/s0361-9230(97)00446-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rats received unilateral lesions of the nucleus basalis and were infused intracerebroventricularly (i.c.v.) over 3 weeks with nerve growth factor (NGF) or vehicle. Electrocortical coherence was assessed at postoperative days 4, 7, 14, and 21 from all possible pairs of eight epidural electrodes in the delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta-1 (12-20 Hz), and beta-2 (20-28 Hz) bands. On day 21 choline acetyltransferase (ChAT) activity was measured in cortical tissue underlying each electrode site. Lesions resulted in losses of interhemispheric, as well as bilateral intrahemispheric coherence in the theta band (F1,21 = 28.61, p < 0.0001, F1,21 = 4.30, p < 0.05), with no significant differences seen in other bands. Changes were accentuated during immobility compared with walking and exploratory behavior. Intrahemispheric changes were greatest within the lesioned hemisphere (F1,21 = 6.97, p < 0.01) in long connections between electrode pairings connecting frontal to posterior brain regions. Nerve growth factor (NGF) attenuated losses in ChAT (F1,21 = 21.31, p < 0.0001) and intrahemispheric coherence (F1,21 = 9.66, p < 0.005), whereas interhemispheric coherence showed no significant response. Intact animals receiving NGF showed increases in intrahemispheric coherence, as well as modest increases in ChAT. Increases in coherence in response to NGF occurred within 4-7 days following brain lesions, with no significant change during the 2 weeks thereafter. Our results suggest that coherence is sensitive to cholinergic deafferentation, particularly of long corticocortical connections. NGF differentially restores coherence within hemispheres, as opposed to between hemispheres. Our study suggests that brain function in Alzheimer's disease related to damage of transcallosal fiber tracts may not be responsive to cholinergic treatments. Future studies may wish to evaluate the cognitive relevance of NGF's effects on intact brain.
Collapse
Affiliation(s)
- D P Holschneider
- Department of Psychiatry and the Behavioral Sciences, University of Southern California, School of Medicine, Los Angeles, USA.
| | | | | | | | | |
Collapse
|
25
|
de Lacalle S, Kulkarni S, Wiley RG. Lesion-induced transneuronal plasticity of the cholinergic innervation in the adult rat entorhinal cortex. Eur J Neurosci 1998; 10:1054-62. [PMID: 9753173 DOI: 10.1046/j.1460-9568.1998.00116.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present experiments were designed to determine the effect that lesions of the basal forebrain cholinergic system exert on cholinergic interneurons within the entorhinal cortex (EC) in the rat. Unilateral infusion of 192 IgG-saporin into the nucleus of the horizontal diagonal band of Broca (HDB) decreased the number of ipsilateral choline acetyltransferase immunoreactive (ChAT-ir) neurons by 54%. Two-four weeks after the lesion, the ipsilateral EC exhibited a moderate but significant loss of ChAT-ir fibres and interneurons. Adjacent sections revealed a parallel loss of vasoactive intestinal polypeptide (VIP) immunoreactivity. Cell counts in the cingulate cortex were unaffected, suggesting that this effect was indeed specific to the main target area for HDB neurons. Ibotenic acid lesions also induced a significant 36% decrease in the number of cholinergic neurons in the ipsilateral HDB, and disappearance of ChAT terminals in the EC, whereas the number of ChAT-ir neurons in the EC was unchanged. Since ibotenic acid affects all cells and not only cholinergic ones, our results suggest that the specific degeneration of cholinergic neurons in the HDB after 192 IgG-saporin treatment could be inducing transsynaptic effects on their targets. Injections of 192 IgG-saporin directly into the EC also lesioned the cholinergic projection from the HDB, but had no effect on the intrinsic population. Eight weeks after immunolesion, the number of interneurons immunoreactive for ChAT and VIP in the EC had returned to normal values, and persisted for as long as 6 months after the lesion. By contrast, ChAT-ir neurons in the HDB were permanently lost. Our results suggest that the transient down-regulation of the cholinergic phenotype in entorhinal cortex interneurons could be a manifestation of activity-dependent plasticity, and that the loss of cholinergic innervation from the basal forebrain could be responsible for these effects through an imbalance of inputs. We hypothesize that the recovery of the phenotypic expression of entorhinal interneurons could be due to a recovery in their innervation, perhaps from sprouting axons in the same fields, belonging to surviving cholinergic neurons in the basal forebrain.
Collapse
Affiliation(s)
- S de Lacalle
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
26
|
Risold PY, Thompson RH, Swanson LW. The structural organization of connections between hypothalamus and cerebral cortex. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:197-254. [PMID: 9385455 DOI: 10.1016/s0165-0173(97)00007-6] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Motivated behavior requires coordinated somatic, autonomic, and endocrine responses, and may be divided into initiation, procurement, and consummatory phases (Swanson, L.W. and Mogenson, G.J., Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptative behavior, Brain Res. Rev., 3 (1981) 1-34). Obviously, such behavior may involve the entire central nervous system, although it is important to identify circuitry or systems that mediate the behavior directed toward specific goal objects. This problem has recently been clarified by the identification of hypothalamic subsystems important for the execution of instinctive behaviors related to ingestion, reproduction, and defense. These subsystems are modulated by sensory (reflex), central control (e.g., circadian), and voluntary (cortical) inputs. The latter are dominated by inputs from the ventral temporal lobe and medial prefrontal region, which are both direct and via associated parts of the basal nuclei (ganglia). Hypothalamic output is characterized by descending projections to brainstem and spinal motor systems, and by projections back to the cerebral cortex, which are both direct and via a continuous rostromedial part of the dorsal thalamus. This thalamic region includes the anterior, medial, and midline groups, which in turn innervate a continuous ring of cortex that includes the hippocampal formation and the cingulate, prefrontal, and insular regions. Parts of this thalamic region also innervate the ventral striatum, which receives a massive input from the cortical rings as well.
Collapse
Affiliation(s)
- P Y Risold
- Program for Neural, Informational and Behavioral Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | | | |
Collapse
|
27
|
Risold PY, Swanson LW. Connections of the rat lateral septal complex. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:115-95. [PMID: 9385454 DOI: 10.1016/s0165-0173(97)00009-x] [Citation(s) in RCA: 501] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The organization of lateral septal connections has been re-examined with respect to its newly defined subdivisions, using anterograde (PHAL) and retrograde (fluorogold) axonal tracer methods. The results confirm that progressively more ventral transverse bands in the hippocampus (defined by the orientation of the trisynaptic circuit) innervate progressively more ventral, transversely oriented sheets in the lateral septum. In addition, hippocampal field CA3 projects selectively to the caudal part of the lateral septal nucleus, which occupies topologically lateral regions of the transverse sheets, whereas field CA1 and the subiculum project selectively to the rostral and ventral parts of the lateral septal nucleus, which occupy topologically medial regions of the transverse sheets. Finally, the evidence suggests that progressively more ventral hippocampal bands innervate progressively thicker lateral septal sheets. In contrast, ascending inputs to the lateral septum appear to define at least 20 vertically oriented bands or subdivisions arranged orthogonal to the hippocampal input (Risold, P.Y. and Swanson, L.W., Chemoarchitecture of the rat lateral septal nucleus, Brain Res. Rev., 24 (1997) 91-113). Hypothalamic nuclei forming parts of behavior-specific subsystems share bidirectional connections with specific subdivisions of the lateral septal nucleus (especially the rostral part), suggesting that specific domains in the hippocampus may influence specific hypothalamic behavioral systems. In contrast, the caudal part of the lateral septal nucleus projects to the lateral hypothalamus and to the supramammillary nucleus, which projects back to the hippocampus and receives its major inputs from brainstem cell groups thought to regulate behavioral state. The neural system mediating defensive behavior shows these features rather clearly, and what is known about its organization is discussed in some detail.
Collapse
Affiliation(s)
- P Y Risold
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | |
Collapse
|
28
|
Vaucher E, Linville D, Hamel E. Cholinergic basal forebrain projections to nitric oxide synthase-containing neurons in the rat cerebral cortex. Neuroscience 1997; 79:827-36. [PMID: 9219945 DOI: 10.1016/s0306-4522(97)00033-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stimulation of basal forebrain neurons elicits regional cerebral blood flow increases which are reportedly mediated by acetylcholine and nitric oxide. However, the modality of interaction between these two mediators remains unclear. Particularly, little is known about the source, i.e. endothelial, glial and/or neuronal, of the potent gaseous vasodilator nitric oxide. In the present study, we examined, by double immunocytochemical labelling of nitric oxide synthase and choline acteyltransferase at the light and electron microscopic level, the existence of morphological relationships between cortical nitric oxide synthase-containing neurons and cholinergic cells or nerve fibres. Using anterograde tract tracing and selective basal forebrain lesions, we further investigated the origin of the cholinergic input to cortical nitric oxide synthase neurons. The results confirm that cortical nitric oxide synthase-immunoreactive neurons are often associated with the local microvascular bed, show that intracortical neurons immunostained for nitric oxide synthase and choline acetyltransferase belong to two distinct neuronal populations and, further, that a subset of nitric oxide synthase-containing cell bodies and their proximal dendrites receive a cholinergic input which originates primarily from basalocortical projections. Altogether, these findings suggest that cholinergic basal forebrain neurons could increase cortical blood flow partly via a local nitric oxide relay neuron whereby the freely diffusing gas would be the direct smooth muscle vasodilator agent. It is concluded that this interaction might contribute to the complex relationships between the basal forebrain and the cortical microcirculation, interactions which result in fine regulation of cortical perfusion.
Collapse
Affiliation(s)
- E Vaucher
- Neurobiology Unit, Montreal Neurological Institute, McGill University, Québec, Canada
| | | | | |
Collapse
|
29
|
Peruzzi P, Borredon J, Seylaz J, Lacombe P. Tacrine overcompensates for the decreased blood flow induced by basal forebrain lesion in the rat. Neuroreport 1996; 8:103-8. [PMID: 9051761 DOI: 10.1097/00001756-199612200-00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of tacrine on the cerebral blood flow (CBF) were investigated according to an experimental model of the cholinergic hypothesis in rats with unilateral lesion of the substantia innominata (SI). CBF was measured 1-2 weeks following SI lesion with ibotenic acid, using the tissue sampling [14C]iodoantipyrine technique in three groups of lesioned rats infused i.v. with tacrine at 3 or 8 mg kg-1 h-1 or with saline. SI lesioning resulted in moderate, significant blood flow decreases in the parietal, frontal and occipital cortical areas. In the intact hemi-brain, tacrine at a dose of 3 mg kg-1 h-1 had no significant effect, but at 8 mg kg-1 h-1 tacrine increased the blood flow in most of the cortical and subcortical regions investigated. The increases ranged from 21% (hypothalamus) to 101% (parietal cortex) compared with controls. Tacrine had greater effects in the lesioned hemisphere, even at the dose of 3 mg kg-1 h-1. The flow increases in the frontal or parietal cortex of the lesioned hemisphere were 1.5-3.6 times greater than in the intact hemisphere. Thus, in contrast to what was expected, tacrine overcompensates for the cerebrovascular effects of SI lesions.
Collapse
Affiliation(s)
- P Peruzzi
- Laboratoire de Recherches Cérébrovasculaires, CNRS UA 641, Université Paris VII, France
| | | | | | | |
Collapse
|
30
|
De Micheli E, Chang MC, Rapoport SI. In vivo imaging of cortical membrane remodeling in rats with chronic unilateral ablation of nucleus basalis magnocellularis: use of radiolabeled palmitic acid. Brain Res 1996. [DOI: 10.1016/0006-8993(96)00612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Tatsumi H, Tsuji S, Anglade P, Motelica-Heino I, Soeda H, Katayama Y. Synthesis, storage and release of acetylcholine at and from growth cones of rat central cholinergic neurons in culture. Neurosci Lett 1995; 202:25-8. [PMID: 8787822 DOI: 10.1016/0304-3940(95)12187-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurons from the nucleus diagonal band of Broca (DBB) from new born rats protrude neuronal processes and growth cones in culture. Cytochemical observations with the light and electron microscope indicate that growth cones of these neurons take up choline, synthesize acetylcholine (ACh) and store ACh in the vesicles. Electrical stimuli at the soma of DBB neurons evoked inward currents in ACh-sensitive neurons attached to DBB growth cones. These currents were suppressed by TTX, a Ca2+ channel blocker (Cd2+), and an ACh nicotinic antagonist (C6). These results suggest that ACh is synthesized, stored and released from the growth cones of DBB neurons prior to synapse formation.
Collapse
Affiliation(s)
- H Tatsumi
- Department of Autonomic Physiology, Tokyo Medical and Dental University, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Moro V, Badaut J, Springhetti V, Edvinsson L, Seylaz J, Lasbennes F. Regional study of the co-localization of neuronal nitric oxide synthase with muscarinic receptors in the rat cerebral cortex. Neuroscience 1995; 69:797-805. [PMID: 8596649 DOI: 10.1016/0306-4522(95)00285-q] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is increasing evidence that nitric oxide is an important molecular messenger involved in a wide variety of biological processes including the regulation of the cerebral circulation. For instance, it has been implicated in the vascular response to nucleus basalis magnocellularis stimulation, a structure which is widely recognized as the predominant source of cholinergic fibres projecting to the neocortex. The present investigation was carried out to determine if muscarinic receptors are present on cortical neurons expressing neuronal nitric oxide synthase (nitric oxide-producing enzyme). To this aim, double labelling of both neuronal nitric oxide synthase/vessels and neuronal nitric oxide synthase/muscarinic receptors was performed on free-floating cryosections obtained from rat brain. The observations were made by confocal laser scanning microscopy. The double labelling of neuronal nitric oxide synthase with the arterioles demonstrated the presence of nitroxidergic fibres in the wall of intraparenchymal vessels. A rich network of nitroxidergic fibres independent of the vessels was also seen in the parenchyma. Since the maximal surface of a square of tissue without any nitroxidergic fibres corresponded to 1400 +/- 105 microns2, the distance separating any cortical point from its closest neuronal nitric oxide synthase-positive fibre was never higher than 25 microns (half diagonal of square). According to models of the diffusional spread of nitric oxide, it is likely that nitric oxide can reach the whole cortical volume. Our results on the regional study of neuronal nitric oxide synthase/muscarinic receptors showed a high density of neuronal nitric oxide synthase-positive neurons principally in the frontal and perirhinal cortices and a low density in the occipital cortex. These data fit well with the known pattern of cortical projections from the nucleus basalis magnocellularis as revealed by anterogradely transported markers. The double labelling showed that about 10% of neuronal nitric oxide synthase-positive neurons were co-localized with muscarinic receptors in the frontoparietal cortex. In agreement with previous papers, the vascular innervation by nitroxidergic neuronal processes was often found to lie near the branching points of arterioles. Such localization allows neuronal nitric oxide synthase-positive neurons an extensive control of the vascular tree without requiring a large number of neuronal commands. Therefore, despite the low level of neuronal nitric oxide synthase/muscarinic receptor co-localization, this neuronal subpopulation could represent a possible relay implicated in the vascular effects of the nucleus basalis magnocellularis.
Collapse
Affiliation(s)
- V Moro
- Laboratoire de Recherches Cérébrovasculaires, CNRS URA 641, IFR Circulation Lariboisière, Université Paris VII, France
| | | | | | | | | | | |
Collapse
|
33
|
Vaucher E, Borredon J, Seylaz J, Lacombe P. Autoradiographic distribution of cerebral blood flow increases elicited by stimulation of the nucleus basalis magnocellularis in the unanesthetized rat. Brain Res 1995; 691:57-68. [PMID: 8590065 DOI: 10.1016/0006-8993(95)00601-l] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The nucleus basalis magnocellularis (NBM) of the rat, equivalent of Meynert's nucleus in the primate, is the origin of the main cholinergic innervation of the cerebral cortex. Stimulation of this area has been previously shown to induced marked, cholinergically mediated, blood flow increases in the frontal and parietal cortices. However, the complete distribution of the cerebrovascular effects of NBM stimulation within the whole brain has not been determined. In the present study, we used the [14C]iodoantipyrine autoradiographic method to measure local cerebral blood flow (CBF) in the unanesthetized rat, chronically implanted with a stimulation electrode. We performed unilateral electrical stimulation of the NBM in order to compare both the interhemispheric differences in blood flow and the differences with a group of sham-stimulated rats. Considerable blood flow increases were found in most neocortical areas, exceeding 400% in the frontal area, compared to the control group. Marked responses also appeared in discrete subcortical regions such as the zona incerta, some thalamic nuclei and structures of the extrapyramidal system. These responses were mostly ipsilateral to the stimulation. The significance and the distribution of these blood flow increases are related first, to anatomical and functional data on mainly the cholinergic projections from the NBM, but also non-cholinergic pathways connected with the NBM, second, to biochemical data on the basalocortical system, and third, to the limited ultrastructural data on the innervation of microvascular elements. This cerebrovascular study represents a step in the elucidation of the function of the basalocortical system and provides data which may be related to certain deficits of degenerative disorders such as Alzheimer's disease in which this system is consistently affected.
Collapse
Affiliation(s)
- E Vaucher
- Laboratoire de Recherches Cérébrovasculaires, CNRS UA 641, Université Paris VII, Faculté Lariboisière-Saint Louis, France
| | | | | | | |
Collapse
|
34
|
Calarco CA, Robertson RT. Development of basal forebrain projections to visual cortex: DiI studies in rat. J Comp Neurol 1995; 354:608-26. [PMID: 7608340 DOI: 10.1002/cne.903540409] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We performed experiments using retrograde and anterograde labeling with DiI to examine the development of basal forebrain (BFB) projections to the visual cortex in postnatal rats. DiI placed in occipital cortex led to retrograde labeling of BFB neurons as early as postnatal day 0 (P0); labeled cells were found mainly in the diagonal band complex but also in the medial septum, globus pallidus, and substantia innominata. The retrogradely labeled BFB cells displayed remarkably well-developed dendritic arbors, even in younger animals, and showed increases in soma size, dendritic arbors, and dendritic spines over the first 2 postnatal weeks. DiI placements in the diagonal band led to anterogradely labeled axons in cortex. At early ages (P0-P1), labeled axons were largely confined to white matter. With increasing age, greater numbers of labeled axons were seen in the white matter and in deep cortical layers, and labeled axons extended into superficial layers. The leading edge of labeled fibers reached layer V of visual cortex by P2 and layer IV by P4 and were found throughout the cortical layers by P6. Numbers and densities of labeled axons in visual cortex were greater in older animals, at least through P14. The time of ingrowth of labeled BFB axons into visual cortex indicates that these afferents grow into particular cortical layers after those layers have differentiated from the cortical plate. These data indicate that basal forebrain projections arrive in occipital cortex after cortical lamination is well underway and after the entry of primary thalamocortical projections.
Collapse
Affiliation(s)
- C A Calarco
- Department of Anatomy and Neurobiology, College of Medicine, University of California, Irvine 92717, USA
| | | |
Collapse
|
35
|
Rieck RW, Nabors CC, Updyke BV, Kratz KE. Organization of the basal forebrain in the cat: localization of L-enkephalin, substance P, and choline acetyltransferase immunoreactivity. Brain Res 1995; 672:237-50. [PMID: 7538418 DOI: 10.1016/0006-8993(94)01367-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The present study uses immunocytochemical techniques to determine whether cholinergic basal forebrain neurons in the cat are in a position to receive a homogeneous pattern of inputs, or if specific immunocytochemically defined afferent systems are localized to only selected regions of the basal forebrain. Monoclonal antibodies against choline acetyltransferase (ChAT) were used to identify the location of putative cholinergic neurons which are known to project to the cerebral cortex. In addition, polyclonal antibodies against substance P (SP) or enkephalin (Enk) were used on either adjacent or on the same histological sections reacted for ChAT to identify the neuropeptide plexuses that provide input to the basal forebrain. ChAT-immunoreactive (ChAT-IR) perikarya were located throughout the vertical limb, genu and horizontal limb of the diagonal band of Broca. ChAT-IR neurons also were located within the substantia innominata (SI), within the peripallidal zone around the globus pallidus, and were intercalated within the internal capsule. Enk-IR and SP-IR were used to determine the distribution of putative peptidergic terminals within the basal forebrain. Extensive Enk-IR and SP-IR terminal label was localized within the globus pallidus and the surrounding peripallidal zones, as well as within the SI, whereas the components of the diagonal band of Broca demonstrated negligible Enk-IR and SP-IR label. These data predict that the subdivisions of the cholinergic basal forebrain in the cat do not share a uniform afferent system, and only selective portions of this cholinergic system are in an anatomical position to receive a major direct input from the identified subcortical peptidergic afferents. The segregation of afferents has important consequences in the selective control of cortical function by the cholinergic basalocortical pathway.
Collapse
Affiliation(s)
- R W Rieck
- Department of Anatomy, Louisiana State University Medical School, New Orleans 70112, USA
| | | | | | | |
Collapse
|
36
|
Sercombe R, Lacombe P, Springhetti V, MacKenzie ET, Seylaz J. Basal forebrain control of cortical blood flow and tissue gases in conscious aged rats. Brain Res 1994; 662:155-64. [PMID: 7859069 DOI: 10.1016/0006-8993(94)90808-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cholinergic projections from the basal forebrain are capable of influencing local cortical blood flow (CoBF). The effect of age on this influence was investigated by measuring CoBF and tissue gas partial pressures (PtO2, PtCO2) by mass spectrometry in conscious young adult (2-4 months) and aged (22-28 months) Fischer 344 rats. Electrical stimulation (50 microA) of the substantia innominata (SI) increased frontal (+100.9%) and parietal (+28.4%) CoBF in young rats, but the effects were less in aged rats (frontal, +48.6%, P < 0.05; parietal, +18.9%, difference N.S.). Frontal PtO2 was increased in young but not aged rats (P < 0.01.). During standard hypercapnia, changes in CoBF, PtO2 and PtCO2 did not differ between young and aged rats. Under physostigmine infusion (0.15 mg/kg/h, i.v.), the CoBF increases to SI stimulation were approximately doubled in both cortices, in young and aged rats, and PtO2 increases were also significantly greater. However, frontal PtO2 increases were significantly smaller in aged (+7.6%) than in young (32.7%) rats, as were frontal PtCO2 reductions. We conclude: (i) the influence of the SI on frontal CoBF and PtO2 is substantially reduced with age; (ii) although physostigmine treatment potentiates this influence in both groups, the beneficial effects are relatively limited for aged rats.
Collapse
Affiliation(s)
- R Sercombe
- Laboratoire de Recherches Cérébrovasculaires, CNRS UA 641, Université Paris VII, France
| | | | | | | | | |
Collapse
|
37
|
Ambrogi Lorenzini C, Baldi E, Bucherelli C, Tassoni G. Post-training nucleus basalis magnocellularis functional tetrodotoxin blockade effects on passive avoidance consolidation in the rat. Behav Brain Res 1994; 61:191-6. [PMID: 8037866 DOI: 10.1016/0166-4328(94)90159-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The tetrodotoxin (TTX) functional ablation technique was employed in order to evaluate the temporal coordinates of the rat's nucleus basalis magnocellularis (NBM) involvement in memory trace processing. Under ketamine general anesthesia, TTX (10 ng in 1 microliter saline) was stereotaxically administered to rats, either in one or both NBMs. TTX was injected to different groups of rats, respectively 15 min, 6, 24, 48, 96 h after passive avoidance acquisition testing. The rats underwent retrieval testing 48 h later, i.e. after full recovery from TTX effects. Results show that: (1) monolateral TTX blockade significantly impairs PAR conditioned responding if induced up to 6 h but not 24 h after acquisition testing; (2) bilateral TTX blockade dramatically impairs passive avoidance responding up to a 48-h delay but not 96 h after acquisition testing. The results indicate a very profound involvement of NBM in passive avoidance response consolidation. The experimental evidence is discussed together with previous functional ablation findings concerning amygdala, parabrachial nuclei and neocortex.
Collapse
|
38
|
Brog JS, Salyapongse A, Deutch AY, Zahm DS. The patterns of afferent innervation of the core and shell in the "accumbens" part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 1993; 338:255-78. [PMID: 8308171 DOI: 10.1002/cne.903380209] [Citation(s) in RCA: 827] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent data have emphasized the neurochemically distinct nature of subterritories in the accumbens part of the rat ventral striatum termed the core, shell, and rostral pole. In order to gain a more comprehensive understanding of how afferents are distributed relative to these subterritories, immunohistochemical detection of retrogradely transported Fluoro-Gold was carried out following iontophoretic injections intended to involve selectively one of the subterritories. The data revealed that a number of cortical afferents of the medial shell and core originate in separate areas, i.e., the dorsal peduncular, infralimbic, and posterior piriform cortices (to medial shell) and the dorsal prelimbic, anterior agranular insular, anterior cingulate, and perirhinal cortices (to core). The lateral shell and rostral pole are innervated by cortical structures that also project either to the medial shell or core. The orbital, posterior agranular insular, and entorhinal cortices, hippocampus, and basal amygdala were observed to innervate the accumbens in a topographic manner. Following core injections, strong bilateral cortical labeling was observed. Few labeled cortical cells were observed contralaterally following injections in the medial shell. Intermediate numbers of labeled neurons were observed in contralateral cortices following lateral shell injections. Robust subcortical labeling in a variety of structures in the ventral forebrain, lateral hypothalamus, deep temporal lobe, and brainstem was observed after shell injections, particularly those that involved the caudal dorsomedial extremity of the shell, i.e., its "septal pole." Selective ipsilateral labeling of subcortical structures in the basal ganglia circuitry was observed following injections in the core and, to a lesser extent, lateral shell. It was concluded that a number of afferent systems exhibit varying degrees of segregation with respect to the accumbal subterritories.
Collapse
Affiliation(s)
- J S Brog
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, Missouri 63104
| | | | | | | |
Collapse
|
39
|
Miller MW, Rieck RW. Effects of chronic ethanol administration on acetylcholinesterase activity in the somatosensory cortex and basal forebrain of the rat. Brain Res 1993; 627:104-12. [PMID: 8293290 DOI: 10.1016/0006-8993(93)90753-a] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A chronic diet of ethanol has detrimental effects on the cholinergic system in adult humans and rats. This study examined the effects of chronic exposure to dietary ethanol on the anatomical organization of true acetylcholinesterase (AChE) active elements in rat cerebral cortex. We focused on the somatosensory cortex because of its highly organized chemical and cellular structure. Following 42 days of exposure to an ethanol diet (6.7% v/v), there were marked changes in the cortical plexus of AChE-positive fibers. The AChE-positive plexus in ethanol-treated rats was reduced in all cortical layers, in comparison to age-matched pair-fed control and chow-fed rats. The most marked reduction was evident in layers II/III, IV, and VIa. Moreover, the density of AChE-positive cell bodies was significantly reduced in the cortices of ethanol-fed rats, particularly in the deep laminae. These alterations in the chemoarchitecture of somatosensory cortex occurred in the absence of changes in the cytoarchitectonic organization of neocortex. There was no detectable ethanol-induced change in the density of Cresyl violet-stained neurons either in the horizontal limb of the diagonal band of Broca or in the nucleus basalis. The density of AChE-positive neurons in the nucleus basalis, however, was significantly lower in ethanol-fed rats than in controls. Thus, it appears that a mere 6 weeks of ethanol exposure is sufficient to alter the cholinergic innervation of the cerebral cortex. These cortical alterations occur despite the lack of an ethanol-induced death of neurons in the basal forebrain. Such changes may contribute to the memory loss associated with alcohol dementia.
Collapse
Affiliation(s)
- M W Miller
- Research Service (151), Veterans Affairs Medical Center, Iowa City, IA 52246-2208
| | | |
Collapse
|
40
|
Müller CM, Lewandowski MH, Singer W. Structures mediating cholinergic reticular facilitation of cortical responses in the cat: effects of lesions in immunocytochemically characterized projections. Exp Brain Res 1993; 96:8-18. [PMID: 8243586 DOI: 10.1007/bf00230434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cholinergic afferents to the neocortex controlled by the mesencephalic reticular formation (MRF) are known to transiently facilitate cortical excitability. In an attempt to identify the pathway mediating this effect in the cat visual cortex we combined retrograde tracing techniques with immunocytochemical methods to visualize the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT). In addition we examined, in acute electrophysiological experiments, whether local neurotoxin injections into nuclei of the basal forebrain interfered with the reticular facilitation of cortical evoked potentials. Cholinergic projections to area 17 originate from different centers in the homolateral substantia innominata/internal capsule, the septal nuclei, and the nuclei of the diagonal band of Broca. No direct cholinergic projection from the MRF to the visual cortex was observed. Retrogradely labelled cells intermingled with ChAT-positive neurons in the brainstem generally revealed immunopositivity for catecholaminergic markers. Local injections of neurotoxins in the substantia innominata blocked reticular facilitation, whereas local lesions of the septal nuclei and the nuclei of the diagonal band had no effect on MRF-induced facilitation. The blockage of the reticular facilitation of cortical evoked responses after unilateral lesions of the substantia innominata was bilateral, suggesting a cooperative interaction between basal forebrain structures of the two hemispheres. The anatomical and physiological data are discussed with respect to possible mechanisms of transient brainstem influences on cortical excitability.
Collapse
Affiliation(s)
- C M Müller
- Max-Planck-Institut für Hirnforschung, Frankfurt/Main, Germany
| | | | | |
Collapse
|
41
|
Kunze WA, Shafton AD, Kemm RE, McKenzie JS. Olfactory bulb output neurons excited from a basal forebrain magnocellular nucleus. Brain Res 1992; 583:327-31. [PMID: 1504839 DOI: 10.1016/s0006-8993(10)80044-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present intracellular data which demonstrates a unique facilitatory centrifugal influence on the output cells of the olfactory bulb; the source being the lateral component of the nucleus of the horizontal limb of the diagonal band (HDB), part of the basal forebrain magnocellular complex. Damage to this facilitatory HDB influence may explain the loss of olfactory sensitivity seen early in Alzheimer's disease in which pathological changes occur in the basal forebrain.
Collapse
Affiliation(s)
- W A Kunze
- Department of Physiology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | |
Collapse
|
42
|
Kunze WA, Shafton AD, Kem RE, McKenzie JS. Intracellular responses of olfactory bulb granule cells to stimulating the horizontal diagonal band nucleus. Neuroscience 1992; 48:363-9. [PMID: 1376450 DOI: 10.1016/0306-4522(92)90496-o] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of centrifugal afferents on membrane potentials of identified granule cell layer using evoked field potential profiles, and trans-synaptic activation via antidromic stimulation of output cell axon collaterals. Intracellular recordings maintained for 4-30 min showed complex spontaneous spike discharges and allowed characterization of the cell's input resistance, and on some occasions its morphology following intracellular injection of Lucifer Yellow. Stimulation in the nucleus of the horizontal limb of the diagonal band, but not surrounding regions, produced hyperpolarizing responses in 13 of 27 cells in the granule cell layer; four of these were morphologically identified as granule cells of two types, in five the responses had reversal potentials more negative than the resting potential, and six were identified as granule cells by monosynaptic activation from output axon collaterals. A different set of three cells in the granule cell layer responded with depolarization. The results are consistent with the inhibition of tonic activity of granule cells by the nucleus of the horizontal limb of the diagonal band, leading to disinhibition of mitral and tufted cells via dendrodendritic synapses of granule cells on mitral/tufted cell secondary dendrites.
Collapse
Affiliation(s)
- W A Kunze
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
43
|
Kenan-Vaknin G, Malach R, Segal M. Excitatory inputs to layer V pyramidal cells of rat primary visual cortex revealed by acetylcholine activation. Brain Res 1992; 574:147-56. [PMID: 1638390 DOI: 10.1016/0006-8993(92)90811-m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cells in layers II-III or VI were activated by microdrop application of acetylcholine (ACh), while monitoring the intracellular response of layer V pyramidal cells. This enabled the tracing of functional connections between the cells of layers II-III or VI with those of layer V. ACh activation of layer II-III or VI cells resulted in a small depolarization of these cells, accompanied by a burst of excitatory postsynaptic potentials (EPSPs) from layer V pyramidal cells. These effects of ACh were blocked by tetrodotoxin (TTX), suggesting the involvement of action potentials in their production. The input resistance of layer V pyramidal cells during and after the EPSP burst was not significantly different from control values, further suggesting an indirect effect of ACh on layer V pyramidal cells. Isolation of the supragranular layer, by horizontal cutting, did not prevent the EPSP burst evoked by ACh application to the lower layer VI, suggesting a direct input from layer VI to layer V pyramidal cells. ACh applied near pyramidal cells in layers II-III, V or VI caused transient hyperpolarization associated with a decrease in input resistance followed by a large depolarization, an increase in input resistance, and action potential discharges. The ACh-mediated hyperpolarization and the train of action potentials of layer II-III pyramidal cells were blocked by TTX. Thus the ACh-activated cells in layers II-III and VI make an excitatory synaptic contact with layer V pyramidal cells, producing the EPSP burst observed in layer V.
Collapse
Affiliation(s)
- G Kenan-Vaknin
- Neurobiology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
44
|
Austin MC, Kalivas PW. Dopaminergic involvement in locomotion elicited from the ventral pallidum/substantia innominata. Brain Res 1991; 542:123-31. [PMID: 2054650 DOI: 10.1016/0006-8993(91)91005-l] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microinjection of the indirect GABAA antagonist, picrotoxin, or the mu opioid agonist, Tyr-D-Ala-Gly-NMe-Phe-Gly-ol (DAGO), into the ventral pallidum and substantia innominata (VP/SI) increases locomotor activity in rats. The VP/SI has direct and indirect projections to the region of the ventral mesencephalon containing dopamine perikarya, and to certain dopamine terminal fields, including the nucleus accumbens. Thus, it is possible that modulation of the mesocorticolimbic dopamine system by pharmacological stimulation in the VP/SI may play a role in the locomotor stimulant response. It was shown that pretreatment with dopamine receptor antagonists, either peripherally or microinjected into the nucleus accumbens significantly attenuated the motor stimulant effect of DAGO or picrotoxin injection into the VP/SI. Injection of either picrotoxin or DAGO into the VP/SI increased the levels of dopamine metabolites in the nucleus accumbens and prefrontal cortex. Thus, the motor stimulant response following pharmacological stimulation of the VP/SI appears to be mediated by increased dopamine neurotransmission via feedback mechanisms to the mesocorticolimbic dopamine system.
Collapse
Affiliation(s)
- M C Austin
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164-6520
| | | |
Collapse
|
45
|
Gaykema RP, van Weeghel R, Hersh LB, Luiten PG. Prefrontal cortical projections to the cholinergic neurons in the basal forebrain. J Comp Neurol 1991; 303:563-83. [PMID: 2013647 DOI: 10.1002/cne.903030405] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The prefrontal cortex (PFC) projections to the basal forebrain cholinergic cell groups in the medial septum (MS), vertical and horizontal limbs of the diagonal band of Broca (VDB and HDB), and the magnocellular basal nucleus (MBN) in the rat were investigated by anterograde transport of Phaseolus vulgaris leuco-agglutinin (PHA-L) combined with acetylcholinesterase (AChE) histochemistry or choline acetyltransferase (ChAT) immunocytochemistry. The experiments revealed rich PHA-L-labeled projections to discrete parts of the basal forebrain cholinergic system (BFChS) essentially originating from all prefrontal areas investigated. The PFC afferents to the BFChS display a topographic organization, such that medial prefrontal areas project to the MS, VDB, and the medial part of the HDB, whereas the orbital and agranular insular areas predominantly innervate the HDB and MBN, respectively. Since the recurrent BFChS projection to the prefrontal cortex is arranged according to a similar topography, the relationship between the BFChS and the prefrontal cortex is characterized by reciprocal connections. Furthermore, tracer injections in the PFC resulted in anterograde labeling of numerous "en passant" and terminal boutons apposing perikarya and proximal dendrites of neurons in the basal forebrain, which were stained for the cholinergic marker enzymes. These results indicate that prefrontal cortical afferents make direct synaptic contacts upon the cholinergic neurons in the basal forebrain, although further analysis at the electron microscopic level will be needed to provide conclusive evidence.
Collapse
Affiliation(s)
- R P Gaykema
- Department of Animal Physiology, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
46
|
White TD, Tan AM, Finch DM. Functional connections of the rat medial cortex and basal forebrain: an in vivo intracellular study. Neuroscience 1991; 44:571-83. [PMID: 1754052 DOI: 10.1016/0306-4522(91)90078-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Projections between the medial cortex and basal forebrain in the rat were demonstrated by intracellular recordings and the anterograde tracer Phaseolus vulgaris leucoagglutinin. Direct projections between these areas were indicated by antidromic action potentials, short latency (less than 5 ms) orthodromic potentials, and labeled axon terminals in the basal forebrain subsequent to iontophoresis of Phaseolus vulgaris leucoagglutinin into posterior cingulate cortex. High proportions of antidromic action potentials were encountered in responsive cortical neurons (66%) and basal forebrain neurons (97%). Antidromic latencies recorded in the basal forebrain (less than 1.0 ms) revealed fast ascending projections; cortical neurons showed both fast and slow descending projections (latencies of 0.3-3.7 ms). Relatively few synaptic potentials (none in the diagonal band of Broca) and sparse labeling of axon terminals observed in the basal forebrain indicated that the ascending projections may be the more physiologically important or, at least, densest pathway. Polysynaptic feedforward pathways were suggested through long latency (greater than 20 ms) inhibitory and excitatory postsynaptic potentials, the former being the more common response. Candidate inhibitory neurons were identified in both cortex and basal forebrain. Possible monosynaptic (less than 5 ms) inhibitory postsynaptic and antidromic responses in these cells provided evidence that candidate inhibitory neurons participate in the reciprocal pathways.
Collapse
Affiliation(s)
- T D White
- Brain Research Institute, Reed Neurological Research Center, University of California, Los Angeles 90024
| | | | | |
Collapse
|
47
|
Záborszky L, Cullinan WE, Braun A. Afferents to basal forebrain cholinergic projection neurons: an update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 295:43-100. [PMID: 1776580 DOI: 10.1007/978-1-4757-0145-6_2] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- L Záborszky
- Department of Otolaryngology, University of Virginia Health Science Center, Charlottesville 22908
| | | | | |
Collapse
|
48
|
|
49
|
Gaykema RP, Luiten PG, Nyakas C, Traber J. Cortical projection patterns of the medial septum-diagonal band complex. J Comp Neurol 1990; 293:103-24. [PMID: 2312788 DOI: 10.1002/cne.902930109] [Citation(s) in RCA: 303] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A detailed analysis of the cortical projections of the medial septum-diagonal band (MS/DB) complex was carried out by means of anterograde transport of Phaseolus vulgaris leucoagglutinin (PHA-L). The tracer was injected iontophoretically into cell groups of the medial septum (MS) and the vertical and horizontal limbs of the diagonal band of Broca (VDB and HDB), and sections were processed immunohistochemically for the intra-axonally transported PHA-L. The labeled efferents showed remarkable differences in regional distribution in the cortical mantle dependent on the position of the injection site in the MS/DB complex, revealing a topographic organization of the MS/DB-cortical projection. In brief, the lateral and intermediate aspects of the HDB, also referred to as the magnocellular preoptic area, predominantly project to the olfactory nuclei and the lateral entorhinal cortex. The medial part of the HDB and adjacent caudal (angular) part of the VDB are characterized by widespread, abundant projections to medial mesolimbic, occipital, and lateral entorhinal cortices, olfactory bulb, and dorsal aspects of the subicular and hippocampal areas. Projections from the rostromedial part of the VDB and from the MS are preponderantly aimed at the entire hippocampal and retrohippocampal regions and to a lesser degree at the medial mesolimbic cortex. Furthermore, the MS projections are subject to a clear mediolateral topographic arrangement, such that the lateral MS predominantly projects to the ventral/temporal aspects of the subicular complex and hippocampus and to the medial portion of the entorhinal cortex, whereas more medially located cells in the MS innervate more septal/dorsal parts of the hippocampal and subicular areas and more lateral parts of the entorhinal cortex. PHA-L filled axons have been observed to course through a number of pathways, i.e., the fimbria-fornix system, supracallosal stria, olfactory peduncle, and lateral piriform route (the latter two mainly by the HDB and caudal VDB). Generally, labeled projections were distributed throughout all cortical layers, although clear patterns of lamination were present in several target areas. The richly branching fibers were abundantly provided with both "boutons en passant" and terminal boutons. Both distribution and morphology of the labeled basal forebrain efferents in the prefrontal, cingulate, and occipital cortices closely resemble the distribution and morphology of the cholinergic innervation as revealed by immunohistochemical demonstration of choline acetyltransferase. In contrast, the labeled projections to the olfactory, hippocampal, subicular, and entorhinal areas showed a heterogeneous morphology. Here, the distribution of only the thin varicose projections resembled the distribution of cholinergic fibers.
Collapse
Affiliation(s)
- R P Gaykema
- Department of Animal Physiology, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
50
|
Robertson RT, Fehrenbach CJ, Yu J. Neural systems contributing to acetylcholinesterase histochemical staining in primary visual cortex of the adult rat. Brain Res 1990; 509:181-97. [PMID: 2322817 DOI: 10.1016/0006-8993(90)90543-k] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Histochemical studies demonstrate that cortical area 17 (primary visual cortex) of the adult rat displays a characteristic laminar pattern of acetylcholinesterase (AChE) activity. While AChE-positive axons are found throughout the cortical layers, most intense staining occurs in a band that corresponds to layer V and the deep portion of layer IV. The present studies were directed toward determining the neural systems containing this AChE activity. Unilateral electrolytic or excitatory amino acid induced lesions of the basal forebrain result in reductions of AChE staining in ipsilateral visual cortex, particularly in layers IV and V. Electrolytic or scalpel lesions, placed in white matter underlying dorsal and lateral neocortex to interrupt basal forebrain projections to visual cortex, also reduce AChE staining in visual cortex. Lesions in the cingulate bundle and supracallosal stria reduced AChE staining retrosplenial cortex but did not affect staining visual cortex. Placement of electrolytic lesions in the hypothalamus produced no detectable change in the pattern of AChE in visual cortex. Electrolytic lesions in the midbrain tegmentum, placed to interrupt ascending axons from brainstem monoamine neurons, produced no detectable change in the pattern of AChE in visual cortex. Placement of lesions in the dorsal thalamus that include all of the dorsal lateral geniculate nucleus did not alter AChE staining in visual cortex. The results indicate that AChE activity in adult visual cortex is found primarily within afferent axons from the basal forebrain system. These data demonstrate further that the AChE staining characteristic of adult visual cortex is associated with neural systems that are distinctly different from those associated with AChE staining in visual cortex of the infant rat.
Collapse
Affiliation(s)
- R T Robertson
- Department of Anatomy and Neurobiology, College of Medicine, University of California, Irvine 92717
| | | | | |
Collapse
|