1
|
Tashakori-Sabzevar F, Ward RD. Basal Forebrain Mediates Motivational Recruitment of Attention by Reward-Associated Cues. Front Neurosci 2018; 12:786. [PMID: 30425617 PMCID: PMC6218575 DOI: 10.3389/fnins.2018.00786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/10/2018] [Indexed: 01/05/2023] Open
Abstract
The basal forebrain, composed of distributed nuclei, including substantia innominata (SI), nucleus basalis and nucleus of the diagonal band of Broca plays a crucial neuromodulatory role in the brain. In particular, its projections to the prefrontal cortex have been shown to be important in a wide variety of brain processes and functions, including attention, learning and memory, arousal, and decision-making. In the present study, we asked whether the basal forebrain is involved in recruitment of cognitive effort in response to reward-related cues. This interaction between motivation and cognition is critically impacted in psychiatric conditions such as schizophrenia. Using the Designer Receptor Exclusively Activated by Designer Drug (DREADD) technique combined with our recently developed signaled probability sustained attention task (SPSA), which explicitly assays the interaction between motivation and attention, we sought to determine the role of the basal forebrain in this interaction. Rats were stereotaxically injected in the basal forebrain with either hM4D(Gi) (a virus that expresses receptors which silence neurons in the presence of the drug clozapine-N-oxide; CNO) or a control virus and tested in the SPSA. Behavior of rats during baseline and under saline indicated control by reward probability. In the presence of CNO, differential accuracy of hM4D(Gi) rats on high and low reward-probability trials was abolished. This result occurred despite spared ability of the reward-probability signals to differentially impact choice-response latencies and omissions. These results indicate that the basal forebrain is critical for the motivational recruitment of attention in response to reward-related cues and are consistent with a role for basal forebrain in encoding and transmitting motivational salience of reward-related cues and readying prefrontal circuits for further attentional processing.
Collapse
Affiliation(s)
| | - Ryan D Ward
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Sarter M, Bruno JP. The neglected constituent of the basal forebrain corticopetal projection system: GABAergic projections. Eur J Neurosci 2002; 15:1867-73. [PMID: 12099892 DOI: 10.1046/j.1460-9568.2002.02004.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At least half of the basal forebrain neurons which project to the cortex are GABAergic. Whilst hypotheses about the attentional functions mediated by the cholinergic component of this corticopetal projection system have been substantiated in recent years, knowledge about the functional contributions of its GABAergic branch has remained extremely scarce. The possibility that basal forebrain GABAergic neurons that project to the cortex are selectively contacted by corticofugal projections suggests that the functions of the GABAergic branch can be conceptualized in terms of mediating executive aspects of cognitive performance, including the switching between multiple input sources and response rules. Such speculations gain preliminary support from the effects of excitotoxic lesions that preferentially, but not selectively, target the noncholinergic component of the basal forebrain corticopetal system, on performance in tasks involving demands on cognitive flexibility. Progress in understanding the cognitive functions of the basal forebrain system depends on evidence regarding its main noncholinergic components, and the generation of such evidence is contingent on the development of methods to manipulate and monitor selectively the activity of the GABAergic corticopetal projections.
Collapse
Affiliation(s)
- Martin Sarter
- The Ohio State University, Department of Psychology, Columbus, OH 43210, USA.
| | | |
Collapse
|
3
|
Burk JA, Sarter M. Dissociation between the attentional functions mediated via basal forebrain cholinergic and GABAergic neurons. Neuroscience 2002; 105:899-909. [PMID: 11530228 DOI: 10.1016/s0306-4522(01)00233-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The role of basal forebrain corticopetal cholinergic projections in attentional functions has been extensively investigated. For example, 192 IgG-saporin-induced loss of cortical cholinergic inputs was repeatedly demonstrated to result in a selective impairment in the ability of rats to detect signals in a task designed to assess sustained attention performance. The loss of cortical cholinergic inputs correlated highly with the decrease in the hit rate. Little is known about the functions of basal forebrain non-cholinergic neurons, particularly corticopetal GABAergic neurons, largely because of the absence of specific research tools to manipulate selectively this projection. As basal forebrain lesions produced with ibotenic acid were previously observed to potently destroy non-cholinergic, particularly GABAergic neurons while producing only moderate decreases in the density of cortical cholinergic inputs, the present experiment examined the effects of such lesions on sustained attention performance and then compared these effects with the immunohistochemical and attentional consequences of selective cholinotoxic lesions produced by intra-basal forebrain infusions of 192 IgG-saporin. In contrast to the selective decrease in hits previously observed in 192 IgG-saporin-lesioned animals, the attentional performance of ibotenic acid-lesioned animals was characterized by a selective increase in the relative number of false alarms, that is 'claims' for signals in non-signal trials. Analyses of the response latencies suggested that this effect of ibotenic acid was due to impairments in the animals' ability to switch from the processing of the response rules for signal trials to those for non-signal trials. As expected, 192 IgG-saporin did not affect the number of basal forebrain parvalbumin-positive neurons, that are presumably GABAergic, but decreased cortical acetylcholinesterase-positive fiber density by over 80%. Conversely, in ibotenic acid-lesioned animals, basal forebrain parvalbumin-positive cells were decreased by 60% but cortical acetylcholinesterase-positive fiber density was only moderately reduced (less than 25%). These data form the basis for the development of the hypothesis that basal forebrain GABAergic neurons mediate executive aspects of attentional task performance. Such a function may be mediated in parallel via basal forebrain GABAergic projections to the cortex and the subthalamic nucleus.
Collapse
Affiliation(s)
- J A Burk
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
4
|
Sarter M, Podell M. Preclinical psychopharmacology of AIDS-associated dementia: lessons to be learned from the cognitive psychopharmacology of other dementias. J Psychopharmacol 2001; 14:197-204. [PMID: 11106297 DOI: 10.1177/026988110001400302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Following a brief discussion of the epidemiology, underlying neuropathological mechanisms, neuropsychological symptoms and present treatment strategies of AIDS-associated dementia (AAD), parallels are drawn between the longer standing research on drugs for the treatment of other cognitive disorders, particularly senile dementia, and ongoing efforts to develop psychopharmacological approaches for the treatment of the cognitive impairments in AAD. Important aspects of hypotheses designed to guide such a research are indicated with the help of a speculative, paradigmatic hypothesis concerning the role of cortical cholinergic inputs in AAD. Furthermore, aspects of validity of animal models, and cognition as a crucial intervening variable in the effects of potential treatments, are evaluated.
Collapse
Affiliation(s)
- M Sarter
- Department of Psychology, The Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
5
|
Turchi J, Sarter M. Cortical cholinergic inputs mediate processing capacity: effects of 192 IgG-saporin-induced lesions on olfactory span performance. Eur J Neurosci 2000. [DOI: 10.1111/j.1460-9568.2000.01347.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Turchi J, Sarter M. Cortical cholinergic inputs mediate processing capacity: effects of 192 IgG-saporin-induced lesions on olfactory span performance. Eur J Neurosci 2000. [DOI: 10.1046/j.1460-9568.2000.01347.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Abstract
This review examines the role of acetylcholine in synaptic plasticity in archi-, paleo- and neocortex. Studies using microiontophoretic application of acetylcholine in vivo and in vitro and electrical stimulation of the basal forebrain have demonstrated that ACh can produce long-lasting increases in neural responsiveness. This evidence comes mainly from models of heterosynaptic facilitation in which acetylcholine produces a strengthening of a second, noncholinergic synaptic input onto the same neuron. The argument that the basal forebrain cholinergic system is essential in some models of plasticity is supported by studies that have selectively lesioned the cholinergic basal forebrain. This review will examine the mechanisms whereby acetylcholine might induce synaptic plasticity. It will also consider the neural circuitry implicated in these studies, namely the pathways that are susceptible to cholinergic plasticity and the neural regulation of the cholinergic system.
Collapse
Affiliation(s)
- D D Rasmusson
- Department of Physiology and Biophysics, Dalhousie University, NS, B3H 4H7, Halifax, Canada.
| |
Collapse
|
8
|
Takahashi LK, Goh CS. Glucocorticoid facilitation of cholinergic development in the rat hippocampus. Neuroscience 1998; 83:1145-53. [PMID: 9502253 DOI: 10.1016/s0306-4522(97)00472-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of endogenous glucocorticoids in facilitating the postnatal innervation of septohippocampal cholinergic projections was examined. Septohippocampal cholinergic innervation was determined using two methods. One method involved measuring the optical density of acetylcholinesterase, a marker of cholinergic fibres in the hippocampus. In the other method, acetylcholinesterase-positive fibre counts were made in the hippocampus. Both methods revealed that 14-day-old rats adrenalectomized at 10 days of age have significantly lower densities of acetylcholinesterase in the hippocampal dentate gyrus molecular layer and in the regio inferior when compared to sham-operated control rats. This reduction in hippocampal acetylcholinesterase did not occur when 10-day-old adrenalectomized rats were either injected daily with exogenous corticosterone (0.3 mg/100 g body weight) or when adrenalectomy was conducted at later postnatal ages. In addition, unlike the developing hippocampus, the basolateral nucleus of the amygdala, which is also highly innervated by cholinergic fibres, showed no significant changes in acetylcholinesterase density after adrenalectomy. These observations suggest that glucocorticoids play an important role in supporting the development of cholinergic projections to the hippocampus. Cholinergic innervation of the hippocampus appears especially sensitive to the action of glucocorticoids occurring before the conclusion of the second postnatal week. Furthermore, this glucocorticoid influence is directed rather specifically to the hippocampus in comparison to the basolateral amygdala.
Collapse
Affiliation(s)
- L K Takahashi
- University of Wisconsin Medical School, Department of Psychiatry, Madison 53719-1179, USA
| | | |
Collapse
|
9
|
Turchi J, Sarter M. Cortical acetylcholine and processing capacity: effects of cortical cholinergic deafferentation on crossmodal divided attention in rats. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 1997; 6:147-58. [PMID: 9450608 DOI: 10.1016/s0926-6410(97)00027-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of 192 IgG-saporin-induced lesions of the corticopetal cholinergic neurons of the basal forebrain on divided attention were assessed in rats. Divided attention was measured using an operant version of the crossmodal divided attention paradigm. This task utilized the propositional response rules of visual and auditory conditional discriminations. Presentation of only visual or only auditory stimuli constituted performance under the condition of modality certainty. Conversely, the presentation of a randomized sequence of all possible stimuli represented the condition of modality uncertainty and was hypothesized to tax processing capacity. A single session was composed of two unimodal blocks of trials (20 trials each), followed by a bimodal block of 60 trials. Animals were extensively trained in this task and baseline performance was characterized by high response accuracy (> 80%) in both conditions. Compared to unimodal trials, the response latencies in the bimodal block of trials were 160 ms longer. The lesion of the cholinergic system increased the response latencies exclusively under the condition of modality uncertainty. The extent of the lesion-induced decrease in cortical cholinergic fiber density correlated highly with the differences between uni- and bimodal response latencies. These results demonstrate a lesion-induced decrease in processing capacity and a preservation of response accuracy at the cost of response latency, i.e., a speed-accuracy tradeoff. Cortical acetylcholine is suggested to mediate the regulation and allocation of processing resources.
Collapse
Affiliation(s)
- J Turchi
- Department of Psychology, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
10
|
Sarter M, Bruno JP. Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 23:28-46. [PMID: 9063585 DOI: 10.1016/s0165-0173(96)00009-4] [Citation(s) in RCA: 505] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous efforts aimed at attributing discrete behavioral functions to cortical cholinergic afferents have not resulted in a generally accepted hypothesis about the behavioral functions mediated by this system. Moreover, attempts to develop such a unifying hypothesis have been presumed to be unproductive considering the widespread innervation of the cortex by basal forebrain cholinergic neurons. In contrast to previous descriptions of the role of cortical acetylcholine (ACh) in specific behavioral phenomena (e.g., mediation of the behavioral effects of reward loss) or mnemonic entities (e.g., working or reference memory), cortical ACh is hypothesized to modulate the general efficacy of the cortical processing of sensory or associational information. Specifically, cortical cholinergic inputs mediate the subjects' abilities to detect and select stimuli and associations for extended processing and to allocate the appropriate processing resources to these functions. In addition to evidence from electrophysiological and behavioral studies on the role of cortical ACh in sensory information processing and attention, this hypothesis is consistent with proposed functions of the limbic and paralimbic networks in regulating the activity of the basal forebrain cholinergic neurons. Finally, while the proposed hypothesis implies that changes in activity in cortical ACh simultaneously occur throughout the cortex, the selectivity and precision of the functions of cholinergic function is due to its coordinated interactions with the activity of converging sensory or associational inputs. Finally, the dynamic, escalating consequences of alterations in the activity of cortical ACh (hypo- and hyperactivity) on cognitive functions are evaluated.
Collapse
Affiliation(s)
- M Sarter
- Department of Psychology, Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
11
|
Bannon AW, Curzon P, Gunther KL, Decker MW. Effects of intraseptal injection of 192-IgG-saporin in mature and aged Long-Evans rats. Brain Res 1996; 718:25-36. [PMID: 8773763 DOI: 10.1016/0006-8993(95)01568-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, the effects intraseptal injections of the selective cholinergic immunotoxin, 192-IgG-saporin, were investigated in mature (6-month-old) and aged (24-26-month-old) male Long-Evans rats. Ten days following intraseptal injection of either 192-IgG-saporin or saline, testing began in a battery of behavioral tests modulated by the septohippocampal system including two versions of the Morris water maze (i.e. submerged platform task, and 2-platform spatial discrimination), inhibitory avoidance, and pre-pulse inhibition of acoustic startle. In both mature and aged rats, intraseptal injection of 192-IgG-saporin selectively reduced ChAT activity in the hippocampus and posterior cingulate cortex, without affecting ChAT activity of amygdala or parietal cortex. In general, in all of the behavioral tests analyzed, intraseptal 192-IgG-saporin treatment had no effect in mature animals. Age-related deficits were observed in the spatial memory tasks, however this impairment was largely a function of the poor performance of aged rats treated with the toxin. In addition, an increase in the response to an acoustic startle was found in aged rats treated with 192-IgG-saporin. Thus, although intraseptal injection of 192-IgG-saporin produced similar reductions of ChAT activity, performance of mature and aged rats in tasks believed to be modulated by the septohippocampal pathway tended to be differentially affected in mature and aged rats.
Collapse
Affiliation(s)
- A W Bannon
- Dept. 47W, Abbott Laboratories, Abbott Park, IL 60064-3500, USA
| | | | | | | |
Collapse
|
12
|
Wenk GL. Neuroprotection and selective vulnerability of neurons within the nucleus basalis magnocellularis. Behav Brain Res 1995; 72:17-24. [PMID: 8788852 DOI: 10.1016/0166-4328(96)00152-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurons within the nucleus basalis may die due to their selective vulnerability to endogenous excitatory amino acid neurotransmitters, nitric oxide and free radicals. The factors influencing the selective vulnerability of neurons within the nucleus basalis depend upon many different factors related to the presence of these agents and the neuron's ability to defend itself against the consequences of exposure. Many different mechanisms have been investigated to provide neuroprotection for neurons within the nucleus basalis and throughout the central nervous system. This review summarizes the results of studies that have investigated our current capability to either attenuate the neurotoxicity of endogenous excitatory amino acids, such as glutamate, or to provide effective neuroprotection during circumstances of neurotoxin exposure.
Collapse
Affiliation(s)
- G L Wenk
- Department of Psychology, 384 Life Sciences North, University of Arizona, Tucson 85724, USA.
| |
Collapse
|
13
|
Holley LA, Wiley RG, Lappi DA, Sarter M. Cortical cholinergic deafferentation following the intracortical infusion of 192 IgG-saporin: a quantitative histochemical study. Brain Res 1994; 663:277-86. [PMID: 7874512 DOI: 10.1016/0006-8993(94)91274-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The immunotoxin 192 IgG-saporin has been hypothesized to selectively lesion cholinergic neurons that bear the low-affinity p75 nerve growth factor (NGF) receptor. To evaluate the usefulness of this toxin in studies intended to determine the functions of cholinergic afferents of cortical areas, relatively small concentrations and volumes of the immunotoxin (0.01-0.05 micrograms/0.5-1.0 microliters) were infused into cortical areas of one hemisphere of rats, while the vehicle was infused into homologous areas of the contralateral hemisphere. The effects of these infusions on the density of cortical acetylcholinesterase (AChE)-positive fibers and of normal fibers (as revealed by a reduced silver stain) were quantified. The infusion of the immunotoxin did not produce local gliosis in excess of the gliosis resulting from the infusion of vehicle. When compared with the frontoparietal cortex of the intact hemisphere, the number of cortical AChE-positive fibers was reduced by 36-39% and the density of the silver-stained fibers was decreased by 20-25%. While the loss of AChE-positive fibers and silver-stained fibers correlated significantly in layers V/VI, a linear regression analysis suggested that the magnitude of the loss of AChE-positive fibers was greater than would be predicted on the basis of the residual density of normal fibers. Thus, the data suggest that infusions of 192 IgG-saporin into the cortex did not result in the loss of non-cholinergic afferents. Intracortical infusions of relatively small concentrations and volumes of 192 IgG-saporin appear to provide a useful approach for the examination of the functions of cholinergic inputs to specific cortical regions.
Collapse
Affiliation(s)
- L A Holley
- Department of Psychology, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
14
|
Sarter MF, Bruno JP. Cognitive functions of cortical ACh: lessons from studies on trans-synaptic modulation of activated efflux. Trends Neurosci 1994; 17:217-21. [PMID: 7521080 DOI: 10.1016/0166-2236(94)90001-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Trans-synaptic modulation of cortical ACh efflux is a useful approach for determining the functions of cortical ACh. Bilateral modulation of basal forebrain GABAergic transmission by benzodiazepine-receptor agonists and inverse agonists decreases and increases, respectively, activated cortical ACh efflux. The determination of behavioral functions which are mediated via activated cortical ACh efflux, and therefore subject to the effects of basal forebrain GABA-cholinergic manipulations, should promote analyses of the functions of cortical ACh. Trans-synaptic approaches to enhance activated cortical ACh efflux offer some potential for the treatment of cognitive dysfunctions associated with impaired cortical cholinergic transmission.
Collapse
Affiliation(s)
- M F Sarter
- Dept of Psychology, Ohio State University, Columbus 43210
| | | |
Collapse
|
15
|
Andrews JS, Grützner M, Stephens DN. The effects of ibotenic acid lesions of the basal forebrain on visual discrimination performance in rats. Brain Res Bull 1994; 34:407-12. [PMID: 8082033 DOI: 10.1016/0361-9230(94)90037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rats were trained to stable performance in a conditional brightness discrimination task and then received infusions of ibotenic acid or vehicle into the basal forebrain. Following 2 weeks of recovery, animals were retested in the original discrimination. Lesioned rats tended to performed badly on the first day of testing as measured by all parameters (percent correct responding, latency to respond, and missed trials) but thereafter, most rats recovered quickly to prelesion levels. In keeping with previous reports, an approximately 30% reduction in choline acetyltransferase activity was observed in the lesioned animals. Four rats showed no recovery over a period of several months; however, an analysis of the choline acetyltransferase in several brain regions revealed no obvious differences to those animals in which performance recovered. Postlesion testing with the putative nootropic beta-carboline ZK 93426 showed no major differences to the effects observed in control animals. Scopolamine had similar negative effects in both groups tested. These data indicate that deficits induced by lesions of the basal forebrain do not correlate with reductions in cholinergic activity.
Collapse
Affiliation(s)
- J S Andrews
- Department of Neuropsychopharmacology, Research Laboratories of Schering AG, Berlin, Germany
| | | | | |
Collapse
|
16
|
Cossette P, Umbriaco D, Zamar N, Hamel E, Descarries L. Recovery of choline acetyltransferase activity without sprouting of the residual acetylcholine innervation in adult rat cerebral cortex after lesion of the nucleus basalis. Brain Res 1993; 630:195-206. [PMID: 8118686 DOI: 10.1016/0006-8993(93)90657-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In view of the divergent literature concerning the long-term effects of ibotenic acid lesions of the nucleus basalis of Meynert (NBM) on the choline acetyltransferase (ChAT) activity in adult rat cerebral cortex, we have critically reassessed the issue of an eventual recovery of this enzymatic activity by sprouting of the residual acetylcholine (ACh) innervation. At short (1 week) and long survival time (3 months) after unilateral ibotenic acid lesion, ChAT activity was biochemically measured in the ipsi and contralateral fronto-parietal cortex of several rats in which the extent of ACh neuronal loss in NBM was also estimated by counts of ChAT-immunostained cell bodies on the lesioned vs. non-lesioned side. In other lesioned rats, particular attention was paid to the distribution of the residual cortical ACh (ChAT-immunostained) innervation, and that of immunostained vasoactive intestinal polypeptide (VIP) axon terminals known to belong in part to intrinsic cortical ACh neurons which co-localize this peptide. One week after NBM lesion, profound decreases of ipsilateral cortical ChAT activity were tightly correlated with the extent of ACh cell body loss in the nucleus. A significant recovery of cortical ChAT activity could be documented after 3 months, despite persistence of NBM cell body losses as severe as after 1 week. At both survival times, the number of ChAT-immunostained axons was markedly reduced throughout the ipsilateral fronto-parietal cortex, demonstrating that most ACh fibers of extrinsic origin had been permanently removed. This result also indicated that the long-term recovery of ChAT activity had occurred without sprouting of the residual ACh innervation. The laminar distribution and number of VIP-immunostained terminals remained the same on the lesioned and intact side and comparable to normal, ruling out an extensive sprouting of intrinsic ACh/VIP or VIP alone fibers. The return to a near normal cortical ChAT activity in severely ACh-denervated cortex suggested that the intrinsic ACh innervation was primarily responsible for this recovery.
Collapse
Affiliation(s)
- P Cossette
- Centre de Recherche en Sciences Neurologiques, Faculté de Médecine, Université de Montréal, Qué., Canada
| | | | | | | | | |
Collapse
|
17
|
Lapchak PA, Araujo DM, Pasinetti G, Hefti F. Differential alterations of cortical cholinergic and neurotensin markers following ibotenic acid lesions of the nucleus basalis magnocellularis. Brain Res 1993; 613:239-46. [PMID: 8186970 DOI: 10.1016/0006-8993(93)90904-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present study determined whether cortical cholinergic neurons recover functionally following the loss of afferent projections from the nucleus basalis magnocellularis (nbm). At various time points following ibotenic acid lesions of the nbm, choline acetyltransferase (ChAT) activity or the capacity of cortical cholinergic neurons to synthesize [3H]acetylcholine (ACh) from the precursor molecule [3H]choline were measured in the frontoparietal cortex. First, cortical ChAT activity was decreased by 21% and 35% on the side ipsilateral to the lesion at 1 and 2 weeks following the nbm lesion, respectively. By 6 weeks following nbm lesions, cortical ChAT activity returned to control levels and remained at control levels at 10 weeks following nbm lesions. However, by 13 weeks following nbm lesions, we observed a 21% increase in ChAT activity on the side ipsilateral to the lesion. ChAT activity in the nbm remained unchanged over the time course studied. Secondly, there was a parallel reduction (by 43%) in the capacity of frontoparietal cortex slices from the side ipsilateral to the lesion to synthesize [3H]ACh by 2 weeks following nbm lesions. By 13 weeks following the lesion there was a significant increase (29%) in the synthetic capacity of cortical cholinergic neurons compared to the 2 week time point. Third, the content of neurotensin in the frontoparietal cortex was significantly decreased by 25% and 36%, at 2 weeks and 13 weeks following nbm lesions, respectively. Neurotensin levels in the nbm were not affected by ibotenic acid lesions. In contrast, [125I]neurotensin binding sites in the frontal or parietal cortex were not altered at 2 weeks following nbm lesions.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P A Lapchak
- Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191
| | | | | | | |
Collapse
|
18
|
Milner TA, Veznedaroglu E. Septal efferent axon terminals identified by anterograde degeneration show multiple sites for modulation of neuropeptide Y-containing neurons in the rat dentate gyrus. Synapse 1993; 14:101-12. [PMID: 8332943 DOI: 10.1002/syn.890140202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ultrastructure and cellular associations of septal efferent terminals identified by anterograde degeneration with neurons containing neuropeptide Y (NPY) in the rat dentate gyrus were examined quantitatively. For this, the septal complex (i.e., medial septal and diagonal band nuclei) of adult male rats was injected with the neurotoxin ibotenic acid (1%; 150 nl) and following a 2-4-day survival period, the hippocampal formation was processed for the electron microscopic immunocytochemical demonstration of NPY using the avidin-biotin complex method. Terminals with the morphological characteristics of anterograde degeneration, in particular an increase in osmiophilia, and neurons containing NPY-like immunoreactivity (NPY-LI) were most abundant in the hilus of the dentate gyrus. In this region, degenerating terminals (n = 109) were usually small (0.2-0.4 microns in diameter) and formed both asymmetric and symmetric synapses with small (distal) dendrites. The degenerating terminals contacted either single NPY-containing (19%) perikarya or dendrites or unlabeled (48%) perikarya or dendrites. Some degenerating terminals contacted the same perikarya or dendrites as an NPY-containing terminal (11%); these neurons were either immunoreactive for NPY or unlabeled. The remaining degenerating terminals were either directly apposed without glial intervention to unlabeled and NPY-labeled terminals (11%) or lacked associations with any neuronal processes in the plane of section analyzed (11%). The findings demonstrate that ibotenic acid injections in the septal complex can identify septal efferent terminals by degeneration and provide cellular substrates for the direct synaptic regulation as well as presynaptic modulation of hippocampal NPY-containing neurons by septal efferent terminals.
Collapse
Affiliation(s)
- T A Milner
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021
| | | |
Collapse
|
19
|
Holley LA, Miller JA, Chmielewski PA, Dudchenko P, Sarter M. Interactions between the effects of basal forebrain lesions and chronic treatment with MDL 26,479 on learning and markers of cholinergic transmission. Brain Res 1993; 610:181-93. [PMID: 8391369 DOI: 10.1016/0006-8993(93)91399-d] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of ibotenic acid-induced basal forebrain lesions and treatment with the triazole MDL 26,479 on the acquisition of an operant visual conditional discrimination task and on [3H]hemicholinium-3 and [3H]vesamicol binding were examined. Lesioned animals required more training sessions to acquire the stimulus-response rules of this task. They also showed longer response latencies throughout the experiment. The effects of the treatment with MDL 26,479 (5 mg/kg; i.p. 60 min before each training session) interacted with the effects of the lesion, producing a decrease in the number of sessions required to perform above chance-level in lesioned but not in control animals. MDL 26,479 did not seem to produce immediate performance effects but interacted with the learning process. The lesions destroyed the cell bodies in the area of the substantia innominata, basal nucleus of Meynert, and the globus pallidus. The number of frontocortical cholinergic terminals as primarily indicated by hemicholinium-3 binding was reduced in lesioned animals; however, another measure of cholinergic terminals, vesamicol binding, was unchanged. Behavioral performance of animals correlated significantly with hemicholinium binding in the frontal cortex of the right hemisphere. The fact that the lesion delayed but did not block the acquisition of the task may have been a result of compensatory mechanisms in remaining cholinergic terminals as indicated by stable vesamicol binding. These data allow assumptions about the conditions for the demonstration of beneficial behavioral effects of MDL 26,479. They also suggest that the long-term effects of basal forebrain lesions on cortical cholinergic transmission remain unsettled.
Collapse
Affiliation(s)
- L A Holley
- Department of Psychology, Ohio State University, Columbus 43210
| | | | | | | | | |
Collapse
|
20
|
Steckler T, Andrews JS, Marten P, Turner JD. Effects of NBM lesions with two neurotoxins on spatial memory and autoshaping. Pharmacol Biochem Behav 1993; 44:877-89. [PMID: 8469697 DOI: 10.1016/0091-3057(93)90020-t] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Four groups of Wistar rats received either vehicle, quisqualate, or one of two different ibotenic acid infusions into the basal forebrain. Following recovery from surgery, all rats were tested in three distinct behavioral paradigms: the Bättig radial arm maze, the Barnes circular platform, and autoshaping in an operant chamber. The results showed that the size and site of the ibotenic acid lesion had a profound effect on acquisition performance in some, but not all, procedures. Performance in the Bättig maze and acquisition of a food-rewarded lever press were in particular disrupted by ibotenic acid lesions. The severity of the reduction in cortical choline acetyltransferase (ChAT) did not correlate with performance in the tests. Quisqualate produced the largest reduction in ChAT levels but had no significant effect on performance in any of the three procedures used. Anatomic analysis revealed severe nonspecific damage to the striatum following ibotenic acid that was more pronounced in the group receiving a highly concentrated solution of ibotenic acid as compared to rats infused with a greater volume but less concentrated solution of the neurotoxin. Striatal damage was much less severe following quisqualic acid infusions. However, both types of neurotoxins produced equivalent nonspecific degeneration of the reticular thalamic nucleus. These data confirm reports that nonspecific damage appears to define the severity of ibotenic acid lesions on subsequent behavioral performance.
Collapse
Affiliation(s)
- T Steckler
- Research Laboratories of Schering AG, Berlin, Germany
| | | | | | | |
Collapse
|
21
|
Mazurkiewicz M, Sirviö J, Riekkinen P. Attenuation by the benzodiazepine receptor antagonist, ZK 93 426, of the deficit in spatial navigation induced by nucleus basalis lesions. BEHAVIORAL AND NEURAL BIOLOGY 1992; 58:159-63. [PMID: 1333764 DOI: 10.1016/0163-1047(92)90411-v] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of the benzodiazepine receptor antagonist, beta-carboline ZK 93,426 treatment were studied both in NB-lesioned (ibotenic acid) and in unoperated Kuo-Wistar rats in a water maze task. The ZK 93,426 administered in the doses of 1 and 5 mg/kg, 30 min prior to the testing in a water maze apparatus, attenuated the NB lesion-induced spatial navigation deficit, although it had no effect on the performance of unoperated rats. The results suggest functional interactions between GABAergic system and ibotenic acid-induced lesion of the basal forebrain in rats.
Collapse
|
22
|
Modulation of Frontal Cortical Acetylcholine Release by Benzodiazepine Receptor Ligands: Age-Dependent Effects and Behavioral Correlates. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/978-1-4615-3432-7_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Sarter M, Hagan J, Dudchenko P. Behavioral screening for cognition enhancers: from indiscriminate to valid testing: Part II. Psychopharmacology (Berl) 1992; 107:461-73. [PMID: 1603889 DOI: 10.1007/bf02245257] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M Sarter
- Ohio State University, Department of Psychology, Columbus 43210
| | | | | |
Collapse
|
24
|
Riekkinen P, Riekkinen M, Sirviö J, Miettinen R, Riekkinen P. Comparison of the effects of acute and chronic ibotenic and quisqualic acid nucleus basalis lesioning. Brain Res Bull 1991; 27:199-206. [PMID: 1742608 DOI: 10.1016/0361-9230(91)90068-u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study examines the effects of acute (1 month recovery) and chronic (8 month recovery) bilateral quisqualic (quis) and ibotenic (ibo) acid nucleus basalis (NB) lesioning on the activity of cholinergic neurons and on passive avoidance (PA) and water-maze (WM) performance. Our data demonstrate that A: The activity of choline acetyltransferase (ChAT) in cortical tissue and the number of ChAT positive neurons in the NB were decreased 1 and 8 months after quis or ibo NB lesioning. B: Ibo NB lesioning produced a greater nonspecific subcortical cell loss than quis NB lesioning. C: PA retention was impaired by acute and chronic quis and ibo NB lesioning. D: Acute ibo NB lesioning impaired acquisition and reversal learning in WM performance whereas chronic ibo NB lesioning impaired only reversal WM learning. Acute and chronic quis NB lesioning impaired reversal WM learning. The present results suggest that NB cholinergic neurons do not recover spontaneously from excitotoxin-induced damage and that they may be importantly involved in inhibitory avoidance and spatial reversal learning performance.
Collapse
Affiliation(s)
- P Riekkinen
- Department of Neurology, University of Kuopio, Finland
| | | | | | | | | |
Collapse
|
25
|
Page KJ, Everitt BJ, Robbins TW, Marston HM, Wilkinson LS. Dissociable effects on spatial maze and passive avoidance acquisition and retention following AMPA- and ibotenic acid-induced excitotoxic lesions of the basal forebrain in rats: differential dependence on cholinergic neuronal loss. Neuroscience 1991; 43:457-72. [PMID: 1922778 DOI: 10.1016/0306-4522(91)90308-b] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Excitotoxic lesions of the basal forebrain were made by infusing either alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) or ibotenic acid. Acquisition and performance of spatial learning in the Morris water maze, over a ten day, two trials per day, training regimen were unaffected by the AMPA-induced lesions which reduced cortical choline acetyltransferase activity by 70%. However, acquisition was significantly impaired in rats with ibotenic acid-induced lesions that reduced cortical choline acetyltransferase by 50%. Additionally, ibotenic acid-lesioned rats swam further than either sham or AMPA-lesioned rats, in the "training" quadrant during a probe trial, in which the escape platform was removed, suggesting a perseverative search strategy. Lesions induced with AMPA, but not ibotenate, significantly impaired the acquisition of "step-through" passive avoidance. Both AMPA- and ibotenate-induced lesions significantly impaired the 96 h retention of passive avoidance, but the effect of AMPA was greater on latency measures. Histological analysis revealed that AMPA infusions destroyed more choline acetyltransferase-immunoreactive neurons than did ibotenate infusions but, unlike ibotenate, spared the overlying dorsal pallidum and also parvocellular, non-choline acetyltransferase-immunoreactive neurons in the ventral pallidal/substantia innominata region of the basal forebrain. The impairment in acquisition of the water maze following ibotenate-induced basal forebrain lesions therefore appears unrelated to damage to cholinergic neurons of the nucleus basalis of Meynert and to depend instead on damage to pallidal and other neurons in this area. The AMPA- and perhaps also the ibotenate-induced impairment in the retention of passive avoidance appears to be more directly related to destruction of cholinergic neurons of the nucleus basalis. These data are discussed in the context of cortical cholinergic involvement in mnemonic processes.
Collapse
Affiliation(s)
- K J Page
- Department of Anatomy, University of Cambridge, U.K
| | | | | | | | | |
Collapse
|