1
|
Zucca S, Brunori G, Dunn HA, Lankford CK, Sutton LP, Algibez Flores B, Maza NA, Sial O, Crynen G, Luján R, Martemyanov KA. Trans-synaptic modulation of cholinergic circuits tunes opioid reinforcement. Proc Natl Acad Sci U S A 2025; 122:e2409325122. [PMID: 40112116 PMCID: PMC11962452 DOI: 10.1073/pnas.2409325122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 02/16/2025] [Indexed: 03/22/2025] Open
Abstract
Opioids trigger structural and functional neural adaptations of the reward circuit that lead to dependence. Synaptic cell adhesion molecules (CAMs) play a pivotal role in circuit organization and present prime candidates for orchestrating remodeling of neural connections in response to drug exposure. However, the contribution of CAMs to opioid-induced rewiring of the reward circuit has not been explored. Here, we used unbiased molecular profiling to identify CAMs in the nucleus accumbens (NAc) modulated by morphine administration. We found that opioid exposure induces the expression of ELFN1, a CAM selectively expressed in cholinergic interneurons in the NAc. We determined that ELFN1 acts trans-synaptically to modulate the strength and plasticity of the glutamatergic inputs onto cholinergic neurons via the recruitment of presynaptic metabotropic glutamate receptor 4 (mGlu4). Disruption of Elfn1 diminished morphine reward and intake in self-administering mice. Together, our findings identify a key molecular factor responsible for adjusting the strength of opioid effects by modulating the configuration of striatal circuitry in an experience-dependent fashion and unveil potential therapeutic target for combating opioid abuse.
Collapse
Affiliation(s)
- Stefano Zucca
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Gloria Brunori
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Henry A. Dunn
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Colten K. Lankford
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Laurie P. Sutton
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Beatriz Algibez Flores
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Nycole A. Maza
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Omar Sial
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Gogce Crynen
- Bioinformatics and Statistics Core, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Biomedicina, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, Albacete02001, Spain
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL33458
| |
Collapse
|
2
|
Ogata S, Miyamoto Y, Shigematsu N, Esumi S, Fukuda T. The Tail of the Mouse Striatum Contains a Novel Large Type of GABAergic Neuron Incorporated in a Unique Disinhibitory Pathway That Relays Auditory Signals to Subcortical Nuclei. J Neurosci 2022; 42:8078-8094. [PMID: 36104279 PMCID: PMC9637004 DOI: 10.1523/jneurosci.2236-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The most caudal part of the striatum in rodents, the tail of the striatum (TS), has many features that distinguish it from the rostral striatum, such as its biased distributions of dopamine receptor subtypes, lack of striosomes and matrix compartmentalization, and involvement in sound-driven behaviors. However, information regarding the TS is still limited. We demonstrate in this article that the TS of the male mouse contains GABAergic neurons of a novel type that were detected immunohistochemically with the neurofilament marker SMI-32. Their somata were larger than cholinergic giant aspiny neurons, were located in a narrow space adjacent to the globus pallidus (GP), and extended long dendrites laterally toward the intermediate division (ID) of the trilaminar part of the TS, the region targeted by axons from the primary auditory cortex (A1). Although vesicular glutamate transporter 1-positive cortical axon terminals rarely contacted these TS large (TSL) neurons, glutamic acid decarboxylase-immunoreactive and enkephalin-immunoreactive boutons densely covered somata and dendrites of TSL neurons, forming symmetrical synapses. Analyses of GAD67-CrePR knock-in mice revealed that these axonal boutons originated from nearby medium spiny neurons (MSNs) in the ID. All MSNs examined in the ID in turn received inputs from the A1. Retrograde tracers injected into the rostral zona incerta and ventral medial nucleus of the thalamus labeled somata of TSL neurons. TSL neurons share many morphological features with GP neurons, but their strategically located dendrites receive inputs from closely located MSNs in the ID, suggesting faster responses than distant GP neurons to facilitate auditory-evoked, prompt disinhibition in their targets.SIGNIFICANCE STATEMENT This study describes a newly found population of neurons in the mouse striatum, the brain region responsible for appropriate behaviors. They are large GABAergic neurons located in the most caudal part of the striatum [tail of the striatum (TS)]. These TS large (TSL) neurons extended dendrites toward a particular region of the TS where axons from the primary auditory cortex (A1) terminated. These dendrites received direct synaptic inputs heavily from nearby GABAergic neurons of the striatum that in turn received inputs from the A1. TSL neurons sent axons to two subcortical regions outside basal ganglia, one of which is related to arousal. Specialized connectivity of TSL neurons suggests prompt disinhibitory actions on their targets to facilitate sound-evoked characteristic behaviors.
Collapse
Affiliation(s)
- Shigeru Ogata
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoki Shigematsu
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
3
|
Carrasco A, Oorschot DE, Barzaghi P, Wickens JR. Three-Dimensional Spatial Analyses of Cholinergic Neuronal Distributions Across The Mouse Septum, Nucleus Basalis, Globus Pallidus, Nucleus Accumbens, and Caudate-Putamen. Neuroinformatics 2022; 20:1121-1136. [PMID: 35792992 PMCID: PMC9588480 DOI: 10.1007/s12021-022-09588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 12/31/2022]
Abstract
Neuronal networks are regulated by three-dimensional spatial and structural properties. Despite robust evidence of functional implications in the modulation of cognition, little is known about the three-dimensional internal organization of cholinergic networks in the forebrain. Cholinergic networks in the forebrain primarily occur in subcortical nuclei, specifically the septum, nucleus basalis, globus pallidus, nucleus accumbens, and the caudate-putamen. Therefore, the present investigation analyzed the three-dimensional spatial organization of 14,000 cholinergic neurons that expressed choline acetyltransferase (ChAT) in these subcortical nuclei of the mouse forebrain. Point process theory and graph signal processing techniques identified three topological principles of organization. First, cholinergic interneuronal distance is not uniform across brain regions. Specifically, in the septum, globus pallidus, nucleus accumbens, and the caudate-putamen, the cholinergic neurons were clustered compared with a uniform random distribution. In contrast, in the nucleus basalis, the cholinergic neurons had a spatial distribution of greater regularity than a uniform random distribution. Second, a quarter of the caudate-putamen is composed of axonal bundles, yet the spatial distribution of cholinergic neurons remained clustered when axonal bundles were accounted for. However, comparison with an inhomogeneous Poisson distribution showed that the nucleus basalis and caudate-putamen findings could be explained by density gradients in those structures. Third, the number of cholinergic neurons varies as a function of the volume of a specific brain region but cell body volume is constant across regions. The results of the present investigation provide topographic descriptions of cholinergic somata distribution and axonal conduits, and demonstrate spatial differences in cognitive control networks. The study provides a comprehensive digital database of the total population of ChAT-positive neurons in the reported structures, with the x,y,z coordinates of each neuron at micrometer resolution. This information is important for future digital cellular atlases and computational models of the forebrain cholinergic system enabling models based on actual spatial geometry.
Collapse
Affiliation(s)
- Andres Carrasco
- grid.250464.10000 0000 9805 2626Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Dorothy E. Oorschot
- grid.29980.3a0000 0004 1936 7830Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Paolo Barzaghi
- grid.250464.10000 0000 9805 2626Imaging Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jeffery R. Wickens
- grid.250464.10000 0000 9805 2626Neurobiology Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
4
|
Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci 2018; 49:604-622. [PMID: 29797362 PMCID: PMC6587740 DOI: 10.1111/ejn.13949] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
Collapse
Affiliation(s)
| | | | | | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
5
|
Zucca S, Zucca A, Nakano T, Aoki S, Wickens J. Pauses in cholinergic interneuron firing exert an inhibitory control on striatal output in vivo. eLife 2018; 7:32510. [PMID: 29578407 PMCID: PMC5869016 DOI: 10.7554/elife.32510] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/26/2018] [Indexed: 02/05/2023] Open
Abstract
The cholinergic interneurons (CINs) of the striatum are crucial for normal motor and behavioral functions of the basal ganglia. Striatal CINs exhibit tonic firing punctuated by distinct pauses. Pauses occur in response to motivationally significant events, but their function is unknown. Here we investigated the effects of pauses in CIN firing on spiny projection neurons (SPNs) – the output neurons of the striatum – using in vivo whole cell and juxtacellular recordings in mice. We found that optogenetically-induced pauses in CIN firing inhibited subthreshold membrane potential activity and decreased firing of SPNs. During pauses, SPN membrane potential fluctuations became more hyperpolarized and UP state durations became shorter. In addition, short-term plasticity of corticostriatal inputs was decreased during pauses. Our results indicate that, in vivo, the net effect of the pause in CIN firing on SPNs activity is inhibition and provide a novel mechanism for cholinergic control of striatal output. Nerve cells or neurons communicate with one another using electrical impulses and chemical messengers called neurotransmitters. Additional molecules known as neuromodulators regulate the communication process. In contrast to neurotransmitters, neuromodulators do not send messages directly from one neuron to the next. Instead they change the way that neurons respond to neurotransmitters. For example, the neuromodulator acetylcholine is most abundant in a region called the striatum. Located deep within the brain, the striatum contributes to learning and memory, motivation, and movement. Studies in rodents show that neurons within the striatum called cholinergic interneurons are almost continuously active. Each time these cells fire, they release acetylcholine. But whenever an animal experiences something unusual or important, the interneurons temporarily stop firing. Zucca et al. wanted to know whether these pauses in firing also act as a signal within the striatum. To find out, Zucca et al. inserted a light-sensitive ion channel into cholinergic interneurons in the mouse striatum. Activating the ion channels with a laser beam stopped the interneurons from firing. Zucca et al. showed that these pauses in firing reduced the activity of another group of neurons, the spiny projection neurons. These are the major output neurons of the striatum. They send messages from the striatum to other parts of the brain. The results thus suggest that cholinergic interneurons signal notable events by temporarily blocking output from the striatum. Understanding how cholinergic interneurons work will help reveal how the striatum drives behavior. It may also lead to treatments for diseases caused by cholinergic system dysfunction. Many patients with Parkinson’s disease or schizophrenia take medicines to block the effects of acetylcholine. Understanding how acetylcholine affects the striatum may help clarify how these treatments work.
Collapse
Affiliation(s)
- Stefano Zucca
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Aya Zucca
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Takashi Nakano
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sho Aoki
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jeffery Wickens
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
6
|
Kljakic O, Janickova H, Prado VF, Prado MAM. Cholinergic/glutamatergic co-transmission in striatal cholinergic interneurons: new mechanisms regulating striatal computation. J Neurochem 2017; 142 Suppl 2:90-102. [PMID: 28421605 DOI: 10.1111/jnc.14003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
Abstract
It is well established that neurons secrete neuropeptides and ATP with classical neurotransmitters; however, certain neuronal populations are also capable of releasing two classical neurotransmitters by a process named co-transmission. Although there has been progress in our understanding of the molecular mechanism underlying co-transmission, the individual regulation of neurotransmitter secretion and the functional significance of this neuronal 'bilingualism' is still unknown. Striatal cholinergic interneurons (CINs) have been shown to secrete glutamate (Glu) in addition to acetylcholine (ACh) and are recognized for their role in the regulation of striatal circuits and behavior. Our review highlights the recent research into identifying mechanisms that regulate the secretion and function of Glu and ACh released by CINs and the roles these neurons play in regulating dopamine secretion and striatal activity. In particular, we focus on how the transporters for ACh (VAChT) and Glu (VGLUT3) influence the storage of neurotransmitters in CINs. We further discuss how these individual neurotransmitters regulate striatal computation and distinct aspects of behavior that are regulated by the striatum. We suggest that understanding the distinct and complementary functional roles of these two neurotransmitters may prove beneficial in the development of therapies for Parkinson's disease and addiction. Overall, understanding how Glu and ACh secreted by CINs impacts striatal activity may provide insight into how different populations of 'bilingual' neurons are able to develop sophisticated regulation of their targets by interacting with multiple receptors but also by regulating each other's vesicular storage. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Ornela Kljakic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Helena Janickova
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
8
|
Cuzon Carlson VC, Mathur BN, Davis MI, Lovinger DM. Subsets of Spiny Striosomal Striatal Neurons Revealed in the Gad1-GFP BAC Transgenic Mouse. BASAL GANGLIA 2011; 1:201-211. [PMID: 22140656 PMCID: PMC3225898 DOI: 10.1016/j.baga.2011.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE: To characterize GFP-expressing cells in the striatum of Cb6-Tg(Gad1-EGFP)G42Zjh/J mice, in which the Gad1 (also referred to as GAD67) promoter drives GFP expression (Gad1-GFP mouse). BACKGROUND: GFP-expressing cells of the GAD1-GFP mouse have been described to be a population of parvalbumin-positive basket interneurons residing in the cerebral cortex and the cerebellum. However, the cells in the dorsal striatum of these mice have not been characterized. METHODS: Using a combination of immunohistochemistry, electrophysiology, DiI labeling, and retrograde tracing, we investigated the phenotypes of GFP-expressing cells in the GAD1-GFP mice. RESULTS: A small number of striatal neurons express GFP in these mice. In the mature striatum, these cells are preferentially located in the lateral striatum with a strong expression in the lateral striatal streak. The GAD1-GFP positive neurons are distinct from the standard fast-spiking and low-threshold-spiking GAD-67 expressing striatal interneurons and appear to be a subset of medium spiny neurons. These neurons are generally colocalized with striosomal markers such as dynorphin, mu-opioid receptors, as well as CB1 and calretinin-immunopositive fibers. Striatal Gad1-GFP neurons can be separated into two groups based on the shape of the somata and patterns of action potential firing. Retrograde labeling indicated that a proportion of these cells are projection neurons. CONCLUSIONS: The examination of GAD1-GFP cells in these mice revealed 2 subpopulations of ventral striosomal striatal medium spiny neurons, based on morphology, patch-matrix segregation and membrane properties.
Collapse
Affiliation(s)
- Verginia C Cuzon Carlson
- Laboratory for Integrative Neuroscience, National Institute of Alcohol Abuse and Alcoholism, Rockville, MD
| | | | | | | |
Collapse
|
9
|
Cholinergic innervation and thalamic input in rat nucleus accumbens. J Chem Neuroanat 2008; 37:33-45. [PMID: 18773952 DOI: 10.1016/j.jchemneu.2008.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/08/2008] [Accepted: 08/09/2008] [Indexed: 11/23/2022]
Abstract
Cholinergic interneurons are the only known source of acetylcholine in the rat nucleus accumbens (nAcb); yet there is little anatomical data about their mode of innervation and the origin of their excitatory drive. We characterized the cholinergic and thalamic innervations of nAcb with choline acetyltransferase (ChAT) immunocytochemistry and anterograde transport of Phaseolus vulgaris-leucoagglutinin (PHA-L) from the midline/intralaminar/paraventricular thalamic nuclei. The use of a monoclonal ChAT antiserum against whole rat ChAT protein allowed for an optimal visualization of the small dendritic branches and fine varicose axons of cholinergic interneurons. PHA-L-labeled thalamic afferents were heterogeneously distributed throughout the core and shell regions of nAcb, overlapping regionally with cholinergic somata and dendrites. At the ultrastructural level, several hundred single-section profiles of PHA-L and ChAT-labeled axon terminals were analyzed for morphology, synaptic frequency, and the nature of their synaptic targets. The cholinergic profiles were small and apposed to various neuronal elements, but rarely exhibited a synaptic membrane specialization (5% in single ultrathin sections). Stereological extrapolation indicated that less than 15% of these cholinergic varicosities were synaptic. The PHA-L-labeled profiles were comparatively large and often synaptic (37% in single ultrathin sections), making asymmetrical contacts primarily with dendritic spines (>90%). Stereological extrapolation indicated that all PHA-L-labeled terminals were synaptic. In double-labeled material, some PHA-L-labeled terminals were directly apposed to ChAT-labeled somata or dendrites, but synapses were never seen between the two types of elements. These observations demonstrate that the cholinergic innervation of rat nAcb is largely asynaptic. They confirm that the afferents from midline/intralaminar/paraventricular thalamic nuclei to rat nAcb synapse mostly on dendritic spines, presumably of medium spiny neurons, and suggest that the excitatory drive of nAcb cholinergic interneurons from thalamus is indirect, either via substance P release from recurrent collaterals of medium spiny neurons and/or by extrasynaptic diffusion of glutamate.
Collapse
|
10
|
Galati S, D'angelo V, Scarnati E, Stanzione P, Martorana A, Procopio T, Sancesario G, Stefani A. In vivo electrophysiology of dopamine-denervated striatum: focus on the nitric oxide/cGMP signaling pathway. Synapse 2008; 62:409-20. [PMID: 18361439 DOI: 10.1002/syn.20510] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Within the striatum, the gaseous neurotransmitter nitric oxide (NO) is produced by a subclass of interneurons containing the neuronal NO synthase (nNOS). NO promotes the second messenger cGMP through the activation of the soluble guanyl cyclase (sGC) and plays a crucial role in the integration of glutamate (GLU) and DA transmission. The aim of this study was to characterize the impact of 6-hydroxyDA (6-OHDA) lesion of the rat nigrostriatal pathway on NO/cGMP system. In vivo extracellular single units recordings were performed under urethane anesthesia to avoid any potentially misleading contributions of cortically-driven changes on endogenous NO. Hence, no electrical extrastriatal stimulation was performed and great attention was paid to the effects of 3-morpholinosydnonimine (SIN-1, a NO donor), N(G)-nitro-L-arginine methyl ester (L-NAME, a nonselective NOS inhibitor) and Zaprinast (a PDE inhibitor) delivered by iontophoresis upon the main striatal phenotypes. The latter were operationally distinguished in silent medium spiny-like neurons (MSN), with negligible spontaneous activity but displaying glutamate-induced firing discharge at rest and spontaneously active neurons (SAN), representing to a large extent nonprojecting interneurons. SANs were excited by SIN-1 and Zaprinast while MSNs showed a clear inhibition during local iontophoretic application of SIN-1 and Zaprinast. In 6-OHDA animals, SIN-1-induced excitation in SANs was significantly increased (on the contrary, the inhibitory effect of L-NAME was less effective). Interestingly, in DA-denervated animals, a subclass of MSNs (40%) displayed a peculiar excitatory response to SIN-1. These findings support the notion of an inhibitory modulatory role exerted by endogenous NO on control striatal projection cells. In addition, these findings suggest a functional cross-talk between NO, spontaneously active interneurons, and projection neurons that becomes critical in the parkinsonian state.
Collapse
Affiliation(s)
- Salvatore Galati
- Division of Neurology, Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bloomfield C, O'Donnell P, French SJ, Totterdell S. Cholinergic neurons of the adult rat striatum are immunoreactive for glutamatergic N-methyl-d-aspartate 2D but not N-methyl-d-aspartate 2C receptor subunits. Neuroscience 2007; 150:639-46. [PMID: 17961930 DOI: 10.1016/j.neuroscience.2007.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/11/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
Cholinergic neurons of the striatum play a crucial role in controlling output from this region. Their firing is under the control of a relatively limited glutamatergic input, deriving principally from the thalamus. Glutamate transmission is effected via three major subtypes of receptors, including those with affinity for N-methyl-d-aspartate (NMDA) and the properties of individual receptors reflect their precise subunit composition. We examined the distribution of NMDA2C and NMDA2D subunits in the rat striatum using immunocytochemistry and show that a population of large neurons is strongly immunoreactive for NMDA2D subunits. From their morphology and ultrastructure, these neurons were presumed to be cholinergic and this was confirmed with double immunofluorescence. We also show that NMDA2C is present in a small number of septal and olfactory cortical neurons but absent from the striatum. Receptors that include NMDA2D subunits are relatively insensitive to magnesium ion block making neurons more likely to fire at more negative membrane potentials. Their localization to cholinergic neurons may enable very precise regulation of firing of these neurons by relatively small glutamatergic inputs.
Collapse
Affiliation(s)
- C Bloomfield
- Department of Pharmacology, Oxford University, Mansfield Road, Oxford, OX1 3QT UK
| | | | | | | |
Collapse
|
12
|
|
13
|
Emmett SR, Greenfield SA. Correlation between dopaminergic neurons, acetylcholinesterase and nicotinic acetylcholine receptors containing the α3- or α5-subunit in the rat substantia nigra. J Chem Neuroanat 2005; 30:34-44. [PMID: 15975762 DOI: 10.1016/j.jchemneu.2005.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 08/28/2004] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the relationship between the cells possessing the alpha3 or alpha5 nicotinic acetylcholine receptor subunits and the enzyme acetylcholinesterase, with respect to tyrosine hydroxylase immunoreactive dopaminergic neurons in the rat substantia nigra. Most, but certainly not all, acetylcholinesterase immunoreactive cells were located in the pars compacta. In the substantia nigra pars compacta there were in turn two populations of acetylcholinesterase containing neurons: those that were tyrosine hydroxylase reactive and those that were not. Double label studies, that included an antibody immunoreactive against a common immunogen on alpha1 of muscle and alpha3 and alpha5 neuronal nicotinic acetylcholine receptor subunits, revealed that nearly all nicotinic receptor positive cells were also tyrosine hydroxylase neurons. However, a minority non-tyrosine hydroxylase population was alpha3- and/or alpha5-nAChR positive and these were always AChE-immunoreactive. In summary, there appears to be a close correlation between nicotinic receptors and acetylcholinesterase in the substantia nigra, irrespective of the transmitter phenotype in different neuronal subpopulations.
Collapse
Affiliation(s)
- Stevan R Emmett
- University Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|
14
|
Zackheim J, Abercrombie ED. Thalamic regulation of striatal acetylcholine efflux is both direct and indirect and qualitatively altered in the dopamine-depleted striatum. Neuroscience 2005; 131:423-36. [PMID: 15708484 DOI: 10.1016/j.neuroscience.2004.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2004] [Indexed: 11/17/2022]
Abstract
Striatal cholinergic interneurons play a pivotal role in the integrative sensorimotor functions of the basal ganglia. The major excitatory input to these interneurons arises from glutamatergic neurons of the parafascicular nucleus of the thalamus (Pf). Thalamic regulation of cholinergic interneurons, however, may also include an indirect inhibitory component mediated by the axon collaterals of GABAergic medium spiny neurons that are also innervated by Pf. The present study examined thalamic regulation of striatal cholinergic interneurons by employing dual probe in vivo microdialysis in freely moving animals to determine the effect of pharmacological manipulation of Pf on acetylcholine (ACh) efflux in intact and dopamine-lesioned striata. In intact animals, reverse dialysis application of the GABA(A) antagonist bicuculline (50 microM) into Pf, likely disinhibiting Pf neurons, significantly decreased striatal ACh efflux. When striatal GABA(A) receptors were blocked by simultaneous reverse dialysis application of bicuculline (10 microM), however, the same manipulation significantly increased ACh efflux. Qualitatively similar results were obtained in experiments employing a higher concentration of bicuculline (200 microM). Application of the GABA agonist muscimol (500 microM) into Pf, likely inhibiting Pf neurons, decreased ACh efflux only when the experiment was conducted under blockade of striatal GABA(A) receptors. These data are consistent with the existence of an indirect, inhibitory, GABA(A) receptor-mediated component of ACh regulation that is most clearly manifested when Pf is disinhibited and with the existence of a direct excitatory component of ACh regulation, evident when Pf is inhibited. Manipulation of Pf using very high concentrations of drug (500 microM bicuculline, 2 mM muscimol), however, yielded data consistent only with direct excitatory thalamic regulation. In contrast to results obtained in intact animals, in animals with prior (3 weeks) unilateral lesion of the dopaminergic nigrostriatal pathway, bicuculline application (50 muM) in Pf significantly increased striatal ACh efflux, irrespective of simultaneous blockade of striatal GABA(A) receptors. The results of experiments in which muscimol (500 microM) was applied in Pf were similar to those obtained in intact animals, however. Baseline ACh efflux was not significantly elevated in dopamine-lesioned animals. These results indicate a qualitative alteration in the effectiveness of an inhibitory component of the thalamic regulation of ACh efflux in the dopamine depleted striatum, evident during increased thalamostriatal input. Such altered regulation of striatal ACh output is likely to have profound consequences for integrative function in the parkinsonian basal ganglia.
Collapse
Affiliation(s)
- J Zackheim
- Aidekman Research Center, Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA
| | | |
Collapse
|
15
|
Pisani A, Bonsi P, Calabresi P. Calcium signaling and neuronal vulnerability to ischemia in the striatum. Cell Calcium 2005; 36:277-84. [PMID: 15261483 DOI: 10.1016/j.ceca.2004.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/18/2004] [Indexed: 02/01/2023]
Abstract
Neurons express extremely different sensitivity to ischemic insults. The neuronal vulnerability is region-specific and the striatum is among the most susceptible areas to ischemic damage. Projecting GABAergic medium-sized neurons are very sensitive to energy metabolism impairment, whereas interneurons are selectively spared. However, the reasons for this differential vulnerability are largely unknown. Calcium ions (Ca2+) are important intracellular messengers enabling several physiological processes. However, excessive Ca2+ influx from the extracellular space or release from internal stores can elevate Ca2+ to levels that exceed the capacity of single neurons to appropriately buffer such overload. This capacity also appears to be a peculiar feature of single neuronal subtypes. This review will provide a brief survey of the ionic basis underlying the differential responses to in vitro ischemia of distinct striatal neuronal subtypes, mainly focusing on the role of Ca2+. The potential relevance of these findings in the development of therapeutic strategies for acute stroke will be discussed.
Collapse
Affiliation(s)
- Antonio Pisani
- Dipartimento di Neuroscienze, Clinica Neurologica, Università di Roma Tor Vergata, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | | | | |
Collapse
|
16
|
Deng P, Pang Z, Zhang Y, Xu ZC. Developmental changes of transient potassium currents in large aspiny neurons in the neostriatum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:97-107. [PMID: 15464222 DOI: 10.1016/j.devbrainres.2004.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2004] [Indexed: 11/24/2022]
Abstract
Developmental regulation of the potassium conductance is important for the maturation of neuronal excitability and the formation of functional circuitry in the central nervous system (CNS). The rapidly inactivating A-type current is a major component of the voltage-dependent outward potassium currents in the large aspiny (LA) neurons in the neostriatum. The large aspiny neurons play important roles in the function of neostriatum in physiological and pathological conditions. Whole-cell patch-clamp recording was performed on acutely dissociated neurons and brain slices to investigate the postnatal development of A-type current in the large aspiny neurons. The current density of A-type current in large aspiny neurons was the highest at postnatal 1-3 days and gradually decreased during the development with the lowest levels in adult animals. In comparison to postnatal 1-3 days, the steady-state inactivation curve shifted in depolarizing direction in mature neurons. No significant changes in the voltage dependence of steady-state activation were observed during development. Consistent with the decrease in the current density of A-type current during development, the latency to the first spike was dramatically shortened in mature large aspiny neurons. These results suggest that the decrease of rapidly inactivating A-type potassium current during development might contribute, at least in part, to the maturation of the membrane excitability of large aspiny neurons in the neostriatum.
Collapse
Affiliation(s)
- Ping Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 507, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
17
|
Tzavos A, Jih J, Ragozzino ME. Differential effects of M1 muscarinic receptor blockade and nicotinic receptor blockade in the dorsomedial striatum on response reversal learning. Behav Brain Res 2004; 154:245-53. [PMID: 15302131 PMCID: PMC3206590 DOI: 10.1016/j.bbr.2004.02.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 01/06/2004] [Accepted: 02/18/2004] [Indexed: 11/26/2022]
Abstract
The present studies determined whether blockade of M(1)-like muscarinic or nicotinic cholinergic receptors in the dorsomedial striatum affects acquisition or reversal learning of a response discrimination. Testing occurred in a modified cross-maze across two consecutive sessions. In the acquisition phase, a rat learned to turn to the left or to the right. In the reversal learning phase, a rat learned to turn in the opposite direction as required during acquisition. Experiment 1 investigated the effects of the M(1)-like muscarinic receptor antagonist, pirenzepine infused into the dorsomedial striatum on acquisition and reversal learning. Experiment 2 examined the effects of the nicotinic cholinergic antagonist, mecamylamine injected into the dorsomedial striatum on acquisition and reversal learning. Bilateral injections of pirenzepine at 10 microg, but not 1 microg, selectively impaired reversal learning. Analysis of the errors indicated that pirenzepine treatment did not impair the initial shift, but increased reversions back to the original response choice following the initial shift. Bilateral injections of mecamylamine, 6 or 18 microg, did not affect acquisition or reversal learning. The results suggest that activation of M(1) muscarinic cholinergic receptors, but not nicotinic cholinergic receptors, in the dorsomedial striatum is important for facilitating the flexible shifting of response patterns.
Collapse
Affiliation(s)
- Arianna Tzavos
- Laboratory of Integrative Neuroscience, Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| | - Jane Jih
- Laboratory of Integrative Neuroscience, Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| | - Michael E. Ragozzino
- Laboratory of Integrative Neuroscience, Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
18
|
Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijón J, Arévalo R. Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis. J Comp Neurol 2004; 474:75-107. [PMID: 15156580 DOI: 10.1002/cne.20111] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recently, the zebrafish has been extensively used for studying the development of the central nervous system (CNS). However, the zebrafish CNS has been poorly analyzed in the adult. The cholinergic/cholinoceptive system of the zebrafish CNS was analyzed by using choline acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) histochemistry in the brain, retina, and spinal cord. AChE labeling was more abundant and more widely distributed than ChAT immunoreactivity. In the telencephalon, ChAT-immunoreactive (ChAT-ir) cells were absent, whereas AChE-positive neurons were observed in both the olfactory bulb and the telencephalic hemispheres. The diencephalon was the region with the lowest density of AChE-positive cells, mainly located in the pretectum, whereas ChAT-ir cells were exclusively located in the preoptic region. ChAT-ir cells were restricted to the periventricular stratum of the optic tectum, but AChE-positive neurons were observed throughout the whole extension of the lamination except in the marginal stratum. Although ChAT immunoreactivity was restricted to the rostral tegmental, oculomotor, and trochlear nuclei within the mesencephalic tegmentum, a widespread distribution of AChE reactivity was observed in this region. The isthmic region showed abundant AChE-positive and ChAT-ir cells in the isthmic, secondary gustatory and superior reticular nucleus and in the nucleus lateralis valvulae. ChAT immunoreactivity was absent in the cerebellum, although AChE staining was observed in Purkinje and granule cells. The medulla oblongata showed a widespread distribution of AChE-positive cells in all main subdivisions, including the octavolateral area, reticular formation, and motor nuclei of the cranial nerves. ChAT-ir elements in this area were restricted to the descending octaval nucleus, the octaval efferent nucleus and the motor nuclei of the cranial nerves. Additionally, spinal cord motoneurons appeared positive to both markers. Substantial differences in the ChAT and AChE distribution between zebrafish and other fish species were observed, which could be important because zebrafish is widely used as a genetic or developmental animal model.
Collapse
Affiliation(s)
- Diego Clemente
- Departamento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, E-37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Ragozzino ME, Choi D. Dynamic changes in acetylcholine output in the medial striatum during place reversal learning. Learn Mem 2004; 11:70-7. [PMID: 14747519 PMCID: PMC321316 DOI: 10.1101/lm.65404] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present studies explored the role of the medial striatum in learning when task contingencies change. Experiment 1 examined whether the medial striatum is involved in place reversal learning. Testing occurred in a modified cross-maze across two consecutive sessions. Injections of the local anesthetic, bupivacaine, into the medial striatum, did not impair place acquisition, but impaired place reversal learning. The reversal-learning deficit was due to an inability to maintain the new choice pattern following the initial shift. Experiment 2 determined whether changes in acetylcholine (ACh) output occur during the acquisition or reversal learning of a place discrimination. Extracellular ACh output from the medial striatum was assessed in samples collected at 6-min intervals using in vivo microdialysis during behavioral testing. ACh output did not change from basal levels during place acquisition. During reversal learning, ACh output significantly increased as rats began to learn the new choice pattern, and returned to near basal levels as a rat reliably executed the new place strategy. The present results suggest that the medial striatum may be critical for flexible adaptations involving spatial information, and that ACh actions in this area enable the shifting of choice patterns when environmental conditions change.
Collapse
Affiliation(s)
- Michael E Ragozzino
- Department of Psychology, Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | |
Collapse
|
20
|
Ragozzino ME. Acetylcholine actions in the dorsomedial striatum support the flexible shifting of response patterns. Neurobiol Learn Mem 2004; 80:257-67. [PMID: 14521868 DOI: 10.1016/s1074-7427(03)00077-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is accumulating evidence that the dorsomedial striatum plays a significant role in the learning of a new response pattern and the inhibiting of old response patterns when conditions demand a shift in strategies. This paper proposes that activity of cholinergic neurons in the dorsomedial striatum is critical for enabling behavioral flexibility when there is a change in task contingencies. Recent experimental findings are provided supporting this idea. Measuring acetylcholine efflux from the dorsomedial striatum during the acquisition and reversal learning of a spatial discrimination shows that acetylcholine efflux selectively increases during reversal learning as a rat begins to learn a newly reinforced spatial location, but returns to near basal levels when a rat reliably executes the new choice pattern. Experimental findings are also described indicating that the blockade of muscarinic cholinergic receptors in the dorsomedial striatum does not impair acquisition of an egocentric response discrimination, but impairs reversal learning of an egocentric response discrimination. Based on these results, increased cholinergic activity at muscarinic receptors is part of a neurochemical process in the dorsomedial striatum that allows inhibition of a previously relevant response pattern while learning a new response pattern. In situations that demand behavioral flexibility, muscarinic cholinergic activity in the dorsomedial striatum may directly influence corticostriatal plasticity to produce changes in response patterns.
Collapse
Affiliation(s)
- Michael E Ragozzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
21
|
Rymar VV, Sasseville R, Luk KC, Sadikot AF. Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum. J Comp Neurol 2004; 469:325-39. [PMID: 14730585 DOI: 10.1002/cne.11008] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We determined the neurogenesis characteristics of a distinct subclass of rat striatum gamma-aminobutyric acidergic (GABAergic) interneurons expressing the calcium-binding protein calretinin (CR). Timed-pregnant rats were given an intraperitoneal injection of 5-bromo-2'-deoxyuridine (BrdU), a marker of cell proliferation, on designated days between embryonic day 12 (E12) and E21. CR-immunoreactive (-IR) neurons and BrdU-positive nuclei were labeled in the adult neostriatum by double immunohistochemistry, and the proportion of double-labeled cells was quantified. CR-IR interneurons of the neostriatum show maximum birth rates (>10% double labeling) between E14 and E17, with a peak at E15. CR-IR interneurons occupying the lateral half of the neostriatum become postmitotic prior to medial neurons. In the precomissural neostriatum, the earliest-born neurons occupy the lateral quadrants and the latest-born neurons occupy the dorsomedial sector. No significant rostrocaudal neurogenesis gradient is observed. CR-IR neurons make up 0.5% of the striatal population and are localized in both the patch and the matrix compartments. CR-IR neurons of the patch compartment are born early (E13-15), with later-born neurons (E16-18) populating mainly the matrix compartment. CR-IR cells of the neostriatum are a distinct subclass of interneurons that are born at an intermediate time during striatal development and share common neurogenesis characteristics with other interneurons and projection neurons produced in the ventral telencephalon.
Collapse
Affiliation(s)
- Vladimir V Rymar
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|
22
|
Depression of fast excitatory synaptic transmission in large aspiny neurons of the neostriatum after transient forebrain ischemia. J Neurosci 2003. [PMID: 12486190 DOI: 10.1523/jneurosci.22-24-10948.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spiny neurons in the neostriatum die within 24 hr after transient global ischemia, whereas large aspiny (LA) neurons remain intact. To reveal the mechanisms of such selective cell death after ischemia, excitatory neurotransmission was studied in LA neurons before and after ischemia. The intrastriatally evoked fast EPSCs in LA neurons were depressed < or =24 hr after ischemia. The concentration-response curves generated by application of exogenous glutamate in these neurons were approximately the same before and after ischemia. A train of five stimuli (100 Hz) induced progressively smaller EPSCs, but the proportion of decrease in EPSC amplitude at 4 hr after ischemia was significantly smaller compared with control and at 24 hr after ischemia. Parallel depression of NMDA receptor and AMPA receptor-mediated EPSCs was also observed after ischemia, supporting the involvement of presynaptic mechanisms. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the inhibition of evoked EPSCs at 4 hr after ischemia but not at 24 hr after ischemia. Electron microscopic studies demonstrated that the most presynaptic terminals in the striatum had a normal appearance at 4 hr after ischemia but showed degenerating signs at 24 hr after ischemia. These results indicated that the excitatory neurotransmission in LA neurons was depressed after ischemia via presynaptic mechanisms. The depression of EPSCs shortly after ischemia might be attributable to the enhanced adenosine A1 receptor function on synaptic transmission, and the depression at late time points might result from the degeneration of presynaptic terminals.
Collapse
|
23
|
Ragozzino ME, Jih J, Tzavos A. Involvement of the dorsomedial striatum in behavioral flexibility: role of muscarinic cholinergic receptors. Brain Res 2002; 953:205-14. [PMID: 12384254 DOI: 10.1016/s0006-8993(02)03287-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present experiments determined whether temporary inactivation or blockade of muscarinic cholinergic receptors in the dorsomedial striatum affects acquisition or reversal learning of a response discrimination. Testing occurred in a modified cross-maze across two consecutive sessions. In the acquisition phase, a rat learned to make a turn to the left or to the right for 10 consecutive correct choices. In the reversal learning phase, a rat learned to turn in the opposite direction as required during acquisition for 10 consecutive correct choices. Experiment 1 investigated the effects of the local anesthetic, 2% bupivacaine, infused into the dorsomedial striatum on acquisition and reversal learning. Experiment 2 examined the effects of the muscarinic cholinergic antagonist, scopolamine injected into the dorsomedial striatum on acquisition and reversal learning. Bupivacaine infusions did not impair acquisition, but did impair reversal learning of the response discrimination. Analysis of the errors indicated that the deficit was not due to perseveration of the previously learned strategy, but to an inability to learn the new strategy. Bilateral injections of scopolamine, 1 or 8 microg/side, did not affect acquisition. Infusions of scopolamine at 8 microg, but not 1 microg, produced a reversal learning deficit. The scopolamine-induced deficit resulted from an inability to learn the new strategy. The results suggest that the dorsomedial striatum is important for behavioral flexibility and that activation of muscarinic cholinergic receptors in this region may facilitate the learning of situationally adaptive response patterns.
Collapse
Affiliation(s)
- Michael E Ragozzino
- Department of Psychology, Laboratory of Integrative Neuroscience, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA.
| | | | | |
Collapse
|
24
|
Centonze D, Marfia GA, Pisani A, Picconi B, Giacomini P, Bernardi G, Calabresi P. Ionic mechanisms underlying differential vulnerability to ischemia in striatal neurons. Prog Neurobiol 2001; 63:687-96. [PMID: 11165001 DOI: 10.1016/s0301-0082(00)00037-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Brain cells express extremely different sensitivity to ischemic insults. The reason for this differential vulnerability is still largely unknown. Here we discuss the ionic bases underlying the physiological responses to in vitro ischemia in two neostriatal neuronal subtypes exhibiting respectively high sensitivity and high resistance to energy deprivation. Vulnerable neostriatal neurons respond to ischemia with a membrane depolarization. This membrane depolarization mainly depends on the increased permeability to Na+ ions. In contrast, resistant neostriatal neurons respond to ischemia with a membrane hyperpolarization due to the opening of K+ channels. Interestingly, in both neuronal subtypes the ischemia-dependent membrane potential changes can be significantly enhanced or attenuated by a variety of pharmacological agents interfering with intracellular Ca2+ entry, ATP-dependent K+ channels opening, and Na+/Ca2+ exchanger functioning. The understanding of the ionic mechanisms underlying the differential membrane responses to ischemia represents the basis for the development of rational neuroprotective treatments during acute cerebrovascular insults.
Collapse
|
25
|
Pisani A, Bonsi P, Picconi B, Tolu M, Giacomini P, Scarnati E. Role of tonically-active neurons in the control of striatal function: cellular mechanisms and behavioral correlates. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:211-30. [PMID: 11263753 DOI: 10.1016/s0278-5846(00)00153-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. The striatum is primarily involved in motor planning and motor learning. Human diseases involving its complex circuitry lead to movement disorders such as Parkinson's disease (PD) and Huntington's disease (HD). Moreover the striatum has been involved in processes linked to reward, cognition and drug addiction. 2. The high content of acetylcholine (ACh) found in the striatum is due to the presence of cholinergic interneurons. The intrinsic electrical and synaptic properties of these interneurons have been recently characterized. However, their functional significance is far from being fully elucidated. 3. In vivo electrophysiological experiments from behaving monkeys have identified these cholinergic interneurons as "Tonically Active Neurons" (TANs). They are activated by presentation of sensory stimuli of behavioral significance or linked to reward. 4. Experimental evidence showed that integrity of the nigrostriatal dopaminergic system is essential for TANs to express learned activity. 5. PD is known to be due to the loss of the nigrostriatal dopaminergic pathway and the ensuing imbalance between the content of dopamine and acetylcholine in the striatum. This evidence supports the hypothesis that cholinergic interneurons, or TANs, play a key role in the modulation of striatal function.
Collapse
Affiliation(s)
- A Pisani
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor Vergata, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Okumura T, Dobolyi A, Matsuyama K, Mori F, Mori S. The cat neostriatum: relative distribution of cholinergic neurons versus serotonergic fibers. Brain Dev 2000; 22 Suppl 1:S27-37. [PMID: 10984658 DOI: 10.1016/s0387-7604(00)00141-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The distribution of choline acetyltransferase (ChAT)-containing neurons and serotonin (5-HT)-containing nerve fibers in the cat neostriatum was investigated by use of immunohistochemical techniques. Both ChAT- and 5-HT-staining techniques were applied to alternate brain sections, thereby allowing a precise comparison of the distribution pattern of ChAT-immunopositive cells (ChAT cells) and 5-HT-immunopositive fibers (5-HT fibers). In the neostriatum, ChAT cells were strongly stained throughout their cell bodies and proximal (first-order) dendrites. The majority of them were multipolar cells with a soma diameter of 20-50 microm (long axis)x10-30 microm (short axis). In the caudate nucleus, ChAT cells were evenly and diffusely distributed except for the dorsolateral region of its rostral half, in which latter region they were distributed in loosely formed clusters. In the rostral portion of the putamen, the density of ChAT-cell distribution was like that in the medial region of the caudate nucleus. In contrast, this distribution was more dense in the caudomedial region of the putamen, adjacent to the globus pallidus. 5-HT fibers in the neostriatum were dark-stained, of quite fine diameter (<0.6 microm), and they contained small, round varicosities (diameter, usually 0.5-1.0 microm, but some >1.0 microm). Such 5-HT fibers were distributed abundantly throughout the caudate nucleus and putamen. In the rostrocaudal portion of the caudate nucleus, their density was high in its dorsal and ventral components, and low in the middle component. Throughout the putamen, 5-HT fibers were distributed homogeneously in the mediolateral and dorsoventral directions. In the caudal portion of the putamen adjacent to the globus pallidus, the 5-HT fibers had a higher density while maintaining their homogenous distribution pattern. In the two main divisions of the striatum, the so-called 'patch' (acetylcholinesterase (AChE)-poor) and 'matrix' (AChE-rich) compartments, there was a near-even distribution of 5-HT fibers and terminals. The above results suggest that the 5-HT-dominated, raphe-striatal pathway is optimally arranged for modulating the activity of both the intrinsic and the projection neurons of the neostriatum.
Collapse
Affiliation(s)
- T Okumura
- Department of Biological Control System, National Institute for Physiological Sciences, Myodaiji, 444-8585, Okazaki, Japan
| | | | | | | | | |
Collapse
|
27
|
Pisani A, Bonsi P, Centonze D, Giacomini P, Calabresi P. Involvement of intracellular calcium stores during oxygen/glucose deprivation in striatal large aspiny interneurons. J Cereb Blood Flow Metab 2000; 20:839-46. [PMID: 10826535 DOI: 10.1097/00004647-200005000-00011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Striatal large aspiny interneurons were recorded from a slice preparation using a combined electrophysiologic and microfluorometric approach. The role of intracellular Ca2+ stores was analyzed during combined oxygen/glucose deprivation (OGD). Before addressing the role of the stores during energy deprivation, the authors investigated their function under physiologic conditions. Trains of depolarizing current pulses caused bursts of action potentials coupled to transient increases in intracellular calcium concentration ([Ca2+]i). In the presence of cyclopiazonic acid (30 micromol/L), a selective inhibitor of the sarcoendoplasmic reticulum Ca2+ pumps, or when ryanodine receptors were directly blocked with ryanodine (20 [micromol/L), the [Ca2+]i transients were progressively smaller in amplitude, suggesting that [Ca2+]i released from intracellular stores helps to maintain a critical level of [Ca2+]i during physiologic firing activity. As the authors have recently reported, brief exposure to combined OGD induced a membrane hyperpolarization coupled to an increase in [Ca2+]i. In the presence of cyclopiazonic acid or ryanodine, the hyperpolarization and the rise in [Ca2+]i induced by OGD were consistently reduced. These data support the hypothesis that Ca2+ release from ryanodine-sensitive Ca2+ pools is involved not only in the potentiation of the Ca2+ signals resulting from cell depolarization, but also in the amplification of the [Ca2+]i rise and of the concurrent membrane hyperpolarization observed in course of OGD in striatal large aspiny interneurons.
Collapse
Affiliation(s)
- A Pisani
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor Vergata, IRCCS Ospedale S Lucia, Rome, Italy
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Kish LJ, Palmer MR, Gerhardt GA. Multiple single-unit recordings in the striatum of freely moving animals: effects of apomorphine and D-amphetamine in normal and unilateral 6-hydroxydopamine-lesioned rats. Brain Res 1999; 833:58-70. [PMID: 10375677 DOI: 10.1016/s0006-8993(99)01496-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ensembles of striatal neurons were recorded in freely moving normal and unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats using chronically implanted electrode arrays. Animals received bilateral striatal implants of two 16-microwire arrays 1 week before recordings. Identified striatal neurons were categorized as medium spiny-like and large aspiny-like based on a combination of their activity autocorrelations and firing rates. Baseline firing rates of medium spiny-like neurons in the 6-OHDA-lesioned striata were significantly faster than were firing rates of the same neurons in the intact hemispheres of 6-OHDA-lesioned rats or normal animals. However, firing rates of large aspiny-like neurons were faster in both hemispheres of the 6-OHDA-lesioned rats as compared to normal animals. Interestingly, firing rates of neurons in all groups decreased by fivefold or greater under urethane anesthesia, although the relative firing rates between hemispheres were unchanged. d-Amphetamine (5.0 mg/kg, s.c.) increased the firing rates of both types of striatal neurons by twofold or greater in normal rats and in the intact hemispheres of 6-OHDA-lesioned animals. By contrast, this treatment did not alter neuron firing in the 6-OHDA-lesioned striata. Apomorphine (0.05 mg/kg, s.c.) did not affect neuronal firing rates either in normal rat striatum or in the unlesioned hemispheres of 6-OHDA-lesioned animals. However, it did significantly increase the firing rate of the medium spiny-like neurons in 6-OHDA-lesioned striata. These results demonstrate that the dopaminergic innervation of the striatum differentially influences two electrophysiologically distinct sets of striatal neurons in freely moving rats.
Collapse
Affiliation(s)
- L J Kish
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
30
|
Pisani A, Calabresi P, Centonze D, Marfia GA, Bernardi G. Electrophysiological recordings and calcium measurements in striatal large aspiny interneurons in response to combined O2/glucose deprivation. J Neurophysiol 1999; 81:2508-16. [PMID: 10322086 DOI: 10.1152/jn.1999.81.5.2508] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrophysiological recordings and calcium measurements in striatal large aspiny interneurons in response to combined O2/glucose deprivation. The effects of combined O2/glucose deprivation were investigated on large aspiny (LA) interneurons recorded from a striatal slice preparation by means of simultaneous electrophysiological and optical recordings. LA interneurons were visually identified and impaled with sharp microelectrodes loaded with the calcium (Ca2+)-sensitive dye bis-fura-2. These cells showed the morphological, electrophysiological, and pharmacological features of large striatal cholinergic interneurons. O2/glucose deprivation induced a membrane hyperpolarization coupled to a concomitant increase in intracellular Ca2+ concentration ([Ca2+]i). Interestingly, this [Ca2+]i elevation was more pronounced in dendritic branches rather than in the somatic region. The O2/glucose-deprivation-induced membrane hyperpolarization reversed its polarity at the potassium (K+) equilibrium potential. Both membrane hyperpolarization and [Ca2+]i rise were unaffected by TTX or by a combination of ionotropic glutamate receptors antagonists, D-2-amino-5-phosphonovaleric acid and 6cyano-7-nitroquinoxaline-2, 3-dione. Sulfonylurea glibenclamide, a blocker of ATP-sensitive K+ channels, markedly reduced the O2/glucose-deprivation-induced membrane hyperpolarization but failed to prevent the rise in [Ca2+]i. Likewise, charybdotoxin, a large K+-channel (BK) inhibitor, abolished the membrane hyperpolarization but did not produce detectable changes of [Ca2+]i elevation. A combination of high-voltage-activated Ca2+ channel blockers significantly reduced both the membrane hyperpolarization and the rise in [Ca2+]i. In a set of experiments performed without dye in the recording electrode, either intracellular bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid or external barium abolished the membrane hyperpolarization induced by O2/glucose deprivation. The hyperpolarizing effect on membrane potential was mimicked by oxotremorine, an M2-like muscarinic receptor agonist, and by baclofen, a GABAB receptor agonist. However, this membrane hyperpolarization was not coupled to an increase but rather to a decrease of the basal [Ca2+]i. Furthermore glibenclamide did not reduce the oxotremorine- and baclofen-induced membrane hyperpolarization. In conclusion, the present results suggest that in striatal LA cells, O2/glucose deprivation activates a membrane hyperpolarization that does not involve ligand-gated K+ conductances but is sensitive to barium, glibenclamide, and charybdotoxin. The increase in [Ca2+]i is partially due to influx through voltage-gated high-voltage-activated Ca2+ channels.
Collapse
Affiliation(s)
- A Pisani
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor Vergata, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
31
|
Hersch SM, Levey AI. Diverse pre- and post-synaptic expression of m1-m4 muscarinic receptor proteins in neurons and afferents in the rat neostriatum. Life Sci 1999; 56:931-8. [PMID: 10188795 DOI: 10.1016/0024-3205(95)00030-a] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have utilized subtype specific antibodies to determine the cellular and subcellular distributions of the muscarinic acetylcholine receptor subtypes that are highly expressed in the rat striatum (m1-m4). Each receptor is expressed in distinct populations of striatal neurons in the relative proportions predicted by their mRNAs. They concentrate at post-synaptic sites and each of the four subtypes are also transported to pre-synaptic sites. m2 appears to be the only presynaptic autoreceptor in the striatum, but it is also localized in non-cholinergic terminals. These distinct pre- and post-synaptic localizations suggest that muscarinic receptor subtype diversity evolved to enable increasingly complex responses to acetylcholine release.
Collapse
Affiliation(s)
- S M Hersch
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
32
|
Woolhead C, Zhang Y, Lieberaman A, Schachner M, Emson P, Anderson P. Differential effects of autologous peripheral nerve grafts to the corpus striatum of adult rats on the regeneration of axons of striatal and nigral neurons and on the expression of GAP-43 and the cell adhesion molecules N-CAM and L1. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980209)391:2<259::aid-cne8>3.0.co;2-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Sadikot AF, Sasseville R. Neurogenesis in the mammalian neostriatum and nucleus accumbens: Parvalbumin-immunoreactive GABAergic interneurons. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971215)389:2<193::aid-cne1>3.0.co;2-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Lee T, Kaneko T, Shigemoto R, Nomura S, Mizuno N. Collateral projections from striatonigral neurons to substance P receptor-expressing intrinsic neurons in the striatum of the rat. J Comp Neurol 1997; 388:250-64. [PMID: 9368840 DOI: 10.1002/(sici)1096-9861(19971117)388:2<250::aid-cne5>3.0.co;2-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well known that striatonigral neurons produce substance P (SP); however, no SP receptor (SPR) has so far been found in the substantia nigra. On the other hand, a previous study in the rat striatum indicated that SPR was expressed only in cholinergic or somatostatinergic intrinsic neurons (Kaneko et al. [1993] Brain Res. 631:297-303). Thus, it was assumed that SP produced by striatonigral neurons might be released through their intrastriatal axon collaterals to act upon intrinsic neurons in the striatum. To confirm this assumption, the distribution of axon collaterals of striatonigral neurons was examined in the striatum of the rat. The experiments were performed on brain slices by combining retrograde labeling with tetramethylrhodamine-dextran amine, electrophysiological recording, intracellular staining with biocytin, and immunocytochemistry for SPR. The distribution of axons of cholinergic striatal neurons (a group of SP-negative intrinsic striatal neurons) was also examined. It was observed that 16% of varicosities of intrastriatal axon collaterals of striatonigral neurons, as well as 6% of axonal varicosities of cholinergic neurons, were in close apposition to dendrites and cell bodies of SPR-immunoreactive striatal neurons. Since SPR-immunoreactive striatal neurons constituted only 2.7% of the total population of striatal neurons (Kaneko et al. [1993] Brain Res. 631:297-303), it appeared that axonal varicosities of striatonigral neurons were preferentially apposed to SPR-immunoreactive striatal neurons and that the varicosities in close apposition to SPR-immunoreactive neurons were derived more frequently from striatonigral neurons than from cholinergic interneurons. Confocal laser scanning microscopy indicated that axonal varicosities in close apposition to SPR-immunoreactive cells showed synaptophysin immunoreactivity, a marker of synaptic vesicles. In intrastriatal axons of striatonigral neurons, it was further revealed from electron microscopy that axonal varicosities in close apposition to SPR-immunoreactive dendrites, at least a part of them, made synapses of the symmetric type. Striatonigral neurons might release SP preferentially around cholinergic or somatostatinergic intrinsic neurons to regulate them through SP-SPR interactions.
Collapse
Affiliation(s)
- T Lee
- Department of Morphological Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
35
|
Tashiro Y, Drake JM, Chakrabortty S, Hattori T. Functional injury of cholinergic, GABAergic and dopaminergic systems in the basal ganglia of adult rat with kaolin-induced hydrocephalus. Brain Res 1997; 770:45-52. [PMID: 9372201 DOI: 10.1016/s0006-8993(97)00742-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Structural and/or functional injury of the basal ganglia can lead to motor functional disabilities, abnormal gait and posture, and intellectual/emotional impairment, disorders also frequently seen in hydrocephalus. Previous reports have documented changes in dopamine levels in the neostriatum in experimental hydrocephalus. The present study was designed to investigate possible functional injury of cholinergic, GABAergic and dopaminergic systems in the basal ganglia immunohistochemically in a model of kaolin-induced hydrocephalus. Hydrocephalus was induced in 12 Wistar rats by intracisternal injection of 0.05 ml volume of 25% kaolin solution under microscopic guidance. Four controls received an equal volume of sterile saline. The animals were killed at 2, 4 and 8 weeks after injection. The numbers of choline acetyltransferase (ChAT)- and glutamic acid decarboxylase (GAD)-immunoreactive (IR) neostriatal neurons and tyrosine hydroxylase (TH)-IR nigral neurons, were counted in 60-micron thick representative sections and the IR cellular densities (counted cell number/neostriatal area) were calculated in the neostriatum. The number of total neostriatal neurons was also counted in 15-micron thick sections stained by cresyl violet (Nissl staining) to calculate the cellular density. The number and cellular density of neostriatal ChAT-IR neurons were significantly reduced at 2, 4, and 8 weeks after injection (P < 0.05), while those of GAD-IR neurons decreased at 4 and 8 weeks (P < 0.05). There was a linear correlation between degree of ventricular enlargement, and reduction in number of ChAT- and GAD-IR neurons (P < 0.001) as well as in the cellular density (P < 0.001). However, Nissl staining revealed no reduction in the cellular density of total neostriatal neurons (P < 0.001). TH immunoreactivity was reduced in neostriatal axons and in nigral compacta neurons, particularly in the medial portion of the dopaminergic nigrostriatal pathway. These findings suggest that progressive hydrocephalus results in functional injuries of cholinergic and GABAergic neurons in the neostriatum and dopaminergic neurons in the substantia nigra compacta by mechanical distortion. The disturbance in balance of these neurotransmitter systems in the basal ganglia may explain some of motor functional disabilities in hydrocephalus.
Collapse
Affiliation(s)
- Y Tashiro
- Division of Neurosurgery, Hospital for Sick Children, Faculty of Medicine, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Waldvogel HJ, Kubota Y, Trevallyan SC, Kawaguchi Y, Fritschy JM, Mohler H, Faull RL. The morphological and chemical characteristics of striatal neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the rat. Neuroscience 1997; 80:775-92. [PMID: 9276493 DOI: 10.1016/s0306-4522(97)00056-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution, morphology and chemical characteristics of neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the striatum of the basal ganglia in the rat brain were investigated at the light, confocal and electron microscope levels using single, double and triple immunohistochemical labelling techniques. The results showed that alpha1-subunit immunoreactive neurons were sparsely distributed throughout the rat striatum. Double and triple labelling results showed that all the alpha1-subunit-immunoreactive neurons were positive for glutamate decarboxylase and immunoreactive for the beta2,3 and gamma2 subunits of the GABA(A) receptor. Three types of alpha1-subunit-immunoreactive neurons were identified in the striatum on the basis of cellular morphology and chemical characteristics. The most numerous alpha1-subunit-immunoreactive neurons were medium-sized, aspiny neurons with a widely branching dendritic tree. They were parvalbumin-negative and were located mainly in the dorsolateral regions of the striatum. Electron microscopy showed that these neurons had an indented nuclear membrane, typical of striatal interneurons, and were surrounded by small numbers of axon terminals which established alpha1-subunit-immunoreactive synaptic contacts with the soma and dendrites. These cells were classified as type 1 alpha1-subunit-immunoreactive neurons and comprised 75% of the total population of alpha1-subunit-immunoreactive neurons in the striatum. The remaining alpha1-subunit-immunoreactive neurons comprised of a heterogeneous population of large-sized neurons localized in the ventral and medial regions of the striatum. The most numerous large-sized cells were parvalbumin-negative, had two to three relatively short branching dendrites and were designated type 2 alpha1-subunit-immunoreactive neurons. Electron microscopy showed that the type 2 neurons were characterized by a highly convoluted nuclear membrane and were sparsely covered with small axon terminals. The type 2 neurons comprised 20% of the total population of alpha1-subunit-immunoreactive neurons. The remaining large-sized alpha1-immunoreactive cells were designated type 3 cells; they were positive for parvalbumin and were distinguished by long branching dendrites extending dorsally for 600-800 microm into the striatum. These neurons comprised 5% of the total population of alpha1-subunit-immunoreactive neurons and were surrounded by enkephalin-immunoreactive terminals. Electron microscopy showed that the alpha1-subunit type 3 neurons had an indented nuclear membrane and were densely covered with small axon terminals which established alpha1-subunit-immunoreactive symmetrical synaptic contacts with the soma and dendrites. These results provide a detailed characterization of the distribution, morphology and chemical characteristics of the alpha1-subunit-immunoreactive neurons in the rat striatum and suggest that the type 1 and type 2 neurons comprise of separate populations of striatal interneurons while the type 3 neurons may represent the large striatonigral projection neurons described by Bolam et al. [Bolam J. P., Somogyi P., Totterdell S. and Smith A. D. (1981) Neuroscience 6, 2141-2157.].
Collapse
Affiliation(s)
- H J Waldvogel
- Department of Anatomy with Radiology, School of Medicine, University of Auckland, Private Bag, New Zealand
| | | | | | | | | | | | | |
Collapse
|
37
|
Baratta J, Marienhagen JW, Ha D, Yu J, Robertson RT. Cholinergic innervation of cerebral cortex in organotypic slice cultures: sustained basal forebrain and transient striatal cholinergic projections. Neuroscience 1996; 72:1117-32. [PMID: 8735234 DOI: 10.1016/0306-4522(95)00603-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Slices of entire forebrain hemispheres were taken from early postnatal rat pups and maintained as organotypic slice cultures. Basal forebrain cholinergic neurons, identified by histochemical staining for acetylcholinesterase, develop axons that grow rapidly into cerebral cortex. Ingrowth occurs by two routes: some axons course laterally from the basal forebrain region to reach lateral neocortex; others course dorsally from the septum to reach medial cortex. By one to two weeks in vitro, acetylcholinesterase-positive axons have extended throughout most of the cortical territory. In addition to basal forebrain cholinergic axons, the normally local circuit cholinergic neurons of the striatum also send axons into cerebral cortex. These striatum-derived axons can be distinguished from basal forebrain axons by their distinct morphological characteristics and by their different response to excision of the striatum or basal forebrain. Further, acetylcholinesterase-positive axons in cortex that originate from striatum appear to retract or degenerate after about one week in culture, while those from basal forebrain remain present and apparently healthy beyond two weeks. These data document the basal forebrain cholinergic ingrowth into cerebral cortex using this whole hemisphere slice culture system and also demonstrate different degrees of maintenance of cortical afferents that are derived from different subcortical sources.
Collapse
Affiliation(s)
- J Baratta
- Department of Anatomy and Neurobiology, College of Medicine, University of California, Irvine 92717, USA
| | | | | | | | | |
Collapse
|
38
|
Contant C, Umbriaco D, Garcia S, Watkins KC, Descarries L. Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neuroscience 1996; 71:937-47. [PMID: 8684624 DOI: 10.1016/0306-4522(95)00507-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ultrastructural features of acetylcholine axon terminals (varicosities) in adult rat neostriatum were characterized by electron microscopy after immunostaining with a sensitive monoclonal antibody against rat choline acetyltransferase. Several hundred single sections from these varicosities were analysed for shape, size and content, presence of a synaptic membrane specialization, and composition of the microenvironment. An equivalent number of unlabeled varicosities selected at random from the same micrographs were similarly examined. The immunostained varicosity profiles were relatively small and seldom showed a junctional membrane specialization. Stereological extrapolation to the whole volume of these varicosities indicated that less than 10% were synaptic. Far fewer dendritic spines were juxtaposed to these predominantly asynaptic profiles than to their unlabeled counterparts. This difference seemed imputable to the low synaptic incidence of the acetylcholine varicosities and was consistent with the view that these are randomly distributed in relation to surrounding elements. The bulk of the data was suggestive of volume transmission. This raised the possibility that, in such a densely innervated area, a basal level of acetylcholine is permanently maintained around all cellular elements, contributing to the modulatory properties of this transmitter. This basal level of acetylcholine could also serve as a regulatory signal controlling the expression of different receptor subtypes in neurons, glia and blood vessels.
Collapse
Affiliation(s)
- C Contant
- Département de pathologie, Université de Montréal, Succursale Centre-ville, Québec, Canada
| | | | | | | | | |
Collapse
|
39
|
Augood SJ, Arbuthnott GW, Emson PC. Identified cholinergic neurones in the adult rat brain are enriched in GAP-43 mRNA: a double in situ hybridisation study. J Chem Neuroanat 1995; 9:17-26. [PMID: 8527035 DOI: 10.1016/0891-0618(95)00059-g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cellular expression of growth associated protein-43 mRNA by identified choline acetyl transferase mRNA positive cells was investigated in the mature rat brain using a combined radioactive and non-radioactive in situ hybridisation technique. Cellular sites of growth associated protein-43 mRNA were detected using a 35S-oligonucleotide while choline acetyl transferase mRNA positive neurones were identified using two alkaline phosphatase-labelled probes. In the cholinergic cells of the corpus striatum, basal forebrain and laterodorsal tegmental nucleus a specific growth associated protein-43 hybridisation signal (silver grains) was detected, demonstrating that these choline acetyl transferase mRNA positive cells are enriched in growth associated protein-43 gene transcripts. By contrast, the large cholinergic cells of the motor nucleus of the trigeminal nerve did not express growth associated protein-43 mRNA. Quantification of the growth associated protein-43 hybridisation signal expressed by identified choline acetyl transferase mRNA positive cells showed regional variations in the relative cellular abundance of this transcript; cholinergic cells in the laterodorsal tegmental nucleus and corpus striatum expressed the strongest cellular hybridisation signal. Mean cross-sectional somatic area measurements of these growth associated protein-43/cholinergic positive cells confirmed the identity of these neurones as belonging to the cholinergic phenotype. A strong 35S-growth associated protein-43 hybridisation signal was detected also in numerous other non-choline acetyl transferase mRNA positive nerve cells in other regions of the brain, although the chemical phenotypes of these neurones were not determined. Our data reveal that expression of the growth-associated protein GAP-43 is maintained in identified cholinergic neurones in the postnatal rat brain, suggesting that this protein may subserve important functions in cholinergic and other neurones of the adult mammalian brain.
Collapse
Affiliation(s)
- S J Augood
- Department of Neurobiology, Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
40
|
Testa CM, Standaert DG, Landwehrmeyer GB, Penney JB, Young AB. Differential expression of mGluR5 metabotropic glutamate receptor mRNA by rat striatal neurons. J Comp Neurol 1995; 354:241-52. [PMID: 7782501 DOI: 10.1002/cne.903540207] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) mediate the effects of glutamate neurotransmission on intracellular second messenger systems. Among the seven distinct mGluR receptor isoforms currently identified, the mGluR5 isoform is expressed particularly prominently in the striatum, where it may contribute to neuronal plasticity, motor behaviors, and excitotoxic injury. mGluR5 mRNA expression in striatal enkephalinergic, somatostatinergic, and cholinergic neurons was examined using double label in situ hybridization techniques. mGluR5 expression is abundant in a large number of medium-sized striatal cells but is absent in a significant minority of neurons. Double label in situ hybridization with 35S-dATP- and digoxygenin-dUTP-tailed oligonucleotide probes demonstrated that mGluR5 message is highly expressed by enkephalinergic striatal neurons but is not detectable in cholinergic or somatostatin interneurons. In addition, some nonenkephalin, presumably substance P, neurons were also strongly labeled for mGluR5. The differential expression of mGluR5 in striatal projection neurons vs. interneurons may contribute to the selective vulnerability of these neurons to disease processes.
Collapse
Affiliation(s)
- C M Testa
- Neurology Service, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | |
Collapse
|
41
|
Bernard V, Legay C, Massoulie J, Bloch B. Anatomical analysis of the neurons expressing the acetylcholinesterase gene in the rat brain, with special reference to the striatum. Neuroscience 1995; 64:995-1005. [PMID: 7753391 DOI: 10.1016/0306-4522(94)00497-s] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The localization of the neurons expressing the acetylcholinesterase gene in the rat central nervous system was studied by in situ hybridization. The striatal and nigral neurons containing acetylcholinesterase messenger RNA were especially identified. Acetylcholinesterase messenger RNA was detected in numerous areas of the central nervous system, including cholinergic areas, like striatum, nucleus basalis of Meynert, septum and diagonal band of Broca, but also non-cholinergic areas, like the cerebral cortex, the hippocampus, the cerebellum and the raphe dorsalis. In the striatum, 75% of the neurons expressing the acetylcholinesterase gene were identified as cholinergic neurons and 25% as somatostatin-producing neurons. All dopaminergic neurons of the substantia nigra pars compacta and ventral tegmental area were demonstrated to express the acetylcholinesterase gene. Our results suggest that several neuronal populations could contribute to the presence of acetylcholinesterase in the striatum: the striatal cholinergic and somatostatin-containing interneurons, the nigral dopaminergic neurons and other neurons that may be the corticostriatal, thalamostriatal and raphe-striatal neurons. This demonstrates that, especially in the striatum, acetylcholinesterase is not a specific marker of the cholinergic neurons. The diversity of the origins of striatal acetylcholinesterase suggests a multiplicity of functions for this enzyme: besides its cholinolytic actions, it may also possibly play a non-cholinolytic role in neuromodulation.
Collapse
Affiliation(s)
- V Bernard
- E.P. C.N.R.S. 74, Laboratoire d'Histologie-Embryologie, Université de Bordeaux II (UFR II), France
| | | | | | | |
Collapse
|
42
|
Selden N, Geula C, Hersh L, Mesulam MM. Human striatum: chemoarchitecture of the caudate nucleus, putamen and ventral striatum in health and Alzheimer's disease. Neuroscience 1994; 60:621-36. [PMID: 7523983 DOI: 10.1016/0306-4522(94)90491-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The morphology and distribution of perikarya positive for choline acetyltransferase, somatostatin, calcium binding protein (calbindin D28K) and nicotinamide adenine dinucleotide phosphate diaphorase were surveyed in the human striatum. Choline acetyltransferase and somatostatin antibodies labeled separate populations of large striatal interneurons. Somatostatin immunoreactivity and nicotinamide adenine dinucleotide phosphate diaphorase (nitric oxide synthase) activity were completely co-localized. Calbindin antibody identified two distinct groups of striatal neurons: (1) numerous medium-sized, lightly stained neurons, probably analogous to striatopallidal projection neurons in the rat, and (2) much less numerous, large, darkly stained neurons. Half of the latter group, but none of the former, were also nicotinamide adenine dinucleotide phosphate diaphorase-positive. Somatostatin-positive and medium-sized, calbindin-positive neurons were more numerous in the caudate nucleus than in the putamen or ventral striatum. By contrast, large calbindin-immunoreactive neurons were more frequently encountered in the putamen. Choline acetyltransferase-positive neurons were evenly distributed across striatal components. In aged control subjects, the size of large, darkly stained calbindin-positive neurons was reduced relative to young subjects. Aging had no effect on somatostatin-, medium-sized calbindin-, or choline acetyltransferase-positive neurons. However, in histologically confirmed cases of Alzheimer's disease, there was a selective, 75% loss of choline acetyltransferase-immunoreactive perikarya from the ventral striatum, but not from the dorsal striatum, compared to aged controls. Furthermore, the remaining cholinergic neurons in the ventral striatum of Alzheimer's disease cases were significantly smaller than similar neurons in controls. These results indicate that various striatal components which have been shown to differ in their anatomical connectivity and functional specialization, also differ in their neurochemical signatures. The specific and marked loss of choline acetyltransferase-positive neurons from the ventral striatum in Alzheimer's disease is consistent with the characteristic cholinergic and 'limbic' pathology in this disease.
Collapse
Affiliation(s)
- N Selden
- Bullard and Denny-Brown Laboratories, Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
43
|
Studer L, Spenger C, Luthman J, Seiler RW. NGF increases neuritic complexity of cholinergic interneurons in organotypic cultures of neonatal rat striatum. J Comp Neurol 1994; 340:281-96. [PMID: 7515400 DOI: 10.1002/cne.903400212] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The influence of NGF on cholinergic interneurons in organotypic roller tube cultures of 4 day postnatal rat striatum was examined after 13 to 16 days in vitro. Cultures were divided into four groups. The medium of the NGF treated group was supplemented with 5 ng/ml NGF, whereas control groups were cultured either without NGF, by adding 20 ng/ml neutralising anti-NGF antibody, or by adding both NGF and anti-NGF antibody to the medium. Two different cell populations were identified by an image analysis system which measured acetylcholinesterase staining intensity. It was demonstrated that NGF promotes survival of the large, intensely stained population. Eighty computer-assisted reconstructions of intensely stained cells, 20 for each treatment group, were performed in a random order by means of a neuron tracing system. Axons and dendrites were analysed separately. NGF enhanced complexity of neuritic, predominantly axonal trees by increasing the number of axonal segments by 91% to 100% (P < 0.01), the number of dendritic segments by 33% to 63% (P = 0.09 to P < 0.01), maximal axonal branch order by 37% to 50% (P < 0.05), and maximal dendritic branch order by 22% to 37% (P < 0.05). Further evidence of more complex neuritic trees was given by Sholl concentric sphere analysis. Anti-NGF antibody could block all these effects. General rules of branching architecture were not affected by NGF treatment as shown by analysing mean segment length in relation to the branch order, branch point exit angles, total tortuosity, Rall's ratio, and tapering of neuritic trees.
Collapse
Affiliation(s)
- L Studer
- Department of Neurosurgery, University of Bern, Inselspital, Switzerland
| | | | | | | |
Collapse
|
44
|
|
45
|
Landwehrmeyer B, Probst A, Palacios JM, Mengod G. Expression of acetylcholinesterase messenger RNA in human brain: an in situ hybridization study. Neuroscience 1993; 57:615-34. [PMID: 8309527 DOI: 10.1016/0306-4522(93)90010-d] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The distribution of messenger RNA coding for acetylcholinesterase was studied in human post mortem brain and rhesus monkey by in situ hybridization histochemistry and compared to the distribution of acetylcholinesterase activity. Acetylcholinesterase messenger RNA had--similar to acetylcholinesterase enzymatic activity--a widespread distribution in human bain. Acetylcholinesterase messenger RNA positive cells corresponded to perikarya rich in acetylcholinesterase activity in most but not all regions. Examples for mismatches included the inferior olive and human cerebellar cortex. The presence of hybridization signals in cerebral cortex and an enrichment in layer III and V of most isocortical areas confirmed that perikaryal acetylcholinesterase in cerebral cortex is of postsynaptic origin and not derived from cholinergic projections. In striatum the expression of high levels of acetylcholinesterase messenger RNA was restricted to a small population of large striatal neurons. In addition, low levels of expression were found in most medium sized striatal neurons. Cholinergic neurons tended to express high levels of acetylcholinesterase messenger RNA whereas in cholinoceptive neurons the levels were moderate to low. However, some noncholinergic neurons like dopaminergic cells in substantia nigra, noradrenergic cells in locus coeruleus, serotoninergic cells in raphé dorsalis, GABAergic cells in thalamic reticular nucleus, granular cells in cerebellar cortex and pontine relay neurons expressed levels comparable to cholinergic neurons in basal forebrain. It is suggested that neurons expressing high levels of acetylcholinesterase messenger RNA may synthesize acetylcholinesterase for axonal transport whereas neurons with an expression of acetylcholinesterase confined to somatodendritic regions tend to contain lower levels of acetylcholinesterase messenger RNA.
Collapse
|
46
|
Martone ME, Armstrong DM, Young SJ, Groves PM. Cholinergic neurons are distributed preferentially in areas rich in substance P-like immunoreactivity in the caudate nucleus of the adult cat. Neuroscience 1993; 56:567-79. [PMID: 7504794 DOI: 10.1016/0306-4522(93)90357-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The distribution of cells stained immunocytochemically for the cholinergic marker choline acetyltransferase was compared to the pattern of substance P immunoreactivity in the caudate nucleus of adult cats using a double-label immunocytochemical protocol and three-dimensional reconstructions of adjacent sections single-labeled for either substance P or choline acetyltransferase. Substance P immunoreactivity was distributed in a highly complex mosaic within the caudate nucleus of the cat. In the dorsal caudate nucleus, substance P-rich zones consisting of either clusters of substance P-positive cell bodies or fibers were seen against a lighter staining background. The density of cholinergic neurons was found to be significantly greater within these substance P-rich patches in comparison to surrounding regions. The pattern of substance P immunoreactivity within the ventral caudate nucleus differed from that in more dorsal regions. Clear substance P-rich patches were not seen in this region, but a large substance P-rich area consisting of a dense plexus of substance P-containing fibers was visible. Embedded within this substance P-rich area were fairly discrete patches of light substance P staining. As in the dorsal caudate nucleus, increased numbers of cholinergic neurons and processes were associated with substance P-rich regions in the ventral caudate nucleus. Choline acetyltransferase-positive perikarya also appeared to be concentrated in substance P-rich areas in the nucleus accumbens and olfactory tubercle. The results of this study suggest that a close relationship exists between the distribution of substance P fibers and cholinergic perikarya in the striatum of the cat.
Collapse
Affiliation(s)
- M E Martone
- Department of Psychiatry, University of California, San Diego 92093-0603
| | | | | | | |
Collapse
|
47
|
Kubota Y, Kawaguchi Y. Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. J Comp Neurol 1993; 332:499-513. [PMID: 8349845 DOI: 10.1002/cne.903320409] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The spatial distributions and dendritic branching patterns of chemically identified subpopulations of striatal intrinsic neurons, defined by immunoreactivity for choline acetyltransferase (ChAT), neuropeptide Y or parvalbumin, were studied in relation to patch and matrix compartments of rat neostriatum. ChAT-immunoreactive cells and fibers showed an uneven pattern of distribution in the striatum. ChAT immunoreactivity was higher in the dorsolateral part and lower in the ventromedial part of the striatum. This regional gradient pattern is the inverse of the overall pattern of calbindin D28k immunoreactivity. However, in small regions close to the lateral ventricle and globus pallidus, areas containing fewer ChAT-immunoreactive cells and fibers coincided with those containing low calbindin D28k immunoreactivity. Neuropeptide Y immunoreactivity was uniform in the neostriatum. Certain neuropeptide Y cells (about 20%) were also immunoreactive for calbindin D28k, indicating that at least a small population of calbindin D28k-immunoreactive cells are medium aspiny cells. Parvalbumin immunoreactivity was not uniform in the striatum. A higher density of parvalbumin immunoreactivity was found in the neuropil in lateral and caudal parts than in the medial part. Small regions with weaker parvalbumin-immunoreactive neuropil partially corresponded to calbindin D28k poor patches. Larger cells immunoreactive for parvalbumin were preferentially located in lateral and caudal parts of the striatum. Cells immunoreactive for ChAT, neuropeptide Y or parvalbumin showed basically similar distribution patterns in relation to the patch and matrix compartments. Most stained cells were located in the matrix, but some were located at the borders of patches and a few were inside patches. Most primary dendrites of stained cells in the matrix or patches remained confined to these compartments, but cells on the borders invariably extended dendrites into both compartments. The striatal intrinsic neurons form chemically differentiated neuronal circuits within the matrix, and the patches and those whose dendrites cross the borders may contribute to associational interconnections between the two compartments, unlike the spiny projection neurons whose dendrites are confined to one or the other compartment.
Collapse
Affiliation(s)
- Y Kubota
- Laboratory for Neural Systems, Institute of Physical and Chemical Research RIKEN, Saitama, Japan
| | | |
Collapse
|
48
|
Emson PC, Augood SJ, Señaris R, Guerara Guzman R, Kishimoto J, Kadowaki K, Norris PJ, Kendrick KM. Chemical signalling and striatal interneurones. PROGRESS IN BRAIN RESEARCH 1993; 99:155-65. [PMID: 8108546 DOI: 10.1016/s0079-6123(08)61344-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- P C Emson
- MRC Molecular Neuroscience Group, AFRC, Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, U.K
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yelnik J, Percheron G, François C, Garnier A. Cholinergic neurons of the rat and primate striatum are morphologically different. PROGRESS IN BRAIN RESEARCH 1993; 99:25-34. [PMID: 8108552 DOI: 10.1016/s0079-6123(08)61336-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J Yelnik
- Laboratoire de Neuromorphologie informationnelle et de Neurologie expérimentale du mouvement, INSERM U106, Hôpital de la Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
50
|
Martone ME, Armstrong DM, Young SJ, Groves PM. Ultrastructural examination of enkephalin and substance P input to cholinergic neurons within the rat neostriatum. Brain Res 1992; 594:253-62. [PMID: 1280527 DOI: 10.1016/0006-8993(92)91132-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Enkephalin and substance P-containing inputs to cholinergic perikarya were examined in the rat neostriatum using an ultrastructural immunocytochemical double-labeling protocol. Sections of rat neostriatum were double-labeled for either choline acetyltransferase (ChAT) and substance P or ChAT and enkephalin using silver intensified colloidal gold and peroxidase as labels. Regions containing both ChAT-positive neurons and peroxidase reaction product were identified in the light microscope prior to sectioning for electron microscopy. Substance P-containing terminals which contained round synaptic vesicles and made symmetrical synaptic contacts were commonly observed in the neostriatum. Substance P synapses onto ChAT-positive perikarya and dendrites were frequently observed: up to 5 synaptic contacts were observed onto a ChAT-positive dendrite. Enkephalin labeling was also seen in a population of axon terminals containing round synaptic vesicles and exhibiting symmetrical synaptic specializations. In contrast to substance P-containing terminals, relatively few synaptic contacts were observed onto ChAT-positive labeled perikarya and dendrites although enkephalin-labeled terminals were seen in frequent contact with perikarya and dendrites of unlabeled spiny neurons. Since enkephalin and substance P are contained within different populations of striatal spiny neurons, the results of the present study suggest that these two types of neurons differ in their intrinsic striatal connections.
Collapse
Affiliation(s)
- M E Martone
- Department of Psychiatry, University of California, San Diego 92093
| | | | | | | |
Collapse
|