1
|
Kuffler DP. Can lithium enhance the extent of axon regeneration and neurological recovery following peripheral nerve trauma? Neural Regen Res 2021; 17:948-952. [PMID: 34558506 PMCID: PMC8552832 DOI: 10.4103/1673-5374.324830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clinical “gold standard” technique for attempting to restore function to nerves with a gap is to bridge the gap with sensory autografts. However, autografts induce good to excellent recovery only across short nerve gaps, in young patients, and when repairs are performed a short time post nerve trauma. Even under the best of conditions, < 50% of patients recover good recovery. Although many alternative techniques have been tested, none is as effective as autografts. Therefore, alternative techniques are required that increase the percentage of patients who recover function and the extent of their recovery. This paper examines the actions of lithium, and how it appears to trigger all the cellular and molecular events required to promote axon regeneration, and how both in animal models and clinically, lithium administration enhances both the extent of axon regeneration and neurological recovery. The paper proposes more extensive clinical testing of lithium for its ability and reliability to increase the extent of axon regeneration and functional recovery.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
2
|
Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 2014; 155:894-908. [PMID: 24209626 DOI: 10.1016/j.cell.2013.10.004] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 07/09/2013] [Accepted: 09/25/2013] [Indexed: 11/23/2022]
Abstract
Reactivation of a silent transcriptional program is a critical step in successful axon regeneration following injury. Yet how such a program is unlocked after injury remains largely unexplored. We found that axon injury in peripheral sensory neurons elicits a back-propagating calcium wave that invades the soma and causes nuclear export of HDAC5 in a PKCμ-dependent manner. Injury-induced HDAC5 nuclear export enhances histone acetylation to activate a proregenerative gene-expression program. HDAC5 nuclear export is required for axon regeneration, as expression of a nuclear-trapped HDAC5 mutant prevents axon regeneration, whereas enhancing HDAC5 nuclear export promotes axon regeneration in vitro and in vivo. Components of this HDAC5 pathway failed to be activated in a model of central nervous system injury. These studies reveal a signaling mechanism from the axon injury site to the soma that controls neuronal growth competence and suggest a role for HDAC5 as a transcriptional switch controlling axon regeneration.
Collapse
|
3
|
Burke RE. Intracellular signalling pathways in dopamine cell death and axonal degeneration. PROGRESS IN BRAIN RESEARCH 2010; 183:79-97. [PMID: 20696316 PMCID: PMC3088517 DOI: 10.1016/s0079-6123(10)83005-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pathways of programmed cell death (PCD) are now understood in extraordinary detail at the molecular level. Although much evidence suggests that they are likely to play a role in Parkinson's disease (PD), the precise nature of that role remains unknown. Two pathways of cell death that are especially well characterized are cyclin-dependent kinase 5-mediated phosphorylation of myocyte enhancer factor 2 and the mitogen-activated protein kinase signalling cascade. Although blockade of these pathways in animals has achieved a truly remarkable degree of neuroprotection of the neuron cell soma, it has not achieved protection of axons. Thus, there is a need to explore beyond the canonical pathways of PCD and investigate mechanisms of axon destruction. We also need to move beyond the narrow classic concept that the mechanisms of PCD are activated exclusively 'downstream', following cellular injury. Studies in the genetics of PD suggest that in some forms of the disease, activation may be an early 'upstream' event. Additionally, recent observations suggest that cell death in some contexts may not be initiated by injury, but instead by a failure of intrinsic cell survival signalling. These new points of view offer new opportunities for molecular targeting.
Collapse
Affiliation(s)
- Robert E Burke
- Department of Neurology, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Burke RE. Inhibition of mitogen-activated protein kinase and stimulation of Akt kinase signaling pathways: Two approaches with therapeutic potential in the treatment of neurodegenerative disease. Pharmacol Ther 2007; 114:261-77. [PMID: 17399794 PMCID: PMC1964795 DOI: 10.1016/j.pharmthera.2007.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 02/09/2007] [Indexed: 12/27/2022]
Abstract
The neurodegenerative diseases of adulthood, including Alzheimer's disease (AD) and Parkinson's disease (PD), pose an enormous and growing public health burden. Although effective symptomatic treatments exist for PD, and, to a lesser extent, for AD, there is no therapy for these disorders which will forestall their progression. With the rise of the concept of programmed cell death (PCD) came the realization that even in the absence of complete knowledge of proximate causes neuroprotection may nevertheless be possible by targeting the pathways of PCD. One set of signaling pathways that have been implicated in cell death are the mitogen-activated protein kinase (MAPK) pathways. The possibility of blocking these pathways and thereby providing neuroprotection has recently been put to the test in a clinical trial of a mixed lineage kinase inhibitor in the treatment of PD. Unfortunately, this trial failed to demonstrate a protective effect. Based on considerations related to the implementation of the trial, it would be premature to conclude that inhibition of MAPK signaling is a failed strategy. In spite of these negative results, the MAPK and related kinase pathways retain their importance as potential targets in PD. In relation to pathogenesis, the discovery of mutations in the mixed lineage kinase (MLK)-like kinase leucine-rich repeat kinase 2 (LRRK2) suggests a role for these kinases in regulating the viability of dopamine neurons. In relation to treatment, the survival signaling kinase Akt has been demonstrated in vivo to mediate striking neurotrophic and antiapoptotic effects. Thus, it is likely that therapeutic targets related to these kinase signaling pathways will emerge.
Collapse
Affiliation(s)
- Robert E Burke
- Department of Neurology, Room 306, Black Building, Columbia University Medical Center, 650 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
5
|
Burke RE. Programmed cell death in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:591-605. [DOI: 10.1016/s0072-9752(07)83029-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Rossi F, Gianola S, Corvetti L. Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog Neurobiol 2006; 81:1-28. [PMID: 17234322 DOI: 10.1016/j.pneurobio.2006.12.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/04/2006] [Accepted: 12/05/2006] [Indexed: 01/29/2023]
Abstract
Regulation of neuritic growth is crucial for neural development, adaptation and repair. The intrinsic growth potential of nerve cells is determined by the activity of specific molecular sets, which sense environmental signals and sustain structural extension of neurites. The expression and function of these molecules are dynamically regulated by multiple mechanisms, which adjust the actual growth properties of each neuron population at different ontogenetic stages or in specific conditions. The neuronal potential for axon elongation and regeneration are restricted at the end of development by the concurrent action of several factors associated with the final maturation of neurons and of the surrounding tissue. In the adult, neuronal growth properties can be significantly modulated by injury, but they are also continuously tuned in everyday life to sustain physiological plasticity. Strict regulation of structural remodelling and neuritic elongation is thought to be required to maintain specific patterns of connectivity in the highly complex mammalian CNS. Accordingly, procedures that neutralize such mechanisms effectively boost axon growth in both intact and injured nervous system. Even in these conditions, however, aberrant connections are only formed in the presence of unusual external stimuli or experience. Therefore, growth regulatory mechanisms play an essentially permissive role by setting the responsiveness of neural circuits to environmental stimuli. The latter exert an instructive action and determine the actual shape of newly formed connections. In the light of this notion, efficient therapeutic interventions in the injured CNS should combine targeted manipulations of growth control mechanisms with task-specific training and rehabilitation paradigms.
Collapse
Affiliation(s)
- Ferdinando Rossi
- Rita Levi Montalcini Centre for Brain Repair, Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy.
| | | | | |
Collapse
|
7
|
Ribera J, Ayala V, Casas C. Involvement of c-Jun-JNK pathways in the regulation of programmed cell death of developing chick embryo spinal cord motoneurons. Dev Neurosci 2006; 29:438-51. [PMID: 17119319 DOI: 10.1159/000097318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 08/03/2006] [Indexed: 01/24/2023] Open
Abstract
Key features of developmentally regulated programmed cell death (PCD) have been described for the first time in the chick nervous system. JNK/c-Jun pathway was involved in early events determining normal and pathological neuronal death as shown in experimental models. In the chick embryo, PCD of motoneurons (MNs) in ovo occurs within a well-defined temporal window and can be subjected to experimental manipulation. Taking advantage of this in vivo system, we explored the role of c-Jun and JNK pathway in the regulation of PCD in MNs. By using specific antibodies against phospho-c-Jun (Ser 63, 73) and JNK we demonstrated that before MNs acquire apoptotic phenotype there is an increase in c-Jun. Blockage of neuromuscular activity by the GABA agonist muscimol reduces PCD and diminishes c-Jun immunoreactivity in MNs. Extensive induction of PCD, either due to injection of beta-bungarotoxin or limb bud removal, is also preceded by an increase in c-Jun immunoreactivity that is also associated with upregulation of phospho-c-Jun and JNK. Translocation of JNK from cytoplasm to MN nuclei was also detected. After acute application of beta-bungarotoxin, which is a strong apoptotic stimulus for MNs, c-Jun phosphorylation occurs on serine 73, whereas serine 63 is the main site for c-Jun phosphorylation after limb bud removal. These results demonstrated that the JNK/c-Jun pathway is involved in the decision phase of normal and induced apoptosis in MNs. Pharmacological interventions involving this pathway should be explored as a potential therapeutic target for promoting MN survival.
Collapse
Affiliation(s)
- Joan Ribera
- Universitat de Lleida, Facultat de Medicina, Departament de Ciències Mèdiques Bàsiques, Lleida, Spain.
| | | | | |
Collapse
|
8
|
Crocker SJ, Hayley SP, Smith PD, Mount MP, Lamba WR, Callaghan SM, Slack RS, Park DS. Regulation of axotomy-induced dopaminergic neuron death and c-Jun phosphorylation by targeted inhibition of cdc42 or mixed lineage kinase. J Neurochem 2006; 96:489-99. [PMID: 16336220 DOI: 10.1111/j.1471-4159.2005.03568.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanical transection of the nigrostriatal dopamine pathway at the medial forebrain bundle (MFB) results in the delayed degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). We have previously demonstrated that c-Jun activation is an obligate component of neuronal death in this model. Here we identified the small GTPase, cdc42, and mixed lineage kinases (MLKs) as upstream factors regulating neuronal loss and activation of c-Jun following MFB axotomy. Adenovirus-mediated expression of a dominant-negative form of cdc42 in nigral neurons blocked MFB axotomy-induced activation (phosphorylation) of MAP kinase kinase 4 (MKK4) and c-Jun, resulting in attenuation of SNpc neuronal death. Pharmacological inhibition of MLKs, MKK4-activating kinases, significantly reduced the phosphorylation of c-Jun and abrogated dopaminergic neuronal degeneration following MFB axotomy. Taken together, these findings suggest that death of nigral dopaminergic neurons following axotomy can be attenuated by targeting cell signaling events upstream of c-Jun N-terminal mitogen-activated protein kinase/c-Jun.
Collapse
Affiliation(s)
- Stephen J Crocker
- Neuroscience Research Institute, University of Ottawa and Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Devarajan K, Marchant EG, Rusak B. Circadian and light regulation of oxytocin and parvalbumin protein levels in the ciliated ependymal layer of the third ventricle in the C57 mouse. Neuroscience 2005; 134:539-47. [PMID: 15964694 DOI: 10.1016/j.neuroscience.2005.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 04/05/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
The walls of the third ventricle have been proposed to serve as a bidirectional conduit for exchanges between the neural parenchyma and the cerebrospinal fluid. In immunohistochemical studies of mice, we observed that light exposure and circadian phase affected peptide staining surrounding the third ventricle at the level of the suprachiasmatic nuclei. Under high magnification, we observed robust staining for the neurohormone oxytocin and the calcium-binding protein parvalbumin associated with cilia extending into the third ventricle from the surrounding ventricular wall; no similar staining was observed for vasopressin or calbindin. Retinal illumination had opposite effects on levels of parvalbumin and oxytocin in the cilia: light exposure during late subjective night increased oxytocin staining, but decreased parvalbumin staining in the cilia. Preventing cellular transport with colchicine eliminated immunohistochemical staining for oxytocin in the cilia. There was also a significant daily rhythm of oxytocin immunostaining in the third ventricle wall, and in magnocellular neurons in the anterior hypothalamus. The results suggest that environmental lighting and circadian rhythms regulate levels of oxytocin in the cerebrospinal fluid, possibly by regulating movement of oxytocin through the third ventricle wall.
Collapse
Affiliation(s)
- K Devarajan
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | | | | |
Collapse
|
10
|
Kraus KS, Illing RB. Cell death or survival: Molecular and connectional conditions for olivocochlear neurons after axotomy. Neuroscience 2005; 134:467-81. [PMID: 15964701 DOI: 10.1016/j.neuroscience.2005.04.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 03/24/2005] [Accepted: 04/12/2005] [Indexed: 12/11/2022]
Abstract
We aimed to determine whether rat olivocochlear neurons survive axotomy inflicted through cochlear ablation, or if they degenerate. To estimate their intrinsic potential for axonal regeneration, we investigated the expression of the transcription factor c-Jun and the growth-associated protein-43 (GAP43). Axonal tracing studies based on application of Fast Blue into the cochlea and calcitonin gene-related peptide immunostaining revealed that many, but not all, lateral olivocochlear neurons in the ipsilateral lateral superior olive degenerated upon cochleotomy. A decrease of their number was noticed 2 weeks after the lesion, and 2 months postoperative the population was reduced to approximately one quarter (27-29%) of its original size. No further reduction took place at longer survival times up to 1 year. Most or all shell neurons and medial olivocochlear neurons survived axotomy. Following cochleotomy, 56-60% of the lateral olivocochlear neurons in the ipsilateral lateral superior olive were found to co-express c-Jun and GAP43. Only a small number of shell and medial olivocochlear neurons up-regulated c-Jun expression, and only a small number of shell neurons expressed GAP43. Up-regulation of c-Jun and GAP43 in lateral olivocochlear neurons upon axotomy suggests that they have an intrinsic potential to regenerate after axotomy, but cell counts based on the markers Fast Blue and calcitonin gene-related peptide indicate that this potential cannot be exploited and degeneration is induced instead. The survival of one quarter of the axotomized lateral olivocochlear neurons and of all, or almost all, shell and medial olivocochlear neurons appeared to depend on connections of these cells to other regions than the cochlea by means of axon collaterals, which remained intact after cochleotomy.
Collapse
Affiliation(s)
- K S Kraus
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, Killianstrasse 5, D-79106 Freiburg, Germany
| | | |
Collapse
|
11
|
Silva RM, Kuan CY, Rakic P, Burke RE. Mixed lineage kinase-c-jun N-terminal kinase signaling pathway: A new therapeutic target in Parkinson's disease. Mov Disord 2005; 20:653-64. [PMID: 15719422 DOI: 10.1002/mds.20390] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
There is growing evidence that the molecular pathways of programmed cell death play a role in neurodegenerative disease, including Parkinson's disease, so there has been increased interest in them as therapeutic targets for the development of neuroprotective strategies. One pathway of cell death that has attracted particular attention is the mixed lineage kinase (MLK) -c-jun N-terminal kinase (JNK) signaling cascade, which leads to the phosphorylation and activation of the transcription factor c-jun. There is much evidence, from in vitro and in vivo studies, that this cascade can mediate cell death. In addition, there is evidence that it is operative upstream in the death process. It is possible that abrogation of this pathway may forestall death before irreversible cellular injury. One class of compounds that has shown promise for their ability to block cell death by inhibiting this cascade are the inhibitors of the MLKs, which are upstream in the activation of c-jun. One of these compounds, CEP1347, is now in a Phase II/III clinical trial for neuroprotection in PD. Whether this trial is successful or not, this signaling cascade is likely to be a focus of future therapeutic development. This review, therefore, outlines the principles of signaling within this kinase pathway, and the evidence for its role in cell death. We review the evidence that inhibition of the MLKs can prevent dopamine neuron cell death and the degeneration of their axons. These studies suggest important future directions for the development of therapies that will target this important cell death pathway.
Collapse
Affiliation(s)
- Robert M Silva
- Department of Neurology, The College of Physicians and Surgeons, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
12
|
|
13
|
Carulli D, Buffo A, Strata P. Reparative mechanisms in the cerebellar cortex. Prog Neurobiol 2004; 72:373-98. [PMID: 15177783 DOI: 10.1016/j.pneurobio.2004.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 03/17/2004] [Indexed: 11/28/2022]
Abstract
In the adult brain, different neuronal populations display different degrees of plasticity. Here, we describe the highly different plastic properties of inferior olivary neurones and Purkinje cells. Olivary neurones show a basal expression of growth-associated proteins, such as GAP-43 and Krox24/EGR-1, and remarkable remodelling capabilities of their terminal arbour. They also regenerate their transected neurites into growth-permissive territories and may reinnervate the lost target. Sprouting and regrowing olivary axons are able to follow specific positional information cues to establish new connections according to the original projection map. In addition, they set a strong cell body reaction to injury, which in specific olivary subsets is regulated by inhibitory target-derived cues. In contrast, Purkinje cells do not have a constitutive level of growth-associated genes, and show little cell body reaction, no axonal regeneration after axotomy, and weak sprouting capabilities. Block of myelin-derived signals allows terminal arbour remodelling, but not regeneration, while selective over-expression of GAP-43 induces axonal sprouting along the axonal surface and at the level of the lesion. We suggest that the high constitutive intrinsic plasticity of the inferior olive neurones allows their terminal arbour to sustain the activity-dependent ongoing competition with the parallel fibres in order to maintain the post-synaptic territory, and possibly underlies mechanisms of learning and memory. Such a plasticity is used also as a reparative mechanism following axotomy. In contrast, in Purkinje cells, poor intrinsic regenerative capabilities and myelin-derived signals stabilise the mature connectivity and prevent axonal regeneration after lesion.
Collapse
Affiliation(s)
- Daniela Carulli
- Department of Neuroscience, Rita Levi Montalcini Center for Brain Repair, University of Turin, C.so Raffaello 30, 10125 Turin, Italy
| | | | | |
Collapse
|
14
|
Pearson AG, Gray CW, Pearson JF, Greenwood JM, During MJ, Dragunow M. ATF3 enhances c-Jun-mediated neurite sprouting. ACTA ACUST UNITED AC 2004; 120:38-45. [PMID: 14667575 DOI: 10.1016/j.molbrainres.2003.09.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The AP-1 transcription factor c-Jun is induced in axotomized neurons of the peripheral and central nervous systems, and in both cases upregulation of c-Jun expression has been correlated with axonal regeneration. More recently there has been interest in the c-Jun-related bZIP transcription factor, ATF3, and its function in neurons. ATF3 is also induced in nerve cells in response to axotomy and there is a correlation between increased ATF3 expression and upregulation of c-Jun in surviving neurons. Moreover, c-Jun is able to induce expression of ATF3. We investigated the effect of co-expressing c-Jun and ATF3 in two neuronal-like cell lines to model transcriptional events occurring in axotomized neurons undergoing regeneration. We show that expression of ATF3 with c-Jun significantly enhances c-Jun-mediated neurite sprouting, and that this phenotype is most likely mediated by a physical association of these two transcription factors. Our results suggest that a program of axonal regeneration is initiated when both c-Jun and ATF3 are upregulated in neurons in response to axotomy.
Collapse
Affiliation(s)
- Andree G Pearson
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
15
|
Kalia SK, Nash JE, Lozano AM. To serve and protect? Interventions in the subthalamic nucleus for Parkinson's disease. Exp Neurol 2004; 185:201-3. [PMID: 14736500 DOI: 10.1016/j.expneurol.2003.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Suneil K Kalia
- Division of Applied and Interventional Research, The Toronto Western Hospital Research Institute, Toronto ON, Canada M5T 2S8
| | | | | |
Collapse
|
16
|
Reinecke K, Lucius R, Reinecke A, Rickert U, Herdegen T, Unger T. Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF-kappaB. FASEB J 2003; 17:2094-6. [PMID: 14500552 DOI: 10.1096/fj.02-1193fje] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The AT2 receptor regulates several functions of nerve cells, e.g., ionic fluxes, cell differentiation, and axonal regeneration, but also modulates programmed cell death. We tested the hypothesis that angiotensin II (ANG II) via its AT2 receptor not only promotes regeneration but also functional recovery after sciatic nerve crush in adult rats. ANG II (10(-7), 10(-9), 10(-11) M) applied locally via osmotic minipumps promoted functional recovery with maximal effects after the lowest concentration. The toe spread distance as a parameter for re-innervation after 20 days was significantly (P<0.01) greater (10.2+/-10.27 mm) compared with the control group (8.73+/-0.16 mm). The response to local electrical stimulation (return of sensorimotor function) was reduced to 14.6 days vs. 17.9 days in the control group (P<0.01). The AT2 receptor antagonist PD 123319 administered alone or in combination with ANG II completely prevented the ANG II-induced recovery, whereas the AT1 receptor antagonist losartan had no effect. Furthermore, ANG II induces, via the AT2 receptor, activation of the transcription factor NF-kappaB in Schwann cells. Histological criteria, morphometric analyses, and electron microscopy confirmed the functional data. These results are the first to present direct evidence for an involvement of the AT2 receptor and NF-kappaB in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Kirstin Reinecke
- Institute of Pharmacology, Christian-Albrechts-University Kiel, D-24105 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Pirnik Z, Mikkelsen JD, Kiss A. Fos induction in the rat deep cerebellar and vestibular nuclei following central administration of colchicine: a qualitative and quantitative time-course study. Brain Res Bull 2003; 61:63-72. [PMID: 12788208 DOI: 10.1016/s0361-9230(03)00064-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study was conducted to demonstrate Fos expression at four levels (anterior, prefastigial, postfastigial, posterior) of the cerebellar-vestibular nuclear complex in rats exposed to 1, 6, 24, and 48h of colchicine treatment using a light microscopic avidin biotin peroxidase (ABC) immunohistochemistry. Intracerebroventricular administration of colchicine (60microg per 10microl saline) elicited a continuous increase in the number of Fos-positive cells in the main cerebellar (fastigial, interpositus, dentatus) and vestibular (superior, medial, lateral, spinal, Y) nuclei. One and six hours after colchicine treatment, intensive Fos labeling was observed only in the pyriform cortex and the hypothalamic paraventricular nucleus, respectively, and there was no Fos immunolabeling in any of the cerebellar or vestibular structures investigated. On the other hand, moderate number of Fos-positive cells was visible in each of the cerebellar and vestibular nuclei 24h after colchicine treatment. Exposure of the animals to 48h of colchicine treatment induced an additional, more than 50%, rise in the accumulation of Fos-positive profiles in almost all the cerebellar and vestibular nuclei. In addition, at this time-point, a characteristic pattern of Fos distribution appeared almost in all of the cerebellar and vestibular nuclei, however, the numerical incidence of Fos-positive profiles in paired structures along the neuroaxis was bilaterally symmetric. The present data demonstrate for the first time that the central administration of colchicine causes a persistent and, in comparison with other brain areas, time-delayed activation of certain population of neurons in both cerebellar and vestibular nuclei. We assume that the delayed Fos activation in these structures indicate that the cerebellar and vestibular nuclei are not the primary targets of the central effect of colchicine and their activation seems to be rather a result of a postponed functional consequences of the central action of colchicine probably related to the coordination of motor performance.
Collapse
Affiliation(s)
- Zdeno Pirnik
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06, Bratislava, Slovak Republic
| | | | | |
Collapse
|
18
|
Ferrer I, Friguls B, Dalfó E, Planas AM. Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol 2003; 105:425-37. [PMID: 12677442 DOI: 10.1007/s00401-002-0661-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Accepted: 11/04/2002] [Indexed: 01/03/2023]
Abstract
Focal ischemia induced by middle cerebral artery occlusion (MCAO) to adult rats results in necrosis at the infarct core and activation of complex signal pathways for cell death and cell survival in the penumbra. Upstream from the cell death promoters and executioners are several kinases that, once activated by phosphorylation, may activate several transcription factor substrates involved in cell death and cell survival. In the present study we examined, by immunohistochemistry, the expression of phosphorylated (active) mitogen-activated protein kinase, extracellular signal-regulated kinase (MAPK/ERK), stress-activated protein kinase (SAPK), c-Jun N-terminal kinase (JNK) and p-38 kinase at early stages (1-4 h) following 1 h of MCAO in the rat. The expression of phosphorylation-dependent, active transcription substrates of these kinases, including cyclic AMP-responsive element-binding protein (CREB) Alk-1, ATF-2, c-Myc and c-Jun was examined at early stages following reperfusion. Increased nuclear phosphorylated SAPK/JNK (SAPK/JNK-P) and c-Jun-PSer63, and reduced CREB-P, occurred in the infarct core at 1 h following reperfusion, suggesting increased phosphorylated SAPK/JNK and c-JunSer63, together with decreased phospho-CREB associated with cell death in the infarct core. However, increased cytoplasmic expression of MAPK/ERK-P, SAPK/JNK-P, p38-P, CREB-P, Elk-1-P, c-Myc-P, ATF-2-P and c-Jun-P occurred in the region bordering the infarct core (penumbra) at 4 h following reperfusion. This indicates that different signals converge in the cytoplasm of neurons located at the borders of the infarct at 4 h following reperfusion, revealing the struggle of death promoters and life facilitators at the penumbra. Whether phosphorylated kinases and specific substrates participate in promoting cell death or survival in the penumbra probably depends on additional factors and on the interaction with other proteins.
Collapse
Affiliation(s)
- I Ferrer
- Institut de Neuropatologia, Servei d'Anatomia Patològica, Hospital Princeps d'Espanya, Universitat de Barcelona, Campus de Bellvitge, carrer Feixa LLarga sn, 08907 Hospitalet de Llobregat, Spain.
| | | | | | | |
Collapse
|
19
|
Pearse DD, Bushell G, Leah JD. Jun, Fos and Krox in the thalamus after C-fiber stimulation: coincident-input-dependent expression, expression across somatotopic boundaries, and nucleolar translocation. Neuroscience 2002; 107:143-59. [PMID: 11744254 DOI: 10.1016/s0306-4522(01)00320-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of the inducible transcription factors Jun, Fos and Krox is commonly used to map neurons in the brain that are activated by sensory inputs. However, some neurons known to be electrically excited by such inputs do not always express these factors. In particular, stimulation of hindlimb sensory nerve C-fibers induces expression of c-Fos in the medial thalamus (the mediodorsal, intermediodorsal, centrolateral and centromedial), but not in the lateral thalamus (the ventroposterolateral, ventroposteromedial and posterior group). We hypothesized that c-Fos expression might only occur in these lateral areas after more complex stimulation patterns, or that only other transcription factors can be induced in these areas by such stimuli. Thus we examined the effects of single, repeated and coincident C-fiber inputs on expression of six inducible transcription factors in the medial, lateral and reticular thalamus of the rat. A weak C-fiber input caused by noxious mechanical stimulation of the skin of one hindpaw did not induce expression of c-Fos, FosB, Krox-20 or Krox-24; but it did reduce the basal expressions of c-Jun and JunD in both the medial and lateral areas. An intense input produced by electrical stimulation of all the C-fibers in one sciatic nerve also failed to induce expression of c-Fos, FosB, Krox-20 or Krox-24 in the medial or lateral areas. However, in the medial thalamus it increased c-Jun and reduced the basal expression of JunD, whereas in the lateral thalamus it had no effect on c-Jun but again reduced the basal expression of JunD. With repeated stimulation, i.e. when the noxious stimulus was applied to the contralateral hindpaw 6 h after the sciatic stimulation, there was again no induction of c-Fos, FosB or Krox-20 in the medial thalamus; but there was an increase in c-Jun and Krox-24, and a decrease in JunD levels. In the lateral thalamus the repeated stimulation again failed to induce c-Fos, but the expressions of FosB, c-Jun and Krox-24 were increased, and that of JunD was again reduced. With coincident stimulation, i.e. when a stimulus was applied to each hindpaw simultaneously, c-Fos and Krox-24 remained absent; but there was a marked induction of FosB and Krox-20, a strong repression of c-Jun, and no effect or a reduction of the basal levels of JunD. This coincident stimulation also caused FosB to appear in the nucleolus of many thalamic neurons. MK-801, but not L-NAME, blocked all these changes. In summary, noxious stimulation affects the expression of all transcription factors in the medial, lateral and reticular thalamus in a complex manner depending upon the inducible transcription factor considered, the thalamic nucleus, and the stimulation paradigm. The expression of some transcription factors uniquely after simultaneous inputs suggests they act as coincidence detectors at the gene level.
Collapse
Affiliation(s)
- D D Pearse
- School of Biomolecular and Biomedical Sciences, Griffith University, 4111, Nathan, Australia
| | | | | |
Collapse
|
20
|
Crocker SJ, Lamba WR, Smith PD, Callaghan SM, Slack RS, Anisman H, Park DS. c-Jun mediates axotomy-induced dopamine neuron death in vivo. Proc Natl Acad Sci U S A 2001; 98:13385-90. [PMID: 11687617 PMCID: PMC60880 DOI: 10.1073/pnas.231177098] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of the transcription factor c-Jun is induced in neurons of the central nervous system (CNS) in response to injury. Mechanical transection of the nigrostriatal pathway at the medial forebrain bundle (MFB) results in the delayed retrograde degeneration of the dopamine neurons in the substantia nigra pars compacta (SNc) and induces protracted expression and phosphorylation of c-Jun. However, the role of c-Jun after axotomy of CNS neurons is unclear. Here, we show that adenovirus-mediated expression of a dominant negative form of c-Jun (Ad.c-JunDN) inhibited axotomy-induced dopamine neuron death and attenuated phosphorylation of c-Jun in nigral neurons. Ad.c-JunDN also delayed the degeneration of dopaminergic nigral axons in the striatum after MFB axotomy. Taken together, these findings suggest that activation of c-Jun mediates the loss of dopamine neurons after axotomy injury.
Collapse
Affiliation(s)
- S J Crocker
- Neuroscience Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Over the past few years we have studied the plasticity of the adult auditory brainstem in the rat following unilateral changes to the pattern of sensory activation, either by intracochlear electrical stimulation or by deafening. We discovered that modifications to afferent activity induced changes in the molecular composition and cellular morphology throughout the auditory brainstem, including its major centers: the cochlear nucleus complex, the superior olivary complex, and the inferior colliculus. The time window studied ranged from 2 h to over 1 year following induction of changes to afferent activity. The molecular markers employed include the NMDA receptor subunit type 1, the cAMP response element binding protein (CREB), the immediate early gene products c-Fos, c-Jun and Egr-1, the growth and plasticity-associated protein GAP-43 and its mRNA, the calcium binding protein calbindin, the cell adhesion molecule integrin-alpha(1), the microtubule-associated protein MAP-1b, and the neurofilament light chain (NF-L). As a consequence of the specific electrical stimulation of the auditory afferents or the loss of hearing, a cascade of events is triggered that apparently modifies the integrative action and computational abilities of the central auditory system. An attempt is made to relate the diverse phenomena observed to a common molecular signaling network that is suspected to bridge sensory experience to changes in the structure and function of the brain. Eventually, a thorough understanding of these events will be essential for the specific diagnosis of patients, optimal timing for implantation, and suitable parameters for running of a cochlear implant or an auditory brainstem implant in humans. In this report an overview of the results obtained in the past years in our lab is presented, flanked by an introduction into the history of plasticity research and a model proposed for intracellular signal cascades related to activity-dependent plasticity.
Collapse
MESH Headings
- Animals
- Cochlear Nucleus/metabolism
- Cochlear Nucleus/pathology
- Cochlear Nucleus/physiopathology
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Early Growth Response Protein 1
- Evoked Potentials, Auditory, Brain Stem/physiology
- GAP-43 Protein/genetics
- GAP-43 Protein/metabolism
- Genes, fos/genetics
- Genes, jun/genetics
- Hearing Loss, Noise-Induced/genetics
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/physiopathology
- Immediate-Early Proteins
- Immunohistochemistry
- In Situ Hybridization
- Inferior Colliculi/metabolism
- Inferior Colliculi/pathology
- Inferior Colliculi/physiopathology
- Neuronal Plasticity/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- R B Illing
- Department of Otorhinolaryngology, Neurobiological Research Laboratory, University of Freiburg, Germany.
| |
Collapse
|
22
|
Pearse D, Mirza A, Leah J. Jun, Fos and Krox in the hippocampus after noxious stimulation: simultaneous-input-dependent expression and nuclear speckling. Brain Res 2001; 894:193-208. [PMID: 11251193 DOI: 10.1016/s0006-8993(01)01993-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stimulation of sensory C-fibres produces extensive expression of the Fos, Jun and Krox families of inducible transcription factors (ITFs) in many nociceptive CNS areas [28]. In the hippocampus, however, c-Fos is only weakly induced by such stimulation, and expression of the other ITFs has not been studied. Here we examine the effects of single, repeated and simultaneous C-fibre inputs on ITF expressions in the rat hippocampus. A brief, strong electrical stimulation of sciatic nerve C-fibres induced little or no expression of c-Fos or Krox-20. In contrast, FosB was induced and continued to rise in all areas, whereas the basal expressions of c-Jun and Krox-24 were initially reduced but then returned during the subsequent 36 h. A weak noxious cutaneous stimulus applied to one hindpaw induced only weak expressions of the ITFs. However, if the sciatic stimulation was applied contralaterally and 6 h beforehand, this weak stimulus strongly induced Krox-24, but not other ITFs, i.e. there was a potentiation of Krox-24 expression. When these two stimuli were applied simultaneously a few c-Fos labelled cells did appear, and there was and an increased Krox-24 expression. There was also a strong potentiation of FosB and a strong reduction in c-Jun expression. This simultaneous stimulation was the only type of stimulation to induce expression of Krox-20. Also after simultaneous stimulation the majority of the nuclear labelling for FosB, but not of the other ITFs, had a speckled appearance. MK-801 blocked these changes in ITF expressions, but it could also cause the C-fibre stimulations to induce c-Fos and c-Jun in specific areas of the hippocampus. Thus C-fibre stimulation does affect transcription factor activity in the hippocampus; and the strong responses of some ITFs to simultaneous inputs points to their having a role as 'genetic coincidence detectors' in the hippocampus.
Collapse
Affiliation(s)
- D Pearse
- School of Biomedical and Biomolecular Sciences, Griffith University, Nathan, Australia
| | | | | |
Collapse
|
23
|
Casanovas A, Ribera J, Hager G, Kreutzberg GW, Esquerda JE. c-Jun regulation in rat neonatal motoneurons postaxotomy. J Neurosci Res 2001; 63:469-79. [PMID: 11241582 DOI: 10.1002/jnr.1041] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Motoneurons respond to peripheral nerve transection by either regenerative or degenerative events depending on their state of maturation. Since the expression of c-Jun has been involved in the early signalling of the regenerative process that follows nerve transection in adults, we have investigated c-Jun on rat neonatal axotomized motoneurons during the period in which neuronal death is induced. Changes in levels of c-Jun protein and its mRNA were determined by means of quantitative immunocytochemistry and in situ hybridization. Three hours after nerve transection performed on postnatal day (P)3, c-Jun protein and mRNA is induced in axotomized spinal cord motoneurons, and high levels were reached between 1 and 10 days after. This response is associated with a detectable c-Jun activation by phosphorylation on serine 63. No changes were found in the levels of activating transcription factor -2. Most of dying motoneurons were not labelled by either a specific c-Jun antibody or a c-jun mRNA probe. However, dying motoneurons were specifically stained by a polyclonal anti c-Jun antibody, indicating that some c-Jun antibodies react with unknown epitopes, probably distinct from c-Jun p39, that are specifically associated with apoptosis.
Collapse
Affiliation(s)
- A Casanovas
- Unitat de Neurobiologia Cellular, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Spain
| | | | | | | | | |
Collapse
|
24
|
Liu C, Yao J, Mercola D, Adamson E. The transcription factor EGR-1 directly transactivates the fibronectin gene and enhances attachment of human glioblastoma cell line U251. J Biol Chem 2000; 275:20315-23. [PMID: 10783396 DOI: 10.1074/jbc.m909046199] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
EGR-1, a transcription factor with important functions in the regulation of growth and differentiation, is highly expressed in brain. Previous studies have shown that EGR-1 suppresses the transformed phenotype. However, the expression and role of EGR-1 in human glioblastoma cells are not yet determined. In this study, we found that the basal expression of the EGR-1 protein is undetectable, but is inducible in four human glioblastoma cell lines. To determine EGR-1 functions, we re-expressed EGR-1 in human glioblastoma U251 cells and found that the secretion of transforming growth factor-beta1 (TGF-beta1), plasminogen activator inhibitor-1 (PAI-1), and fibronectin (FN) was greatly enhanced. Addition of anti-TGF-beta antibodies completely inhibited the secretion of PAI-1, but had little effect on secretion of FN, indicating that PAI-1 is under the control of EGR-1-induced TGF-beta1. An examination of the promoter of the FN gene revealed two EGR-1-binding sites between positions -75 and -52 and positions -4 and +14 that specifically bound EGR-1 in gel mobility shift experiments. Utilizing wild-type and mutant FN promoter/luciferase reporter genes, we demonstrated that EGR-1 positively regulated the activity of the FN gene. In addition, cell adhesion and migration were greatly increased in the EGR-1-expressing cells, and adhesion was reversed by addition of RGD-containing peptides. These results suggest that EGR-1 may regulate cell interaction with the extracellular matrix by coordinated induction of TGF-beta1, FN, and PAI-1 in human glioblastoma cells.
Collapse
Affiliation(s)
- C Liu
- Sidney Kimmel Cancer Center, San Diego, California 92121, USA.
| | | | | | | |
Collapse
|
25
|
Wrynn AS, Sebens JB, Koch T, Leonard BE, Korf J. Prolonged c-Jun expression in the basolateral amygdala following bulbectomy: possible implications for antidepressant activity and time of onset. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 76:7-17. [PMID: 10719210 DOI: 10.1016/s0169-328x(99)00326-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Olfactory bulbectomy is a well established animal model of depression. Neurochemical and behavioral alterations observed following olfactory bulbectomy, are due, in part, to the neurodegeneration of specific brain structures. Amygdaloid dysfunction in particular, is known to play a substantial role in the syndrome of the olfactory bulbectomized rat. The present study examined both short- and long-term alterations in immediate early gene expression, tyrosine hydroxylase and serotonin immunoreactivity, and classical silver staining, following olfactory bulbectomy in the basolateral amygdala. The results indicated no consistent change in Fos expression observed over the experimental period. Following bulbectomy, long term (up to 64 days post-lesion) Jun expression, not coincident with silver staining, was observed in the basolateral nucleus. The basolateral nucleus was also intensely immunoreactive for serotonin at this timepoint post-bulbectomy. Thus, following bulbectomy long term alterations in Jun expression occurs in the serotonin rich basolateral amygdala. As a site of action for antidepressant compounds, alterations at the immediate early gene level in this region may have implications both for the model, and antidepressant drug action therein.
Collapse
Affiliation(s)
- A S Wrynn
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
26
|
Winter C, Schenkel J, Bürger E, Eickmeier C, Zimmermann M, Herdegen T. The immunophilin ligand FK506, but not GPI-1046, protects against neuronal death and inhibits c-Jun expression in the substantia nigra pars compacta following transection of the rat medial forebrain bundle. Neuroscience 2000; 95:753-62. [PMID: 10670442 DOI: 10.1016/s0306-4522(99)00486-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The immunophilin ligand FK506 (Tacrolimus) is used for prevention of graft rejection following organ transplantation. FK506 is a high-affinity ligand for FK506-binding proteins, an immunophilin subgroup of peptidyl-prolyl-cis/trans-rotamases abundant in the mammalian brain. Here, we demonstrate that FK506 is a potent survival factor that prevents neuronal cell death following axotomy of central intrinsic neurons. Administration of FK506 (2 mg/kg, s.c., per day for two days pre-axotomy and for up to eight days post-axotomy) effectively delayed and reduced the death of axotomized neurons in the substantia nigra pars compacta following transection of the medial forebrain bundle. In saline-treated controls, 75%, 89% and 92% of nigral neurons died after 25, 50 and 60 days post-axotomy, respectively. In contrast, application of FK506 resulted in survival of 46%, 44% and 28% of the axotomized nigral neurons, and the majority of these surviving neurons showed continuous expression of tyrosine hydroxylase, the pacemaker enzyme for dopamine synthesis. Moreover, FK506 significantly reduced the expression of the inducible transcription factor c-Jun and its N-terminal phosphorylation and prevented the axotomy-induced suppression of the constitutive transcription factor ATF-2 in neurons of the substantia nigra and mammillary body. The latter is also axotomized by the coincident transection of the mammillothalamic tract, but the mammillary neurons survive the axotomy. In contradistinction to FK506, the non-immunosuppressive FK506-binding protein ligand GPI-1046 (25 or 12.5 mg/kg, applied once or twice per day for two days pre-axotomy and for eight days post-axotomy) was completely ineffective for all these parameters investigated. Finally, FK506, but not GPI-1046, impressively accelerated the recovery from surgery. Our data provide the first evidence that FK506 acts as a neuroprotective molecule that rescues axotomized otherwise degenerating central intrinsic neurons in the adult mammalian brain by mechanisms that interfere with the transcriptional program of the axotomy-induced cell body response, such as activating transcription factor-2 suppression and c-Jun expression and phosphorylation.
Collapse
Affiliation(s)
- C Winter
- II Institute of Physiology, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Domańska-Janik K, Bong P, Bronisz-Kowalczyk A, Zajac H, Zablocka B. AP1 transcriptional factor activation and its relation to apoptosis of hippocampal CA1 pyramidal neurons after transient ischemia in gerbils. J Neurosci Res 1999; 57:840-6. [PMID: 10467255 DOI: 10.1002/(sici)1097-4547(19990915)57:6<840::aid-jnr9>3.0.co;2-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cellular processes with a potential to lead to delayed death of neurons following transient (5 min) ischemia in gerbil hippocampus were evaluated. Neuronal apoptosis, visualized by the terminal transferase dUTP nick-end labelling (TUNEL) reaction, selectively appeared in the CA1 region of the pyramidal cell layer between the third and fourth days after the insult. Concomitantly, an enhanced immunoreactivity to anti-cJun/AP1 (N) antibody as a major component of activator protein 1 (AP1) transcriptional factor was observed in CA1 neurons. In contrast, in the early postischemic phase, the cJun/AP1 reaction was noticed in numerous neurons and glia-like cells of the CA2/CA3 region, hilus of the dentate gyrus, and region of mossy fiber terminals. In parallel, hippocampal protein binding to AP1, measured by the electrophoretic mobility shift assay (EMSA), showed biphasic enhancement at 3 and then 72-120 hours after ischemia. Supershifts, with antibodies against c-Fos and phospho-c-Jun constituencies of the AP1 dimer, revealed an increased amount of phosphorylated c-Jun in the late postischemic phase. Collectively, these results suggest diversity of AP1 complex function, regulated by its dimer composition as well as time and place of expression during postischemic reperfusion. The early, survival-supporting AP1 response, located mainly in ischemia-resistant areas of CA2/3, is followed by the delayed phase, characteristic of massive neuronal apoptosis in CA1 with concomitant increase of phospho-c-Jun in AP1 dimer.
Collapse
Affiliation(s)
- K Domańska-Janik
- Department of Neurochemistry, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
28
|
Schmitt AB, Breuer S, Voell M, Schwaiger FW, Spitzer C, Pech K, Brook GA, Noth J, Kreutzberg GW, Nacimiento W. GAP-43 (B-50) and C-Jun are up-regulated in axotomized neurons of Clarke's nucleus after spinal cord injury in the adult rat. Neurobiol Dis 1999; 6:122-30. [PMID: 10343327 DOI: 10.1006/nbdi.1998.0231] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The growth-associated protein GAP-43 (B-50) and the transcription factor C-Jun are involved in regeneration of the injured nervous system. In this study, we investigated the possibility of the induction of GAP-43 and C-Jun in axotomized neurons of Clarke's nucleus (CN) in adult rats, of which a large population undergoes degeneration several weeks after a low thoracic lateral funiculotomy of the spinal cord. In situ hybridization and immunohistochemistry revealed a transient up-regulation of GAP-43 mRNA, C-Jun protein, and its activated, phosphorylated form, peaking around 7 days after injury in preferentially large diameter CN-neurons ipsilateral and caudal to the lesion. Our results document that some populations of axotomized central nervous system neurons, similar to axotomized regenerating neurons of the peripheral nervous system, can up-regulate GAP-43 and C-Jun, even if they are destined to degenerate. This might reflect a transient regenerative capacity, which fails over time.
Collapse
Affiliation(s)
- A B Schmitt
- Department of Neurology, Aachen University Medical School, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hughes PE, Alexi T, Walton M, Williams CE, Dragunow M, Clark RG, Gluckman PD. Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system. Prog Neurobiol 1999; 57:421-50. [PMID: 10080384 DOI: 10.1016/s0301-0082(98)00057-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review primarily discusses work that has been performed in our laboratories and that of our direct collaborators and therefore does not represent an exhaustive review of the current literature. Our aim is to further discuss the role that gene expression plays in neuronal plasticity and pathology. In the first part of this review we examine activity-dependent changes in the expression of inducible transcription factors (ITFs) and neurotrophins with long-term potentiation (LTP) and kindling. This work has identified particular ITFs (Krox-20 and Krox-24) and neurotrophin systems (particularly the brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase-B, Trk-B system) that may be involved in stabilizing long-lasting LTP (i.e. LTP3). We also show that changes in the expression of other ITFs (Fos, Jun-D and Krox-20) and the BDNF/trkB neurotrophin system may play a central role in the development of hippocampal kindling, an animal model of human temporal lobe epilepsy. In the next part of this review we examine changes in gene expression after neuronal injuries (ischemia, prolonged seizure activity and focal brain injury) and after nerve transection (axotomy). We identify apoptosis-related genes (p53, c-Jun, Bax) whose delayed expression selectively increases in degenerating neurons, further suggesting that some forms of neuronal death may involve apoptosis. Moreover, since overexpression of the tumour-suppressor gene p53 induces apoptosis in a wide variety of dividing cell types we speculate that it may perform the same function in post-mitotic neurons following brain injuries. Additionally, we show that neuronal injury is associated with rapid, transient, activity-dependent expression of neurotrophins (BDNF and activinA) in neurons, contrasting with a delayed and more persistent injury-induced expression of certain growth factors (IGF-1 and TGFbeta) in glia. In this section we also describe results linking ITFs and neurotrophic factor expression. Firstly, we show that while BDNF and trkB are induced as immediate-early genes following injury, the injury-induced expression of activinA and trkC may be regulated by ITFs. We also discuss whether loss of retrograde transport of neurotrophic factors such as nerve growth factor following nerve transection triggers the selective and prolonged expression of c-Jun in axotomized neurons and whether c-Jun is responsible for regeneration or degeneration of these axotomized neurons. In the last section we further examine the role that gene expression may play in memory formation, epileptogenesis and neuronal degeneration, lastly speculating whether the expression of various growth factors after brain injury represents an endogenous neuroprotective response of the brain to injury. Here we discuss our results which show that pharmacological enhancement of this response with exogenous application of IGF-1 or TGF-beta reduces neuronal loss after brain injury.
Collapse
Affiliation(s)
- P E Hughes
- Department of Pharmacology and Clinical Pharmacology and Research Centre for Developmental Medicine and Biology, School of Medicine, The University of Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
30
|
Houle JD, Schramm P, Herdegen T. Trophic factor modulation of c-Jun expression in supraspinal neurons after chronic spinal cord injury. Exp Neurol 1998; 154:602-11. [PMID: 9878195 DOI: 10.1006/exnr.1998.6954] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cervical, but not thoracic spinal cord injury upregulates, in certain brainstem neurons, the expression of c-Jun, an inducible transcription factor that may be involved in the regenerative program/cell body response to injury. This study was designed to evaluate changes in c-Jun expression over a long period after spinal cord injury and to determine if such expression could be influenced by trophic or growth factors. Adult rats received a cervical (C3) hemisection lesion. Four or eight weeks later the lesion site was exposed, scar tissue in the cavity was removed and gel foam saturated with ciliary neurotrophic factor (CNTF), basic fibroblast growth factor (FGF2), or phosphate-buffered saline (PBS) as a control was placed into the cavity. Animals were sacrificed 7 days after treatment. In response to axotomy, c-Jun expression remained elevated in the red nucleus (RN) and vestibular complex (VST) at 4 weeks after injury, with no changes observed following scar tissue removal and PBS treatment. In contrast, treatment with CNTF further increased expression by RN neurons, but not VST neurons. Treatment with FGF2 had no significant effect on c-Jun expression at 4 weeks after injury. After 8 weeks, c-Jun expression approached baseline levels; however, removal of scar tissue, with subsequent secondary injury, caused an upregulation of c-Jun expression in both RN and VST neurons, which could be enhanced by CNTF, but not FGF2, treatment. At long postinjury intervals, interventive therapy known to promote axonal regeneration from chronically injured neurons leads to a reinduction of c-Jun expression. This reinduction may be related to the initiation of the regenerative effort of these neurons, although the lack of c-Jun upregulation by certain types of neurons does not appear to prevent a regenerative response by these cells.
Collapse
Affiliation(s)
- J D Houle
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | | | | |
Collapse
|
31
|
Haas CA, Bach A, Heimrich B, Linke R, Otten U, Frotscher M. Axotomy-induced c-JUN expression in young medial septal neurons is regulated by nerve growth factor. Neuroscience 1998; 87:831-44. [PMID: 9759971 DOI: 10.1016/s0306-4522(98)00188-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the present study we investigated the axotomy-induced expression of the proto-oncogene c-jun in young rat medial septal neurons and its regulation by nerve growth factor. First, medial septal neurons were retrogradely labelled by Fast Blue injection into the hippocampus at postnatal day 1 (P1). Rats of different developmental ages (P6, P9, P14, P21, P28 and P42) were then subjected to bilateral fimbria-fornix transection resulting in the axotomy of septohippocampal projection neurons. After the lesion, c-JUN immunoreactivity was observed in the nuclei of axotomized medial septal neurons of all stages examined, suggesting that c-JUN induction is an age-independent feature of axotomized medial septal neurons. Double immunolabelling for choline acetyltransferase and c-JUN or parvalbumin and c-JUN, respectively, revealed that both cholinergic and GABAergic septohippocampal projection neurons express c-JUN after axotomy. In addition, a co-localization of immunostaining for c-JUN and the neuropeptide galanin was found after lesion, as both proteins were induced in the same medial septal neurons following fimbria-fornix transection. Next, the regulation of c-JUN expression in axotomized medial septal neurons was studied in organotypic cultures of the medial septum. Axotomized medial septal neurons in culture did not express c-JUN in contrast to the in vivo situation. With the concept that nerve growth factor suppresses c-JUN expression, slice cultures of the medial septum were treated with antibodies against nerve growth factor. This treatment caused a dose-dependent increase in c-JUN-positive cells in these slice cultures. Simultaneous addition of nerve growth factor and antibodies against nerve growth factor resulted in the reversal of this effect. These data suggest an age-independent induction of c-JUN in axotomized medial septal neurons and its regulation by nerve growth factor.
Collapse
Affiliation(s)
- C A Haas
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:370-490. [PMID: 9858769 DOI: 10.1016/s0165-0173(98)00018-6] [Citation(s) in RCA: 1061] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews findings up to the end of 1997 about the inducible transcription factors (ITFs) c-Jun, JunB, JunD, c-Fos, FosB, Fra-1, Fra-2, Krox-20 (Egr-2) and Krox-24 (NGFI-A, Egr-1, Zif268); and the constitutive transcription factors (CTFs) CREB, CREM, ATF-2 and SRF as they pertain to gene expression in the mammalian nervous system. In the first part we consider basic facts about the expression and activity of these transcription factors: the organization of the encoding genes and their promoters, the second messenger cascades converging on their regulatory promoter sites, the control of their transcription, the binding to dimeric partners and to specific DNA sequences, their trans-activation potential, and their posttranslational modifications. In the second part we describe the expression and possible roles of these transcription factors in neural tissue: in the quiescent brain, during pre- and postnatal development, following sensory stimulation, nerve transection (axotomy), neurodegeneration and apoptosis, hypoxia-ischemia, generalized and limbic seizures, long-term potentiation and learning, drug dependence and withdrawal, and following stimulation by neurotransmitters, hormones and neurotrophins. We also describe their expression and possible roles in glial cells. Finally, we discuss the relevance of their expression for nervous system functioning under normal and patho-physiological conditions.
Collapse
Affiliation(s)
- T Herdegen
- Institute of Pharmacology, University of Kiel, Hospitalstrasse 4, 24105, Kiel,
| | | |
Collapse
|
33
|
Haas CA, Frotscher M. Role of NGF in axotomy-induced c-Jun expression in medial septal cholinergic neurons. Int J Dev Neurosci 1998; 16:691-703. [PMID: 10198817 DOI: 10.1016/s0736-5748(98)00079-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The extent of neuronal regeneration after axotomy largely depends on the survival capacity of the injured cell. It has been shown for a long time that nerve fiber transection results in retrograde changes in the parent neuronal cell body, and that these changes may eventually lead to neuronal degeneration. At present, little is known about the sequence of events initiated in a nerve cell body by the transection of its axonal process. In this report, we will focus on an interaction of nerve growth factor (NGF) with the transcription factor c-Jun in intact and axotomized septohippocampal projection neurons.
Collapse
Affiliation(s)
- C A Haas
- Institute of Anatomy, University of Freiburg, Germany.
| | | |
Collapse
|
34
|
Retrograde regulation of growth-associated gene expression in adult rat Purkinje cells by myelin-associated neurite growth inhibitory proteins. J Neurosci 1998. [PMID: 9742159 DOI: 10.1523/jneurosci.18-19-07912.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axon regeneration requires that injured neurons reinitiate long-distance growth and upregulate specific genes. To address the question of whether inhibitory environmental cues along the axon could exert a negative, tonic downregulation of growth-associated genes, we have examined adult rat Purkinje cells, which are endowed with poor regenerative capabilities. First we have compared their response to axotomy with that of neurons of the inferior olive, lateral reticular nucleus, and deep cerebellar nuclei, all of which vigorously regenerate into growth-permissive transplants. These injured neurons upregulate the transcription factors c-Jun and JunD, GAP-43, and NADPH diaphorase. In contrast, most axotomized Purkinje cells fail to express any of these markers, showing that the strength of this response parallels the regenerative potential of the examined neuron populations. However, strong upregulation of the same genes can be induced in Purkinje cells after colchicine injection into the uninjured adult cerebellum, indicating that their expression could be controlled by retrograde signals. To assess whether myelin-associated neurite growth inhibitory proteins contribute to this regulation, we applied the neutralizing antibodies IN-1 against one of the main inhibitory components of central myelin (NI-250) either in vivo or in vitro to organotypic cerebellar cultures. Application of IN-1 antibodies induces the upregulation of c-Jun, JunD, and NADPH diaphorase in Purkinje cells, showing that their expression is suppressed constitutively by myelin-associated neurite growth inhibitors. Thus, the inhibitory activity of the IN-1 antigen on axon growth is not restricted to the control of growth cone motility but also involves a retrograde regulation of gene expression in adult central neurons.
Collapse
|
35
|
Vaudano E, Campbell G, Hunt SP, Lieberman AR. Axonal injury and peripheral nerve grafting in the thalamus and cerebellum of the adult rat: upregulation of c-jun and correlation with regenerative potential. Eur J Neurosci 1998; 10:2644-56. [PMID: 9767394 DOI: 10.1046/j.1460-9568.1998.00282.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The protooncogene c-jun is highly expressed for long periods in axotomized PNS neurons. This may be related to their growth and regeneration. In contrast, axotomized CNS neurons show only a small and transient upregulation of c-jun. It has been suggested that there may be a correlation between this failure to maintain high levels of c-jun expression after axotomy and abortive CNS axonal regeneration. We have studied, by in situ hybridization and immunohistochemistry, the c-jun response after stab wound lesion, and after peripheral nerve grafting in the thalamus and cerebellum of the adult rat. A lesion elicits upregulation of c-jun in thalamic neurons ipsilateral to the lesion. This is most evident and prolonged in neurons such as those of the thalamic reticular nucleus, which have an established propensity to regenerate. After peripheral nerve grafting, the c-jun response in thalamic neurons is enhanced, mostly in neurons which have axons regenerating along the grafts. These neurons also upregulate growth-associated protein 43 (GAP-43). By comparison, injured Purkinje cells of the cerebellum which do not regenerate their axons along a graft, do not upregulate either c-jun or GAP-43, although they increase their expression of p75. Thus CNS neurons able to regenerate their axons along a peripheral nerve graft are those in which c-jun is induced after injury, and c-jun may play a critical role in the control of gene programs for axonal regeneration. Moreover, the observed differences in the ability of CNS neurons to regenerate their axons may relate to a difference in their intrinsic molecular response to axotomy.
Collapse
Affiliation(s)
- E Vaudano
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
36
|
Lasting N-terminal phosphorylation of c-Jun and activation of c-Jun N-terminal kinases after neuronal injury. J Neurosci 1998. [PMID: 9651196 DOI: 10.1523/jneurosci.18-14-05124.1998] [Citation(s) in RCA: 259] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transcription factor c-Jun is proposed to control neuronal cell death and survival, but its activation by N-terminal phosphorylation and the underlying activity of the c-Jun N-terminal kinases (JNKs) remain to be elucidated in the adult mammalian brain. We generated a polyclonal antiserum that specifically recognizes c-Jun phosphorylated at its serine 73 (S73) residue after UV irradiation of 3T3 cells. Disruption of the c-jun locus in 3T3 cells abolished this reaction, and retransfection of the human c-jun at the c-jun-/- background restored it. The phospho-c-Jun antiserum was used to visualize N-terminally phosphorylated c-Jun in the adult rat brain with cellular resolution. Prolonged c-Jun S73 phosphorylation was detected in affected neurons up to 5 d after transient occlusion of medial cerebral artery or up to 50 d after transection of central nerve fiber tracts. After cerebral ischemia-reperfusion, phosphorylation of c-Jun was linked with induced expression of Fas-ligand (APO-1, CD95-ligand), whose gene is a putative c-Jun/AP-1 target, and with terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) reactivity, a marker for apoptosis. After nerve fiber transection, however, lasting c-Jun phosphorylation occurred in axotomized neurons negative for Fas-ligand or TUNEL and regardless of degeneration or survival. In contrast to these lasting phosphorylation patterns, transient seizure activity by pentylenetetrazole provoked only a brief c-Jun phosphorylation and JNK activation. In extracts from ischemic or axotomized brain compartments, c-Jun phosphorylation correlated with enhanced long-term JNK activity, and in-gel kinase assays visualized proteins with sizes corresponding to JNK isoforms as the only c-Jun N-terminally phosphorylating enzymes. These results demonstrate that lasting c-Jun S73 phosphorylation and JNK activity are part of neuronal stress response after neurodegenerative disorders in the adult mammalian brain with Fas-ligand as a putative apoptotic effector.
Collapse
|
37
|
Buffo A, Fronte M, Oestreicher AB, Rossi F. Degenerative phenomena and reactive modifications of the adult rat inferior olivary neurons following axotomy and disconnection from their targets. Neuroscience 1998; 85:587-604. [PMID: 9622255 DOI: 10.1016/s0306-4522(98)00049-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Adult olivocerebellar axons are capable of vigorous regeneration when provided with growth-permissive environmental conditions. To elucidate the contribution of intrinsic properties to the regenerative capabilities of inferior olivary neurons, we have examined the cellular modifications occurring in these neurons following axotomy and target deprivation in the absence of exogenous growth-promoting influences. Axotomized inferior olivary neurons undergo perikaryal shrinkage, dendritic atrophy and a loss of anti-calbindin immunoreactivity. A conspicuous cell death occurs during the first few weeks after lesion, but about 35% of the affected neurons survive up to 60 days. Coincidentally, a subset of the injured nerve cells become strongly reactive for NADPH diaphorase histochemistry, and this expression is correlated with survival in the medial accessory olive and in the principal olive. In addition, the affected neurons express or maintain the expression of several markers related to regenerative processes, including transcription factors c-Jun, JunD and Krox-24, the growth-associated protein GAP-43 and the developmentally regulated calcitonin gene-related peptide (CGRP). The expression of all these markers is sustained up to two months after lesion, the longest survival time examined. These results show that although adult axotomized inferior olivary neurons undergo severe regressive modifications leading to a conspicuous cell loss, at least a subset of them is resistant to the lesion. In addition, the long-lasting expression of several axon-growth associated markers expressed in these neurons in response to injury reveals that they are endowed with a strong intrinsic regenerative potential.
Collapse
Affiliation(s)
- A Buffo
- Department of Neuroscience, University of Turin, Italy
| | | | | | | |
Collapse
|
38
|
Peripheral axotomy induces long-term c-Jun amino-terminal kinase-1 activation and activator protein-1 binding activity by c-Jun and junD in adult rat dorsal root ganglia In vivo. J Neurosci 1998. [PMID: 9454841 DOI: 10.1523/jneurosci.18-04-01318.1998] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One of the earliest documented molecular events after sciatic nerve injury in adult rats is the rapid, long-term upregulation of the immediate early gene transcription factor c-Jun mRNA and protein in lumbar dorsal root ganglion (DRG) neurons, suggesting that c-Jun may regulate genes that are important both in the early post-injury period and during later peripheral axonal regeneration. However, neither the mechanism through which c-Jun protein is increased nor the level of its post-injury transcriptional activity in axotomized DRGs has been characterized. To determine whether transcriptional activation of c-Jun occurs in response to nerve injury in vivo and is associated with axonal regeneration, we have assayed axotomized adult rat DRGs for evidence of jun kinase activation, c-Jun phosphorylation, and activator protein-1 (AP-1) binding. We report that sciatic nerve transection resulted in chronic activation of c-Jun amino-terminal kinase-1 (JNK) in L4/L5 DRGs concomitant with c-Jun amino-terminal phosphorylation in neurons, and lasting AP-1 binding activity, with both c-Jun and JunD participating in DNA binding complexes. The timing of JNK activation was dependent on the distance of the axotomy site from the DRGs, suggesting the requirement for a retrograde transport-mediated signal. AP-1 binding and c-Jun protein returned to basal levels in DRGs as peripheral regeneration was completed but remained elevated in the case of chronic sprouting, indicating that c-Jun may regulate target genes that are involved in axonal outgrowth.
Collapse
|
39
|
Pennypacker K. AP-1 transcription factors: short- and long-term modulators of gene expression in the brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1998; 42:169-97. [PMID: 9476173 DOI: 10.1016/s0074-7742(08)60610-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K Pennypacker
- Department of Pharmacology and Therapeutics, University of South Florida, Tampa 33612, USA
| |
Collapse
|
40
|
Bregman BS, Broude E, McAtee M, Kelley MS. Transplants and neurotrophic factors prevent atrophy of mature CNS neurons after spinal cord injury. Exp Neurol 1998; 149:13-27. [PMID: 9454611 DOI: 10.1006/exnr.1997.6669] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axotomy of mature rubrospinal neurons leads to a substantial atrophy of these neurons within days after surgery. In addition, these neurons do not successfully regenerate following axotomy. The relationship of atrophy to regenerative failure is not clear, and the signals which regulate these events have not been identified. However, it is possible that the atrophy of these neurons plays a role in preventing regeneration. In the present study, we evaluated the hypothesis that interventions which have been shown to promote growth of axotomized CNS neurons are also capable of reversing the axotomy-induced atrophy. To test this hypothesis, adults rats received thoracic spinal cord hemisection alone or in combination with transplants of fetal spinal cord tissue and/or neurotrophic factor support. Our data indicate that application of either transplants or neurotrophic factors partially reverse the axotomy-induced atrophy in rubrospinal neurons, but that both interventions together reverse the atrophy completely. These results suggest that the same pathways that are activated to enhance growth of rubrospinal neurons after axotomy may also be involved in the maintenance of cell morphology.
Collapse
Affiliation(s)
- B S Bregman
- Department of Cell Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
41
|
Blottner D, Herdegen T. Neuroprotective fibroblast growth factor type-2 down-regulates the c-Jun transcription factor in axotomized sympathetic preganglionic neurons of adult rat. Neuroscience 1998; 82:283-92. [PMID: 9483520 DOI: 10.1016/s0306-4522(97)00287-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immediate-early gene encoded transcription factor c-Jun is highly inducible following axotomy and therefore serves as a valuable marker in neuronal de- and regeneration. As the signals that may trigger c-Jun expression are still obscure, molecules derived from lesioned neurons and/or their targets such as growth factors or cytokines have been proposed as candidates for interneuronal transcriptional regulation in vivo. We therefore tested whether local administration of the neuroprotective cytokine fibroblast growth factor type-2 in vivo has an effect on the axotomy-induced nuclear expression patterns of the activator protein-1 transcription factors c-Fos and JunB, or c-Jun in the spinal cord-intermedolateral nucleus-adrenal axis lesion paradigm in the rat. Partial axotomy of preganglionic nerve fibres by selective unilateral removal of the adrenal medulla resulted in strong staining patterns of c-Jun in the nuclei of preganglionic cell bodies located in the spinal intermediolateral cell column identified by in vivo retrograde prelabelling with the fluorescent tracer Fast Blue prior to lesion. Axotomy-induced nuclear c-Jun expression was highly increased when compared with the moderate baseline expression in normal or sham-operated animals. In animals treated with fibroblast growth factor-2 gelfoams implanted to the lesioned adrenal gland the nuclear c-Jun staining pattern is reduced or even absent from these neurons. By contrast, c-Fos and JunB induction did not occur in the intermediolateral nucleus in the lesion paradigm investigated. These results support the idea of functional links between neurotrophic cytokines such as fibroblast growth factor-2 and transcriptional effectors such as c-Jun. The target derived fibroblast growth factor-2 thus may signal the intactness of the neuron-target axis resulting in suppression of central extrinsic neurons and promotion of neuroprotective gene activation. Neuronal survival in absence of c-Jun indicates that c-Jun exerts negative actions in vulnerated neurons.
Collapse
Affiliation(s)
- D Blottner
- Department of Anatomy, Benjamin Franklin University Clinics, Freie Universität Berlin, Germany
| | | |
Collapse
|
42
|
Redburn JL, Leah JD. Accelerated breakdown and enhanced expression of c-Fos in the rat brain after noxious stimulation. Neurosci Lett 1997; 237:97-100. [PMID: 9453224 DOI: 10.1016/s0304-3940(97)00820-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
c-Fos expression was examined in rat brains at increasing times after a single noxious stimulus to one hindpaw. In some nuclei the expression peaked at 1 h and was gone by 6 h; in others it was biphasic with a larger peak appearing 6 h after the first. In other rats a second, contralateral stimulus was given at increasing times after the first, and c-Fos examined after a further 1.5 h. In some nuclei the first stimulus potentiated c-Fos expression caused by the second stimulus; in others the second stimulus erased any c-Fos still present from the first. Thus two similar stimuli can interact in very different ways in effecting c-Fos expression in different central nervous system nuclei, and rapid down-regulation might represent a novel type of interaction.
Collapse
Affiliation(s)
- J L Redburn
- School of Biomolecular and Biomedical Sciences, Griffith University, Nathan, Australia
| | | |
Collapse
|
43
|
Broude E, McAtee M, Kelley MS, Bregman BS. c-Jun expression in adult rat dorsal root ganglion neurons: differential response after central or peripheral axotomy. Exp Neurol 1997; 148:367-77. [PMID: 9398479 DOI: 10.1006/exnr.1997.6665] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The response of the mature central nervous system (CNS) to injury differs significantly from the response of the peripheral nervous system (PNS). Axotomized PNS neurons generally regenerate following injury, while CNS neurons do not. The mechanisms that are responsible for these differences are not completely known, but both intrinsic neuronal and extrinsic environmental influences are likely to contribute to regenerative success or failure. One intrinsic factor that may contribute to successful axonal regeneration is the induction of specific genes in the injured neurons. In the present study, we have evaluated the hypothesis that expression of the immediate early gene c-jun is involved in a successful regenerative response. We have compared c-Jun expression in dorsal root ganglion (DRG) neurons following central or peripheral axotomy. We prepared animals that received either a sciatic nerve (peripheral) lesion or a dorsal rhizotomy in combination with spinal cord hemisection (central lesion). In a third group of animals, several dorsal roots were placed into the hemisection site along with a fetal spinal cord transplant. This intervention has been demonstrated to promote regrowth of severed axons and provides a model to examine DRG neurons during regenerative growth after central lesion. Our results indicated that c-Jun was upregulated substantially in DRG neurons following a peripheral axotomy, but following a central axotomy, only 18% of the neurons expressed c-Jun. Following dorsal rhizotomy and transplantation, however, c-Jun expression was upregulated dramatically; under those experimental conditions, 63% of the DRG neurons were c-Jun-positive. These data indicate that c-Jun expression may be related to successful regenerative growth following both PNS and CNS lesions.
Collapse
Affiliation(s)
- E Broude
- Georgetown University School of Medicine, Department of Cell Biology, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
44
|
Herdegen T, Blume A, Buschmann T, Georgakopoulos E, Winter C, Schmid W, Hsieh TF, Zimmermann M, Gass P. Expression of activating transcription factor-2, serum response factor and cAMP/Ca response element binding protein in the adult rat brain following generalized seizures, nerve fibre lesion and ultraviolet irradiation. Neuroscience 1997; 81:199-212. [PMID: 9300412 DOI: 10.1016/s0306-4522(97)00170-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression of the constitutive transcription factors activating transcription factor-2 (ATF-2), serum response factor (SRF) and cAMP/Ca response element binding factor (CREB), and the phosphorylation of SRF and CREB were studied in the untreated adult rat nervous system and following seizure activities and neurodegenerative stimuli. In the untreated rat, intense nuclear SRF immunoreactivity was present in the vast majority of neurons in the forebrain, cortex, striatum, amygdala and hippocampus, and in some scattered neurons in the medulla and spinal cord. In contrast, SRF immunoreactivity was absent in the midline areas of the forebrain, e.g., the globus pallidum and septum, and in the hypothalamus, thalamus, mesencephalon and motoneurons. Nuclear ATF-2 was expressed at high levels in apparently all neurons, but not glial cells, throughout the neuraxis except for those neuronal populations which exhibit a high basal level of c-Jun, i.e. dentate gyrus and the motoneurons of cranial and somatosensory neurons. CREB immunoreactivity was present at a rather uniform intensity in all neuronal and glial cells throughout the neuraxis. Two hours, but not 5 h or 24 h, following systemic application of kainic acid, an increase in SRF was detectable by western blot analysis in hippocampal and cortical homogenates whereas the expression of ATF-2 and CREB did not change. Phosphorylation of CREB at serine 133 and of SRF at serine 103 were studied with specific antisera. In untreated rats, intense phosphoCREB and phosphoSRF immunoreactivities labelled many glial cells and/or neurons with the highest levels in the dentate gyrus, the entorhinal cortex and the retrosplenial cortex. Following kainate-induced seizures, phosphoSRF-IR but not phosphoCREB-IR transiently increased between 0.5 h and 2 h. Following transection of peripheral or central nerve fibres such as optic nerve, medial forebrain bundle, vagal and facial nerve fibres, ATF-2 rapidly decreased in the axotomized neurons during that period when c-Jun was rapidly expressed. SRF remained unchanged and CREB disappeared in some axotomized subpopulations. Similar to axotomy, c-Jun increased and ATF-2 decreased in cultured adult dorsal root ganglion neurons following ultraviolet irradiation. The distribution of SRF and ATF-2 suggests that their putative target genes c-fos, junB, krox-24 and c-jun can be independently regulated from SRF and ATF-2. The suppression of ATF-2 and the expression of c-Jun following axotomy and ultraviolet irradiation might be part of a novel neuronal stress response in the brain that strongly resembles the stress response characterized in non-neuronal cells.
Collapse
Affiliation(s)
- T Herdegen
- Department of Pharmacology, University of Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nishi K. Expression of c-Jun in dopaminergic neurons of the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Brain Res 1997; 771:133-41. [PMID: 9383016 DOI: 10.1016/s0006-8993(97)00862-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression of c-Jun in the brains of young (8-week-old) and older (52-week-old) mice following administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was investigated immunocytochemically. Both age groups exhibited reduction in the number of dopaminergic neurons in the substantia nigra after administration of MPTP. There was a significant difference in the magnitude of decrease in the number of dopaminergic neurons between the two groups, as has previously been reported, and the older mice exhibited more extensive loss of dopaminergic neurons in the substantia nigra after MPTP administration than did the young mice. Prolonged c-Jun expression was induced in the substantia nigra following administration of MPTP, and this induction was more prominent in the older mice than in the young mice. Maximum expression of c-Jun occurred on day 7 after the administration of MPTP in both groups. Double staining for tyrosine hydroxylase (TH; a dopaminergic neuron marker) and c-Jun revealed their co-localization indicating that the cells expressing c-Jun were dopaminergic neurons. Cytoplasmic volumes of strongly c-Jun positive cells were reduced, suggesting that they may have been degenerating. In situ end labeling revealed no apoptotic neurons after MPTP administration. These results suggest the existence of some cascade mechanism of nonapoptotic death of dopaminergic neurons following administration of MPTP.
Collapse
Affiliation(s)
- K Nishi
- Department of Neurology, Tokyo Metropolitan Institute for Neuroscience, Japan.
| |
Collapse
|
46
|
Abstract
The Egr proteins, Egr-1, Egr-2, Egr-3 and Egr-4, are closely related members of a subclass of immediate early gene-encoded, inducible transcription factors. They share a highly homologous DNA-binding domain which recognises an identical DNA response element. In addition, they have several less-well conserved structural features in common. As immediate early proteins, the Egr transcription factors are rapidly induced by diverse extracellular stimuli within the nervous system in a discretely controlled manner. The basal expression of the Egr proteins in the developing and adult rat brain and the induction of Egr proteins by neurotransmitter analogue stimulation, physiological mimetic and brain injury paradigms is reviewed. We review evidence indicating that Egr proteins are subject to tight differential control through diverse mechanisms at several levels of regulation. These include transcriptional, translational and post-translational (including glycosylation, phosphorylation and redox) mechanisms and protein-protein interaction. Ultimately the differentially co-ordinated Egr response may lead to discrete effects on target gene expression. Some of the known target genes of Egr proteins and functions of the Egr proteins in different cell types are also highlighted. Future directions for research into the control and function of the different Egr proteins are also explored.
Collapse
Affiliation(s)
- A M Beckmann
- Department of Biochemistry, University of Queensland, St Lucia, Australia
| | | |
Collapse
|
47
|
Ferrer I, Planas AM, Pozas E. Radiation-induced apoptosis in developing rats and kainic acid-induced excitotoxicity in adult rats are associated with distinctive morphological and biochemical c-Jun/AP-1 (N) expression. Neuroscience 1997; 80:449-58. [PMID: 9284348 DOI: 10.1016/s0306-4522(97)00126-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ionizing radiation produces apoptosis in the developing rat brain. Strong c-Jun immunoreactivity, as revealed with the antibody c-Jun/AP-1 (N) which is raised against the amino acids 91-105 mapping with the amino terminal domain of mouse c-Jun p39, is simultaneously observed in the nucleus and cytoplasm of apoptotic cells. Western blotting of total brain homogenates, using the same antibody, shows a p39 band in control rats which is accompanied by a strong, phosphorylated p62 double-band in irradiated animals. In addition, increased c-Jun N-terminal kinase 1 expression, as found on western blots, is found in irradiated rats when compared with controls. Intraperitoneal injection of kainic acid at convulsant doses to the adult rat produces cell death with morphological features of necrosis, together with the appearance of cells with fine granular chromatin degeneration and small numbers of apoptotic-like cells, in the entorhinal and piriform cortices, basal amygdala, certain thalamic nuclei, and CA1 region of the hippocampus. c-Jun expression in kainic acid-treated rats, as revealed with the c-Jun/AP-1 (N) antibody, is found in the nuclei of a minority of cells in the same areas. The vast majority of c-Jun-immunoreactive cells have normal nuclear morphology, whereas necrotic cells are negative and only a few cells with fine granular chromatin condensation and apoptotic cells following kainic acid injection are stained with c-Jun antibodies. Western blotting, using the same antibody, shows a p39 band in control rats, which is accompanied by a band at about p26 from 6 h onwards following kainic acid injection. Decreased c-Jun N-terminal kinase 1 expression, as revealed on western blots, is observed in kainic acid-treated rats. These results show that the antibody c-Jun/AP-1 (N) recognizes three different forms of c-Jun-related immunoreactivity in normal and pathological states, which are associated with the different outcome of cells. These results stress the necessity of examining in detail the composition of c-Jun-immunoreactive bands and the metabolic state of c-Jun(s) in different paradigms of cell death and survival.
Collapse
Affiliation(s)
- I Ferrer
- Unitat de Neuropatologia, Servei d'Anatomia Patològica, Hospital Princeps d'Espanya, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
48
|
Brecht S, Buschmann T, Grimm S, Zimmermann M, Herdegen T. Persisting expression of galanin in axotomized mamillary and septal neurons of adult rats labeled for c-Jun and NADPH-diaphorase. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 48:7-16. [PMID: 9379852 DOI: 10.1016/s0169-328x(97)00070-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In adult male rats, the expression of the neuropeptide galanin and its co-localization with the c-Jun transcription factor and the NADPH-diaphorase, the marker enzyme for the nitric oxide synthase (NOS), was investigated by immunohistochemistry in axotomized neurons following unilateral stereotaxic transection of the (a) mamillo-thalamic tract, (b) medial forebrain bundle, (c) fimbria fornix bundle and (d) sciatic nerve. This surgical procedure resulted in axotomy of neurons of (a) mamillary ncl. (MnM), (b) substantia nigra compacta (SNC) and paraventricular ncl. of thalamic (PF) neurons, (c) medial septum (MS) and vertical diagonal band of Broca (VDB), and (d) sciatic motoneurons and dorsal root ganglia (DRG). In all of these axotomized neuronal subpopulations, expression of c-Jun appeared between 24 and 36 h post-axotomy and persisted on substantial levels for 15 days in the SNC and for 30-50 days in the MnM, PF, MS, VBD, sciatic DRG and motoneurons. Expression of galanin was seen in axotomized MnM, MS and DRG, but not in SNC, PF and sciatic motoneurons. Galanin-immunoreactivity (IR) appeared between 3 and 5 days after nerve fiber transection and persisted up to 50 days in the MnM, MS and DRGs. The cytoplasmic galanin-IR was almost completely restricted to those neurons showing a nuclear c-Jun expression. Moreover, galanin expression showed a long-lasting co-localization with those neurons that exhibited an increased NADPH-diaphorase reactivity in the MnM and DRG or a residual NADPH-diaphorase reactivity in MS post-axotomy. Very similar to galanin, NADPH-diaphorase was not affected by axotomy in the SNC, PF or sciatic motoneurons. Our findings suggest a common mechanism for galanin and NOS (NADPH-diaphorase activity) expression. Since the galanin promotor contains an AP-1 binding site, c-Jun might trigger the lasting induction of galanin in NOS-positive central neurons that survive the axotomy-evoked injury.
Collapse
Affiliation(s)
- S Brecht
- II. Institute of Physiology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
49
|
Hughes PE, Alexi T, Hefti F, Knusel B. Axotomized septal cholinergic neurons rescued by nerve growth factor or neurotrophin-4/5 fail to express the inducible transcription factor c-Jun. Neuroscience 1997; 78:1037-49. [PMID: 9174072 DOI: 10.1016/s0306-4522(96)00623-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The inducible transcription factor c-Jun increases in neurons in response to axotomy by unknown mechanisms, and it has been postulated that c-Jun may regulate genes involved in promoting either degeneration or regeneration of axotomized neurons. In this report, we investigated the effect of daily or twice daily intraventricular administration of the neurotrophins nerve growth factor or neurotrophin-4/5 on the decrease in choline acetyltransferase expression and the increase in c-Jun expression in rat medial septum/diagonal band neurons three, seven and 14 days following unilateral, complete, fornix fimbria lesion. We also examined whether medial septum/diagonal band neurons might die by apoptosis within two weeks of fornix fimbria lesion using terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labelling. Our results show that both nerve growth factor and neurotrophin-4/5 maintain the phenotype of basal forebrain cholinergic neurons following axotomy. Furthermore, using double-labelling immunofluorescence, we found that while c-Jun was expressed in cholinergic neurons in control-treated rats seven days following fornix fimbria lesion, cholinergic neurons rescued by either nerve growth factor or neurotrophin-4/5 in neurotrophin-treated rats failed to express c-Jun. At no time-point (three, seven or 14 days post-axotomy) did any neurons in the medial septum/diagonal band stain positive for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling, suggesting that medial septum/diagonal band neurons do not undergo apoptosis within the first two weeks following axotomy at the time-points observed by us. Therefore, these results show that both nerve growth factor and neurotrophin-4/5 rescue the phenotype of axotomized cholinergic neurons and that these rescued neurons fail to express c-Jun in response to axotomy. In addition, since neither nerve growth factor nor neurotrophin-4/5 induced c-Jun in medial septum/diagonal band cholinergic neurons, it seems unlikely that the neurotrophic effects of nerve growth factor and neurotrophin-4/5 on cholinergic neurons are mediated via c-Jun expression. Furthermore, since axotomy failed to increase terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labelling in septal neurons, it appears unlikely that c-Jun expression in these axotomized neurons is related to neuronal degeneration via apoptosis.
Collapse
Affiliation(s)
- P E Hughes
- Department of Neurogerontology, Andrus Gerontology Centre, University of Southern California, Los Angeles 90089-0191, USA
| | | | | | | |
Collapse
|
50
|
Herdegen T, Skene P, Bähr M. The c-Jun transcription factor--bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 1997; 20:227-31. [PMID: 9141200 DOI: 10.1016/s0166-2236(96)01000-4] [Citation(s) in RCA: 401] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Axon interruption elicits a complex neuronal response that leaves neurons poised precariously between death and regeneration. The signals underlying this dichotomy are not fully understood. The transcription factor c-Jun is one of the earliest and most consistent markers for neurons that respond to nerve-fiber transection, and its expression can be related to both degeneration and survival including target re-innervation. In vitro experiments have demonstrated that expression of c-Jun can kill neonatal neurons but, in the adult nervous system, c-Jun might also be involved in neuroprotection and regeneration. The functional characteristics of c-Jun offer a model for the ability of a single molecule to serve as pivotal regulator for death or survival, not only in the response of the cell body to axonal lesions but also following neurodegenerative disorders. In this model, the fate of neurons is determined by a novel transcriptional network comprising c-Jun, ATF-2 (activating transcription factor-2) and JNKs (c-Jun N-terminal kinases).
Collapse
Affiliation(s)
- T Herdegen
- Dept of Pharmacology, University of Kiel, Germany
| | | | | |
Collapse
|