1
|
Binda CS, Lelos MJ, Rosser AE, Massey TH. Using gene or cell therapies to treat Huntington's disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:193-215. [PMID: 39341655 DOI: 10.1016/b978-0-323-90120-8.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Huntington's disease is caused by a CAG repeat expansion in the first exon of the HTT gene, leading to the production of gain-of-toxic-function mutant huntingtin protein species and consequent transcriptional dysregulation and disrupted cell metabolism. The brunt of the disease process is borne by the striatum from the earliest disease stages, with striatal atrophy beginning approximately a decade prior to the onset of neurologic signs. Although the expanded CAG repeat in the HTT gene is necessary and sufficient to cause HD, other genes can influence the age at onset of symptoms and how they progress. Many of these modifier genes have roles in DNA repair and are likely to modulate the stability of the CAG repeat in somatic cells. Currently, there are no disease-modifying treatments for HD that can be prescribed to patients and few symptomatic treatments, but there is a lot of interest in therapeutics that can target the pathogenic pathways at the DNA and RNA levels, some of which have reached the stage of human studies. In contrast, cell therapies aim to replace key neural cells lost to the disease process and/or to support the host vulnerable striatum by direct delivery of cells to the brain. Ultimately it may be possible to combine gene and cell therapies to both slow disease processes and provide some level of neural repair. In this chapter we consider the current status of these therapeutic strategies along with their prospects and challenges.
Collapse
Affiliation(s)
- Caroline S Binda
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; BRAIN Unit, Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom.
| | - Thomas H Massey
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Fletcher QE, Dantzer B, Boonstra R. The impact of reproduction on the stress axis of free-living male northern red backed voles (Myodes rutilus). Gen Comp Endocrinol 2015; 224:136-47. [PMID: 26188715 DOI: 10.1016/j.ygcen.2015.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/05/2015] [Accepted: 07/14/2015] [Indexed: 11/29/2022]
Abstract
Activation of the hypothalamic-pituitary-adrenal (HPA) axis culminates in the release of glucocorticoids (henceforth CORT), which have wide-reaching physiological effects. Three hypotheses potentially explain seasonal variation in CORT. The enabling hypothesis predicts that reproductive season CORT exceeds post-reproductive season CORT because CORT enables reproductive investment. The inhibitory hypothesis predicts the opposite because CORT can negatively affect reproductive function. The costs of reproduction hypothesis predicts that HPA axis condition declines over and following the reproductive season. We tested these hypotheses in wild male red-backed voles (Myodes rutilus) during the reproductive and post-reproductive seasons. We quantified CORT levels in response to restraint stress tests consisting of three blood samples (initial, stress-induced, and recovery). Mineralocorticoid (MR) and glucocorticoid (GR) receptor mRNA levels in the brain were also quantified over the reproductive season. Total CORT (tCORT) in the initial and stress-induced samples were greater in the post-reproductive than in the reproductive season, which supported the inhibitory hypothesis. Conversely, free CORT (fCORT) did not differ between the reproductive and post-reproductive seasons, which was counter to both the enabling and inhibitory hypotheses. Evidence for HPA axis condition decline in CORT as well as GR and MR mRNA over the reproductive season (i.e. costs of reproduction hypothesis) was mixed. Moreover, all of the parameters that showed signs of declining condition over the reproductive season did not also show signs of declining condition over the post-reproductive season suggesting that the costs resulting from reproductive investment had subsided. In conclusion, our results suggest that different aspects of the HPA axis respond differently to seasonal changes and reproductive investment.
Collapse
Affiliation(s)
- Quinn E Fletcher
- Centre for the Neurobiology Stress, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Rudy Boonstra
- Centre for the Neurobiology Stress, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
3
|
Reddington AE, Rosser AE, Dunnett SB. Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient. Front Cell Neurosci 2014; 8:398. [PMID: 25520619 PMCID: PMC4251433 DOI: 10.3389/fncel.2014.00398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant inherited disorder leading to the loss inter alia of DARPP-32 positive medium spiny projection neurons ("MSNs") in the striatum. There is no known cure for HD but the relative specificity of cell loss early in the disease has made cell replacement by neural transplantation an attractive therapeutic possibility. Transplantation of human fetal striatal precursor cells has shown "proof-of-principle" in clinical trials; however, the practical and ethical difficulties associated with sourcing fetal tissues have stimulated the need to identify alternative source(s) of donor cells that are more readily available and more suitable for standardization. We now have available the first generation of protocols to generate DARPP-32 positive MSN-like neurons from pluripotent stem cells and these have been successfully grafted into animal models of HD. However, whether these grafts can provide stable functional recovery to the level that can regularly be achieved with primary fetal striatal grafts remains to be demonstrated. Of particular concern, primary fetal striatal grafts are not homogenous; they contain not only the MSN subpopulation of striatal projection neurons but also include all the different cell types that make up the mature striatum, such as the multiple populations of striatal interneurons and striatal glia, and which certainly contribute to normal striatal function. By contrast, present protocols for pluripotent stem cell differentiation are almost entirely targeted at specifying just neurons of an MSN lineage. So far, evidence for the functionality and integration of stem-cell derived grafts is correspondingly limited. Indeed, consideration of the features of full striatal reconstruction that is achieved with primary fetal striatal grafts suggests that optimal success of the next generations of stem cell-derived replacement therapy in HD will require that graft protocols be developed to allow inclusion of multiple striatal cell types, such as interneurons and/or glia. Almost certainly, therefore, more sophisticated differentiation protocols will be necessary, over and above replacement of a specific population of MSNs. A rational solution to this technical challenge requires that we re-address the underlying question-what constitutes a functional striatal graft?
Collapse
Affiliation(s)
- Amy E Reddington
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK
| | - Anne E Rosser
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK ; Department of Psychological Medicine and Neurology, Cardiff University Cardiff, UK
| | - Stephen B Dunnett
- The Brain Repair Group, School of Biosciences, Cardiff University Cardiff, UK
| |
Collapse
|
4
|
Glavan G, Sket D, Zivin M. Modulation of neuroleptic activity of 9,10-didehydro-N-methyl-(2-propynyl)-6-methyl-8-aminomethylergoline bimaleinate (LEK-8829) by D1 intrinsic activity in hemi-parkinsonian rats. Mol Pharmacol 2002; 61:360-8. [PMID: 11809861 DOI: 10.1124/mol.61.2.360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parkinsonism, a common unwanted side effect of typical antipsychotic (neuroleptic) drugs, is induced by the blockade of striatal dopamine D2 receptors. In rats with hemi-parkinsonism induced by unilateral lesion of dopaminergic nigrostriatal neurons with 6-hydroxydopamine, D2 antagonists inhibit contralateral turning induced by D2 agonists and augment the levels of neurotensin mRNA in dopaminergically intact striatum. By contrast, D1 agonists induce contralateral turning and augment neurotensin mRNA levels in dopamine-depleted striatum. These effects could be inhibited by D1 but not by D2 antagonists. Here we used a hemi-parkinsonian model to investigate the effects of putative D1 agonist/D2 antagonist LEK-8829 (9,10-didehydro-N-methyl-(2-propynyl)-6-methyl-8-aminomethylergoline bimaleinate), an experimental antipsychotic, on turning behavior and the expression of striatal neurotensin, preprotachykinin and neurotransmitter-induced early gene protein 4 (ania-4) mRNAs. We found that LEK-8829 inhibited contralateral turning induced by D2 agonist quinpirole, but only if the rats were cotreated with D1 antagonist SCH-23390. In situ hybridization showed that LEK-8829 induced the expression of neurotensin and ania-4 mRNAs in dopamine-intact striatum that could be completely blocked only by the combined treatment with SCH-23390 and quinpirole. In addition, LEK-8829 augmented the expression of neurotensin, preprotachykinin and ania-4 mRNAs in dopamine-depleted striatum that could be completely blocked by SCH-23390. This study clearly demonstrates that in hemi-parkinsonian rats D1 agonistic activity of LEK-8829 confers its anti-parkinsonian drug-like properties and modulates its neuroleptic drug-like properties, which are dependent on the blockade of dopamine D2 receptors. These findings imply that atypical antipsychotics with D1 intrinsic activity might have a reduced propensity for the induction of extrapyramidal syndrome.
Collapse
Affiliation(s)
- Gordana Glavan
- Brain Research Laboratory, Institute of Pathophysiology, School of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
5
|
Milatovic D, Zivin M, Gupta RC, Dettbarn WD. Alterations in cytochrome c oxidase activity and energy metabolites in response to kainic acid-induced status epilepticus. Brain Res 2001; 912:67-78. [PMID: 11520494 DOI: 10.1016/s0006-8993(01)02657-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effects of kainic acid (KA)-induced limbic seizures have been investigated on cytochrome c oxidase (COx) activity, COx subunit IV mRNA abundance, ATP and phosphocreatine (PCr) levels in amygdala, hippocampus and frontal cortex of rat brain. Rats were killed either 1 h, three days or seven days after the onset of status epilepticus (SE) by CO2 and decapitation for the assay of COx activity and by head-focused microwave for the determination of ATP and PCr. Within 1 h COx activity and COx subunit IV mRNA increased in all brain areas tested between 120% and 130% of control activity, followed by a significant reduction from control, in amygdala and hippocampus on day three and seven, respectively. In amygdala, ATP and PCr levels were reduced to 44% and 49% of control 1 h after seizures. No significant recovery was seen on day three or seven. Pretreatment of rats with the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN, 200 mg kg(-1), i.p.) 30 min before KA administration had no effect on SE, but protected COx activity and attenuated changes in energy metabolites. Pretreatment for three days with the endogenous antioxidant vitamin E (Vit-E, 100 mg/kg, i.p.) had an even greater protective effect than PBN. Both pretreatment regimens attenuated KA-induced neurodegenerative changes, as assessed by histology and prevention of the decrease of COx subunit IV mRNA and COx activity in hippocampus and amygdala, otherwise seen following KA-treatment alone. These findings suggest a close relationship between SE-induced neuronal injury and deficits in energy metabolism due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- D Milatovic
- Department of Pharmacology, Vanderbilt University, Medical School, Medical Center South, 2100 Pierce Avenue, Nashville, TN 37212, USA
| | | | | | | |
Collapse
|
6
|
Cowen MS, Lawrence AJ. Alterations in Central Preproenkephalin mRNA Expression After Chronic Free-Choice Ethanol Consumption by Fawn-Hooded Rats. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02326.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Harvey AR, Heavens RP, Yellachich LA, Sirinathsinghji DJ. Expression of messenger RNAs for glutamic acid decarboxylase, preprotachykinin, cholecystokinin, somatostatin, proenkephalin and neuropeptide Y in the adult rat superior colliculus. Neuroscience 2001; 103:443-55. [PMID: 11246159 DOI: 10.1016/s0306-4522(00)00581-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mammalian superior colliculus is an important subcortical integrator of sensorimotor behaviours. It is multi-layered, each layer containing specific neuronal types and possessing distinct input/output relationships. Here we use in situ hybridisation methods to map the distribution of seven neurotransmitters/neuromodulator systems in adult rat superior colliculus. Coronal sections were probed for preprotachykinin, cholecystokinin, somatostatin, proenkephalin, neuropeptide Y and the enzymes glutamic acid decarboxylase and choline acetyltransferase, markers for GABA and acetylcholine respectively. Cells expressing glutamic acid decarboxylase messenger RNA were the most abundant, the highest density being found in the superficial layers. Many cells containing proprotachykinin messenger RNA were found in stratum zonale and the upper two-thirds of stratum griseum superficiale; cells were also located in deeper tectal laminae, particularly caudomedially. Most cholecystokinin messenger RNA expressing cells were located in the superficial layers with a prominent band in the middle third of stratum griseum superficiale. Cells expressing moderate to high levels of somatostatin messenger RNA formed a dense band in the lower third of stratum griseum superficiale/upper stratum opticum; two less distinct tiers of labelling were seen in deeper layers. These in situ hybridisation data reveal three distinct sub-laminae in rat stratum griseum superficiale. Cells expressing moderate to low levels of proenkephalin messenger RNA were located in lower stratum griseum superficiale/upper stratum opticum and intermediate laminae. A cluster of enkephalinergic cells was located medially in the deep tectal laminae. Expression of neuropeptide Y messenger RNA was relatively low and mostly confined to cells in stratum griseum superficiale and stratum opticum. No choline acetyltransferase messenger RNA was detected. This in situ analysis of seven different neurotransmitters/neuromodulator systems sheds new light on the neurochemical organisation of the rat superior colliculus. The data are related to what is known anatomically and physiologically about intrinsic and extrinsic tectal circuitry, and the potential involvement of different neuropeptides in these circuits is discussed. The work forms the basis for future developmental studies examining the effects of transplantation and visual deprivation/deafferentation on tectal neurochemistry and function.
Collapse
Affiliation(s)
- A R Harvey
- Department of Anatomy and Human Biology, The University of Western Australia, Crawley, Perth, WA 6009, Australia.
| | | | | | | |
Collapse
|
8
|
Milivojevic N, Babic K, Milatovic D, Dettbarn WD, Sket D, Zivin M. N-tert-butyl-alpha-phenylnitrone, a free radical scavenger with anticholinesterase activity does not improve the cognitive performance of scopolamine-challenged rats. Int J Dev Neurosci 2001; 19:319-25. [PMID: 11337201 DOI: 10.1016/s0736-5748(01)00016-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reversible inhibitors of acetylcholinesterase improve spatial learning and memory in animal models of cognitive impairment. Here we investigate if the beneficial effects of free radical scavenger N-tert-butyl-alpha-phenylnitrone (PBN) on cognitive performance could be explained by its recently discovered anticholinesterase activity. Morris water maze experiment was performed to examine the effect of PBN on the impairment of spatial learning and memory induced by the antagonist of cholinergic muscarinic transmission scopolamine. In situ hybridization histochemistry experiment was performed to study its effects on the induction of immediate early gene expression (c-fos, c-jun) by dopamine D1 receptor agonist SKF-82958 and on the augmentation of the SKF-82958-induced expression of these genes by scopolamine. In both experiments, the effects of PBN were compared to the effects of reversible anticholinesterase physostigmine. We found that physostigmine but not PBN significantly reversed the cognitive impairment in scopolamine-challenged rats, prevented the induction of c-fos and c-jun mRNAs by SKF-82958 and attenuated the augmentation of the SKF-82958-induced expression of these genes by scopolamine. The present experiments did not reveal a significant in vivo anticholinesterase activity of PBN.
Collapse
Affiliation(s)
- N Milivojevic
- Brain Research Laboratory, Institute of Pathophysiology, Medical School, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
9
|
Nakao N, Itakura T. Fetal tissue transplants in animal models of Huntington's disease: the effects on damaged neuronal circuitry and behavioral deficits. Prog Neurobiol 2000; 61:313-38. [PMID: 10727778 DOI: 10.1016/s0301-0082(99)00058-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accumulating evidence indicates that grafts of embryonic neurons achieve the anatomical and functional reconstruction of damaged neuronal circuitry. The restorative capacity of grafted embryonic neural tissue is most illustrated by studies with striatal tissue transplantation in animals with striatal lesions. Striatal neurons implanted into the lesioned striatum receive some of the major striatal afferents such as the nigrostriatal dopaminergic inputs and the gluatmatergic afferents from the neocortex and thalamus. The grafted neurons also send efferents to the primary striatal targets, including the globus pallidus (GP, the rodent homologue of the external segment of the globus pallidus) and the entopeduncular nucleus (EP, the rodent homologue of the internal segment of the globus pallidus). These anatomical connections provide the reversal of the lesion-induced alterations in neuronal activities of primary and secondary striatal targets. Furthermore, intrastriatal striatal grafts improve motor and cognitive deficits seen in animals with striatal lesions. Since the grafts affect motor and cognitive behaviors that are critically dependent on the integrity of neuronal circuits of the basal ganglia, the graft-mediated recovery in these behavioral deficits is most likely attributable to the functional reconstruction of the damaged neuronal circuits. The fact that the extent of the behavioral recovery is positively correlated to the amount of grafted neurons surviving in the striatum encourages this view. Based on the animal studies, embryonic striatal tissue grafting could be a viable strategy to alleviate motor and cognitive disorders seen in patients with Huntington's disease where massive degeneration of striatal neurons occurs.
Collapse
Affiliation(s)
- N Nakao
- Department of Neurological Surgery, Wakayama Medical College, Wakayama, Japan.
| | | |
Collapse
|
10
|
Zivin M, Milatovic D, Dettbarn WD. Nitrone spin trapping compound N-tert-butyl-alpha-phenylnitrone prevents seizures induced by anticholinesterases. Brain Res 1999; 850:63-72. [PMID: 10629749 DOI: 10.1016/s0006-8993(99)02101-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neuroprotection afforded by spin trapping agents such as N-tert-butyl-alpha-phenylnitrone (PBN) has lent support to the hypothesis that increased production of reactive oxygen species (ROS) is a major contributing factor to excitotoxicity, aging and cognitive decline. Little is known, however, about the pharmacological properties of PBN. We have compared the acute effects of PBN on the development of seizures induced by the irreversible acetylcholinesterase (AChE) inhibitor diisopropylphosphorofluoridate (DFP), the reversible AChE inhibitor physostigmine (PHY), the muscarinic cholinergic receptor agonist pilocarpine (PIL) and the glutamatergic receptor agonist kainic acid (KA). Rats were sacrificed 90 min after the injection of seizure-inducing agents. In situ hybridization was used to detect the induction of immediate early gene (IEG) c-fos and c-jun mRNA's and the levels of AChE mRNA. The activity of AChE was visualized by AChE staining and quantified using an in vitro AChE assay. The seizures correlated with the induction of IEG mRNA's with all agents used. The pre-treatment with 150 mg/kg of PBN prevented DFP- and PHY-induced seizures and the related expression of IEG mRNA's, but had no effect on PIL- or KA-induced seizures and associated IEG mRNA's changes. PBN prevented seizures and significantly protected AChE activity against DFP inhibition when given before, but not when given after DFP. This study shows that PBN specifically protects against anticholinesterase-induced seizures by reversible protection of AChE activity and not by the blockade of muscarinic or glutamate receptors, reactivation of AChE or scavenging of ROS. The anticholinesterase properties should be considered when using PBN in studies of cholinergic dysfunction.
Collapse
Affiliation(s)
- M Zivin
- Institute of Pathophysiology, University of Ljubljana, Medical School, Slovenia
| | | | | |
Collapse
|
11
|
Gibb W, Sun M. Cellular specificity of interleukin-1beta-stimulated expression of type-2 prostaglandin H synthase in human amnion cell cultures. Biol Reprod 1998; 59:1139-42. [PMID: 9780320 DOI: 10.1095/biolreprod59.5.1139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interleukin-1beta (IL-1beta) has been shown in numerous studies to increase prostaglandin output by cultures of human amnion cells. This is due to an increase in the expression of type-2 prostaglandin H synthase (PGHS-2), the inducible form of the enzyme, in these cultures. Amnion consists of an epithelial layer of cells and a subepithelial mesenchymal layer of cells. The purpose of the present study was to determine the cell-type(s) responsible for the IL-1beta-induced PGHS-2 expression in amnion cultures. Amnion was obtained at term after elective Cesarean section or vaginal delivery. Tissues were dispersed with collagenase, and cells were plated in multichamber culture slides and cultured for 7 days in media supplemented with 10% fetal bovine serum. Cell types were characterized with antisera to keratin (epithelial cells) and vimentin (mesenchymal cells). Cultures contained both cell types, and the proportion of these varied considerably from one culture to another. Cells were treated with various concentrations of IL-1beta for 6 or 24 h and were then fixed in 4% paraformaldehyde. The fixed cells were permeabilized with Triton and examined by immunohistochemistry for PGHS-2 protein using specific antisera, and PGHS-2 mRNA was localized by in situ hybridization using a specific oligonucleotide probe. The cell type(s) expressing PGHS-2 was characterized using double labeling with antisera to keratin (epithelial cell marker) and vimentin (mesenchymal cell marker). IL-1beta was found to increase expression of immunoreactive PGHS-2 and PGHS-2 mRNA. This increased expression was found to occur only in the vimentin-positive cells and not the epithelial cells. These results highlight the potential importance of the subepithelial cells in the mesenchymal layer of amnion in the formation of prostaglandins during pregnancy and possibly in preterm labor with infection.
Collapse
Affiliation(s)
- W Gibb
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa General Hospital, Ottawa, Ontario, Canada K1H 8L6.
| | | |
Collapse
|
12
|
Olsson M, Björklund A, Campbell K. Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience 1998; 84:867-76. [PMID: 9579790 DOI: 10.1016/s0306-4522(97)00532-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The striatum is thought to be generated from two transient swellings in the ventral telencephalon, the lateral and medial ganglionic eminences, present at mid-stages of embryonic rat development. We have studied the relative contribution of these structures to the specific generation of striatal neuronal subtypes such as projection neurons and cholinergic and somatostatin-containing interneurons at an early stage and a mid stage in striatal neurogenesis. Dissociated progenitors isolated from the embryonic day 12.5 and embryonic day 15.5 rat lateral ganglionic eminence grafted into the previously ibotenic acid lesioned adult striatum, produce grafts containing extensive numbers of neurons expressing messenger RNA for the striatal projection neuron marker, DARPP-32, whereas grafts of the embryonic day 12.5 and embryonic day 15.5 medial ganglionic eminences do not. While preprosomatostatin messenger RNA-expressing neurons were observed in grafts from each of the lateral ganglionic eminence and medial ganglionic eminence at both embryonic day 12.5 and embryonic day 15.5, choline acetyltransferase messenger RNA-expressing cholinergic neurons were largely found in grafts derived from the embryonic day 12.5 medial ganglionic eminence. These results suggest that the neuronal diversity of the adult striatum may derive both from the lateral ganglionic eminence, providing DARPP-32-expressing projection neurons as well as somatostatin-containing interneurons, and the early stage medial ganglionic eminence specifically contributing the cholinergic interneurons.
Collapse
Affiliation(s)
- M Olsson
- Department of Physiology and Neuroscience, University of Lund, Sweden
| | | | | |
Collapse
|
13
|
Li XW, Li TK, Froehlich JC. Enhanced sensitivity of the nucleus accumbens proenkephalin system to alcohol in rats selectively bred for alcohol preference. Brain Res 1998; 794:35-47. [PMID: 9630499 DOI: 10.1016/s0006-8993(98)00191-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evidence suggests that alcohol-induced activation of the endogenous opioid system is part of a neurobiological mechanism that may be functionally involved in alcohol reinforcement and high alcohol drinking behavior. We postulate that a genetic predisposition toward alcohol drinking is accompanied by increased responsiveness of the opioid system to alcohol. To test this hypothesis, the present study compared the effect of an acute alcohol challenge on enkephalin gene expression in discrete brain regions which are high in preproenkephalin (PPENK) mRNA content and/or are important in mediating alcohol reward in rats selectively bred for alcohol preference (P) or nonpreference (NP). PPENK mRNA content was measured by in situ hybridization performed with a 36 base oligonucleotide probe for PPENK mRNA and was quantified using a computerized image-analysis system. Blood alcohol concentration (BAC) and rate of alcohol elimination following alcohol infusion were similar in P and NP rats. P and NP rats did not differ in basal content of PPENK mRNA in any of the brain areas examined prior to onset of infusion. An intragastric (I.G.) infusion of alcohol (2.5 g/kg b.wt) produced a significant increase in PPENK mRNA in the nucleus accumbens (both shell and core) of P but not NP rats at 1 h after the onset of infusion which coincided with the time at which peak BAC was attained. In contrast, at 8 h after the onset of the alcohol infusion, when BAC was falling toward baseline, PPENK mRNA was decreased in the nucleus accumbens of both P and NP rats and in the anterior striatum and amygdala of NP rats. The results suggest that enhanced responsiveness of the enkephalinergic system to alcohol is associated with, and may be functionally involved in, mediating high alcohol drinking behavior.
Collapse
Affiliation(s)
- X W Li
- Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
14
|
Nikitenko L, Morgan G, Kolesnikov SI, Wooding FB. Immunocytochemical and In situ hybridization studies of the distribution of calbindin D9k in the bovine placenta throughout pregnancy. J Histochem Cytochem 1998; 46:679-88. [PMID: 9562576 DOI: 10.1177/002215549804600513] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The fetus must transport considerable and increasing amounts of calcium across the placental trophoblast epithelium to support growth and development and bone formation. Active calcium transport across epithelia has been shown to correlate with calbindin D9k or 28k content. This study examined the distribution of calbindin D9k (9CBP) protein and mRNA during pregnancy in the bovine placenta to determine its possible role in calcium transport in this system. The immunocytochemical results show 9CBP in an increasing percentage of interplacentomal uninucleate trophoblast cells until, at term, all show a level at least eight times that of any other placental cell. There is a similar, although smaller, rise in their 9CBP mRNA content. The mature interplacentomal binucleate cell ( approximately 5% of the total) contains no 9CBP at any stage of pregnancy. In interplacentomal uterine epithelium, 9CBP protein and mRNA decrease to zero in late pregnancy but the glands maintain constant low levels throughout. In the placentome trophoblast, uninucleate cells show insignificant amounts but binucleate cells (15-20% of the total trophoblast cells) contain considerable levels of both 9CBP protein and mRNA, as do all the uninucleate uterine epithelial cells. The placentomal binucleate cells show peak values at mid-pregnancy; the placentomal uterine epithelium shows only small changes in levels in the second half of pregnancy. Increase in fetal calcium demand in the second half of pregnancy therefore correlates with a major increase in 9CBP only in the interplacentomal trophoblast, as we have also shown in the sheep and goat, indicating an important role for this region in active calcium transport by the ruminant placenta. The 9CBP is distributed uniformly in the cytosol and nucleoplasm, supporting a role in facilitated diffusion of calcium through the cell rather than a vesicular shuttle system.
Collapse
Affiliation(s)
- L Nikitenko
- The Babraham Institute, Cambridge United Kingdom
| | | | | | | |
Collapse
|
15
|
Jeffray TM, Matthews SG, Hammond GL, Challis JR. Divergent changes in plasma ACTH and pituitary POMC mRNA after cortisol administration to late-gestation ovine fetus. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:E417-25. [PMID: 9530123 DOI: 10.1152/ajpendo.1998.274.3.e417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plasma concentrations of cortisol and adrenocorticotropic hormone (ACTH) rise in the late-gestation sheep fetus at approximately the same time as there is an increase in the plasma levels of corticosteroid-binding globulin (CBG). We hypothesized that intrafetal cortisol infusion during late pregnancy would stimulate an increase in fetal plasma CBG, which in turn would bind cortisol and diminish glucocorticoid negative-feedback regulation of the fetal pituitary, leading to an increase in plasma ACTH concentrations. Cortisol was infused into chronically catheterized fetal sheep beginning at 126.1 +/- 0.5 days of gestation and continued for 96 h. Control fetuses were infused with saline. In cortisol-infused fetuses, the plasma cortisol concentrations rose significantly from control levels (4.4 +/- 0.6 ng/ml) to 19.3 +/- 3.1 ng/ml within 24 h and remained significantly elevated throughout the infusion period. Plasma immunoreactive (i.r.) ACTH concentrations were significantly elevated in cortisol-infused fetuses within 24-48 h and remained significantly higher than in controls throughout the 96-h experimental period. Plasma free cortisol concentrations increased 10-fold and remained significantly elevated in cortisol-infused animals, despite a rise in plasma corticosteroid-binding capacity. Levels of pituitary proopiomelanocortin (POMC) mRNA in the fetal pars distalis and pars intermedia were 96 and 38% lower, respectively, after 96 h of cortisol infusion. Therefore physiological elevations of plasma cortisol, in the late-gestation ovine fetus, lead to increases in mean plasma irACTH concentrations, but this is not associated with increases in fetal pituitary POMC mRNA levels.
Collapse
Affiliation(s)
- T M Jeffray
- Department of Physiology, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
van Meir CA, Matthews SG, Keirse MJ, Ramirez MM, Bocking A, Challis JR. 15-hydroxyprostaglandin dehydrogenase: implications in preterm labor with and without ascending infection. J Clin Endocrinol Metab 1997; 82:969-76. [PMID: 9062515 DOI: 10.1210/jcem.82.3.3812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There is evidence that intrauterine infection, which stimulates PG synthesis may play a role in the pathogenesis of some preterm labor. Local tissue concentrations of PGs are controlled not only by the rate of synthesis, but also by catabolism, which is regulated by 15-hydroxyprostaglandin dehydrogenase (PGDH). We hypothesized that a decrease of PGDH activity could contribute to an increase in PG output at the time of preterm labor (PTL) especially in association with infection. We measured PGDH activity with a zero order kinetic enzymatic assay, PGDH messenger ribonucleic acid by in situ hybridization and PGDH distribution and localization with immunohistochemistry in human placenta and fetal membranes from women at term before (n = 10) or after (n = 16) labor compared to preterm labor at less than 36 weeks without (n = 16) and with (n = 11) chorioamnionitis. PGDH activity in chorion was significantly lower in PTL than at term and was further reduced when PTL was associated with inflammation. Immunoreactive PGDH and PGDH messenger ribonucleic acid localized predominantly to chorionic trophoblasts at term and were reduced in PTL women with or without infection. These effects were not observed in the placenta. Loss of PGDH with infection was associated with infiltration of chorion by polymorphonuclear leukocytes, resulting in a compromised structural integrity, although the amniotic epithelium was generally intact. We conclude that a reduction in PGDH in the human fetal membranes may occur in some cases of preterm labor and may contribute to an increase in net PG accumulation and drive to myometrial contractility.
Collapse
Affiliation(s)
- C A van Meir
- Department of Obstetrics and Gynecology, Leiden University Hospital, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Zivin M, Sprah L, Sket D. The D1 receptor-mediated effects of the ergoline derivative LEK-8829 in rats with unilateral 6-hydroxydopamine lesions. Br J Pharmacol 1996; 119:1187-96. [PMID: 8937722 PMCID: PMC1915887 DOI: 10.1111/j.1476-5381.1996.tb16021.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Previous experiments have suggested a potential atypical antipsychotic activity of the ergoline derivative LEK-8829. In vitro experiments showed a high affinity to 5-HT1A, 5-HT2 and D2 receptors (the ratio of pKi values 5-HT2/D2 = 1.11) and a moderate affinity to D1 receptors. In vivo experiments showed antagonism of dopamine and 5-hydroxytryptamine (5-HT) receptor-linked behaviours. 2. In the present study, the rats with unilateral dopaminergic deafferentation of the striatum, induced by the lesion of the median forebrain bundle with 6-hydroxydopamine (6-OHDA), were used to determine the effects of LEK-8829 on turning behaviour and on striatal c-fos mRNA levels. 3. The administration of LEK-8829 induced a long lasting contralateral turning behaviour that was dose-dependent. It was found that the specific D1 receptor antagonist SCH-23390 but not the D2 receptor antagonist haloperidol or 5-HT1A antagonist pindolol, dose-dependently inhibited the turning behaviour induced by LEK-8829. 4. In an attempt to clarify the D1:D2 receptor interactions involved in the action of LEK-8829 in the 6OHDA model, we used in situ hybridization histochemistry to compare the effect of SCH-23390 pretreatment on striatal c-fos mRNA expression induced either by LEK-8829 or by the typical antipsychotic haloperidol. 5. LEK-8829 induced a bilateral striatal c-fos mRNA expression that was significantly higher in the denervated striatum as compared to the intact striatum and was completely blocked on both sides by pretreatment with SCH-23390. In contrast, haloperidol-induced striatal c-fos mRNA expression was limited to the innervated striatum and was not blocked by SCH-23390. 6. Our data demonstrate an intrinsic activity of LEK-8829 on D1 receptors that is potentiated in the dopamine-depleted striatum. We conclude, therefore, that the putative atypical antipsychotic LEK-8829 may prove useful as an experimental tool for the study of D1:D2 receptor interactions and could have beneficial effects in the treatment of drug-induced psychosis in patients with Parkinson's disease.
Collapse
Affiliation(s)
- M Zivin
- School of Medicine, Institute of Pathophysiology, Ljubljana, Slovenia
| | | | | |
Collapse
|
18
|
Kreft S, Zajc-Kreft K, Zivin M, Sket D, Grubic Z. Application of the nonradioactive in situ hybridization for the localization of acetylcholinesterase mRNA in the central nervous system of the rat; comparison to the radioactive technique. Pflugers Arch 1996; 431:R309-10. [PMID: 8739388 DOI: 10.1007/bf02346392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this preliminary report nonradioactive digoxigenine-based and radioactive in situ hybridization procedures for the localization of acetylcholinesterase mRNA were tested and compared in rat brain. General patterns of Ache mRNA localization observed by both techniques did not differ significantly and were practically the same as reported in previous in situ studies on the mammalian brain. Shorter procedure time and avoidance of precautions necessary at work with radioactive materials are major advantages of nonradioactive technique. Under- and over- staining can be prevented by direct examination of coloring reaction. Faint staining in the control experiment with heterologous DNA suggests that proper stringency is essential for the specificity of staining.
Collapse
Affiliation(s)
- S Kreft
- Institute of Pathophysiology, School of Medicine, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
19
|
Haque NS, Fernandez JM, Mayer E, Heavens RP, Dunnett SB, Sirinathsinghji DJ. Expression of c-fos, jun D and pp60c-src+ mRNAs in the developing and grafted rat striatum. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 41:90-6. [PMID: 8883938 DOI: 10.1016/0169-328x(96)00071-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Expression of the mRNAs of the proto-oncogenes pp60c-src+, c-fos and jun D were studied using in-situ hybridisation histochemistry in the developing striatum and in striatal grafts. The temporal patterns of mRNA expression were monitored in the striatum of the normal developing rat from the 12th day of gestation (E12) to 10 days postnatally, and were compared to the changes in gene expression observed in E13-E14 primordial striatal tissue grafts 7, 15 and 30 days after implantation in the ibotenic acid-lesioned striatum of adult rats. During development, all three proto-oncogenes were most highly expressed just before birth, at E19. Striatal expression of all three proto-oncogenes was markedly reduced after birth and remained at a low level through to adulthood. A different mode of expression was observed in the transplanted striatum which was unique to each particular gene. jun D and pp60c-src+ were expressed for a longer time period in the grafted primordial cells than in normal development, whereas no c-fos expression could be detected in the grafts. These results suggest that transplantation of embryonic neural cells into the host brain may affect the normal developmental regulation of such cells and their expression of some proto-oncogenes.
Collapse
Affiliation(s)
- N S Haque
- MRC Cambridge Centre for Brain Repair, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
20
|
Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 1996; 273:974-7. [PMID: 8688086 DOI: 10.1126/science.273.5277.974] [Citation(s) in RCA: 1361] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Small synthetic molecules termed growth hormone secretagogues (GHSs) act on the pituitary gland and the hypothalamus to stimulate and amplify pulsatile growth hormone (GH) release. A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs. On the basis of its pharmacological and molecular characterization, this GPC-R defines a neuroendocrine pathway for the control of pulsatile GH release and supports the notion that the GHSs mimic an undiscovered hormone.
Collapse
Affiliation(s)
- A D Howard
- Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Economopoulos P, Sun M, Purgina B, Gibb W. Glucocorticoids stimulate prostaglandin H synthase type-2 (PGHS-2) in the fibroblast cells in human amnion cultures. Mol Cell Endocrinol 1996; 117:141-7. [PMID: 8737373 DOI: 10.1016/0303-7207(95)03739-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The human amnion may be an important source of prostaglandins involved in the onset of labour. Glucocorticoids are possible regulators of amnion prostaglandin synthesis and have been shown to stimulate the PGE2 output and prostaglandin H2 synthase (PGHS) activity of human amnion cells maintained in primary monolayer culture. There are two known isoforms of PGHS: the constitutively expressed PGHS-1 and the inducible PGHS-2. Recent studies have shown that the latter isoform is induced by glucocorticoids. The amnion consists of a single layer of epithelial cells beneath which lies a mesenchymal layer containing fibroblasts and it is not known which cell types are responding to glucocorticoids in this manner. In the present study, we demonstrate that although both cell types are present in culture, PGHS-2 protein and mRNA levels increase exclusively within the fibroblasts in response to dexamethasone, while PGHS-1 protein and mRNA levels remain unaffected in both cell types. These results suggest that the stimulation of PGE2 in cultured amnion cells by glucocorticoids is due to an upregulation of PGHS-2 gene transcription in fibroblasts, and that these previously overlooked cells may have important roles to play in the synthesis of prostaglandins involved in labour.
Collapse
Affiliation(s)
- P Economopoulos
- Department of Obstetrics and Gynecology and Physiology, University of Ottawa, Ottawa General Hospital, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Amann R, Sirinathsinghji DJ, Donnerer J, Liebmann I, Schuligoi R. Stimulation by nerve growth factor of neuropeptide synthesis in the adult rat in vivo: bilateral response to unilateral intraplantar injections. Neurosci Lett 1996; 203:171-4. [PMID: 8742020 DOI: 10.1016/0304-3940(95)12287-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Unilateral intraplantar injections (1/day for 3 days) of 4 mu g nerve growth factor (NGF) into the rat hindpaw increased the expression of prepro-tachykinin (PPT)- and prepro-calcitonin gene-related peptide (ppCGRP)-mRNA in bilateral L5 dorsal root ganglia (DRGs). This was accompanied by an increase of CGRP-like immunoreactivity in the ipsi- and contralateral sciatic nerve but by no detectable change of CGRP-IR in other afferents. NGF injections into the skin of one ear or into the plantar side of one forepaw increased CGRP-IR in the respective afferents (trigeminal ganglion, or nerves arising from the brachial plexus, respectively), but had no effect on sciatic CGRP-IR. This suggests that the NGF-induced symmetrical increase of CGRP synthesis in L5 DRGs was not caused by systemic action of NGF, which, therefore, may be a useful tool to further investigate mechanisms which are responsible for contralateral effects of unilateral inflammation.
Collapse
Affiliation(s)
- R Amann
- Department of Experimental and Clinical Pharmacology, Graz University,
| | | | | | | | | |
Collapse
|
23
|
Wynne B, Harvey AR, Robertson D, Sirinathsinghji DJ. Neurotransmitter and neuromodulator systems of the rat inferior colliculus and auditory brainstem studied by in situ hybridization. J Chem Neuroanat 1995; 9:289-300. [PMID: 8719277 DOI: 10.1016/0891-0618(95)00095-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study was concerned with the distribution of a variety of putative neuromodulator and neurotransmitter systems in auditory regions of the rat brainstem using in situ hybridization histochemistry. Serial brain sections were screened for the presence of mRNAs for (i) precursors of the neuroactive substances cholecystokinin, somatostatin, proenkephalin and substance P (preprotachykinin), (ii) glutamic acid decarboxylase, the key synthesizing enzyme for GABA, or (iii) subunits alpha 1, alpha 2 and alpha 3 of the GABAA receptor. Detectable message for all of these probes was found in at least one auditory brainstem area. There were clear differences in the distribution of the various mRNAs in subregions of the inferior colliculus, superior olivary complex, lateral lemniscus and cochlear nucleus. Cells expressing mRNA for glutamic acid decarboxylase were most prominent in the inferior colliculus, but were also present in all lower auditory brainstem nuclei, except the medial superior olivary nucleus and medial nucleus of trapezoid body. The mRNA for GABAA alpha 1 receptor subunits was detectable in all auditory regions investigated, although at different levels of expression. GABAA alpha 2 and alpha 3 mRNA signals were seen in inferior colliculus, lateral lemniscus and in almost all superior olivary complex regions, but in fewer cells and at lower levels than the GABAA alpha 1 subtype. Moderate to high levels of preprocholecystokinin mRNA expression were seen in all subregions of the inferior colliculus. In other auditory brainstem areas, preprocholecystokinin mRNA levels were either low or absent. With regard to mRNAs for the neuroactive peptides somatostatin, preprotachykinin and preproenkephalin, all were expressed in the inferior colliculus but there were differences in their cellular distribution. For example, there were almost no preprotachykinin mRNA expressing cells in the central nucleus of inferior colliculus and levels of somatostatin mRNA were especially high in the dorsal cortex and in layer 3 of the external cortex of inferior colliculus. There were also differences in the pattern of expression of these mRNAs in the various brainstem auditory nuclei; there was no preprotachykinin mRNA in any part of the superior olivary complex, only somatostatin mRNA was found in the ventral cochlear nucleus, and expression of preproenkephalin mRNA was pronounced in the ventral nucleus of the trapezoid body and the rostral periolivary zone. The data are considered in light of the connectivity and functional organization of the auditory brainstem.
Collapse
Affiliation(s)
- B Wynne
- Department of Physiology, University of Western Australia, Nedlands, Perth, Australia
| | | | | | | |
Collapse
|
24
|
Freeman TC. Parallel patterns of cell-specific gene expression during enterocyte differentiation and maturation in the small intestine of the rabbit. Differentiation 1995; 59:179-92. [PMID: 7589902 DOI: 10.1046/j.1432-0436.1995.5930179.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Enterocytes are the major epithelial cell type of the small intestine. Their capacity to secret, absorb and digest specific ions and nutrients is dependent on their position along the length of the small intestine as well as their stage of development as they migrate and differentiate along the crypt-villus axis. In order to further understand the molecular processes that regulate enterocyte differentiation and function, this study has compared the levels of six mRNA species produced by genes expressed in rabbit enterocytes; specifically, the multidrug resistance (MDR1) gene encoding the 170-kDa P-glycoprotein, CaBP 9k, which encodes a putative intracellular calcium buffer, calbindin, LPH, APN, and AP which encode the brush-border hydrolases lactase-phlorizin hydrolase, aminopeptidase N and alkaline phosphatase, respectively, and SGLT1, encoding the brush border Na(+)-glucose cotransporter. The level of each mRNA species has been mapped along the small intestine using quantitative in situ hybridisation. This has revealed characteristic regional variations in the abundance of each of the mRNAs, supporting the opinion that there is a strong genetic component to the maintenance of gradients in epithelial function along the length of the small intestine. Analysis of the cellular accumulation of mRNA during enterocyte migration along the crypt-villus axis, over gut-associated lymphoid tissue, and at epithelial boundaries, has, by contrast, established a clear correlation in the expression of these genes. These data illustrate the dynamics of enterocyte gene expression, thereby providing an insight into the molecular mechanisms which co-ordinate the events of cell transformation that underlie functional differences between the epithelial populations of the small intestine.
Collapse
Affiliation(s)
- T C Freeman
- Department of Cellular Physiology, AFRC Babraham Institute, Cambridge, UK
| |
Collapse
|
25
|
Labandeira-Garcia JL, Liste I, Tobio JP, Rozas G, Lopez-Martin E, Guerra MJ. Intrathalamic striatal grafts survive and affect circling behaviour in adult rats with excitotoxically lesioned striatum. Neuroscience 1995; 68:737-49. [PMID: 8577370 DOI: 10.1016/0306-4522(95)00181-h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Current models of basal ganglia disorders suggest that choreoathetosis is the end result of reduced GABAergic inhibition of the motor thalamus. Graft-derived release of GABA from intrastriatal striatal grafts has also been reported. In the present work, cell suspension grafts from embryonic day 14-15 rat striatal primordia were implanted close to the ventromedial thalamic nucleus to investigate whether they can develop and survive in this ectopic location, and whether they induce changes in the circling behaviour of the host. The grafts were implanted either in normal rats or in rats whose striatum had been lesioned with ibotenic acid. These grafts were implanted either ipsilateral or contralateral to the lesioned striatum. Additionally, some rats received intrastriatal grafts, and lesioned but non-grafted rats and lesioned rats that had received injections of saline or of cell suspensions from fetal spinal cord in the thalamus were used as control. Four to eight months after transplantation, circling behaviour after amphetamine or apomorphine injection was evaluated. Serial sections were stained with Cresyl Violet and studied immunohistochemically with antibodies against DARPP-32 (dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein, as striatal marker), Fos protein, glutamate decarboxylase (67,000 mol. wt), glutamate decarboxylase (65,000 mol. wt) and GABA. Cresyl Violet sections showed that the intrathalamic striatal grafts developed into tissue masses resembling those observed in intrastriatal striatal grafts. DARPP-32 immunohistochemistry revealed that the grafts were composed of DARPP-32 immunoreactive (striatum-like) and DARPP-32-negative patches. The intrathalamic grafts of rats which had received a low dose of apomorphine (0.25 mg/kg) 2 h before perfusion showed clusters of intensely Fos-immunoreactive nuclei throughout the transplant, indicating that these cells had developed dopamine receptors and supersensitivity to dopamine agonists. Double Fos and DARPP-32 immunohistochemistry revealed that the Fos-positive nuclei were located in the striatum-like areas. Finally, the intrathalamic grafts also contained neurons immunoreactive to GABA and glutamate decarboxylase (65,000 and 67,000 mol. wt). Rats that had received intrathalamic grafts contralateral to the lesioned striatum (i.e. contralateral to the lesion-induced turning direction) showed a significant reduction of circling both after amphetamine (78% reduction) or apomorphine (77% reduction) injection. Rats that had received grafts ipsilateral to the lesioned striatum showed a 75% decrease in amphetamine-induced circling, but no significant change in apomorphine-induced circling. No significant drug-induced circling was observed in non-lesioned and grafted rats. Sham grafting (saline) or grafting of weakly GABAergic tissue (fetal spinal cord) had no significant effects on lesion-induced circling behaviour.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J L Labandeira-Garcia
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Peschanski M, Cesaro P, Hantraye P. Rationale for intrastriatal grafting of striatal neuroblasts in patients with Huntington's disease. Neuroscience 1995; 68:273-85. [PMID: 7477940 DOI: 10.1016/0306-4522(95)00162-c] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Huntington's disease is a genetic disease, autosomal and dominant, that induces motor disorders, an inexorable deterioration of higher brain functions and psychiatric disturbances. At present, there are no known therapeutics against Huntington's disease. The Network of European CNS Transplantation and Restoration (NECTAR) has begun a program aimed at defining the conditions under which intrastriatal transplantation of fetal striatal cells could be attempted as an experimental treatment for Huntington's disease. This review presents the reasons why our group is considering participating in these trials. The validity of this therapeutic approach is supported by three main series of data: (i) neuropathological, clinical and imaging data indicate that Huntington's disease is, above all, a localized affection of a specific neuronal population ("medium-spiny" neurons) in the striatum; (ii) a large body of experimental results, obtained in rats and non-human primates, demonstrates that transplanted fetal striatal cells are able to integrate the host brain and to substitute for previously lesioned host striatal neurons; (iii) expertise in clinical neural transplantation has now been acquired from the treatment of patients with Parkinson's disease. These different sets of data are presented and discussed in this review. There are a number of problems which do not yet appear to be entirely resolved, nor are they likely to be using the experimental models currently available. These problems are identified and explicitly presented as working hypotheses. (1) Anatomo-functional results obtained in rodents and non-human primates with excitotoxic striatal lesions can serve as a basis for the extrapolation of what can be obtained from patients with Huntington's disease. (2). Huntington's disease can be efficiently fought by substituting degenerated striatal neurons alone. (3) Huntington's disease is due to a genetic defect which either hits the neurons that carry it directly or hits them indirectly only after several decades. Transplanted neurons, because they do not carry the gene or because they are of fetal origin, will not be rapidly affected by the ongoing disease process. Given the current state of knowledge, intracerebral transplantation appears to be the most serious opportunity (if not the only one that has been experimentally validated) for clinical improvement to be obtained in patients with Huntington's disease. The purpose of this review is to open a scientific discussion on its experimental bases before actual clinical trials start.
Collapse
Affiliation(s)
- M Peschanski
- INSERM U 421, IM3, Neuroplasticité et Thérapeutique, Faculté de Médecine, Créteil, France
| | | | | |
Collapse
|
27
|
Matthews SG, Challis JR. Developmental regulation of preproenkephalin mRNA in the ovine paraventricular nucleus: effects of stress and glucocorticoids. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 86:259-67. [PMID: 7656418 DOI: 10.1016/0165-3806(95)00032-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The opioid peptides have profound effects at several levels within the hypothalamo-pituitary-adrenal (HPA) axis. Activation of fetal HPA function occurs during late gestation, and as part of the fetal adaptive response to stress. Changes in the relative levels, localization and distribution of hypothalamic preproenkephalin (PENK) mRNA in the ovine hypothalamic paraventricular nucleus (PVN) during development were examined by in situ hybridization histochemistry. The effects of fetal hypoxemia applied in the presence or absence of concomitant cortisol, to establish negative feedback potential in late gestation were also investigated. PENK mRNA was present at low levels within the PVN, by d60 (term d147). During mid to late gestation, there was an increase in PENK mRNA levels from d60-80 to d100-120, then reaching a peak at d130-140. Levels then decreased dramatically during the last 5-7 days prior to parturition, but increased again in the newborn lamb. Throughout gestation, PENK mRNA was confined exclusively to the parvocellular region of the PVN. Cortisol infusion induced significant decreases (P < 0.05) in PENK mRNA, in normoxemic fetuses at d135 of gestation. The hypoxemic insult, which is known to stimulate plasma ACTH and cortisol, in these fetuses, did not significantly affect PENK mRNA. There was no significant difference in hypoxemia significantly decreased PENK mRNA compared to the saline-infused normoxemic fetuses. Together, these results indicate that the elevation of endogenous fetal cortisol, that occurs at the end of gestation, may act to inhibit expression of the PENK gene in the hypothalamic PVN of the developing ovine fetus.
Collapse
Affiliation(s)
- S G Matthews
- Lawson Research Institute, Department of Physiology, University of Western Ontario, St Joseph's Health Centre, London, Canada
| | | |
Collapse
|
28
|
Page KJ, Sirinathsinghji DJ, Everitt BJ. AMPA-induced lesions of the basal forebrain differentially affect cholinergic and non-cholinergic neurons: lesion assessment using quantitative in situ hybridization histochemistry. Eur J Neurosci 1995; 7:1012-21. [PMID: 7542123 DOI: 10.1111/j.1460-9568.1995.tb01089.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The direct and transynaptic effects of lesions of the basal forebrain induced by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and ibotenic acid were investigated using quantitative in situ hybridization histochemistry. Probes complementary to the sequences of choline acetyltransferase mRNA, glutamate decarboxylase mRNA and preproenkephalin mRNA were used to assess direct lesion effects within the basal forebrain and probes for postsynaptic M-1 and M-3 muscarinic receptors were used to assess long-term changes in neocortical muscarinic receptor mRNA expression following cholinergic deafferentation. AMPA-induced basal forebrain lesions destroyed significantly more neurons that expressed choline acetyltransferase mRNA than ibotenic acid-induced lesions (90 versus 60%), but significantly fewer neurons which expressed either glutamate decarboxylase or preproenkephalin mRNA (61 versus 83% reduction in glutamate decarboxylase mRNA and 56 versus 79% reduction in preproenkephalin mRNA). AMPA-induced lesions did, however, destroy a significant proportion of the neurons which expressed glutamate decarboxylase and preproenkephalin mRNA (approximately 60%). The neurons spared following AMPA-induced lesions were typically situated dorsolaterally within the dorsal pallidum, although neurons expressing glutamate decarboxylase or preproenkephalin mRNA were frequently observed within the areas of greatest cholinergic neuronal loss, i.e. the region of the nucleus basalis magnocellularis. These findings suggest that there is a population of non-cholinergic pallidal neurons which are insensitive to AMPA but not to ibotenic acid, reflecting a possibly heterogeneous distribution of NMDA and non-NMDA subtypes of glutamate receptors within the rat basal forebrain. AMPA-induced lesions of the basal forebrain were, however, without significant effect on the levels of expression of M-1 and M-3 muscarinic receptor mRNAs in the cerebral neocortex.
Collapse
Affiliation(s)
- K J Page
- Department of Experimental Psychology, University of Cambridge, UK
| | | | | |
Collapse
|
29
|
Campbell K, Björklund A. Neurotransmitter-related gene expression in intrastriatal striatal transplants. III. Regulation by host cortical and dopaminergic afferents. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 29:263-72. [PMID: 7609615 DOI: 10.1016/0169-328x(94)00258-g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Grafted striatal neurons have previously been shown to receive innervation from both the host cerebral cortex and dopaminergic substantia nigra. In the present study, we have used quantitative in situ hybridization histochemistry for striatal neuropeptide mRNAs, to determine the extent of functional integration exhibited by these two afferent systems. DARPP-32, preproenkephalin (PPE) and preprotachykinin (PPT) mRNAs were all expressed within discrete patches of the graft (termed P-regions) which corresponded well with each other on adjacent sections. Dopamine-depleting 6-OHDA lesions resulted in a marked increase in PPE mRNA levels and a concomitant decrease in PPT mRNA expression both in the remaining host striatum and in the P-regions of the graft. In a previous report [7], we have shown that cortical and dopaminergic afferents to the striatum interact in the regulation of PPE mRNA expression, such that in the absence of functional dopaminergic inputs, intact prefrontal corticostriatal afferents are necessary in order to maintain increased PPE mRNA levels. In the present study, we observed that cortical knife cut lesions placed at the level of the foreceps minor in previously 6-OHDA-lesioned animals resulted in a normalization of PPE mRNA expression, not only in the remaining host striatum but also within the P-regions of striatal grafts. Cellular analysis showed that this normalization was most pronounced in the peripherally situated P-regions (along the graft borders), which are known to receive dense host-derived cortical input. The cortical lesions had no significant effect on the 6-OHDA-induced reduction of PPT mRNA levels neither in the remaining lost striatum nor in the striatal graft. The expression of DARPP-32 mRNA in the remaining host striatum or striatal graft was not affected by either 6-OHDA lesion or cortical transection, demonstrating the specificity of the cortical lesion effect. These results indicate that both cortical and dopaminergic afferents originating in the host, functionally regulate neuropeptide mRNA expression within the striatal grafts, and that the two afferent systems interact with each other in the regulation of enkephalin gene expression in grafted neurons. On basis of recent results [9] showing that the enkephalin-expressing neurons are identical, at least in part, to efferent graft neurons projecting to the host globus pallidus, it is proposed that the cortical-dopamine interaction demonstrated here may play an important role in the recovery of complex motor performance induced by the striatal transplants.
Collapse
Affiliation(s)
- K Campbell
- Department of Medical Cell Research, University of Lund, Sweden
| | | |
Collapse
|
30
|
Vellucci SV, Parrott RF, da Costa AC, Ohkura S, Kendrick KM. Increased body temperature, cortisol secretion, and hypothalamic expression of c-fos, corticotrophin releasing hormone and interleukin-1 beta mRNAs, following central administration of interleukin-1 beta in the sheep. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 29:64-70. [PMID: 7770002 DOI: 10.1016/0169-328x(94)00230-c] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is evidence to indicate that cytokines of the interleukin series act within the brain to influence physiological responses to pathological states or stressful events. This investigation examined the effects of intracerebroventricular (lateral ventricle) injection of human recombinant interleukin-1 beta (IL-1 beta) on body temperature, hormone (catecholamine, cortisol, prolactin, growth hormone) release and hypothalamic expression of c-fos, corticotrophin-releasing hormone (CRH), vasopressin (AVP) and IL-1 beta mRNAs in the sheep. A preliminary study showed that central administration of 10 micrograms IL-1 beta significantly (P < 0.05) increased body temperature (by 1.2 degrees C) over a 140 min period but did not affect catecholamine secretion. A second experiment using graded doses (100 ng, 1 microgram, 10 micrograms) of IL-1 beta indicated that only the highest dose significantly (P < 0.01) increased cortisol concentrations and that none of the treatments altered the secretion of prolactin or growth hormone. In a third study, changes in gene expression in the hypothalamus were examined using in situ hybridization histochemistry following treatment with 10 micrograms IL-1 beta. The results showed that IL-1 beta increased c-fos mRNA in the paraventricular (PVN, P < 0.05) and supraoptic (SON, P < 0.05) nuclei, CRH mRNA in the PVN (P < 0.01) and IL-1 beta mRNA in the PVN (P < 0.05). There was, however, no change in AVP mRNA in either the PVN or the SON.
Collapse
|
31
|
Campbell K, Wictorin K, Björklund A. Neurotransmitter-related gene expression in intrastriatal striatal transplants--II. Characterization of efferent projecting graft neurons. Neuroscience 1995; 64:35-47. [PMID: 7708212 DOI: 10.1016/0306-4522(94)00411-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The phenotypic characteristics of identified graft neurons in intrastriatal striatal transplants which give rise to efferent projections innervating the host brain were examined using a combination of in situ hybridization histochemistry and fluorescent retrograde tracing. Cell suspension grafts of embryonic day 14-15 rat striatal primordia (including both the medial and lateral ganglionic eminences) were implanted into the previously excitotoxically lesioned striatum of adult rats, and after longer than one year the retrograde tracer Fluoro-Gold was injected bilaterally into either the globus pallidus or the substantia nigra. Injections into the globus pallidus resulted in significant retrograde labelling of graft neurons within most of the experimental animals, whereas very few graft cells were labelled after the nigral injections. The vast majority of the neurons retrogradely labelled from the globus pallidus occurred in clusters or patches in the caudal half of the transplants, which corresponded well with DARPP-32 messenger RNA expressing (i.e. striatal) regions of the grafts. Indeed, within these Fluoro-Gold-labelled graft patches, the proportion of retrogradely labelled cells found to contain DARPP-32 messenger RNA was identical to that observed in the intact striatum after similar pallidal injections (93%). In addition, some Fluoro-Gold-labelled cells were found scattered outside the DARPP-32-positive cell clusters; these cells were overall larger and rarely (c. 9%) DARPP-32 messenger RNA-positive. Messenger RNA encoding for glutamate decarboxylase (which was found in 95% of Fluoro-Gold-labelled neurons in the intact striatum) was detected in almost all retrogradely labelled graft neurons located in both the DARPP-32-positive patches of retrograde labelling (93%) and in the DARPP-32-negative regions (82%). In the intact striatum, neurons labelled after pallidal injections of Fluoro-Gold were observed to express preproenkephalin messenger RNA to a greater extent than preprotachykinin messenger RNA (81% vs 21%). Conversely, within the grafts, retrogradely labelled neurons in the patches of Fluoro-Gold-labelled cells were more often found to contain preprotachykinin messenger RNA (50%) than preproenkephalin messenger RNA (21%). The Fluoro-Gold-labelled cells scattered outside the patches of retrograde labelling rarely expressed either preproenkephalin or preprotachykinin messenger RNA. Fluoro-Gold injections into the host substantia nigra resulted in very few retrogradely labelled graft neurons; however, many (85%) of these cells were observed to express glutamate decarboxylase messenger RNA, while only rarely were they observed to contain either DARPP-32, preproenkephalin or preprotachykinin messenger RNAs (c. 10%).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Campbell
- Department of Medical Cell Research, University of Lund, Sweden
| | | | | |
Collapse
|
32
|
Campbell K, Wictorin K, Björklund A. Neurotransmitter-related gene expression in intrastriatal striatal transplants--I. Phenotypical characterization of striatal and non-striatal graft regions. Neuroscience 1995; 64:17-33. [PMID: 7708203 DOI: 10.1016/0306-4522(94)00412-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the present study, we have re-examined the heterogeneous nature of intrastriatal striatal transplants derived from embryonic day 14-15 rat striatal primordia implanted into the previously excitotoxically lesioned striatum of adult rats, using in situ hybridization histochemistry to localize neurotransmitter-related messenger RNAs. These grafts are characterized by discrete patches of DARPP-32 messenger RNA expression, which cover approximately one-third of the cross-sectional graft area. The messenger RNAs encoding for preproenkephalin (the enkephalin precursor), preprotachykinin (precursor to substance P), choline acetyltransferase, as well as the D1 and D2 dopamine receptors, which are abundant in the normal striatum, were all present in the striatal grafts and were expressed almost exclusively in the DARPP-32-positive graft regions. In these graft regions, the expression of the neurotransmitter-related messenger RNAs was generally similar to that seen in the intact striatum, although the level of expression of preproenkephalin and preprotachykinin messenger RNAs varied notably among the patches of expression. Cellular analysis performed on individual patches showed that the expression per cell of preproenkephalin and preprotachykinin messenger RNAs was inversely related, such that patches with higher than normal preproenkephalin messenger RNA levels displayed lower than normal preprotachykinin messenger RNA levels, and vice versa. Moreover, messenger RNA expression for the dopamine D2 receptor was overall lower than that for the dopamine D1 receptor, both with respect to the level per cell and the number of positive cells within the DARPP-32 patches. Glutamate decarboxylase messenger RNA was expressed throughout the grafts, in 98% of all neurons located in the DARPP-32-positive regions and in 75% of all neurons in the non-DARPP-32 regions of the graft. Interestingly, the cellular expression of glutamate decarboxylase messenger RNA was considerably higher in the non-DARPP-32 expressing regions than that in the DARPP-32 messenger RNA-rich areas, where it approximated that of the intact striatum. Furthermore, grafted neurons located outside the DARPP-32-expressing regions displayed similar levels of expression to those found in the overlying cortex and in the closely adjacent globus pallidus. To further characterize the DARPP and non-DARPP graft compartments, messenger RNAs encoding the alpha 1 and beta 2 subunits of the GABAA receptor were studied. These receptor subunits, which exhibit a high expression in the host cortex and pallidum but little in the intact striatum, were found in discrete patches situated outside, but often closely associated with, the DARPP-32-rich areas of the graft.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Campbell
- Department of Medical Cell Research, University of Lund, Sweden
| | | | | |
Collapse
|
33
|
Simpson CS, Johnston HM, Morris BJ. Phenotypic characterisation of rat striatal neurones in primary culture. Tissue Cell 1994; 26:929-41. [PMID: 7886679 DOI: 10.1016/0040-8166(94)90042-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of this study was to determine to what extent the neuronal phenotypes present in primary cultures of rat striatal neurones correspond to those present in vivo. A large percentage of cultured striatal neurones contained relatively high levels of proenkephalin mRNA. In addition, a high level of expression was found for the prosomatostatin mRNA. Protachykinin mRNA and proneuropeptide Y mRNA were also expressed, but at a comparatively low level. No prodynorphin mRNA could be detected. Considerable numbers of neurones were also found to express NADPH-diaphorase activity, while a smaller number of neurones were positive for acetylcholinesterase. The NADPH-diaphorase and the acetylcholinesterase could be detected both in cell bodies, and in neuronal processes contacting groups of neighbouring neurones. Since nitric oxide does not require synaptic specialisations to exert its intercellular actions, this provides strong evidence that NADPH-positive neurones communicate with other cells in primary culture. These observations demonstrate that when striatal neurones are grown in primary culture, a range of neurochemical phenotypes are present which correspond closely to those present in the mature striatum in vivo. Together with the evidence for cell-cell interactions, this suggests that primary striatal cultures will provide a suitable model to study the molecular mechanisms controlling striatal function.
Collapse
Affiliation(s)
- C S Simpson
- Department of Pharmacology, University of Glasgow, UK
| | | | | |
Collapse
|
34
|
Sirinathsinghji DJ, Schuligoi R, Heavens RP, Dixon A, Iversen SD, Hill RG. Temporal changes in the messenger RNA levels of cellular immediate early genes and neurotransmitter/receptor genes in the rat neostriatum and substantia nigra after acute treatment with eticlopride, a dopamine D2 receptor antagonist. Neuroscience 1994; 62:407-23. [PMID: 7830888 DOI: 10.1016/0306-4522(94)90376-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cellular immediate early genes are involved in the transcriptional events associated with the dopaminergic regulation of neurotransmitter expression within neurons of the neostriatum. To characterize these events in detail, quantitative in situ hybridization histochemistry was used to assess the temporal effects of acute dopamine receptor blockade with eticlopride, a dopamine D2 receptor antagonist, on the messenger RNA expression of the immediate early genes and neurotransmitters/receptors in the caudate-putamen and ventral tegmental area/substantia nigra pars compacta of the rat. Groups of rats were injected with a single dose of either isotonic saline or eticlopride (0.5 mg/kg i.p.) and killed at various time intervals ranging from 5 min to 24 h and frozen brain sections processed by in situ hybridization histochemistry. Using computerized image analysis, the changes in messenger RNA expression for c-fos, c-jun, jun B, jun D, nerve growth factor I-A and nerve growth factor I-B and for neurotensin, glutamate decarboxylase, proenkephalin, the dopamine D1 receptor and the short and long isoforms of the D2 receptor were examined in the caudate-putamen. In the ventral tegmental area and substantia nigra pars compacta, the messenger RNA expression of the above early response genes and that for neurotensin, tyrosine hydroxylase, cholecystokinin and the D2 receptor isoforms were also examined. In the neostriatum, eticlopride caused a rapid increase in c-fos messenger RNA with significantly increased levels at 10 min (P < 0.01). The levels peaked at 30 min and thereafter declined to control levels. A similar profile was observed for jun B messenger RNA, although levels were still significantly (P < 0.01) elevated at 1 h and declined to basal levels thereafter. No significant changes were observed for c-jun, jun D, nerve growth factor I-A and nerve growth factor I-B messenger RNAs. In the dorsolateral neostriatum, there was an increase in proneurotensin messenger RNA 10 min after eticlopride, this increase becoming significant (P < 0.01) at 60 min. Levels were maximal at 2-6 h and decreased after 12 h to basal levels. There were small increases in proenkephalin messenger RNA, but these were not significant (P < 0.05) until 6 h after the injection. Eticlopride did not have any significant effects on the messenger RNA levels for glutamate decarboxylase, the D1 receptor and the short and long isoforms of the D2 receptor.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D J Sirinathsinghji
- Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, U.K
| | | | | | | | | | | |
Collapse
|
35
|
Johnston HM, Morris BJ. Nitric oxide alters proenkephalin and prodynorphin gene expression in hippocampal granule cells. Neuroscience 1994; 61:435-9. [PMID: 7969920 DOI: 10.1016/0306-4522(94)90423-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Application of N-methyl-D-aspartate on to the dendrites of hippocampal granule cells dramatically decreased prodynorphin messenger RNA levels in the affected cells while increasing proenkephalin messenger RNA levels. Sin-1 molsidomine (an agent which releases nitric oxide) and 8-bromo-cyclic GMP were similarly effective, and the actions of sin-1 molsidomine were blocked by inhibition of cyclic GMP-dependent protein kinase. Since, in this region, dynorphins act to inhibit potentiation of synaptic transmission, while enkephalins have excitatory effects, this switch in opioid gene expression is likely to have a prolonged effect on the efficiency of the mossy fibre synapses. In addition, the results demonstrate a powerful role for nitric oxide in the long-term regulation of hippocampal excitability.
Collapse
Affiliation(s)
- H M Johnston
- Department of Pharmacology, University of Glasgow, U.K
| | | |
Collapse
|
36
|
Johnston HM, Morris BJ. Induction of c-fos gene expression is not responsible for increased proenkephalin mRNA levels in the hippocampal dentate gyrus following NMDA stimulation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 25:147-50. [PMID: 7984041 DOI: 10.1016/0169-328x(94)90291-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The increased levels of proenkephalin mRNA in the dentate gyrus following hippocampal stimulation have been assumed to be a consequence of the transient induction of c-fos. Injection of 50 microM NMDA in vivo onto the dendrites of a small number of granule cells causes a pronounced but highly localised elevation in proenkephalin mRNA levels 24 h later, whereas vehicle has no effect. In contrast, there is a widespread induction of c-fos mRNA throughout the dentate gyrus, 45 min after injection of either vehicle or NMDA, suggesting that induction of c-fos expression is unrelated to the subsequent, anatomically discrete, increase in proenkephalin mRNA levels.
Collapse
Affiliation(s)
- H M Johnston
- Department of Pharmacology, University of Glasgow, UK
| | | |
Collapse
|
37
|
Broad KD, Kendrick KM, Sirinathsinghji DJ, Keverne EB. Changes in pro-opiomelanocortin and pre-proenkephalin mRNA levels in the ovine brain during pregnancy, parturition and lactation and in response to oestrogen and progesterone. J Neuroendocrinol 1993; 5:711-9. [PMID: 8680446 DOI: 10.1111/j.1365-2826.1993.tb00544.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the female sheep opioids act centrally to influence both oxytocin release and maternal behaviour. We have used in situ hybridization and histochemistry to investigate the changes in mRNA expression of the two opioid precursor genes, pro-opiomelanocortin (POMC) and pre-proenkephalin (PPE), in discrete hypothalamic nuclei as a function of pregnancy, parturition and lactation and following treatment with oestrogen and progesterone. Quantitative in situ hybridization histochemistry demonstrated that POMC mRNA expression in the arcuate nucleus (ARC) decreased at parturition and increased during lactation compared to late pregnant and ovariectomized animals. Oestradiol and progesterone treatments increased POMC mRNA expression compared to ovariectomized controls. Pre-proenkephalin mRNA expression was quantified in three discrete hypothalamic nuclei, the ventromedial nucleus (VMN), the paraventricular nucleus (PVN) and the suprachiasmatic nucleus (SCN). In the VMN, PPE mRNA expression increased during lactation compared to late pregnancy and parturition. Expression levels during late pregnancy and parturition were decreased compared to ovariectomized animals. Oestradiol increased, and progesterone decreased, PPE mRNA levels compared to ovariectomized controls. Combined progesterone followed by oestrogen treatment produced significant increases in PPE mRNA expression. In the PVN, PPE expression increased at parturition compared to late pregnant, lactating and ovariectomized animals. Expression levels in late pregnant animals were decreased compared to lactating or ovariectomized ones. However, sex steroid treatment produced no changes in PPE expression in the PVN. No changes were observed in PPE mRNA expression in the SCN in response to any of the experimental conditions. This data shows that both POMC and PPE mRNA levels are altered in the sheep brain during pregnancy, parturition and lactation and in response to sex steroids, although the direction of the changes is not always the same and in the case of PPE only the VMN and PVN are affected.
Collapse
Affiliation(s)
- K D Broad
- Sub-department of Animal Behaviour, University of Cambridge, Madingley, UK
| | | | | | | |
Collapse
|
38
|
Rutherfurd SD, Gundlach AL. Opioid peptide gene expression in the nucleus tractus solitarius of rat brain and increases induced by unilateral cervical vagotomy: implications for role of opioid neurons in respiratory control mechanisms. Neuroscience 1993; 57:797-810. [PMID: 7906015 DOI: 10.1016/0306-4522(93)90025-b] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neurons expressing messenger RNA encoding the opioid peptide precursors, preproenkephalin and preprodynorphin were localized in the medulla oblongata of the rat by in situ hybridization of specific DNA oligonucleotide probes. Neurons containing preproenkephalin messenger RNA were found throughout the medullary reticular formation in the gigantocellular and paragigantocellular reticular nuclei, the parvicellular and lateral reticular nuclei; commissural, medial and ventrolateral subnuclei in the nucleus tractus solitarius and the nucleus of the spinal trigeminal tract. Labelled cells were also concentrated in the more medial regions of the area postrema. In contrast, neurons containing preprodynorphin messenger RNA had a more restricted distribution and were detected in the commissural and ventrolateral nucleus tractus solitarius and nucleus of the spinal trigeminal tract, especially in the more dorsal regions. Expression of preproenkephalin and preprodynorphin messenger RNA was also examined in the dorsal vagal complex of rats that had undergone a unilateral nodose ganglionectomy or cervical vagotomy. Twenty-four hours after both cervical vagotomy and nodose ganglionectomy, there was a specific 1.5-2-fold elevation in preproenkephalin and preprodynorphin messenger RNA levels in the ventrolateral subnucleus of the contralateral nucleus tractus solitarius relative to levels in the ipsilateral nucleus tractus solitarius and in the nucleus tractus solitarius of sham-operated animals. Previous immunohistochemical studies demonstrating the co-localization of enkephalin and dynorphin in the ventrolateral nucleus tractus solitarius suggest that these changes occurred in the same population of neurons. In light of the suggested role of the ventrolateral nucleus tractus solitarius as a central respiratory centre and the activation of the intact pulmonary afferents that innervate this area following a unilateral vagotomy (which increases inspiration volume and expiratory time by affecting the Hering-Breuer reflex), our results suggest a specific involvement of enkephalin- and dynorphin-containing neurons in the ventrolateral nucleus tractus solitarius in central respiratory control mechanisms.
Collapse
Affiliation(s)
- S D Rutherfurd
- University of Melbourne, Department of Medicine, Heidelberg, Vic., Australia
| | | |
Collapse
|
39
|
Nothias F, Salin P, Peschanski M, Chesselet MF. Glutamic acid decarboxylase gene expression in thalamic reticular neurons transplanted as a cell suspension in the adult thalamus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 20:245-53. [PMID: 8302162 DOI: 10.1016/0169-328x(93)90047-s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The goal of the present study was to determine whether alterations in neuronal morphology and connections in thalamic grafts were accompanied by changes in the expression of mRNA encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of GABA, the normal neurotransmitter of neurons of the thalamic reticular nucleus. Cell suspensions of rat fetal tissue containing both thalamic reticular nucleus and ventrobasal primordia were transplanted into the excitotoxically lesioned somatosensory thalamus of adult rats. Levels of messenger RNA (mRNA) encoding GAD (Mr 67,000; GAD67) were measured 7 days to 4 months following transplantation via quantitative in situ hybridization with 35S-radiolabeled antisense RNAs. Expression of GAD67 mRNA in the thalamic reticular nucleus was analyzed in parallel in rat pups between 0 and 30 days postnatally, and in adult animals. As already observed with immunohistochemistry, transplanted neurons of the thalamic reticular nucleus did not group in specific clusters but rather mingled with unlabeled (putatively ventrobasal) neurons. Levels of labelling for GAD67 mRNA per neuron increased over time and reached adult levels during the third week post-grafting, i.e. 2 weeks after the theoretical birthdate of the neurons (grafted at embryonic days 15-16). Similar values were observed and a plateau was reached at similar time points during normal ontogeny. The results suggest that, in contrast to morphology and size of the neuronal cell bodies, gene expression of GAD67 develops normally despite the ectopic location of neurons of the thalamic reticular nucleus in the somatosensory thalamus, the abnormal connectivity and the lack of segregation from non-GABAergic neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- F Nothias
- INSERM CJF 91-02, Faculté de Médecine, Créteil, France
| | | | | | | |
Collapse
|
40
|
Abstract
Recent identification of the gene for Huntington's disease is currently attracting widespread attention. While having importance for predictive testing and the potential of elucidating the underlying disease process, this discovery does not yet provide any advances for therapeutic intervention. Here we review recent advances in the development of improved animal models of Huntington's disease and strategies for its repair. Novel toxins may better mimic the neuropathology, and provide important clues about the underlying metabolic disorder, of the human disease. In addition, recent experiments into the cellular morphology, development and function of striatal cell transplants in both rats and monkeys are now indicating the prospect of viable strategies for structural repair in this disorder.
Collapse
|
41
|
Schuligoi R, Fernandez J, Heavens RP, Sirinathsinghji DJ. Decreased tyrosine hydroxylase mRNA but not cholecystokinin mRNA in the pars compacta of the substantia nigra and ventral tegmental area of aged rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 19:333-8. [PMID: 7901729 DOI: 10.1016/0169-328x(93)90135-c] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Quantitative in situ hybridization histochemistry was used to determine the age-related changes in tyrosine hydroxylase (TH) mRNA and cholecystokinin (CCK) mRNA in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) of the rat. Coronal sections (10 microns) were cut in a cryostat through the VTA and SNc of brains from 3 months and 33 month old Sprague-Dawley rats and immediately adjacent sections hybridized with 35S-labelled 45-mer oligonucleotide probes specific for either the rat TH or CCK genes. The mRNA levels of each gene were estimated by computerised densitometric analysis of the signal on X-ray film autoradiograms and estimation of the number of mRNA expressing cells as well as the density of expression per cell (grain density) was made from high resolution emulsion autoradiograms. Analysis of the TH mRNA on X-ray film autoradiograms indicated that the levels averaged 25% lower in the SNc (P < 0.01) and 18% lower in the VTA (P < 0.05) of the old rats. However, analysis of the emulsion autoradiograms showed that this reduction in TH mRNA in the VTA and SNc in the old rats was not due to a loss of TH mRNA expressing cells but due to a reduction in the hybridization signal per expressing cell.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Schuligoi
- Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, UK
| | | | | | | |
Collapse
|
42
|
Broad KD, Kendrick KM, Sirinathsinghji DJ, Keverne EB. Changes in oxytocin immunoreactivity and mRNA expression in the sheep brain during pregnancy, parturition and lactation and in response to oestrogen and progesterone. J Neuroendocrinol 1993; 5:435-44. [PMID: 8401567 DOI: 10.1111/j.1365-2826.1993.tb00505.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of pregnancy, parturition and lactation and exogenous treatments with oestradiol and progesterone on oxytocin (OXY) immunoreactivity and gene expression in the sheep brain were investigated. Immunocytochemistry was used to demonstrate that increased OXY-immunoreactivity occurred in cells of the paraventricular (PVN) and supraoptic nuclei (SON), the bed nucleus of the stria terminalis (BNST), the anterior commissural nuclei (ACN) and the periventricular part of the medial preoptic area (PvMP). Oxytocin immunoreactive terminals were also seen in the accessory olfactory nucleus, the glomerular and peri-glomerular layers of the olfactory bulb, the lateral septum, the zona incerta and the pars compacta of the substantia nigra. Compared to ovariectomized and late pregnant animals, the intensity of immunoreactivity was increased in all of these oxytocinergic elements at parturition, during lactation and following exogenous treatment with oestradiol. The OXY-immunoreactivity was also more intense in late pregnant animals compared to ovariectomized ones. Quantitative in situ hybridization histochemistry showed that cells in the PVN, SON, BNST and PvMP all showed significantly increased expression of OXY mRNA in animals at parturition and during lactation compared to late pregnant or ovariectomized animals. Expression levels in late pregnant animals were also significantly higher than in ovariectomized ones. Progesterone treatment significantly increased OXY mRNA in the PVN, SON, BNST and PvMP whereas oestradiol treatment was only effective in the PVN, BNST and PvMP. Combined treatment with these steroids did not significantly increase OXY mRNA levels in comparison with their administration alone. These results show that OXY-immunoreactivity and mRNA expression are at their highest in the sheep brain when maternal behaviour is induced. The increased synthesis/storage of the peptide at parturition may be due to changes in circulating concentrations of both progesterone and oestradiol during late pregnancy.
Collapse
Affiliation(s)
- K D Broad
- Sub-department of Animal Behaviour, University of Cambridge, Madingley, UK
| | | | | | | |
Collapse
|
43
|
Matthews SG, Parrott RF, Sirinathsinghji DJ. Distribution and cellular localization of vasopressin mRNA in the ovine brain, pituitary and pineal glands. Neuropeptides 1993; 25:11-7. [PMID: 8413848 DOI: 10.1016/0143-4179(93)90063-g] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, in situ hybridization histochemistry was used to determine the regional and cellular localization of vasopressin-neurophysin II (AVP) mRNA in the sheep brain and pituitary with an 35S-labelled synthetic 45-mer oligonucleotide probe complementary to the bovine AVP gene. The highest densities of labelled cell bodies were found in the paraventricular nucleus (PVN), supraoptic nucleus (SON) and suprachiasmatic nucleus (SCN) of the hypothalamus, though such cells were also found in other regions of the diencephalon, including the accessory magnocellular nuclei. Labelled cells were also observed sparsely distributed in every major cortical field as well as in choroid plexus and the pineal gland. No AVP mRNA-expressing cells were found in the bed nucleus of the stria terminalis, the amygdala, or in the medulla and brainstem. In the pituitary, a dense AVP mRNA signal was observed in the intermediate lobe whereas, cells in the anterior or neural lobe did not express AVP mRNA. The dense population of AVP-expressing neurons in both magnocellular and parvocellular fields of the hypothalamus support major roles of AVP in both posterior and anterior pituitary function. Finally, the extrahypothalamic distribution of AVP mRNA transcripts suggest that vasopressinergic neurons may be involved in diverse physiological functions, including the regulation of pineal function and cognition.
Collapse
Affiliation(s)
- S G Matthews
- AFRC Institute of Animal Physiology and Genetics Research, Cambridge Research Station, Babraham, Hall, UK
| | | | | |
Collapse
|
44
|
Liu FC, Dunnett SB, Graybiel AM. Intrastriatal grafts derived from fetal striatal primordia--IV. Host and donor neurons are not intermixed. Neuroscience 1993; 55:363-72. [PMID: 8377931 DOI: 10.1016/0306-4522(93)90505-a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Embryonic striatal grafts transplanted into excitotoxin-damaged host striatum develop a heterogeneous structure in which some regions resemble striatum but others do not. In the experiments reported here, we tested for the possibility that the regions resembling striatum were actually derived from host neurons that migrated into the grafts, rather than being derived from donor cells. We placed embryonic striatal grafts into host brains in which striatal cells had been multiply pulse-labeled with [3H]thymidine. Four groups of host rats were exposed to [3H]thymidine at embryonic days 12 and 13-15, 15-18, 16-19, or 20 to postnatal day 1, and were allowed to reach maturity. One week prior to grafting, lesions of the caudoputamen were made unilaterally in each host rat by injecting ibotenic acid. At grafting, dissociated cells from embryonic days 14-16 rat striatal primordia were injected bilaterally into the host caudoputamen. The locations of [3H]thymidine-labeled neurons were analysed by autoradiography eight to 16.5 months post-grafting. Despite the presence of many intensely labeled neurons in the host striatum of rats in all four groups, intensely labeled neurons were rarely found in the cores of grafts. A few weakly labeled small cells appeared in the graft cores, and occasional strongly or weakly labeled medium-sized cells appeared at the margins of the graft zones. Some perivascular cells associated with blood vessels in the grafts were also weakly labeled, but the gliotic tissue surrounding the graft zones was not labeled. These results suggest that very few host striatal neurons migrate into the cores of intrastriatal grafts, or that, if they do, such neurons return to the host striatum or do not survive. At most, surviving host striatal neurons have limited spatial interactions with donor cells at the margins of the grafts, both in the damaged and in the intact host striatal environment. These observations, combined with our previous finding that [3H]thymidine-labeled cells derived from embryonic day 15 striatal primordia do not appear in the host striatum, indicate that no extensive mutual migrations of striatal donor neurons and host neurons occur in the zones of grafting.
Collapse
Affiliation(s)
- F C Liu
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Cambridge 02139
| | | | | |
Collapse
|
45
|
Sirinathsinghji DJ, Heavens RP, Torres EM, Dunnett SB. Cholecystokinin-dependent regulation of host dopamine inputs to striatal grafts. Neuroscience 1993; 53:651-63. [PMID: 8487948 DOI: 10.1016/0306-4522(93)90613-k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intrastriatal infusions of cholecystokinin-8-sulphate in the rat exerts a dose-dependent inhibition of dopamine-release from nigrostriatal terminals in the neostriatum, as measured by push-pull perfusion. This effect is abolished by excitotoxic lesions of the neostriatum, which, along with behavioural, electrophysiological and receptor binding studies, suggests that cholecystokinin exerts its action indirectly on dopamine release via receptors located on intrinsic striatal neurons. Grafts of embryonic striatum implanted in the lesioned striatum become innervated by host-derived dopamine axons and restore the response of those host neurons to cholecystokinin infusion. This suggests that the innervation of the grafts by dopaminergic axons of the host brain does not simply provide a tonic input to the grafts, but rather represents a phasic input that is under dynamic local regulation by graft-host feedback influences from the transplanted neurons themselves.
Collapse
Affiliation(s)
- D J Sirinathsinghji
- Department of Neurobiology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, U.K
| | | | | | | |
Collapse
|
46
|
Freeman TC, Wood IS, Sirinathsinghji DJ, Beechey RB, Dyer J, Shirazi-Beechey SP. The expression of the Na+/glucose cotransporter (SGLT1) gene in lamb small intestine during postnatal development. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1146:203-12. [PMID: 8452856 DOI: 10.1016/0005-2736(93)90357-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have shown previously that the activity and abundance of the intestinal Na+/glucose cotransporter (SGLT1) declines dramatically during the postnatal development of lambs, and that it can be restored in the intestine of ruminant sheep by intra-luminal infusion of D-glucose. The work presented in this paper has followed the expression of the SGLT1 gene along the vertical and horizontal axes of the ovine small intestine during early development, using quantitative in situ hybridisation histochemistry. Along the vertical axis, SGLT1 mRNA was first detectable just below the crypt-villus junction and rose rapidly to a peak level approx. 150 microns above this point. After reaching a maximum, the amount of message gradually declined towards the villus tip. This pattern of mRNA accumulation along the crypt-villus axis was similar in all intestinal positions and age groups. Along the length of the small intestine (horizontal axis), a decline in the level of SGLT1 mRNA was observed first in the distal intestine. This decrease in SGLT1 mRNA was significant in the intestine (75% of length) of 5-week-old lambs when compared to tissue taken from 25 and 50% of length (P < 0.01 and P < 0.02, respectively). However, the observed fall in the expression of this gene during weaning did not coincide with the fall in activity and amount of SGLT1. In adult animals, where the activity of SGLT1 is very low, the amount of message was greatly reduced. This work supports the finding that the expression of SGLT1 is primarily controlled at the post-transcriptional level during the postnatal development of ovine intestine.
Collapse
Affiliation(s)
- T C Freeman
- Department of Cell Biology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
47
|
Freeman TC, Collins AJ, Heavens RP, Tivey DR. Genetic regulation of enterocyte function: a quantitative in situ hybridisation study of lactase-phlorizin hydrolase and Na(+)-glucose cotransporter mRNAs in rabbit small intestine. Pflugers Arch 1993; 422:570-6. [PMID: 8469609 DOI: 10.1007/bf00374004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The enterocyte undergoes sequential changes in its structure and function as it migrates rapidly from the small intestinal crypts to the villus tip. The mechanisms by which these changes are regulated "in tune" with ontogenic and dietary changes in the luminal environment are currently under investigation. This study has employed oligonucleotide probes to follow the expression of the lactase-phlorizin hydrolase (LPH) and Na(+)-glucose cotransporter (SGLT1) genes in rabbit small intestine using quantitative in situ hybridisation histochemistry. The profiles of LPH mRNA and SGLT1 mRNA accumulation along the crypt-villus axis were found to be very similar. Although mRNA was undetectable in the crypt. LPH and SGLT1 mRNA levels rose rapidly at the crypt-villus junction, reaching a maximum between 210 microns and 330 microns above this point. Further up the villus the level of mRNAs declined. SGLT1 mRNA was present in all small intestinal segments (duodenum, jejunum and ileum), whereas LPH mRNA was absent from the ileum. LPH activity rose and fell in conjunction with mRNA, but SGLT1 activity was greatest at the villus tip where mRNA levels were considerably reduced. These data have been used to discuss the genetic regulation of enterocyte differentiation and function.
Collapse
Affiliation(s)
- T C Freeman
- Department of Biochemistry, University of Wales, Aberystwyth, Dyfed, UK
| | | | | | | |
Collapse
|
48
|
Vellucci SV, Sirinathsinghji DJ, Richardson PJ. Adenosine A2 receptor regulation of apomorphine-induced turning in rats with unilateral striatal dopamine denervation. Psychopharmacology (Berl) 1993; 111:383-8. [PMID: 7870978 DOI: 10.1007/bf02244956] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ipsilateral intrastriatal administration of the specific adenosine A2a receptor agonist, 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamido adenosine (CGS 21680), produced a dose related decrease in apomorphine-induced rotation in the unilaterally 6-hydroxydopamine-lesioned rat. This effect could be reversed by intrastriatal infusions of the A2a antagonist, 4-amino-1-phenyl[1,2,4]triazolo[4,3-a]quinoxaline (CP 66,713). However, CP 66,713 had no significant effect when infused alone, neither did it influence the response to apomorphine in the absence of CGS 21680. The possible behavioural interactions between A2a receptors and striatal ACh activity were also investigated using this model. Atropine administered intrastriatally in a dose that had no effect on the response to apomorphine reduced the inhibitory effects of CGS 21680 on apomorphine-induced turning. Naloxone also reduced the effects of apomorphine, an effect which could be prevented by the co-administration of atropine, or CP 66,713. These results indicate that adenosine agonists can modulate apomorphine-induced turning by an interaction with both cholinergic and opioidergic mechanisms in the striatum.
Collapse
Affiliation(s)
- S V Vellucci
- Department of Neurobiology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, UK
| | | | | |
Collapse
|
49
|
Campbell K, Wictorin K, Björklund A. Differential regulation of neuropeptide mRNA expression in intrastriatal striatal transplants by host dopaminergic afferents. Proc Natl Acad Sci U S A 1992; 89:10489-93. [PMID: 1438238 PMCID: PMC50364 DOI: 10.1073/pnas.89.21.10489] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The effects of dopamine-specific manipulations on neuropeptide gene expression in intrastriatal grafts of fetal striatal tissue were studied by quantitative in situ hybridization histochemistry, using 35S-labeled oligonucleotide probes. Messenger RNA transcripts for the striatal neuropeptides preproenkephalin (PPE) and preprotachykinin (PPT) were detected in neurons forming discrete patches in the striatal grafts. The relative abundance of PPE and PPT mRNA-expressing neurons within the graft patches (51-54%) was similar to that found in normal caudate-putamen. In specimens with intact dopamine afferents the expression of PPE mRNA in grafted neurons was similar to that found in normal caudate putamen, whereas the hybridization signal for PPT mRNA was 27% higher in the graft neurons than in the normal caudate-putamen. Removal of host dopaminergic afferents by 6-hydroxydopamine lesions of the ipsilateral mesostriatal dopamine pathway increased the hybridization signal for PPE mRNA both in the grafts (+84%) and in the spared ipsilateral host caudate-putamen (+125%), whereas the PPT signal was reduced by 53% in the grafts and by 51% in the remaining host caudate-putamen. Similarly, chronic treatment of grafted animals with the dopamine receptor antagonist haloperidol (2 mg/kg per day for 10 days) produced a 146% increase in the PPE signal in the grafts and a 175% increase in the intact contralateral caudate-putamen, whereas the signal for PPT mRNA was again decreased by 52% and 51% in the grafts and host caudate-putamen, respectively. These results show that the host nigrostriatal dopamine pathway differentially regulates enkephalin and substance P gene expression within striatal grafts and thereby exerts a tonic functional influence over grafted striatal neurons.
Collapse
Affiliation(s)
- K Campbell
- Department of Medical Cell Research, University of Lund, Sweden
| | | | | |
Collapse
|
50
|
Affiliation(s)
- K Wictorin
- Department of Medical Cell Research, University of Lund, Sweden
| |
Collapse
|