1
|
Lin CP, Frigerio I, Bol JGJM, Bouwman MMA, Wesseling AJ, Dahl MJ, Rozemuller AJM, van der Werf YD, Pouwels PJW, van de Berg WDJ, Jonkman LE. Microstructural integrity of the locus coeruleus and its tracts reflect noradrenergic degeneration in Alzheimer's disease and Parkinson's disease. Transl Neurodegener 2024; 13:9. [PMID: 38336865 PMCID: PMC10854137 DOI: 10.1186/s40035-024-00400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Degeneration of the locus coeruleus (LC) noradrenergic system contributes to clinical symptoms in Alzheimer's disease (AD) and Parkinson's disease (PD). Diffusion magnetic resonance imaging (MRI) has the potential to evaluate the integrity of the LC noradrenergic system. The aim of the current study was to determine whether the diffusion MRI-measured integrity of the LC and its tracts are sensitive to noradrenergic degeneration in AD and PD. METHODS Post-mortem in situ T1-weighted and multi-shell diffusion MRI was performed for 9 AD, 14 PD, and 8 control brain donors. Fractional anisotropy (FA) and mean diffusivity were derived from the LC, and from tracts between the LC and the anterior cingulate cortex, the dorsolateral prefrontal cortex (DLPFC), the primary motor cortex (M1) or the hippocampus. Brain tissue sections of the LC and cortical regions were obtained and immunostained for dopamine-beta hydroxylase (DBH) to quantify noradrenergic cell density and fiber load. Group comparisons and correlations between outcome measures were performed using linear regression and partial correlations. RESULTS The AD and PD cases showed loss of LC noradrenergic cells and fibers. In the cortex, the AD cases showed increased DBH + immunoreactivity in the DLPFC compared to PD cases and controls, while PD cases showed reduced DBH + immunoreactivity in the M1 compared to controls. Higher FA within the LC was found for AD, which was correlated with loss of noradrenergic cells and fibers in the LC. Increased FA of the LC-DLPFC tract was correlated with LC noradrenergic fiber loss in the combined AD and control group, whereas the increased FA of the LC-M1 tract was correlated with LC noradrenergic neuronal loss in the combined PD and control group. The tract alterations were not correlated with cortical DBH + immunoreactivity. CONCLUSIONS In AD and PD, the diffusion MRI-detected alterations within the LC and its tracts to the DLPFC and the M1 were associated with local noradrenergic neuronal loss within the LC, rather than noradrenergic changes in the cortex.
Collapse
Affiliation(s)
- Chen-Pei Lin
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
| | - Irene Frigerio
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - John G J M Bol
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maud M A Bouwman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Alex J Wesseling
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Annemieke J M Rozemuller
- Amsterdam UMC, Department of Pathology, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
2
|
DeFelipe J, DeFelipe-Oroquieta J, Furcila D, Muñoz-Alegre M, Maestú F, Sola RG, Blázquez-Llorca L, Armañanzas R, Kastanaskaute A, Alonso-Nanclares L, Rockland KS, Arellano JI. Neuroanatomical and psychological considerations in temporal lobe epilepsy. Front Neuroanat 2022; 16:995286. [PMID: 36590377 PMCID: PMC9794593 DOI: 10.3389/fnana.2022.995286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/11/2022] [Indexed: 01/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy and is associated with a variety of structural and psychological alterations. Recently, there has been renewed interest in using brain tissue resected during epilepsy surgery, in particular 'non-epileptic' brain samples with normal histology that can be found alongside epileptic tissue in the same epileptic patients - with the aim being to study the normal human brain organization using a variety of methods. An important limitation is that different medical characteristics of the patients may modify the brain tissue. Thus, to better determine how 'normal' the resected tissue is, it is fundamental to know certain clinical, anatomical and psychological characteristics of the patients. Unfortunately, this information is frequently not fully available for the patient from which the resected tissue has been obtained - or is not fully appreciated by the neuroscientists analyzing the brain samples, who are not necessarily experts in epilepsy. In order to present the full picture of TLE in a way that would be accessible to multiple communities (e.g., basic researchers in neuroscience, neurologists, neurosurgeons and psychologists), we have reviewed 34 TLE patients, who were selected due to the availability of detailed clinical, anatomical, and psychological information for each of the patients. Our aim was to convey the full complexity of the disorder, its putative anatomical substrates, and the wide range of individual variability, with a view toward: (1) emphasizing the importance of considering critical patient information when using brain samples for basic research and (2) gaining a better understanding of normal and abnormal brain functioning. In agreement with a large number of previous reports, this study (1) reinforces the notion of substantial individual variability among epileptic patients, and (2) highlights the common but overlooked psychopathological alterations that occur even in patients who become "seizure-free" after surgery. The first point is based on pre- and post-surgical comparisons of patients with hippocampal sclerosis and patients with normal-looking hippocampus in neuropsychological evaluations. The second emerges from our extensive battery of personality and projective tests, in a two-way comparison of these two types of patients with regard to pre- and post-surgical performance.
Collapse
Affiliation(s)
- Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain,*Correspondence: Javier DeFelipe,
| | - Jesús DeFelipe-Oroquieta
- Gerencia Asistencial de Atención Primaria, Servicio Madrileño de Salud, Madrid, Spain,Facultad de Educación, Universidad Camilo José Cela, Madrid, Spain
| | - Diana Furcila
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Mar Muñoz-Alegre
- Facultad de Educación y Psicología, Universidad Francisco de Vitoria, Madrid, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain,Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Rafael G. Sola
- Cátedra UAM de “Innovación en Neurocirugía”, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lidia Blázquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Armañanzas
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain,Tecnun School of Engineering, Universidad de Navarra, Donostia-San Sebastian, Spain
| | - Asta Kastanaskaute
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Kathleen S. Rockland
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jon I. Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
3
|
Montero-Crespo M, Dominguez-Alvaro M, Rondon-Carrillo P, Alonso-Nanclares L, DeFelipe J, Blazquez-Llorca L. Three-dimensional synaptic organization of the human hippocampal CA1 field. eLife 2020; 9:e57013. [PMID: 32690133 PMCID: PMC7375818 DOI: 10.7554/elife.57013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The hippocampal CA1 field integrates a wide variety of subcortical and cortical inputs, but its synaptic organization in humans is still unknown due to the difficulties involved studying the human brain via electron microscope techniques. However, we have shown that the 3D reconstruction method using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) can be applied to study in detail the synaptic organization of the human brain obtained from autopsies, yielding excellent results. Using this technology, 24,752 synapses were fully reconstructed in CA1, revealing that most of them were excitatory, targeting dendritic spines and displaying a macular shape, regardless of the layer examined. However, remarkable differences were observed between layers. These data constitute the first extensive description of the synaptic organization of the neuropil of the human CA1 region.
Collapse
Affiliation(s)
- Marta Montero-Crespo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
| | - Marta Dominguez-Alvaro
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
| | - Patricia Rondon-Carrillo
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
| | - Lidia Alonso-Nanclares
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadridSpain
| | - Javier DeFelipe
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadridSpain
| | - Lidia Blazquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED)MadridSpain
| |
Collapse
|
4
|
Ghosh A, Torraville SE, Mukherjee B, Walling SG, Martin GM, Harley CW, Yuan Q. An experimental model of Braak's pretangle proposal for the origin of Alzheimer's disease: the role of locus coeruleus in early symptom development. ALZHEIMERS RESEARCH & THERAPY 2019; 11:59. [PMID: 31266535 PMCID: PMC6607586 DOI: 10.1186/s13195-019-0511-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022]
Abstract
Background The earliest brain pathology related to Alzheimer’s disease (AD) is hyperphosphorylated soluble tau in the noradrenergic locus coeruleus (LC) neurons. Braak characterizes five pretangle tau stages preceding AD tangles. Pretangles begin in young humans and persist in the LC while spreading from there to other neuromodulatory neurons and, later, to the cortex. While LC pretangles appear in all by age 40, they do not necessarily result in AD prior to death. However, with age and pretangle spread, more individuals progress to AD stages. LC neurons are lost late, at Braak stages III–IV, when memory deficits appear. It is not clear if LC hyperphosphorylated tau generates the pathology and cognitive changes associated with preclinical AD. We use a rat model expressing pseudohyperphosphorylated human tau in LC to investigate the hypothesis that LC pretangles generate preclinical Alzheimer pathology. Methods We infused an adeno-associated viral vector carrying a human tau gene pseudophosphorylated at 14 sites common in LC pretangles into 2–3- or 14–16-month TH-Cre rats. We used odor discrimination to probe LC dysfunction, and we evaluated LC cell and fiber loss. Results Abnormal human tau was expressed in LC and exhibited somatodendritic mislocalization. In rats infused at 2–3 months old, 4 months post-infusion abnormal LC tau had transferred to the serotonergic raphe neurons. After 7 months, difficult similar odor discrimination learning was impaired. Impairment was associated with reduced LC axonal density in the olfactory cortex and upregulated β1-adrenoceptors. LC infusions in 14–16-month-old rats resulted in more severe outcomes. By 5–6 months post-infusion, rats were impaired even in simple odor discrimination learning. LC neuron number was reduced. Human tau appeared in the microglia and cortical neurons. Conclusions Our animal model suggests, for the first time, that Braak’s hypothesis that human AD originates with pretangle stages is plausible. LC pretangle progression here generates both preclinical AD pathological changes and cognitive decline. The odor discrimination deficits are similar to human odor identification deficits seen with aging and preclinical AD. When initiated in aged rats, pretangle stages progress rapidly and cause LC cell loss. These age-related outcomes are associated with a severe learning impairment consistent with memory decline in Braak stages III–IV. Electronic supplementary material The online version of this article (10.1186/s13195-019-0511-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Sarah E Torraville
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.,Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Bandhan Mukherjee
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Susan G Walling
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Gerard M Martin
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Carolyn W Harley
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | - Qi Yuan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
5
|
Wei M, Liu Y, Pi Z, Yue K, Li S, Hu M, Liu Z, Song F, Liu Z. Investigation of plasma metabolomics and neurotransmitter dysfunction in the process of Alzheimer's disease rat induced by amyloid beta 25-35. RSC Adv 2019; 9:18308-18319. [PMID: 35515227 PMCID: PMC9064735 DOI: 10.1039/c9ra00302a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/15/2021] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) has become one of the major diseases endangering the health of the elderly. Clarifying the features of each AD animal model is valuable for understanding the onset and progression of diseases and developing potential treatments in the pharmaceutical industry. In this study, we aimed to clarify plasma metabolomics and neurotransmitter dysfunction in the process of AD model rat induced by amyloid beta 25-35 (Aβ 25-35). Firstly, Morris Water Maze (MWM) test was used to investigate cognitive impairment in AD rat after 2, 4 and 8 weeks of modelling. Based on this, the effects on levels of AD-related enzymes and eight neurotransmitters were analyzed. And plasma metabolomics analysis based on ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was used to research the metabolic disturbances in the process of AD rat. The results shown the injury on the spatial learning ability of AD rats was gradually aggravated within 4 weeks, reached the maximum at 4 weeks and then was stable until 8 weeks. During 8 weeks of modeling, the levels of enzymes including β-secretase, γ-secretase, glycogen synthase kinase-3β (GSK-3β), acetyl cholinesterase (AchE) and nitric oxide synthase (NOS) were significant increased in the plasma of AD rats. The neurotransmitter dysfunction was mainly involved in γ-aminobutyric acid (GABA), acetyl choline (Ach), glutamic acid (Glu), 5-hydroxytryptamine (5-HT), dopamine (DA) and norepinephrine (NE). 17 endogenous metabolites correlated with AD were successfully detected in the metabolomics analysis. These metabolites were mainly involved in fatty acids, sphingolipids, and sterols metabolisms, vitamin metabolism, and amino acid metabolism. These metabolites might be the potential biomarkers that correctly mark different stages of AD. The study on peripheral plasma indices reflecting the process of AD laid the foundation for understand the pathophysiology of AD and find an effective and radical cure. And the rules of endogenous metabolic disorder in AD rats also have a certain guiding significance for the future study of food-drug interactions at different stages of AD.
Collapse
Affiliation(s)
- Mengying Wei
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Yuanyuan Liu
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
| | - Zifeng Pi
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Kexin Yue
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
| | - Shizhe Li
- Guangdong Univ Technol, Inst Biomed & Pharmaceut Sci Guangzhou 510006 Guangdong People's Republic of China
| | - Mingxin Hu
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
| | - Zhiqiang Liu
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Fengrui Song
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun 130021 China +86 431 85619704
| |
Collapse
|
6
|
Wei M, Liu Z, Liu Y, Li S, Hu M, Yue K, Liu T, He Y, Pi Z, Liu Z, Song F. Urinary and plasmatic metabolomics strategy to explore the holistic mechanism of lignans in S. chinensis in treating Alzheimer's disease using UPLC-Q-TOF-MS. Food Funct 2019; 10:5656-5668. [DOI: 10.1039/c9fo00677j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Schisandra chinensis (Turcz.) Baill (S. chinensis), a functional food, is used as a tonic and sedative agent in traditional Chinese medicine.
Collapse
|
7
|
Moreno-Castilla P, Pérez-Ortega R, Violante-Soria V, Balderas I, Bermúdez-Rattoni F. Hippocampal release of dopamine and norepinephrine encodes novel contextual information. Hippocampus 2017; 27:547-557. [DOI: 10.1002/hipo.22711] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Perla Moreno-Castilla
- Departamento de Neurociencia Cognitiva, División de Neurociencias; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Rodrigo Pérez-Ortega
- Departamento de Neurociencia Cognitiva, División de Neurociencias; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Valeria Violante-Soria
- Departamento de Neurociencia Cognitiva, División de Neurociencias; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Israela Balderas
- Departamento de Neurociencia Cognitiva, División de Neurociencias; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Federico Bermúdez-Rattoni
- Departamento de Neurociencia Cognitiva, División de Neurociencias; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| |
Collapse
|
8
|
Rothman SM, Mattson MP. Sleep disturbances in Alzheimer's and Parkinson's diseases. Neuromolecular Med 2012; 14:194-204. [PMID: 22552887 PMCID: PMC4544709 DOI: 10.1007/s12017-012-8181-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 04/10/2012] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative disorders and exact a burden on our society greater than cardiovascular disease and cancer combined. While cognitive and motor symptoms are used to define AD and PD, respectively, patients with both disorders exhibit sleep disturbances including insomnia, hypersomnia and excessive daytime napping. The molecular basis of perturbed sleep in AD and PD may involve damage to hypothalamic and brainstem nuclei that control sleep-wake cycles. Perturbations in neurotransmitter and hormone signaling (e.g., serotonin, norepinephrine and melatonin) and the neurotrophic factor BDNF likely contribute to the disease process. Abnormal accumulations of neurotoxic forms of amyloid β-peptide, tau and α-synuclein occur in brain regions involved in the regulation of sleep in AD and PD patients, and are sufficient to cause sleep disturbances in animal models of these neurodegenerative disorders. Disturbed regulation of sleep often occurs early in the course of AD and PD, and may contribute to the cognitive and motor symptoms. Treatments that target signaling pathways that control sleep have been shown to retard the disease process in animal models of AD and PD, suggesting a potential for such interventions in humans at risk for or in the early stages of these disorders.
Collapse
Affiliation(s)
- Sarah M Rothman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| | | |
Collapse
|
9
|
Campeau S, Nyhuis TJ, Kryskow EM, Masini CV, Babb JA, Sasse SK, Greenwood BN, Fleshner M, Day HEW. Stress rapidly increases alpha 1d adrenergic receptor mRNA in the rat dentate gyrus. Brain Res 2010; 1323:109-18. [PMID: 20138850 DOI: 10.1016/j.brainres.2010.01.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/26/2010] [Accepted: 01/28/2010] [Indexed: 01/30/2023]
Abstract
The hippocampal formation is a highly plastic brain region that is sensitive to stress. It receives extensive noradrenergic projections, and noradrenaline is released in the hippocampus in response to stressor exposure. The hippocampus expresses particularly high levels of the alpha(1D) adrenergic receptor (ADR) and we have previously demonstrated that alpha(1d) ADR mRNA expression in the rat hippocampus is modulated by corticosterone. One of the defining features of a stress response is activation of the hypothalamic pituitary adrenal (HPA) axis, resulting in the release of corticosterone from the adrenal glands. However, the effect of stress on hippocampal expression of alpha(1d) ADR mRNA has not been determined. In this study, male rats were exposed to inescapable tail shock, loud noise or restraint, and the effect on alpha(1d) ADR mRNA expression in the hippocampus was determined by semi-quantitative in situ hybridization. All three stressors resulted in a rapid upregulation of alpha(1d) ADR mRNA in the dentate gyrus, with expression peaking at approximately 90min after the start of the stressor. Physical activity has previously been reported to counteract some of the effects of stress that occur within the dentate gyrus. However, 6weeks of voluntary wheel running in rats did not prevent the restraint stress-induced increase in alpha(1d) ADR mRNA expression in the dentate gyrus. Although the function of the alpha(1D) ADR in the dentate gyrus is not known, these data provide further evidence for a close interaction between stress and the noradrenergic system in the hippocampus.
Collapse
Affiliation(s)
- Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado, Boulder, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Day HEW, Kryskow EM, Watson SJ, Akil H, Campeau S. Regulation of hippocampal alpha1d adrenergic receptor mRNA by corticosterone in adrenalectomized rats. Brain Res 2008; 1218:132-40. [PMID: 18534559 DOI: 10.1016/j.brainres.2008.04.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/04/2008] [Accepted: 04/24/2008] [Indexed: 11/17/2022]
Abstract
The hippocampal formation receives extensive noradrenergic projections and expresses high levels of mineralocorticoid (MR) and glucocorticoid (GR) receptors. Considerable evidence suggests that the noradrenergic system influences hippocampal corticosteroid receptors. However, there is relatively little data describing the influence of glucocorticoids on noradrenergic receptors in the hippocampal formation. alpha1d adrenergic receptor (ADR) mRNA is expressed at high levels in the hippocampal formation, within cells that express MR or GR. In order to determine whether expression of alpha1d ADR mRNA is influenced by circulating glucocorticoids, male rats underwent bilateral adrenalectomy (ADX) or sham surgery, and were killed after 1, 3, 7 or 14 days. Levels of alpha1d ADR mRNA were profoundly decreased in hippocampal subfields CA1, CA2 and CA3 and the medial and lateral blades of the dentate gyrus, as early as 1day after ADX, as determined by in situ hybridization. The effect was specific for the hippocampal formation, with levels of alpha1d mRNA unaltered by ADX in the lateral amygdala, reticular thalamic nucleus, retrosplenial cortex or primary somatosensory cortex. Additional rats underwent ADX or sham surgery and received a corticosterone pellet (10 or 50mg) or placebo for 7 days. Corticosterone replacement prevented the ADX-induced decrease in hippocampal alpha1d ADR mRNA, with the magnitude of effect depending on corticosterone dose and hippocampal subregion. These data indicate that alpha1d ADR mRNA expression in the hippocampal formation is highly sensitive to circulating levels of corticosterone, and provides further evidence for a close interaction between glucocorticoids and the noradrenergic system in the hippocampus.
Collapse
Affiliation(s)
- Heidi E W Day
- Psychology Department and Center for Neuroscience, University of Colorado, Boulder, CO 80309-0345, USA.
| | | | | | | | | |
Collapse
|
11
|
García-Cabezas MA, Rico B, Sánchez-González MA, Cavada C. Distribution of the dopamine innervation in the macaque and human thalamus. Neuroimage 2007; 34:965-84. [PMID: 17140815 DOI: 10.1016/j.neuroimage.2006.07.032] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/08/2006] [Accepted: 07/11/2006] [Indexed: 11/29/2022] Open
Abstract
We recently defined the thalamic dopaminergic system in primates; it arises from numerous dopaminergic cell groups and selectively targets numerous thalamic nuclei. Given the central position of the thalamus in subcortical and cortical interplay, and the functional relevance of dopamine neuromodulation in the brain, detailing dopamine distribution in the thalamus should supply important information. To this end we performed immunohistochemistry for dopamine and the dopamine transporter in the thalamus of macaque monkeys and humans to generate maps, in the stereotaxic coronal plane, of the distribution of dopaminergic axons. The dopamine innervation of the thalamus follows the same pattern in both species and is most dense in midline limbic nuclei, the mediodorsal and lateral posterior association nuclei, and in the ventral lateral and ventral anterior motor nuclei. This distribution suggests that thalamic dopamine has a prominent role in emotion, attention, cognition and complex somatosensory and visual processing, as well as in motor control. Most thalamic dopaminergic axons are thin and varicose and target both the neuropil and small blood vessels, suggesting that, besides neuronal modulation, thalamic dopamine may have a direct influence on microcirculation. The maps provided here should be a useful reference in future experimental and neuroimaging studies aiming at clarifying the role of the thalamic dopaminergic system in health and in conditions involving brain dopamine, including Parkinson's disease, drug addiction and schizophrenia.
Collapse
Affiliation(s)
- Miguel Angel García-Cabezas
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Opazo C, Huang X, Cherny RA, Moir RD, Roher AE, White AR, Cappai R, Masters CL, Tanzi RE, Inestrosa NC, Bush AI. Metalloenzyme-like activity of Alzheimer's disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H(2)O(2). J Biol Chem 2002; 277:40302-8. [PMID: 12192006 DOI: 10.1074/jbc.m206428200] [Citation(s) in RCA: 444] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Beta-amyloid (Abeta) 1-42, implicated in the pathogenesis of Alzheimer's disease, forms an oligomeric complex that binds copper at a CuZn superoxide dismutase-like binding site. Abeta.Cu complexes generate neurotoxic H(2)O(2) from O(2) through Cu(2+) reduction, but the reaction mechanism has been unclear. We now report that Abeta1-42, when binding up to 2 eq of Cu(2+), generates the H(2)O(2) catalytically by recruiting biological reducing agents as substrates under conditions where the Cu(2+) or reducing agents will not form H(2)O(2) themselves. Cholesterol is an important substrate for this activity, as are vitamin C, L-DOPA, and dopamine (V(max) for dopamine = 34.5 nm/min, K(m) = 8.9 microm). The activity was inhibited by anti-Abeta antibodies, Cu(2+) chelators, and Zn(2+). Toxicity of Abeta in neuronal culture was consistent with catalytic H(2)O(2) production. Abeta was not toxic in cell cultures in the absence of Cu(2+), and dopamine (5 microm) markedly exaggerated the neurotoxicity of 200 nm Abeta1-42.Cu. Therefore, microregional catalytic H(2)O(2) production, combined with the exhaustion of reducing agents, may mediate the neurotoxicity of Abeta in Alzheimer's disease, and inhibitors of this novel activity may be of therapeutic value.
Collapse
Affiliation(s)
- Carlos Opazo
- Centro de Regulación Celular y Patologia, Departamento de Biologia Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 114-D, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Granholm AC, Helt C, Srivastava N, Backman C, Gerhardt GA. Effects of age and GDNF on noradrenergic innervation of the hippocampal formation: studies from intraocular grafts. Microsc Res Tech 2001; 54:298-308. [PMID: 11514986 DOI: 10.1002/jemt.1142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent studies have suggested that factors in the target tissue influence the degree of plasticity and regeneration following aging and/or specific insults. We have investigated whether young or aged targets differ in their noradrenergic innervation from fetal locus coeruleus (LC) neurons, and also if a specific growth factor, glial cell line-derived neurotrophic factor (GDNF) can affect this innervation pattern. Tissue pieces of fetal brainstem and young (3 months) or old (18 months) iris tissue were transplanted simultaneously into the anterior chamber of the eye of adult hosts. We found that aged iris transplants became innervated to a significantly lesser degree by the cografted LC neurons than young iris transplants. Fetal hippocampal tissue was then grafted to adult hosts, and a fetal brainstem graft containing LC neurons was placed adjacent to the first graft, either at 3 or 21 months post-grafting. Thus, old/young chimeras of the noradrenergic coeruleo-hippocampal pathway were created. Aged hippocampal grafts received a much less dense innervation from co-grafted LC neurons than young hippocampal grafts. Tyrosine hydroxylase-positive-immunoreactive innervation was only found in the outskirts of aged grafts, while the young hippocampal grafts contained an even innervation pattern. The innervation density of hippocampal grafts was significantly enhanced by GDNF treatment. These findings demonstrate that target-derived factors may regulate neuronal plasticity, and that the age of the target is more important for innervation properties than the age of the neuron innervating a particular target.
Collapse
Affiliation(s)
- A C Granholm
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | |
Collapse
|
14
|
Kobayashi Y, Amaral DG. Chemical neuroanatomy of the hippocampal formation and the perirhinal and parahippocampal cortices. HANDBOOK OF CHEMICAL NEUROANATOMY 1999. [DOI: 10.1016/s0924-8196(99)80026-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Fu W, Luo H, Parthasarathy S, Mattson MP. Catecholamines potentiate amyloid beta-peptide neurotoxicity: involvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis. Neurobiol Dis 1998; 5:229-43. [PMID: 9848093 DOI: 10.1006/nbdi.1998.0192] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are implicated in the neuronal cell death that occurs in physiological settings and in neurodegenerative disorders. In Alzheimer's disease (AD) degenerating neurons are associated with deposits of amyloid beta-peptide (A beta), and there is evidence for increased membrane lipid peroxidation and protein oxidation in the degenerating neurons. Cell culture studies have shown that A beta can disrupt calcium homeostasis and induce apoptosis in neurons by a mechanism involving oxidative stress. We now report that catecholamines (norepinephrine, epinephrine, and dopamine) increase the vulnerability of cultured hippocampal neurons to A beta toxicity. The catecholamines were effective in potentiating A beta toxicity at concentrations of 10-200 microM, with the higher concentrations (100-200 microM) themselves inducing cell death. Serotonin and acetylcholine were not neurotoxic and did not modify A beta toxicity. Levels of membrane lipid peroxidation, and cytoplasmic and mitochondrial reactive oxygen species, were increased following exposure to neurons to A beta, and catecholamines exacerbated the oxidative stress. Subtoxic concentrations of catecholamines exacerbated decreases in mitochondrial energy charge and transmembrane potential caused by A beta, and higher concentrations of catecholamines alone induced mitochondrial dysfunction. Antioxidants (vitamin E, glutathione, and propyl gallate) protected neurons against the damaging effects of A beta and catecholamines, whereas the beta-adrenergic receptor antagonist propanolol and the dopamine (D1) receptor antagonist SCH23390 were ineffective. Measurements of intracellular free Ca2+ ([Ca2+]i) showed that A beta induced a slow elevation of [Ca2+]i which was greatly enhanced in cultures cotreated with catecholamines. Collectively, these data indicate a role for catecholamines in exacerbating A beta-mediated neuronal degeneration in AD and, when taken together with previous findings, suggest roles for oxidative stress induced by catecholamines in several different neurodegenerative conditions.
Collapse
Affiliation(s)
- W Fu
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA
| | | | | | | |
Collapse
|
16
|
Nagy JI, Price ML, Staines WA, Lynn BD, Granholm AC. The hyaluronan receptor RHAMM in noradrenergic fibers contributes to axon growth capacity of locus coeruleus neurons in an intraocular transplant model. Neuroscience 1998; 86:241-55. [PMID: 9692758 DOI: 10.1016/s0306-4522(98)00017-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hyaluronan receptor for hyaluronic acid-mediated motility (RHAMM) plays a role in cell migration and motility in many systems. Recent observations on the involvement of RHAMM in neurite motility in vitro suggest that it might also be important in axon outgrowth in situ. This was addressed directly by investigating both RHAMM expression in the rat CNS and the ability of anti-RHAMM reagents to interfere with tissue growth and axon outgrowth in intraocular brainstem transplants. By western blotting, anti-RHAMM antibody detected a RHAMM isoform of 75,000 mol. wt in both whole brain homogenate and synaptosome preparations, and a 65,000 mol. wt isoform in synaptosomes. Immunofluorescence of adult brain sections revealed RHAMM-like immunoreactivity in varicose fibers that were also positive for the noradrenergic marker dopamine-beta-hydroxylase. Not all noradrenergic fibers contained RHAMM, nor was RHAMM detected in other monoaminergic fiber types. Lesions of noradrenergic fiber systems with beta-halobenzylamine-N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) eliminated RHAMM-positive fibers, but noradrenergic axons that sprouted extensively after this treatment were strongly RHAMM-positive. To assess RHAMM's role in fiber outgrowth, fetal brainstem tissue containing noradrenergic neurons was grafted into the anterior chamber of the eye. Treatment of grafts with anti-RHAMM antibody caused significant inhibition of tissue growth and axon outgrowth, as did a peptide corresponding to a hyaluronan binding domain of RHAMM. These agents had no such effects on transplants containing serotonergic and dopaminergic neurons. These results suggest that RHAMM, an extracellular matrix receptor previously shown to contribute to migratory and contact behavior of cells, may also be important in the growth and/or regenerative capacity of central noradrenergic fibers originating from the locus coeruleus.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
17
|
Hemmings SJ, Shuaib A. Hypothyroidism-evoked shifts in hippocampal adrenergic receptors: implications to ischemia-induced hippocampal damage. Mol Cell Biochem 1998; 185:161-9. [PMID: 9746222 DOI: 10.1023/a:1006868619606] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hypothyroidism was induced in a group of male Fischer 344 rats by administration of 0.05% propylthiouracil (PTU) in the drinking water for 12 weeks. Control rats were not treated. Plasma levels of thyroid hormones indicated that PTU treatment had produced severe thyroid hormone deficiency. In PTU-treated rats compared to control rats, levels of total T3 and total T4 were reduced 54.5% and 53.7%; while levels of free T3 and free T4 were reduced 87.1% and 96.5%. Functional hypothyroidism was demonstrated by: (i) a 49.1% decrease in hepatic plasma membrane alpha1-adrenergic receptor binding, and (ii) a 11.2-fold increase in hepatic gamma-glutamyltranspeptidase activity; relative to the expression of these parameters in control rats. Membranes were isolated from hippocampi of control, PTU-induced hypothyroid and thyroxine-replaced rats and specific adrenergic receptor binding determined by radioligand binding techniques. Hypothyroidism resulted in a shift in the balance of alpha1 and beta2 adrenergic receptor binding by evoking: an increase in alpha1-adrenergic receptor binding to 1.57-fold of control levels; and, a decrease in beta2-adrenergic receptor binding to 64% of control levels. Thyroid hormone replacement carried out in PTU-treated hypothyroid rats at 30 microg/kg s.c. per day for the last 3 days of the 12 week PTU-treatment protocol, which reversed physical and functional hypothyroidism, reversed the observed changes in hippocampal adrenergic receptor binding, indicating them to be thyroid hormone, and not PTU, -dependent. This receptor shift evoked by hypothyroidism may, in part, explain the protective effect of hypothyroidism on ischemia-induced hippocampal damage by favoring inhibitory input and limiting excitotoxic input by catecholamines.
Collapse
Affiliation(s)
- S J Hemmings
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
18
|
Srivastava N, Granholm AC, Gerhardt GA. Collateral sprouting of central noradrenergic neurons during aging: histochemical and neurochemical studies in intraocular triple transplants. Exp Neurol 1997; 145:524-35. [PMID: 9217088 DOI: 10.1006/exnr.1997.6485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The sprouting capacity of aged noradrenergic neurons of the brain-stem nucleus locus coeruleus (LC) was examined using intraocular transplants of fetal tissues. Fetal hippocampal tissue (E18) and LC tissue (E15) were transplanted together as a double transplant into the anterior chamber of the eye of young adult Fischer 344 rats. The double transplants were allowed to mature for 14-18 months, after which an additional fetal hippocampal transplant was placed next to the LC graft. The triple transplants were monitored for overall growth and vascularization for an additional 2-6 months. Immunohistochemical examinations showed that both young (2-6 months old) and aged (16-24 months old) hippocampal cografts contained a plexus of thin varicose tyrosine hydroxylase (TH)-immunoreactive fibers extending throughout the grafted hippocampal tissues. However, the aged hippocampal grafts contained a denser uniform plexus of TH-positive fibers compared to the young transplants. Immunohistochemistry with synapsin antibodies demonstrated that both the young and the aged hippocampal transplants contained much higher densities of synaptic elements than the LC grafts. In vivo electrochemical measurements of potassium-evoked overflow of norepinephrine (NE) in the grafts showed that similar amounts of NE overflow were detected in both the young and the aged hippocampal grafts. HPLC-EC measurements of NE levels in the grafts revealed that there were similar amounts of NE in the young and the aged grafts, and the grafts did not contain serotonin or dopamine. In summary, the findings of the present study show that aged LC neurons are capable of undergoing collateral sprouting producing a functional NE neuronal system when introduced to an appropriate young target.
Collapse
Affiliation(s)
- N Srivastava
- Department of Basic Science, and the Rocky Mountain Center for Sensor Technology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
19
|
Saura J, Bleuel Z, Ulrich J, Mendelowitsch A, Chen K, Shih JC, Malherbe P, Da Prada M, Richards JG. Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. Neuroscience 1996; 70:755-74. [PMID: 9045087 DOI: 10.1016/s0306-4522(96)83013-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Monoamine oxidases are key enzymes in the metabolism of amine neurotransmitters and neuromodulators and are targets for drug therapy in depression, Parkinson's and Alzheimer's diseases. Knowledge of their distribution in the brain is essential to understand their physiological role. To study the regional distribution and abundance of monoamine oxidases A and B in human brain, pituitary and superior cervical ganglion, we used quantitative enzyme radioautography with radioligands [3H]Ro41-1049 and [3H]lazabemide, respectively. Furthermore, 35S-labelled oligonucleotides complementary to isoenzyme messengerRNAs were used to map the cellular location of the respective transcripts in adjacent sections by in situ hybridization histochemistry. A markedly different pattern of distribution of the isoenzymes was observed. Highest levels of monoamine oxidase A were measured in the superior cervical ganglion, locus coeruleus, interpeduncular nucleus and ventromedial hypothalamic nucleus. The corresponding messengerRNA was detected only in the noradrenergic neurons of the superior cervical ganglion and locus coeruleus. In contrast to rat brain, monoamine oxidase B was much more abundant in most human brain regions investigated. Highest levels were measured in the ependyma of ventricles, stria terminalis and in individual hypothalamic neurons. Monoamine oxidase B transcripts were detected in serotoninergic raphe neurons, histaminergic hypothalamic neurons and in dentate gyrus granule cells of the hippocampal formation. We conclude that [3H]Ro41-1049 and [3H]azabemide are extremely useful radioligands for high-resolution analyses of the abundance and distribution of catalytic sites of monoamine oxidases A and B, respectively, in human brain sections. From levels of messenger RNA detected, the cellular sites of synthesis of the isoenzymes are the noradrenergic neurons of the locus coeruleus (for monoamine oxidase A) and the serotoninergic and histaminergic neurons of the raphe and posterior hypothalamus, respectively (for monoamine oxidase B). The combination of quantitative enzyme radioautography with in situ hybridization histochemistry is a useful approach to study, with high resolution, both the physiology and pathophysiology of monoamine oxidases in human brain.
Collapse
Affiliation(s)
- J Saura
- E Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zsilla G, Zelles T, Mike A, Kékes-Szabó A, Milusheva E, Vizi ES. Differential changes in presynaptic modulation of transmitter release during aging. Int J Dev Neurosci 1994; 12:107-15. [PMID: 7942086 DOI: 10.1016/0736-5748(94)90003-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The purpose of this study was to assess the functional role of presynaptic alpha 2-autoreceptors in noradrenergic transmission in the hippocampus and dopamine-2 heteroreceptors in cholinergic transmission in the striatum in young, adult, and senescent rats. Male and female Wistar rats (4, 12, and 24 months old) were used and the release of radioactivity from striatal and hippocampal slices that had been loaded either with [3H]choline or with [3H]norepinephrine was measured at rest and in response to field stimulation (2 Hz, 360 shocks). The release was challenged by sulpiride, a selective dopamine-2 receptor antagonist, and CH-38083, a selective alpha 2-adrenoceptor antagonist. The dissociation constant and the number of alpha 2-adrenoceptors was also determined by binding studies using [3H]yohimbine as ligand in crude membrane preparations of frontal cortex. There were an age-related changes in alpha 2-adrenoceptor-mediated negative feedback modulation of norepinephrine release and in the density and dissociation constant of alpha 2-adrenoceptors. They were reduced in senescent rats. In contrast the presynaptic modulation of striatal cholinergic transmission by dopamine-2 receptors was not altered during aging, but the storage capacity of and the release of acetylcholine from cholinergic interneurons was significantly lower.
Collapse
Affiliation(s)
- G Zsilla
- Institute of Exerimental Medicine, Hungarian Academy of Sciences, Budapest
| | | | | | | | | | | |
Collapse
|
21
|
Wang Z, Liu RH, Reddy VK, Barnes CD. Hippocampal beta-amyloid reduces locus coeruleus glutamate and tyrosine hydroxylase. Brain Res Bull 1994; 35:485-91. [PMID: 7859106 DOI: 10.1016/0361-9230(94)90162-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of intrahippocampally injected beta-amyloid protein (beta-AP) on glutamate- (Glu) and tyrosine hydroxylase (TH)-like immunoreactivities in the neurons of the locus coeruleus (LC) were studied in rats. A synthetic peptide or the vehicle alone was injected into the hippocampus as controls. All injections were made once a week (two or three injections; 3 nmol in 2 microliters of distilled water). Fluorescent microspheres (either alone or with one of the peptides) were also injected into the hippocampus to identify coeruleo-hippocampal neurons. The results revealed cell loss in the hippocampus at the site near beta-AP or control peptide deposition. Furthermore, in beta-AP/microsphere injected animals, only 22.4% and 49.6% of hippocampal projection neurons contained Glu and TH, respectively, compared to 88.4% and 85.3% in the animals that received control peptide with microspheres. Our results suggest that beta-AP has an effect on noradrenergic cells whose axons project to the hippocampus. These effects may contribute to the TH cell loss in the LC of Alzheimer's brains.
Collapse
Affiliation(s)
- Z Wang
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164-6520
| | | | | | | |
Collapse
|
22
|
Booze RM, Mactutus CF, Gutman CR, Davis JN. Frequency analysis of catecholamine axonal morphology in human brain. II. Alzheimer's disease and hippocampal sympathetic ingrowth. J Neurol Sci 1993; 119:110-8. [PMID: 7902423 DOI: 10.1016/0022-510x(93)90198-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have examined the various diverse morphologies of catecholamine axons in the brains of patients with Alzheimer's disease. Alzheimer's disease and aged control brain tissue were obtained by a rapid autopsy protocol (mean postmortem delay < 1 h). Tissue blocks from the superior frontal cortex (Brodmann area 9), the hippocampal gyrus, and the calcarine cortex (Brodmann area 17) were processed for identification of catecholamine axons using tyrosine hydroxylase immunocytochemistry. A total of 1275 tyrosine hydroxylase immunoreactive axons were randomly sampled from coded sections and classified into one of six distinct axon-type categories. The axon classification from patients with Alzheimer's disease significantly differed from those of an age-matched control population in the hippocampus. The Alzheimer's disease brains were decreased in the frequency of very long, thin, tyrosine hydroxylase immunoreactive axons (type 1) and had an increased frequency of shorter, tortuous, axons (type 3). These selective quantitative shifts in hippocampal catecholaminergic axon morphology are consistent with the hypothesis that sympathetic noradrenergic axons invade the hippocampus of patients with Alzheimer's disease. Multivariate modeling of the frequency sampling data found that the axon type classification scheme successfully predicted the presence of Alzheimer's disease. In particular, the use of quantitative neuroanatomical measures of the catecholaminergic system in human brain tissue was found to have errorless predictive ability with respect to late onset (> 75 years) Alzheimer's disease. In summary, the use of quantitative neuroanatomical measures of catecholamine axonal morphologies in Alzheimer's disease brain tissue identified a specific frequency shift which may represent hippocampal sympathetic ingrowth and this unique measure was found to have predictive utility with respect to Alzheimer's disease.
Collapse
Affiliation(s)
- R M Booze
- Department of Pharmacology, University of Kentucky Medical Center, Lexington 40536-0084
| | | | | | | |
Collapse
|
23
|
Booze RM, Mactutus CF, Gutman CR, Davis JN. Frequency analysis of catecholamine axonal morphology in human brain. I. Effects of postmortem delay interval. J Neurol Sci 1993; 119:99-109. [PMID: 7902424 DOI: 10.1016/0022-510x(93)90197-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The diverse morphologies of catecholamine axons in the human brain were examined by using tyrosine hydroxylase immunocytochemistry. Human brain tissue was obtained by either rapid autopsy (mean postmortem delay < 1 h) or routine autopsy (mean postmortem delay 5 h). Tissue blocks from the superior frontal cortex (Brodmann area 9), the hippocampal gyrus and the calcarine cortex (Brodmann area 17) were processed for tyrosine hydroxylase immunoreactivity. First, a quantitative method was developed to reliably identify differing morphologies of catecholamine axons in human brain tissue. A total of 625 tyrosine hydroxylase immunoreactive axons were randomly sampled from coded sections and classified into one of six distinct morphological categories. These categories were based upon axonal morphologies which were readily distinguished by trained observers, and moreover, further investigations demonstrated that entire tissue sections could be reliably re-sampled at intervals of up to six months. Second, regional variations in axonal distribution and the effects of increasing postmortem delay in tissue processing on the categories of tyrosine hydroxylase immunoreactive axon morphologies were examined. Postmortem delays of up to 6.5 hours were found to decrease the frequency of fine axons with varicosities (axon type 2) and increase thick-caliber straight axons (axon type 5) in all regions examined. The frequency of other morphological axon types did not change as a function of postmortem delay. In summary, the use of quantitative neuroanatomical measures of the catecholaminergic system in human brain tissue was found to be reliable and valid. It was furthermore demonstrated that postmortem delays affect selected morphological types of catecholamine axons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R M Booze
- Department of Pharmacology and College of Pharmacy, University of Kentucky Medical Center, Lexington 40536-0084
| | | | | | | |
Collapse
|
24
|
Ułas J, Brunner LC, Nguyen L, Cotman CW. Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience 1993; 52:843-54. [PMID: 8450977 DOI: 10.1016/0306-4522(93)90533-l] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Binding to adenosine A1 receptors and the status of their coupling to G proteins were studied in the hippocampus and parahippocampal gyrus of Alzheimer individuals and age-matched controls. The binding to A1 receptors was compared with binding to the N-methyl-D-aspartate receptor complex channel-associated sites (labeled with (+)-[3H]5-methyl-10,11-dihydro-5H- dibenzo[a,d]cyclohepten-5,10-imine maleate). In vitro quantitative autoradiography demonstrated a similar anatomical distribution of A1 receptors labeled either with an agonist ((-)-[3H]phenylisopropyladenosine) or antagonist ([3H]8-cyclopentyl-1,3-dipropylxanthine) in the brains of elderly controls. In Alzheimer patients, significant decreases in the density of both agonist and antagonist binding sites were found in the molecular layer of the dentate gyrus. Decreased A1 agonist binding was also observed in the CA1 stratum oriens and outer layers of the parahippocampal gyrus, while reduced antagonist binding was found in the subiculum and CA3 region. Reduced density of the N-methyl-D-aspartate receptor channel sites was found in the CA1 region and parahippocampal gyrus. The reductions in binding to adenosine A1 and N-methyl-D-aspartate receptors were due to a decrease in the density of binding sites (Bmax), and not changes in receptor affinity (KD). In both elderly control and Alzheimer subjects, GTP substantially reduced the density of A1 agonist binding sites with a concomitant increase in the KD values, whereas antagonist binding was unaffected by GTP. The results suggest that adenosine A1 receptor agonists and antagonists recognize overlapping populations of binding sites. Reduced density of A1 receptors in the molecular layer of the dentate gyrus most probably reflects damage of the perforant path input in Alzheimer's disease, while altered binding in the CA1 and CA3 regions is probably due to loss of intrinsic neurons. Similar effects of GTP on binding to A1 receptors in control and Alzheimer individuals suggest lack of alterations in coupling of A1 receptors to G proteins in Alzheimer's disease, thus supporting the notion of normal receptor coupling to their effector systems in Alzheimer's disease.
Collapse
Affiliation(s)
- J Ułas
- Irvine Research Unit in Brain Aging, University of California, Irvine 92717-4550
| | | | | | | |
Collapse
|
25
|
Meana JJ, Barturen F, Garro MA, García-Sevilla JA, Fontán A, Zarranz JJ. Decreased density of presynaptic alpha 2-adrenoceptors in postmortem brains of patients with Alzheimer's disease. J Neurochem 1992; 58:1896-904. [PMID: 1373179 DOI: 10.1111/j.1471-4159.1992.tb10067.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The full agonist [3H]bromoxidine (UK 14304) was used to quantitate alpha 2-adrenoceptors in postmortem brains of patients with Alzheimer's disease. The effects of aging and human serum Cohn fraction IV on [3H]bromoxidine binding were also assessed. In patients with Alzheimer's disease, the binding capacity (Bmax) of [3H]bromoxidine was lower in the frontal cortex (37%), hypothalamus (33%), and cerebellum (52%) than in matched controls. In the hippocampus, amygdala, and head of caudate, the binding capacities (Bmax) were unchanged. Quantitative autoradiographic analyses with [3H]bromoxidine confirmed the existence of a marked reduction (55-60%) in alpha 2A-adrenoceptor density in the frontal cortex (layers I and III). In patients with dementia who did not meet neuropathological criteria for Alzheimer's disease, the density of alpha 2-adrenoceptors was unchanged. In control subjects, the density of alpha 2A-adrenoceptors in the frontal cortex showed a significant negative correlation with age at death. The inhibitory effect of human serum Cohn fraction IV on [3H]bromoxidine was very similar in control subjects and patients with Alzheimer's disease. The observed decrease in the density of brain alpha 2-adrenoceptors in Alzheimer's disease may represent direct biochemical evidence of a presynaptic location of this receptor on noradrenergic nerve terminals in the human CNS.
Collapse
Affiliation(s)
- J J Meana
- Department of Neurosciences, Faculty of Medicine, University of the Basque Country, Leioa, Bizkaia, Spain
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Duncan GE, Little KY, Koplas PA, Kirkman JA, Breese GR, Stumpf WE. Beta-adrenergic receptor distribution in human and rat hippocampal formation: marked species differences. Brain Res 1991; 561:84-92. [PMID: 1665753 DOI: 10.1016/0006-8993(91)90752-h] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The topography of beta-adrenergic receptors in the rat and human hippocampal formation was assessed by in vitro binding of 125I-pindolol to tissue sections. Marked differences were found in the distribution of beta-adrenergic receptors and in the relative amounts of beta 1 and beta 2 receptor subtypes in the two species. In the human, the highest receptor densities were present in the pyramidal cell layer and in the stratum lacunosum-moleculare. In the rat hippocampus, those regions contained the lowest densities of 125I-pindolol binding sites. The highest densities of beta-adrenergic receptors in the rat hippocampal formation were found in the ventral subiculum and in the entorhinal cortex. In contrast, in the human hippocampus, the subiculum and entorhinal cortex contained relatively low densities of the receptors. Competition studies with beta 1- and beta 2-selective antagonists revealed that beta 2-adrenergic receptors predominate in the human hippocampus and beta 1-adrenergic receptors predominate in the rat hippocampus. The marked species differences observed suggest that the pharmacological responsivity of the hippocampus to adrenergic agents and the role of noradrenaline in regulation of hippocampal function could be very different in rats compared to humans.
Collapse
Affiliation(s)
- G E Duncan
- Brain and Development Research Center, University of North Carolina, Chapel Hill 27599
| | | | | | | | | | | |
Collapse
|
28
|
Gerhardt GA, Palmer MR, Granholm AC. Age-induced changes in single locus coeruleus brain transplants grown in oculo: an in vivo electrochemical study. Neurobiol Aging 1991; 12:487-94. [PMID: 1685219 DOI: 10.1016/0197-4580(91)90078-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Brain stem tissue from fetal Sprague-Dawley rats containing the nucleus locus coeruleus (LC) was transplanted into the anterior chamber of the eye of young adult host rats and was studied at 4-6 months (young control) or 24-28 months after grafting (old). High-speed in vivo electrochemical measurements were used to characterize the potassium-evoked synaptic overflow of norepinephrine (NE) in both young and aged LC brain grafts. The amplitudes of potassium-evoked NE overflow were attenuated in the aged grafts as compared to the young LC grafts. In addition, the rise times of potassium-evoked responses were longer in the old LC grafts than in the young transplants. In contrast, the NE content of aged LC grafts, as determined by high-performance liquid chromatography coupled with electrochemical detection (HPLC-EC), was only slightly diminished and not significantly different from the NE levels seen in young LC grafts. However, light microscopical evaluation using tyrosine-hydroxylase immunocytochemistry revealed pyknotic cell bodies and fluorescent accumulations in aged locus coeruleus transplants which were indicative of degeneration in these grafts. The present data demonstrate a significant age-related decline in the presynaptic function of NE-containing neurons in intraocular locus coeruleus transplants of Sprague-Dawley rats.
Collapse
Affiliation(s)
- G A Gerhardt
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver 80262
| | | | | |
Collapse
|
29
|
Zilles K, Gross G, Schleicher A, Schildgen S, Bauer A, Bahro M, Schwendemann G, Zech K, Kolassa N. Regional and laminar distributions of alpha 1-adrenoceptors and their subtypes in human and rat hippocampus. Neuroscience 1991; 40:307-20. [PMID: 1674110 DOI: 10.1016/0306-4522(91)90122-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distributions of the alpha 1-adrenoceptor and its subtypes (alpha 1A and alpha 1B) in human and rat hippocampus are analysed by quantitative receptor autoradiography. alpha 1-Adrenoceptors are labelled by [3H]prazosin. The alpha 1A subtype is visualized by [3H]prazosin after irreversible blockade of alpha 1B adrenoceptors with chloroethylclonidine or directly by [3H]5-methyl-urapidil. The alpha 1B subtype is investigated by [3H]prazosin binding in the presence of the alpha 1A antagonist 5-methyl-urapidil. Considerable differences in the regional and laminar patterns of alpha 1-adrenoceptors are found between rat and human hippocampi. The rat hippocampus is characterized by a low overall density and a rather homogeneous regional and laminar distribution. This is in contrast to the human pattern, which shows a much higher overall level of alpha 1 receptor density and a restriction of alpha 1 receptors to the CA3 region of Ammon's horn and the dentate gyrus. Moreover, alpha 1A and alpha 1B receptors of the human hippocampus are differentially distributed with the alpha 1A subtype concentrated in the hilus and lucidum layer of CA3, and the alpha 1B subtype concentrated in the molecular layer of the dentate gyrus. Additionally, the distribution of alpha 1 receptors is compared with the distribution of 5-hydroxytryptamine 1A receptors. The subtype specific pattern is correlated with the distribution of glutamatergic systems in the human (but not in the rat) hippocampus. alpha 1A Receptor localization coincides with the target area of the mossy fibre system, and alpha 1B receptors are preferentially localized in the target area of the hippocampal associational fibres and partly of the perforant pathway. This result points to possible interactions between noradrenaline- and glutamate-mediated neurotransmission differentiated by topographically segregated alpha 1-adrenoceptor subtypes.
Collapse
Affiliation(s)
- K Zilles
- Institute 1 of Anatomy, Univerity of Cologne, F.R.G
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kalaria RN, Sromek S, Wilcox BJ, Unnerstall JR. Hippocampal adenosine A1 receptors are decreased in Alzheimer's disease. Neurosci Lett 1990; 118:257-60. [PMID: 2274280 DOI: 10.1016/0304-3940(90)90641-l] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous studies showed that adenosine receptors of the temporal and frontal cortices were not affected in Alzheimer's disease (AD). Here, we assessed the specific binding of [3H]cyclohexyladenosine to adenosine1 (A1) receptors in hippocampus from AD subjects and age-matched controls. By both particulate membrane and in vitro autoradiographic receptor binding methods we demonstrate that A1 receptors are significantly reduced by 40-60% in AD subjects. Scatchard analysis showed that maximum binding capacity (Bmax) was affected and there was no evidence for a change in the affinity of the receptor for the ligand (Kd). Receptor autoradiography revealed that although several regions including CA1, CA3 and deep layer of the subiculum were affected, the loss in A1 receptors was most prominent in the molecular layer of the dentate gyrus. In view of previous evidence indicating that these receptors are associated with the perforant pathway and dendritic fields of the CA1 and CA3 regions, our findings suggest loss of the presynaptic A1 receptors on axon terminals of extrinsic pathways including the perforant path and intrinsic pyramidal neurons which release glutamate.
Collapse
Affiliation(s)
- R N Kalaria
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | | | | |
Collapse
|
31
|
Samson Y, Wu JJ, Friedman AH, Davis JN. Catecholaminergic innervation of the hippocampus in the cynomolgus monkey. J Comp Neurol 1990; 298:250-63. [PMID: 1976657 DOI: 10.1002/cne.902980209] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We studied the immunocytochemical distribution of catecholaminergic fibers in the hippocampal formation from two cynomolgus monkeys by using phenylethanolamine-N-methyltransferase, dopamine-beta-hydroxylase, and tyrosine-hydroxylase antibodies. There were no phenylethanolamine-N-methyltransferase immunoreactive fibers suggesting the lack of epinephrine containing fibers. In order to compare the distributions of tyrosine-hydroxylase and dopamine-beta-hydroxylase immunoreactive fibers, we counted fibers in four hippocampal regions, the dentate gyrus, CA3, CA1, and the subiculum at three different rostrocaudal levels. The distributions of dopamine-beta-hydroxylase and tyrosine-hydroxylase immunoreactive fibers were overlapping but clearly different, suggesting that the hippocampus receives both noradrenergic and dopaminergic inputs in primates. Dopamine-beta-hydroxylase-immunoreactive fibers were present in moderate density and roughly evenly distributed throughout the hippocampus. Tyrosine-hydroxylase immunoreactive fibers were found in high density in the dentate gyrus, in the stratum lacunosum-moleculare, and in the molecular layer of the subiculum. There were only minor side-side and rostrocaudal differences in the distribution of tyrosine-hydroxylase and dopamine-beta-hydroxylase immunoreactive fibers. The identification of a putative dopaminergic projection to primate hippocampus, which is more dense and widely distributed than in the rodent, parallels similar increases in dopaminergic projections reported for primate cerebral neocortex.
Collapse
Affiliation(s)
- Y Samson
- Neurology Research Laboratory Durham V.A. Medical Center, North Carolina 27705
| | | | | | | |
Collapse
|
32
|
Abstract
Antisera to human dopamine beta-hydroxylase (DBH) was used to stain noradrenergic axons in the inferior olivary complex (IOC) of human controls. A modest plexus of thin, beaded, immunoreactive fibers was present in all subdivisions of the IOC, and many fibers coursed in the rostrocaudal axis. This noradrenergic plexus is similar to that of monkey, provides complementary evidence to reports of beta-adrenergic receptors in human IOC, and supports the concept of noradrenergic projections to IOC.
Collapse
Affiliation(s)
- R E Powers
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | |
Collapse
|
33
|
Koo EH, Sisodia SS, Archer DR, Martin LJ, Weidemann A, Beyreuther K, Fischer P, Masters CL, Price DL. Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci U S A 1990; 87:1561-5. [PMID: 1689489 PMCID: PMC53515 DOI: 10.1073/pnas.87.4.1561] [Citation(s) in RCA: 489] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the brains of aged humans and cases of Alzheimer disease, deposits of amyloid in senile plaques are located in proximity to nerve processes. The principal component of this extracellular amyloid is beta/A4, a peptide derived from a larger amyloid precursor protein (APP), which is actively expressed in brain and systemic organs. Mechanisms that result in the proteolysis of APP to form beta/A4, previously termed beta-amyloid protein, and the subsequent deposition of the peptide in brain are unknown. If beta/A4 in senile plaques is derived from neuronally synthesized APP and deposited at locations remote from sites of synthesis, then APP must be transported from neuronal cell bodies to distal nerve processes in proximity to deposits of amyloid. In this study, using several immunodetection methods, we demonstrate that APP is transported axonally in neurons of the rat peripheral nervous system. Moreover, our investigations show that APP is transported by means of the fast anterograde component. These findings are consistent with the hypothesis of a neuronal origin of beta/A4, in which amyloid is deposited in the brain parenchyma of aged individuals and cases of Alzheimer disease. In this setting, we suggest that APP is synthesized in neurons and delivered to dystrophic nerve endings, where subsequent alterations of local processing of APP result in deposits of brain amyloid.
Collapse
Affiliation(s)
- E H Koo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2181
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Price DL, Sisodia SS, Koo EH, Muma NA, Kitt CA, Walker LC, Martin LJ, Troncoso JC, Griffin JW, Hoffman PN. Neuronal disorders: studies of animal models and human diseases. Toxicol Pathol 1990; 18:128-37. [PMID: 2195633 DOI: 10.1177/019262339001800118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The peripheral nervous system and the central nervous system (CNS) are comprised of assemblies of neurons that communicate via electrical and chemical signals. Different disease processes selectively affect specific populations of neurons and/or specific cell functions (i.e., "selective vulnerability" of neurons is a principal determinant of phenotypes of disease). New cellular and molecular biological approaches have begun to clarify some of the mechanisms of selective cell injury in human diseases and their animal models. Following a brief review of the normal biology of nerve cells, we use illustrations drawn from studies of experimental and human diseases to discuss the mechanisms of structural/chemical abnormalities that occur in a variety of neuronal disorders.
Collapse
Affiliation(s)
- D L Price
- Neuropathology Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2181
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Price DL, Koo EH, Sisodia SS, Martin LJ, Koliatsos VE, Muma NA, Walker LC, Cork LC. Neuronal responses to injury and aging: lessons from animal models. PROGRESS IN BRAIN RESEARCH 1990; 86:297-308. [PMID: 2087560 DOI: 10.1016/s0079-6123(08)63186-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD), the most common type of adult-onset dementia, is characterized by a variety of brain abnormalities, including degeneration of certain populations of nerve cells, alterations in the neuronal cytoskeleton, and the abnormal deposition of amyloid within brain parenchyma. Pathogenetic processes that lead to these brain abnormalities are difficult to study in humans. Recently, investigators have begun to utilize animal models to examine some of the mechanisms that cause cellular/molecular alterations in transmitter systems, cytoskeletal elements, and APP. These investigations have helped to clarify issues related to the lesions that occur in aged humans and individuals with AD.
Collapse
Affiliation(s)
- D L Price
- Neuropathology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jengeleski CA, Powers RE, O'Connor DT, Price DL. Noradrenergic innervation of human pineal gland: abnormalities in aging and Alzheimer's disease. Brain Res 1989; 481:378-82. [PMID: 2720390 DOI: 10.1016/0006-8993(89)90818-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using previously characterized polyclonal antibody directed against dopamine beta-hydroxylase (DBH), immunoreactive fibers were demonstrable in pineals of 6 controls of various ages and of 3 individuals with Alzheimer's disease (AD). Abnormal, swollen axons were present in pineals from aged individuals and from individuals with AD. The pathology of noradrenergic axons in a structure innervated by the superior cervical ganglion suggests that peripheral noradrenergic systems may be affected in aging and in AD.
Collapse
Affiliation(s)
- C A Jengeleski
- National Institute of Mental Health, Clinical Brain Disorders Branch, Washington, DC
| | | | | | | |
Collapse
|
37
|
Abstract
Thin, beaded axons, immunostained with antisera to human dopamine beta-hydroxylase (DBH), were present in all layers of the anterior vermis of human cerebellum. This plexus appears similar to that described in rodents and provides information complementary to receptor autoradiographic studies that show significant noradrenergic innervation of mammalian cerebellum. Moreover, in two aged controls, we demonstrated abnormal, swollen, tortuous axons not visualized in young controls.
Collapse
Affiliation(s)
- R E Powers
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | |
Collapse
|
38
|
Abstract
Alzheimer's disease results from the degeneration of neurons. Degenerating nerve cells express atypical proteins, and amyloid is deposited. We suggest that some of these events are strongly influenced by genetic factors and age. Animal models should be useful in investigating the pathogenic mechanisms that lead to the brain abnormalities seen in this disease.
Collapse
|
39
|
Armstrong DM, Benzing WC, Evans J, Terry RD, Shields D, Hansen LA. Substance P and somatostatin coexist within neuritic plaques: implications for the pathogenesis of Alzheimer's disease. Neuroscience 1989; 31:663-71. [PMID: 2480552 DOI: 10.1016/0306-4522(89)90431-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years the present authors and others have sought to determine the neurochemical composition of the dilated neuronal processes found within neuritic plaques of patients with Alzheimer's disease. To date a number of neurotransmitter and neuropeptide systems have been observed within different plaques, yet at present it is unclear whether individual human plaques contain more than one transmitter substance. In the present study a highly sensitive dual-immunolabeling procedure was employed and it was demonstrated that substance P and somatostatin-immunoreactive profiles coexist within single senile plaques of patients with Alzheimer's disease. Coexistence of somatostatin and substance P immunoreactivity within plaques was observed in the hippocampus and amygdala but not in the neocortex, although the latter region contained plaques within which somatostatin and substance P existed alone. The frequency with which we observed one or more neuropeptide within plaques was relatively low and in fact most plaques contained neither substance P nor somatostatin immunoreactivity. In addition, a large number of swollen peptidergic processes were observed outside of plaques. The significance of these observations with respect to the pathogenesis of Alzheimer's disease is discussed.
Collapse
Affiliation(s)
- D M Armstrong
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla 92093
| | | | | | | | | | | |
Collapse
|