1
|
Schütter N, Barreto YC, Vardanyan V, Hornig S, Hyslop S, Marangoni S, Rodrigues-Simioni L, Pongs O, Dal Belo CA. Inhibition of Kv2.1 Potassium Channels by MiDCA1, A Pre-Synaptically Active PLA 2-Type Toxin from Micrurus dumerilii carinicauda Coral Snake Venom. Toxins (Basel) 2019; 11:E335. [PMID: 31212818 PMCID: PMC6628393 DOI: 10.3390/toxins11060335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
MiDCA1, a phospholipase A2 (PLA2) neurotoxin isolated from Micrurus dumerilii carinicauda coral snake venom, inhibited a major component of voltage-activated potassium (Kv) currents (41 ± 3% inhibition with 1 μM toxin) in mouse cultured dorsal root ganglion (DRG) neurons. In addition, the selective Kv2.1 channel blocker guangxitoxin (GxTx-1E) and MiDCA1 competitively inhibited the outward potassium current in DRG neurons. MiDCA1 (1 µM) reversibly inhibited the Kv2.1 current by 55 ± 8.9% in a Xenopus oocyte heterologous system. The toxin showed selectivity for Kv2.1 channels over all the other Kv channels tested in this study. We propose that Kv2.1 channel blockade by MiDCA1 underlies the toxin's action on acetylcholine release at mammalian neuromuscular junctions.
Collapse
Affiliation(s)
- Niklas Schütter
- Institute for Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of the Saarland, D-66421 Hamburg, Germany.
| | - Yuri Correia Barreto
- Interdisciplinary Centre for Research in Biotechnology (CIPBiotec), Federal University of Pampa (UNIPAMPA), Campus São Gabriel, São Gabriel 97300-000, RS, Brazil.
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular Biology NAS RA, Hastratyan 7, Yerevan 0014, Armenia.
| | - Sönke Hornig
- Center for Molecular Neurobiology Hamburg, Experimental Neuropediatrics, UKE Hamburg, 20251 Hamburg, Germany.
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas 13083-970, SP, Brazil.
| | - Sérgio Marangoni
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas 13083-862, SP, Brazil.
| | - Léa Rodrigues-Simioni
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas 13083-970, SP, Brazil.
| | - Olaf Pongs
- Institute for Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of the Saarland, D-66421 Hamburg, Germany.
| | - Cháriston André Dal Belo
- Interdisciplinary Centre for Research in Biotechnology (CIPBiotec), Federal University of Pampa (UNIPAMPA), Campus São Gabriel, São Gabriel 97300-000, RS, Brazil.
| |
Collapse
|
2
|
The Molecular Basis of Toxins' Interactions with Intracellular Signaling via Discrete Portals. Toxins (Basel) 2017; 9:toxins9030107. [PMID: 28300784 PMCID: PMC5371862 DOI: 10.3390/toxins9030107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
An understanding of the molecular mechanisms by which microbial, plant or animal-secreted toxins exert their action provides the most important element for assessment of human health risks and opens new insights into therapies addressing a plethora of pathologies, ranging from neurological disorders to cancer, using toxinomimetic agents. Recently, molecular and cellular biology dissecting tools have provided a wealth of information on the action of these diverse toxins, yet, an integrated framework to explain their selective toxicity is still lacking. In this review, specific examples of different toxins are emphasized to illustrate the fundamental mechanisms of toxicity at different biochemical, molecular and cellular- levels with particular consideration for the nervous system. The target of primary action has been highlighted and operationally classified into 13 sub-categories. Selected examples of toxins were assigned to each target category, denominated as portal, and the modulation of the different portal’s signaling was featured. The first portal encompasses the plasma membrane lipid domains, which give rise to pores when challenged for example with pardaxin, a fish toxin, or is subject to degradation when enzymes of lipid metabolism such as phospholipases A2 (PLA2) or phospholipase C (PLC) act upon it. Several major portals consist of ion channels, pumps, transporters and ligand gated ionotropic receptors which many toxins act on, disturbing the intracellular ion homeostasis. Another group of portals consists of G-protein-coupled and tyrosine kinase receptors that, upon interaction with discrete toxins, alter second messengers towards pathological levels. Lastly, subcellular organelles such as mitochondria, nucleus, protein- and RNA-synthesis machineries, cytoskeletal networks and exocytic vesicles are also portals targeted and deregulated by other diverse group of toxins. A fundamental concept can be drawn from these seemingly different toxins with respect to the site of action and the secondary messengers and signaling cascades they trigger in the host. While the interaction with the initial portal is largely determined by the chemical nature of the toxin, once inside the cell, several ubiquitous second messengers and protein kinases/ phosphatases pathways are impaired, to attain toxicity. Therefore, toxins represent one of the most promising natural molecules for developing novel therapeutics that selectively target the major cellular portals involved in human physiology and diseases.
Collapse
|
3
|
Tzeng MC. Interaction of Presynaptically Toxic Phospholipases A2with Membrane Receptors and Other Binding Sites. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549309084185] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Kues WA, Wunder F. Heterogeneous Expression Patterns of Mammalian Potassium Channel Genes in Developing and Adult Rat Brain. Eur J Neurosci 2002; 4:1296-1308. [PMID: 12106393 DOI: 10.1111/j.1460-9568.1992.tb00155.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Voltage-gated K+ channels in the mammalian brain are functionally heterogeneous. Mechanisms which may underlie heterogeneity are the expression of multiple K+ channel subunit genes, alternative splicing and the formation of heteromultimers from different subunits. To examine the molecular basis of regional and cell-specific K+ channel expression in rat brain in situ hybridization techniques were used. The transcript distribution patterns of 11 cloned mammalian K+ channel genes encoding both slow- and fast-inactivating K+ channels from four different gene families were examined at different stages of development. The results show that each subunit-specific messenger RNA (mRNA) is independently expressed and is characterized by an individual expression pattern. In the hippocampal formation transcripts of RCK2, RCK3, RCK4, RCK5, Raw3 and rat Shal genes are heterogeneously expressed and regulated during postnatal development. RCK1, Raw1, Raw2 and DRK1 mRNAs, on the other hand, are present in the hippocampus throughout postnatal life. The expression patterns of the 11 genes partially overlap, suggesting the formation of different heteromultimeric K+ channel complexes.
Collapse
Affiliation(s)
- Wilfried A. Kues
- Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 6900 Heidelberg, Germany
| | | |
Collapse
|
5
|
Fatehi M, Rowan EG, Harvey AL. An electrophysiological study on the effects of Pa-1G (a phospholipase A(2)) from the venom of king brown snake, Pseudechis australis, on neuromuscular function. Toxicon 2002; 40:69-75. [PMID: 11602281 DOI: 10.1016/s0041-0101(01)00190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of Pa-1G, a phospholipase A(2) (PLA(2)) from the venom of the Australian king brown snake (Pseudechis australis) were determined on the release of acetylcholine, muscle resting membrane potential and motor nerve terminal action potential at mouse neuromuscular junction. Intracellular recording from endplate regions of mouse triangularis sterni nerve-muscle preparations revealed that Pa-1G (800 nM) significantly reduced the amplitude of endplate potentials within 10 min exposure. The quantal content of endplate potentials was decreased to 58+/-6% of control after 30 min exposure to 800 nM Pa-1G. The toxin also caused a partial depolarisation of mouse muscle fibres within 60 min exposure. Extracellular recording of action potentials at motor nerve terminals showed that Pa-1G reduced the waveforms associated with both sodium and potassium conductances. To investigate whether this was a direct or indirect effect of the toxin on these ionic currents, whole cell patch clamp experiments were performed using human neuroblastoma (SK-N-SH) cells and B82 mouse fibroblasts stably transfected with rKv1.2. Patch clamp recording experiments confirmed that potassium currents sensitive to alpha-dendrotoxin recorded from B82 cells and sodium currents in SK-N-SH cells were not affected by the toxin. Since neither facilitation of acetylcholine release at mouse neuromuscular junction nor depression of potassium currents in B82 cells has been observed, the apparent blockade of potassium currents at mouse motor nerve endings induced by the toxin is unlikely to be due to a selective block of potassium channels.
Collapse
Affiliation(s)
- M Fatehi
- Department of Pharmacology, Faculty of Medicine, Khorasan University of Medical Sciences, P.O.Box: 91775-1843, Mashhad, Iran
| | | | | |
Collapse
|
6
|
Cochran SM, Harvey AL, Pratt JA. Regionally selective alterations in local cerebral glucose utilization evoked by charybdotoxin, a blocker of central voltage-activated K+-channels. Eur J Neurosci 2001; 14:1455-63. [PMID: 11722607 DOI: 10.1046/j.0953-816x.2001.01770.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The quantitative [14C]-2-deoxyglucose autoradiographic technique was employed to investigate the effect of charybdotoxin, a blocker of certain voltage-activated K+ channels, on functional activity, as reflected by changes in local rates of cerebral glucose utilization in rat brain. Intracerebroventricular administration of charybdotoxin, at doses below those producing seizure activity, produced a heterogeneous effect on glucose utilization throughout the brain. Out of the 75 brain regions investigated, 24 displayed alterations in glucose utilization. The majority of these changes were observed with the intermediate dose of charybdotoxin administered (12.5 pmol), with the lower (6.25 pmol) and higher (25 pmol) doses of charybdotoxin producing a much more restricted pattern of change in glucose utilization. In brain regions which displayed alterations in glucose at all doses of charybdotoxin administered, no dose dependency in terms of the magnitude of change was observed. The 21 brain regions which displayed altered functional activity after administration of 12.5 pmol charybdotoxin were predominantly limited to the hippocampus, limbic and motor structures. In particular, glucose utilization was altered within three pathways implicated within learning and memory processes, the septohippocampal pathway, Schaffer collaterals within the hippocampus and the Papez circuit. The nigrostriatal pathway also displayed altered local cerebral glucose utilization. These data indicate that charybdotoxin produces alterations in functional activity within selected pathways in the brain. Furthermore the results raise the possibility that manipulation of particular subtypes of Kv1 channels in the hippocampus and related structures may be a means of altering cognitive processes without causing global changes in neural activity throughout the brain.
Collapse
Affiliation(s)
- S M Cochran
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow G4 ONR, UK
| | | | | |
Collapse
|
7
|
Galoyan AA, Sarkissian JS, Kipriyan TK, Sarkissian EJ, Chavushyan EA, Sulkhanyan RM, Meliksetyan IB, Abrahamyan SS, Avetisyan ZA, Otieva NA. Protective effect of a new hypothalamic peptide against cobra venom and trauma-induced neuronal injury. Neurochem Res 2001; 26:1023-38. [PMID: 11699930 DOI: 10.1023/a:1012353005489] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A study of separate and combined actions of cobra venom (CV) and a new hypothalamic proline-rich polypeptide (PRP) isolated from magnocellular cells (NPV and NSO) on intoxication- and trauma-induced neuronal injury (during 3-4 weeks after hemisection with and without PRP treatment) was carried out. The registration of background and evoked impulse activity flow, changes in spinal cord (SC) inter- and motoneurons, responding to flexor, extensor, and mixed nerve stimulation in both acute and chronic experimental neurodegeneration was performed. The facilitating effect of PRP on the abovementioned neurons was revealed. High doses of CV that evoked the neurodegenerative changes demonstrated an inhibitory effect. In this case PRP treatment both before and after intoxication restored electrical neuronal activity to baseline level and higher. These results are evidence of protective action of PRP. The low doses of CV induced a facilitating effect. The combination of CV and PRP displayed an additive facilitating effect; in a number of cases the repeated administration of CV led to decrease of significant PRP effect till baseline level (for example, the inhibition after primary response prior to secondary late discharge). Greater liability of the secondary early and late long-time discharges of poststimulus responses, differently expressed in various neuron types of SC to chemical influences is of interest. PRP-induced inhibition of the paroxysmal activity related with CV action is also very interesting. Morpho-functional experiments with SC injury demonstrated the abolition of difference in the background and evoked SC neuronal activity below the section and on intact symmetric side after daily PRP administration for 3 weeks. PRP hindered the scar formation and activated neuroglia proliferation; it promoted white matter element growth, hampered the degeneration of cellular elements, and protected against tissue stress. Our results favor the combined use of PRP and CV in clinical practice for the treatment of neurodegeneration of toxic and traumatic origin, as well as specific neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
- A A Galoyan
- Bunatian Institute of Biochemistry, NAS RA, Yerevan, The Republic of Armenia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Dendrotoxins are small proteins that were isolated 20 years ago from mamba (Dendroaspis) snake venoms (Harvey, A.L., Karlsson, E., 1980. Dendrotoxin from the venom of the green mamba, Dendroaspis angusticeps: a neurotoxin that enhances acetylcholine release at neuromuscular junctions. Naunyn-Schmiedebergs Arch. Pharmacol. 312, 1-6.). Subsequently, a family of related proteins was found in mamba venoms and shown to be homologous to Kunitz-type serine protease inhibitors, such as aprotinin. The dendrotoxins contain 57-60 amino acid residues cross-linked by three disulphide bridges. The dendrotoxins have little or no anti-protease activity, but they were demonstrated to block particular subtypes of voltage-dependent potassium channels in neurons. Studies with cloned K(+) channels indicate that alpha-dendrotoxin from green mamba Dendroaspis angusticeps blocks Kv1.1, Kv1.2 and Kv1.6 channels in the nanomolar range, whereas toxin K from the black mamba Dendroaspis polylepis preferentially blocks Kv1.1 channels. Structural analogues of dendrotoxins have helped to define the molecular recognition properties of different types of K(+) channels, and radiolabelled dendrotoxins have also been useful in helping to discover toxins from other sources that bind to K(+) channels. Because dendrotoxins are useful markers of subtypes of K(+) channels in vivo, dendrotoxins have become widely used as probes for studying the function of K(+) channels in physiology and pathophysiology.
Collapse
Affiliation(s)
- A L Harvey
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow G4 ONR, UK
| |
Collapse
|
9
|
Wang FC, Bell N, Reid P, Smith LA, McIntosh P, Robertson B, Dolly JO. Identification of residues in dendrotoxin K responsible for its discrimination between neuronal K+ channels containing Kv1.1 and 1.2 alpha subunits. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:222-9. [PMID: 10429207 DOI: 10.1046/j.1432-1327.1999.00494.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dendrotoxin (DTX) homologues are powerful blockers of K+ channels that contain certain subfamily Kv1 (1.1-1.6) alpha- and beta-subunits, in (alpha)4(beta)4 stoichiometry. DTXk inhibits potently Kv1.1-containing channels only, whereas alphaDTX is less discriminating, but exhibits highest affinity for Kv1.2. Herein, the nature of interactions of DTXk with native K+ channels composed of Kv1.1 and 1.2 (plus other) subunits were examined, using 15 site-directed mutants in which amino acids were altered in the 310-helix, beta-turn, alpha-helix and random-coil regions. The mutants' antagonism of high-affinity [125I]DTXk binding to Kv1. 1-possessing channels in rat brain membranes and blockade of the Kv1. 1 current expressed in oocytes were quantified. Also, the levels of inhibition of [125I]alphaDTX binding to brain membranes by the DTXk mutants were used to measure their high- and low-affinity interactions, respectively, with neuronal Kv1.2-containing channels that possess Kv1.1 as a major or minor constituent. Displacement of toxin binding to either of these subtypes was not altered by single substitution with alanine of three basic residues in the random-coil region, or R52 or R53 in the alpha-helix; accordingly, representative mutants (K17A, R53A) blocked the Kv1.1 current with the same potency as the natural toxin. In contrast, competition of the binding of the radiolabelled alphaDTX or DTXk was dramatically reduced by alanine substitution of K26 or W25 in the beta-turn whereas changing nearby residues caused negligible alterations. Consistently, W25A and K26A exhibited diminished functional blockade of the Kv1.1 homo-oligomer. The 310-helical N-terminal region of DTXk was found to be responsible for recognition of Kv1.1 channels because mutation of K3A led to approximately 1246-fold reduction in the inhibitory potency for [125I]DTXk binding and a large decrease in its ability to block the Kv1.1 current; the effect of this substitution on the affinity of DTXk for Kv1.2-possessing oligomers was much less dramatic (approximately 16-fold).
Collapse
Affiliation(s)
- F C Wang
- Department of Biochemistry, Imperial College, London, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang FC, Parcej DN, Dolly JO. alpha subunit compositions of Kv1.1-containing K+ channel subtypes fractionated from rat brain using dendrotoxins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:230-7. [PMID: 10429208 DOI: 10.1046/j.1432-1327.1999.00493.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
K+ channels from the Kv1 subfamily contain four alpha-subunits and the combinations (from Kv1.1-1.6) determine susceptibility to dendrotoxin (DTX) homologues. The subunit composition of certain subtypes in rat brain was investigated using DTXk which only interacts with Kv1.1-containing channels and alphaDTX (and its closely related homologue DTXi) that binds preferentially to Kv1. 2-possessing homo- or hetero-oligomers. Covalent attachment of [125I]DTXk bound to channels in synaptic membranes unveiled subunits of Mr = 78 000 and 96 000. Immunoprecipitation of these solubilized and dissociated cross-linked proteins with IgG specific for each of the alpha-subunits identified Kv1.1, 1.2 and 1.4; this led to assemblies of Kv1.1/1.2 and 1.1/1.4 being established. Kv1. 2-enriched channels, purified from rat brain by chromatography on immobilized DTXi, contained Kv1.1, 1.2 and 1.6 confirming one of the above-noted pairs and indicating an additional Kv1.1-containing oligomer (Kv1.1/1.2/1.6); the notable lack of Kv1.4 excludes a Kv1. 1/1.2/1.4 combination. On the other hand, channels with Kv1.1 as a constituent, isolated using DTXk, possessed Kv1.4 in addition to those found in the DTXi-purified oligomers; this provides convergent support for the occurrence of the three combinations established above but adds a possible fourth (Kv1.1/1.4/1.6), though this was not confirmed. Moreover, sequential purification on DTXi and DTXk resins yielded channels containing only Kv1.1/1.2 but with an apparent predominance of Kv1.1, reaffirming the latter multimer.
Collapse
Affiliation(s)
- F C Wang
- Department of Biochemistry, Imperial College, London, UK
| | | | | |
Collapse
|
11
|
Fischer HS, Saria A. Voltage-gated, margatoxin-sensitive potassium channels, but not calcium-gated, iberiotoxin-sensitive potassium channels modulate acetylcholine release in rat striatal slices. Neurosci Lett 1999; 263:208-10. [PMID: 10213172 DOI: 10.1016/s0304-3940(99)00116-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We evaluated the effects of iberiotoxin, an inhibitor of Slo-type Ca2+-activated potassium channels and two inhibitors of Shaker-type voltage-gated potassium channels margatoxin and dendrotoxin on acetylcholine outflow in rat striatal slices. An in vitro perfusion with 100 nM margatoxin or dendrotoxin induced a concentration-dependent and tetrodotoxin-sensitive enhancement in spontaneous acetylcholine release. In contrast, a perfusion with iberiotoxin did neither modulate basal, nor electrically- or N-methyl-d-aspartate-induced transmitter release. Therefore, Slo-type Ca2+-activated K+-channels do not seem to contribute significantly to cholinergic neurotransmission within rat striatal slices. As the Kv1.2 subtype represents the only common high affinity binding site of margatoxin and dendrotoxin and the effects of these toxins are not additive, this subtype is suggested to be the channel utilized by margatoxin and dendrotoxin to release acetylcholine in this model.
Collapse
Affiliation(s)
- H S Fischer
- University Hospital, Department of Psychiatry, Innsbruck, Austria
| | | |
Collapse
|
12
|
Fatehi M, Harvey AL, Rowan EG. Characterisation of the effects of depolarising toxins on nerve terminal action potentials: apparent block of presynaptic potassium currents. Toxicon 1998; 36:115-29. [PMID: 9604286 DOI: 10.1016/s0041-0101(97)00056-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies showed that toxic phospholipases A2 (Pa-8 and Pa-10F) from the venom of Pseudechis australis, the Australian king brown snake, reduced acetylcholine release at mouse neuromuscular junctions and depressed motor nerve terminal action potentials [Fatehi et al. (1994a), Toxicon 32, 1559-1572], and it was postulated that these toxins induced their effect on the action potential waveforms through nerve terminal depolarisation. To test this hypothesis, the effects of Pa-11 (another phospholipase A2 from the venom of Pseudechis australis), and the known depolarising agents. myotoxin a, from the venom of the rattlesnake. Crotalus viridis viridis, and ouabain on these waveforms were compared with the changes induced in the nerve terminal action potentials by Pa-8 and Pa-10F. The experiments were performed on the isolated mouse triangularis sterni preparation, using extracellular recordings. Pa-11 (0.1 microM) decreased the component of nerve terminal action potential related to Na+ and K+ currents to about 80% and 40% of control, respectively, after 60 min. Myotoxin alpha (5 microM) and ouabain (50 microM) produced similar, time-dependent changes in the nerve terminal action potential. These effects are similar to those produced by Pa-8 and Pa-10F, and are consistent with a slow but partial loss of membrane potential at the nerve terminal. In addition, whole-cell patch-clamp recording was employed to investigate possible direct actions of Pa-8. Pa10F and Pa-11 on Na+ and K+ currents in NG108 and PC12 cells in culture. None of these toxins (0.8 microM) reduced the Na+ and K+ currents in these cells. There was also no displacement of [125I]alpha-dendrotoxin bound to voltage-sensitive potassium channels on rat synaptosomal membranes induced by Pa-8, Pa-10F and Pa-11 (up to 100 microM). These results support the hypothesis that the alteration of nerve terminal waveforms by these toxic phospholipases A2 is mediated by nerve terminal depolarisation.
Collapse
Affiliation(s)
- M Fatehi
- Department of Physiology and Pharmacology, Strathclyde Institute for Drug Research, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
13
|
Dorandeu F, Wetherell J, Pernot-Marino I, Tattersall JE, Fosbraey P, Lallement G. Effects of excitatory amino acid antagonists on dendrotoxin-induced increases in neurotransmitter release and epileptiform bursting in rat hippocampus in vitro. J Neurosci Res 1997; 48:499-506. [PMID: 9210519 DOI: 10.1002/(sici)1097-4547(19970615)48:6<499::aid-jnr2>3.0.co;2-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alpha-dendrotoxin (alpha-DTx), a snake venom toxin which blocks several types of fast-activating voltage-dependent potassium channels, induces limbic seizures and neuronal damage when injected into the brain. The mechanisms underlying these convulsant and neuropathological actions are not fully understood. We have studied the effects of alpha-DTx on neurotransmitter release and electrical activity in rat hippocampal brain slices and the role of excitatory amino acid receptors in mediating these actions of the toxin. alpha-DTx increased the basal release of acetylcholine, glutamate, aspartate, and GABA in a concentration-dependent manner and induced epileptiform bursting in the CA1 and CA3 regions of the slice. The increase in neurotransmitter release was evident during the first 4 min after toxin addition, whereas the bursting appeared after a concentration-dependent delay (20-40 min with 250 nM toxin). The N-methyl-D-aspartate (NMDA) receptor antagonists AP5 and MK-801 had no effect on the frequency or amplitude of dendrotoxin-induced epileptiform bursts, but the non-NMDA antagonists CNQX and DNQX abolished bursting in both CA1 and CA3 within 4-6 min. In contrast, the toxin-induced increases in neurotransmitter release were not blocked by DNQX. This study has demonstrated that, following exposure to alpha-DTx, there is a rapid increase in the release of neurotransmitters which precedes the onset of epileptiform bursting in the hippocampus. Since DNQX abolished the bursting but had no effect on the increase in neurotransmitter release, these results suggest that DNQX blocks alpha-DTx-induced epileptiform activity by antagonism of postsynaptic non-NMDA receptors.
Collapse
Affiliation(s)
- F Dorandeu
- Department of Pharmacology, Centre de Recherches du Service de Sante des Armees, La Tronche, France
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
1. Dendrotoxins are small proteins isolated from mamba (Dendroaspis) snake venoms. They block some subtypes of voltage-dependent potassium channels in neurons. 2. Dendrotoxins contain 57-60 amino acid residues crosslinked by three disulfide bridges. They are homologous to Kunitz-type serine protease inhibitors, such as aprotinin, although they have little or no antiprotease activity. 3. Dendrotoxins act mainly on neuronal K+ channels. Studies with cloned K+ channels indicate that alpha-dendrotoxin from green mamba Dendroaspis angusticeps blocks Kv1.1 and Kv1.2 channels in the nanomolar range. In native cells, dendrotoxin appears preferentially to block inactivating forms of K+ current. 4. Dendrotoxins can induce repetitive firing in neurons and facilitate transmitter release. On direct injection to the CNS, dendrotoxins can induce epileptiform activity. 5. Radiolabeled dendrotoxins are useful markers of subtypes of K+ channels in vivo, and structural analogs help to define the molecular recognition properties of different types of K+ channels.
Collapse
Affiliation(s)
- A L Harvey
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, UK
| |
Collapse
|
15
|
Abstract
Subfamilies of voltage-activated K+ channels (Kv1-4) contribute to controlling neuron excitability and the underlying functional parameters. Genes encoding the multiple alpha subunits from each of these protein groups have been cloned, expressed and the resultant distinct K+ currents characterized. The predicted amino acid sequences showed that each alpha subunit contains six putative membrane-spanning alpha-helical segments (S1-6), with one (S4) being deemed responsible for the channels' voltage sensing. Additionally, there is an H5 region, of incompletely defined structure, that traverses the membrane and forms the ion pore; residues therein responsible for K+ selectively have been identified. Susceptibility of certain K+ currents produced by the Shaker-related subfamily (Kv1) to inhibition by alpha-dendrotoxin has allowed purification of authentic K+ channels from mammalian brain. These are large (M(r) approximately 400 kD), octomeric sialoglycoproteins composed of alpha and beta subunits in a stoichiometry of (alpha)4(beta)4, with subtypes being created by combinations of subunit isoforms. Subsequent cloning of the genes for beta 1, beta 2 and beta 3 subunits revealed novel sequences for these hydrophilic proteins that are postulated to be associated with the alpha subunits on the inner side of the membrane. Coexpression of beta 1 and Kv1.4 subunits demonstrated that this auxiliary beta protein accelerates the inactivation of the K+ current, a striking effect mediate by an N-terminal moiety. Models are presented that indicate the functional domains pinpointed in the channel proteins.
Collapse
Affiliation(s)
- J O Dolly
- Department of Biochemistry, Imperial College, London, United Kingdom
| | | |
Collapse
|
16
|
McNamara NM, Averill S, Wilkin GP, Dolly JO, Priestley JV. Ultrastructural localization of a voltage-gated K+ channel alpha subunit (KV 1.2) in the rat cerebellum. Eur J Neurosci 1996; 8:688-99. [PMID: 9081620 DOI: 10.1111/j.1460-9568.1996.tb01254.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A highly specific monoclonal antibody and pre-embedding immunocytochemistry were employed to examine the distribution of the K+ channel, alpha subunit K(V)1.2 in the rat cerebellum. At the light microscopic level, the heaviest immunoreactivity was seen in the basket cell pinceau at the base of Purkinje cells, with lighter staining of basket and Golgi cell bodies and a punctate pattern in the granule cell and molecular layers. Electron microscopy was performed to identify the ultrastructural location of K(V)1.2 alpha subunit in these labelled structures. This revealed that the labelling of the pinceau was confined to the preterminal axonal plexus, the area immediately around the Purkinje axon initial segment being relatively devoid of staining. Basket cell parent axons were not immunostained, but gave rise to heavily stained fine processes. Immunoreactivity was also seen in myelinated axons in the granule cell layer and in the medial cerebellar nucleus, the staining being most concentrated at the juxtaparanodal regions of the axons. An unusual pattern of staining was seen in some mossy fibre terminals, with staining restricted to fine protuberances of mossy fibre glomeruli. Structures contacted by these protuberances included adjoining glial processes. Immunostaining was absent from Purkinje cell bodies, dendrites, their axon initial segments and their terminals in the medial cerebellar nucleus. In this study, the alpha subunit K(V)1.2 was localized to a number of different cell types in the cerebellum. Each neuronal type displays a distinct subcellular distribution of the subunit.
Collapse
Affiliation(s)
- N M McNamara
- Department of Biochemistry, Imperial College, London, UK
| | | | | | | | | |
Collapse
|
17
|
Abstract
Mamba venoms contain pharmacologically active proteins that interfere with neuromuscular transmission by binding to and altering the normal functioning of neuronal proteins involved, directly or indirectly, with regulating nerve transmission. Of the mamba toxins studied to date, many act on voltage-sensitive K+ channels, nicotinic or muscarinic acetylcholine receptors, or acetylcholinesterase. In an attempt to clone, characterize, and express the genes encoding these toxins, as well as other genes specifying activities not completely elucidated as yet, a cDNA library was constructed from mRNA isolated from the glands of the black mamba. Clones from the library harboring sequences encoding 14 different mamba toxins were isolated and characterized by nucleotide sequence analysis. Genes coding for three proteins, dendrotoxins (DTX) K, I, and E, were expressed as maltose-binding (MBP) fusion proteins in the periplasmic space of Escherichia coli. The DTXK-MBP fusion protein was affinity purified, cleaved from its chaperon, and the recombinant DTXK purified from MBP. Recombinant DTXK was shown to be identical to native DTXK in its N-terminal sequence, chromatographic behavior, convulsion-inducing activity, and binding to voltage-activated K+ channels in bovine synaptic membranes. Computer modeling was employed to create three-dimensional structures of DTXK and DTX1 from the X-ray crystal structure of alpha-DTX utilizing both structural and sequence homologies. Comparisons were made between the three toxins, providing a framework for site-directed mutagenesis.
Collapse
Affiliation(s)
- L A Smith
- Department of Immunology and Molecular Biology, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA
| | | | | | | |
Collapse
|
18
|
Hall A, Stow J, Sorensen R, Dolly JO, Owen D. Blockade by dendrotoxin homologues of voltage-dependent K+ currents in cultured sensory neurones from neonatal rats. Br J Pharmacol 1994; 113:959-67. [PMID: 7858892 PMCID: PMC1510426 DOI: 10.1111/j.1476-5381.1994.tb17086.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Homologues of dendrotoxin (Dtx) were isolated from the crude venom of Green and Black Mamba snakes and examined for K+ channel blocking activity in neonatal rat dorsal root ganglion cells (DRGs) by whole-cell patch clamp recording. 2. Outward potassium current activated by depolarization was composed of two major components: a slowly inactivating current (SIC, tau decay approximately 50 ms, 200 ms and 2s), and a non-inactivating current (NIC, tau decay > 2 min). Tail current analysis revealed two time constants of deactivation of total outward current, 3-12 ms and 50-150 ms (at -80 mV) which corresponded to SIC and NIC, respectively. 3. All the homologues (alpha-, beta-, gamma- and delta-Dtx and toxins I and K) blocked outward current activated by depolarization in a dose-dependent manner. The most potent in blocking total outward current was delta-Dtx (EC50 of 0.5 +/- 0.2 nM), although there were no statistically significant differences in potency between any of the homologues. 4. Qualitative differences in the nature of the block were noted between homologues. In particular, the block by delta-Dtx was time-dependent, whereas that by alpha-Dtx was not. 5. alpha-Dtx was a much better blocker of SIC (EC50 = 1.0 +/- 0.4 nM) than was delta-Dtx (EC50 = 17.6 +/- 5.8 nM). Furthermore, delta-Dtx was selective for NIC (EC50 +/- 0.24 +/- 0.03 nM) over SIC and reduced the slow component of tail currents (NIC), preferentially. On the other hand, a-Dtx did not significantly distinguish between SIC and NIC although tail current analysis showed that a-Dtxpreferentially reduced the fast component of tail currents (SIC).6. The results confirm, using direct electrophysiological methods, that homologues of dendrotoxins from Mamba snake venom block K+ channels in rat sensory neurones. Furthermore, a-Dtx and 6-Dtx distinguish between sub-types of K+ channels in these cells and may thus be useful pharmacological tools in other neuronal K+ channel studies.
Collapse
Affiliation(s)
- A Hall
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London
| | | | | | | | | |
Collapse
|
19
|
Gehlert DR, Robertson DW. ATP sensitive potassium channels: potential drug targets in neuropsychopharmacology. Prog Neuropsychopharmacol Biol Psychiatry 1994; 18:1093-102. [PMID: 7846282 DOI: 10.1016/0278-5846(94)90113-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
1. K channels are a diverse and ubiquitous class of proteins that regulate a number of biological functions. 2. Ligands for the study of a variety of K channels are available. These include "openers" and antagonists for the ATP sensitive K channel and peptide toxins such as apamin and charybdotoxin that block other subtypes. 3. Antagonists of the ATP sensitive K channel are useful in the treatment of type II diabetes while "openers" of this channel are being tested in asthma and cardiovascular disease. 4. Intracerebroventricular administration of K channel "openers" block experimentally induced seizures in rodents through a hyperpolarization of neurons. K channel openers may also be useful in the treatment of neurodegenerative diseases, pain and cerebral ischemia. 5. A key to the development of psychopharmacological agents to modify brain K channel function is CNS selectivity. The promise of the ATP sensitive K channel openers suggests a bright future for this mechanism.
Collapse
Affiliation(s)
- D R Gehlert
- Lilly Research Laboratories, Indianapolis, IN
| | | |
Collapse
|
20
|
Scott VE, Rettig J, Parcej DN, Keen JN, Findlay JB, Pongs O, Dolly JO. Primary structure of a beta subunit of alpha-dendrotoxin-sensitive K+ channels from bovine brain. Proc Natl Acad Sci U S A 1994; 91:1637-41. [PMID: 8127858 PMCID: PMC43218 DOI: 10.1073/pnas.91.5.1637] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Voltage-dependent cation channels are large heterooligomeric proteins. Heterologous expression of cDNAs encoding the alpha subunits alone of K+, Na+, or Ca2+ channels produces functional multimeric proteins; however, coexpression of those for the latter two with their auxiliary proteins causes dramatic changes in the resultant membrane currents. Fast-activating, voltage-sensitive K+ channels from brain contain four alpha and beta subunits, tightly associated in a 400-kDa complex; although molecular details of the alpha-subunit proteins have been determined, little is known about the beta-subunit constituent. Proteolytic fragments of a beta subunit from bovine alpha-dendrotoxin-sensitive neuronal K+ channels yielded nine different sequences. In the polymerase chain reaction, primers corresponding to two of these peptides amplified a 329-base-pair fragment in a lambda gt10 cDNA library from bovine brain; a full-length clone subsequently isolated encodes a protein of 367 amino acids (M(r) approximately 40,983). It shows no significant homology with any known protein. Unlike the channels' alpha subunits, the hydropathy profile of this sequence failed to reveal transmembrane domains. Several consensus phosphorylation motifs are apparent and, accordingly, the beta subunit could be phosphorylated in the intact K+ channels. These results, including the absence of a leader sequence and N-glycosylation, are consistent with the beta subunit being firmly associated on the inside of the membrane with alpha subunits, as speculated in a simplified model of these authentic K+ channels. Importantly, this first primary structure of a K(+)-channel beta subunit indicates that none of the cloned auxiliary proteins of voltage-dependent cation channels, unlike their alpha subunits, belong to a super-family of genes.
Collapse
Affiliation(s)
- V E Scott
- Department of Biochemistry, Imperial College, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Scott VE, Muniz ZM, Sewing S, Lichtinghagen R, Parcej DN, Pongs O, Dolly JO. Antibodies specific for distinct Kv subunits unveil a heterooligomeric basis for subtypes of alpha-dendrotoxin-sensitive K+ channels in bovine brain. Biochemistry 1994; 33:1617-23. [PMID: 8110763 DOI: 10.1021/bi00173a001] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The authentic subunit compositions of neuronal K+ channels purified from bovine brain were analyzed using a monoclonal antibody (mAb 5), reactive exclusively with the Kv1.2 subunit of the latter and polyclonal antibodies specific for fusion proteins containing C-terminal regions of four mammalian Kv proteins. Western blotting of the K+ channels isolated from several brain regions, employing the selective blocker alpha-dendrotoxin (alpha-DTX), revealed the presence in each of four different Kvs. Variable amounts of Kv1.1 and 1.4 subunits were observed in the K+ channels purified from cerebellum, corpus striatum, hippocampus, cerebral cortex, and brain stem; on the other hand, contents of Kv1.6 and 1.2 subunits appeared uniform throughout. Each Kv-specific antibody precipitated a different proportion (anti-Kv1.2 > 1.1 >> 1.6 > 1.4) of the channels detectable with radioiodinated alpha-DTX in every brain region, consistent with a widespread distribution of these oligomeric subtypes. Such heterooligomeric combinations were further documented by the lack of additivity upon their precipitation with a mixture of antibodies to Kv1.1 and Kv1.2; moreover, cross-blotting of the multimers precipitated by mAb 5 showed that they contain all four Kv proteins. Collectively, these findings demonstrate that subtypes of alpha-DTX-susceptible K+ channels are prevalent throughout mammalian brain which are composed of different Kv proteins assembled in complexes, shown previously to also contain auxiliary beta-subunits [Parcej, D. N., Scott, V. E. S., & Dolly, J.O. (1992) Biochemistry 31, 11084-11088].
Collapse
Affiliation(s)
- V E Scott
- Department of Biochemistry, Imperial College, London, U.K
| | | | | | | | | | | | | |
Collapse
|
22
|
McNamara NM, Muniz ZM, Wilkin GP, Dolly JO. Prominent location of a K+ channel containing the alpha subunit Kv 1.2 in the basket cell nerve terminals of rat cerebellum. Neuroscience 1993; 57:1039-45. [PMID: 7508581 DOI: 10.1016/0306-4522(93)90047-j] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A panel of monoclonal antibodies specific for a family of voltage-dependent, fast-activating K+ channels, raised against alpha-dendrotoxin acceptors purified from bovine brain, were used to probe the distribution of these important proteins in rat cerebellum. All the antibodies reacted with their antigens in the folial white matter, the granular cell layer and the basket cell nerve termini within the Purkinje cell layer. However, a very intense staining pattern was exhibited by only one monoclonal that reacts exclusively with Kv 1.2 alpha subunit, the predominant isoform present in alpha-dendrotoxin sensitive K+ channels. Double-labelling procedures with neuronal and glial markers were used to verify this discrete antibody staining of the basket cell terminals that synapse with the base of Purkinje cell bodies in a readily recognizable and characteristic fashion. This is the first direct demonstration, using a monoclonal antibody, of a presynaptic location for a voltage-activated K+ channel; its discrete distribution in the basket cell pinceau suggests that it could control release of the inhibitory transmitter GABA and, thereby, influence excitability of Purkinje cells in the cerebellum.
Collapse
Affiliation(s)
- N M McNamara
- Department of Biochemistry, Imperial College, London, U.K
| | | | | | | |
Collapse
|
23
|
Gehlert DR, Gackenheimer SL. Comparison of the distribution of binding sites for the potassium channel ligands [125I]apamin, [125I]charybdotoxin and [125I]iodoglyburide in the rat brain. Neuroscience 1993; 52:191-205. [PMID: 7679479 DOI: 10.1016/0306-4522(93)90192-i] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Potassium channels represent a diverse and promising target for drug development. Pharmacological subtypes of K channels have begun to emerge based on the development of both organic molecules and peptide toxins which possess subtype selectivity. In order to evaluate the neuroanatomical distribution of these subtypes we have utilized the ligands [125I]apamin, [125I]charybdotoxin and [125I]iodoglyburide in an autoradiographic study of rat brain. In the rat brain, these ligands have selectivity for the low conductance Ca(2+)-activated, voltage-gated K channels and ATP-sensitive K channels respectively. The distribution of binding sites for these three ligands were distinctly different. [125I]Apamin binding was highest in various thalamic and hippocampal structures, while only low to moderate levels of [125I]charybdotoxin binding were seen in these regions. In contrast, very high levels of [125I]charbydotoxin were seen in white matter regions such as the lateral olfactory tract and fasciculus retroflexus. High levels of [125I]charybdotoxin binding were also seen in gray matter-containing regions such as the zona incerta, medial geniculate and superior colliculus, where low to moderate [125I]apamin binding was found. [125I]Iodoglyburide presented a more uniform binding with the highest levels in the globus pallidus, islands of Calleja, anteroventral nucleus of the thalamus and zonas reticulata of the substantia nigra. These results indicate that subtypes of K channels have very different distributions in the brain. As such, the results imply differing CNS actions for potential modulators of K channel subtypes.
Collapse
Affiliation(s)
- D R Gehlert
- Central Nervous System Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285
| | | |
Collapse
|
24
|
Affiliation(s)
- A L Harvey
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
25
|
Bagetta G, Nisticó G, Dolly JO. Production of seizures and brain damage in rats by alpha-dendrotoxin, a selective K+ channel blocker. Neurosci Lett 1992; 139:34-40. [PMID: 1357602 DOI: 10.1016/0304-3940(92)90851-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
alpha-Dendrotoxin (Dtx), a snake polypeptide, increases neuronal excitability by blocking certain fast-activating, voltage-dependent K+ channels. Thus, the behavioural, electrocortical (ECoG) and neuropathological effects of Dtx, injected into rat brain areas, were studied. A unilateral injection of 35 pmol of Dtx into the CA1 hippocampal area or the dendate gyrus (DG; upper blade) immediately produced motor and ECoG seizures, followed at 24 h by multi-focal brain damage and significant neuronal loss. Whilst brain damage was seen bilaterally, significant neuronal loss occurred only in regions (CA1, CA3, CA4 and DG) ipsilateral to the site of injection. A lower dose (3.5 pmol) of toxin elicited motor and ECoG seizures but failed to produce brain damage. Seizures were observed 50 min after injecting Dtx (35 pmol) into the amygdala, though significant neuronal loss was not evident. 4-Aminopyridine (100 nmol), given into the CA1 area elicited a similar motor and ECoG pattern to that of Dtx except no brain damage could be seen at 24 h. Systemic pretreatment with antagonists of N-methyl-D-aspartate receptors (MK-801 or CGP 37849) did not protect against the effects typically evoked by injecting Dtx into the CA1 area.
Collapse
Affiliation(s)
- G Bagetta
- Department of Biology, University of Rome, Italy
| | | | | |
Collapse
|
26
|
Gehlert DR, Gackenheimer SL, Robertson DW. Autoradiographic localization of [125I]charybdotoxin binding sites in rat brain. Neurosci Lett 1992; 140:25-9. [PMID: 1383889 DOI: 10.1016/0304-3940(92)90673-u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Charybdotoxin, a 37 amino acid peptide isolated from scorpion venom, is a potent inhibitor of potassium channel function. [125I]charybdotoxin was originally believed to be a selective ligand for the Ca(2+)-sensitive channel in many tissues, but it appears to bind only to a voltage-sensitive potassium channel in brain. We found high densities of [125I]charybdotoxin binding in lateral olfactory tract, interpeduncular nucleus and a variety of mesencephalic nuclei. Moderate levels were found in the cerebral cortex, medial thalamus, hypothalamus and selected thalamic nuclei. These results indicate that [125I]charybdotoxin identifies a potassium channel or channels with a unique distribution in the brain.
Collapse
Affiliation(s)
- D R Gehlert
- Central Nervous System Research, Lilly Corporate Center, Indianapolis 46285
| | | | | |
Collapse
|
27
|
Reid PF, Pongs O, Dolly JO. Cloning of a bovine voltage-gated K+ channel gene utilising partial amino acid sequence of a dendrotoxin-binding protein from brain cortex. FEBS Lett 1992; 302:31-4. [PMID: 1587348 DOI: 10.1016/0014-5793(92)80277-n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several variants of fast-activating, voltage-dependent K+ channels exist in the nervous system where they control cell excitability and synaptic transmission, some of which are blocked selectively by alpha-dendrotoxin. Cloning of a K+ channel from bovine genomic DNA was achieved using a primer based on the N-terminal sequence of the larger subunit from the purified toxin acceptor, in conjunction with secondary primers, in the polymerase chain reaction. The resultant amino acid sequence is highly homologous to RCK 5 already cloned from rat brain, which yields a K+ current susceptible to alpha-dendrotoxin, when expressed in oocytes. These findings establish conclusively that the extensively characterized alpha-dendrotoxin acceptor is a K+ channel protein.
Collapse
Affiliation(s)
- P F Reid
- Department of Biochemistry, Imperial College, London, UK
| | | | | |
Collapse
|
28
|
Coleman MH, Yamaguchi S, Rogawski MA. Protection against dendrotoxin-induced clonic seizures in mice by anticonvulsant drugs. Brain Res 1992; 575:138-42. [PMID: 1504773 DOI: 10.1016/0006-8993(92)90433-a] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Various anticonvulsant drugs were evaluated for their ability to protect against clonic seizures induced in mice by intraventricular injection of the K+ channel blocking peptide dendrotoxin (DTX). Phenytoin, the phenytoin-like anticonvulsant carbamazepine and the broad spectrum drug valproate were effective in this model, whereas the GABA-enhancers diazepam and tiagabine, the NMDA antagonists (+/-)-CPP and (+)-MK-801, the AMPA antagonist NBQX, the antiabsence drug ethosuximide and the Ca2+ channel antagonist nimodipine were inactive. In contrast to the lack of activity of other NMDA antagonists, phencyclidine and ADCI [(+/-)-aminocarbonyl-10,11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine] were potent antagonists of DTX-induced seizures.
Collapse
Affiliation(s)
- M H Coleman
- Neuronal Excitability Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892
| | | | | |
Collapse
|
29
|
Awan KA, Dolly JO. K+ channel sub-types in rat brain: characteristic locations revealed using beta-bungarotoxin, alpha- and delta-dendrotoxins. Neuroscience 1991; 40:29-39. [PMID: 1646975 DOI: 10.1016/0306-4522(91)90172-k] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sub-types of fast-activating, voltage-dependent K+ channels were localized in rat brain using the specific probe, alpha-dendrotoxin, in conjunction with the putative K+ channel ligands, delta-dendrotoxin and beta-bungarotoxin. Sheet-film autoradiography of brain sections labelled with radioiodinated delta-dendrotoxin showed that its acceptors occur in most synapse-rich and gray matter regions, and nerve tracts; all of this labelling was abolished by alpha-dendrotoxin or its homologue, toxin I. Other structurally related peptides from mamba snake venom, beta- and gamma-dendrotoxin, were much less effective in preventing delta-dendrotoxin labelling. In common with the sites for alpha-dendrotoxin and beta-bungarotoxin, delta-dendrotoxin acceptors were enriched in cerebral cortex, thalamus and molecular layer of both the cerebellum and dentate gyrus of the hippocampus. However, delta-dendrotoxin failed to show significant binding to the Purkinje cell layer of the cerebellar cortex and stratum lacunosum moleculare of the hippocampal formation, areas labelled prominently by the other two probes. Evidence of this apparent heterogeneity in the toxin-binding proteins was consolidated by the observed inability of delta-dendrotoxin to inhibit 125I-labelled alpha-dendrotoxin or beta-bungarotoxin binding to these specified regions. Thus, delta-dendrotoxin, like beta-bungarotoxin, discriminates between sub-types of alpha-dendrotoxin acceptors but in different fashions. Whilst beta-bungarotoxin interacts preferentially with a sub-population in synaptic areas, delta-dendrotoxin distinguished sub-types in certain synaptic and gray matter regions and, in this, resembles mast cell degranulating peptide, a ligand known to block an alpha-dendrotoxin-sensitive K+ current.
Collapse
Affiliation(s)
- K A Awan
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, U.K
| | | |
Collapse
|
30
|
Biochemical and autoradiographic studies of specific [3H]minaprine binding to rat brain slices. Neurochem Int 1991. [DOI: 10.1016/0197-0186(91)90017-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Alpha-dendrotoxin acceptor from bovine brain is a K+ channel protein. Evidence from the N-terminal sequence of its larger subunit. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30474-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Homologues of a K+ channel blocker α-dendrotoxin: characterization of synaptosomal binding sites and their coupling to elevation of cytosolic free calcium concentration. Neurochem Int 1990; 16:105-12. [DOI: 10.1016/0197-0186(90)90130-l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1989] [Accepted: 11/14/1989] [Indexed: 11/18/2022]
|
33
|
Muniz ZM, Diniz CR, Dolly JO. Characterisation of binding sites for delta-dendrotoxin in guinea-pig synaptosomes: relationship to acceptors for the K+-channel probe alpha-dendrotoxin. J Neurochem 1990; 54:343-6. [PMID: 2293622 DOI: 10.1111/j.1471-4159.1990.tb13320.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With use of biologically active 125I-labelled delta-dendrotoxin, a putative K+-channel ligand, homogeneous, noninteracting, high-affinity acceptors (KD = 0.32 +/- 0.07 nM; Bmax = 0.33 +/- 0.04 pmol/mg) were observed in synaptosomes from guinea-pig cortex. This binding was antagonised noncompetitively by alpha-dendrotoxin, an inhibitor of certain fast-activating, voltage-gated K+ channels. Chemical cross-linking of the delta-dendrotoxin-acceptor complex in synaptosomes yielded two specifically labeled polypeptides with molecular masses of 69 and 82 kilodaltons. Although alpha-dendrotoxin prevents the labelling of both these bands, it cross-linked only a single protein with a molecular mass of 69 kilodaltons. It is concluded that delta-dendrotoxin interacts with a distinct site on the oligomeric acceptors for alpha-dendrotoxin.
Collapse
Affiliation(s)
- Z M Muniz
- Department of Biochemistry, Imperial College, London, England
| | | | | |
Collapse
|
34
|
Affiliation(s)
- A L Harvey
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
35
|
Abstract
Many venom toxins interfere with ion channel function. Toxins, as specific, high affinity ligands, have played an important part in purifying and characterizing many ion channel proteins. Our knowledge of potassium ion channel structure is meager because until recently, no specific potassium channel toxins were known, or identified as such. This review summarizes the sudden explosion of research on potassium channel toxins that has occurred in recent years. Toxins are discussed in terms of their structure, physiological and pharmacological properties, and the characterization of toxin binding sites on different subtypes of potassium ion channels.
Collapse
Affiliation(s)
- P N Strong
- Jerry Lewis Muscle Research Centre, Department of Paediatrics and Neonatal Medicine, Royal Postgraduate Medical School, London, U.K
| |
Collapse
|
36
|
|