1
|
Sanders KM, Mutafova-Yambolieva VN. Neurotransmitters responsible for purinergic motor neurotransmission and regulation of GI motility. Auton Neurosci 2021; 234:102829. [PMID: 34146957 DOI: 10.1016/j.autneu.2021.102829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Classical concepts of peripheral neurotransmission were insufficient to explain enteric inhibitory neurotransmission. Geoffrey Burnstock and colleagues developed the idea that ATP or a related purine satisfies the criteria for a neurotransmitter and serves as an enteric inhibitory neurotransmitter in GI muscles. Cloning of purinergic receptors and development of specific drugs and transgenic mice have shown that enteric inhibitory responses depend upon P2Y1 receptors in post-junctional cells. The post-junctional cells that transduce purinergic neurotransmitters in the GI tract are PDGFRα+ cells and not smooth muscle cells (SMCs). PDGFRα+ cells express P2Y1 receptors, are activated by enteric inhibitory nerve stimulation and generate Ca2+ oscillations, express small-conductance Ca2+-activated K+ channels (SK3), and generate outward currents when exposed to P2Y1 agonists. These properties are consistent with post-junctional purinergic responses, and similar responses and effectors are not functional in SMCs. Refinements in methodologies to measure purines in tissue superfusates, such as high-performance liquid chromatography (HPLC) coupled with etheno-derivatization of purines and fluorescence detection, revealed that multiple purines are released during stimulation of intrinsic nerves. β-NAD+ and other purines, better satisfy criteria for the purinergic neurotransmitter than ATP. HPLC has also allowed better detection of purine metabolites, and coupled with isolation of specific types of post-junctional cells, has provided new concepts about deactivation of purine neurotransmitters. In spite of steady progress, many unknowns about purinergic neurotransmission remain and require additional investigation to understand this important regulatory mechanism in GI motility.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Violeta N Mutafova-Yambolieva
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
2
|
Grubišić V, Perez-Medina AL, Fried DE, Sévigny J, Robson SC, Galligan JJ, Gulbransen BD. NTPDase1 and -2 are expressed by distinct cellular compartments in the mouse colon and differentially impact colonic physiology and function after DSS colitis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G314-G332. [PMID: 31188623 PMCID: PMC6774087 DOI: 10.1152/ajpgi.00104.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ATP is both an important mediator of physiological gut functions such as motility and epithelial function, and a key danger signal that mediates cell death and tissue damage. The actions of extracellular ATP are regulated through the catalytic functions extracellular nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3, and -8, which ultimately generate nucleosides. Ectonucleotidases have distinct cellular associations, but the specific locations and functional roles of individual NTPDases in the intestine are still poorly understood. Here, we tested the hypothesis that differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in gut physiology and disease. We studied Entpd1 and Entpd2 null mice in health and following colitis driven by 2% dextran sulfate sodium (DSS) administration using functional readouts of gut motility, epithelial barrier function, and neuromuscular communication. NTPDase1 is expressed by immune cells, and the ablation of Entpd1 altered glial numbers in the myenteric plexus. NTPDase2 is expressed by enteric glia, and the ablation of Entpd2 altered myenteric neuron numbers. Mice lacking either NTPDase1 or -2 exhibited decreased inhibitory neuromuscular transmission and altered components of inhibitory junction potentials. Ablation of Entpd2 increased gut permeability following inflammation. In conclusion, the location- and context-dependent extracellular nucleotide phosphohydrolysis by NTPDase1 and -2 substantially impacts gut function in health and disease.NEW & NOTEWORTHY Purines are important mediators of gastrointestinal physiology and pathophysiology. Nucleoside triphosphate diphosphohydrolases (NTPDases) regulate extracellular purines, but the roles of specific NTPDases in gut functions are poorly understood. Here, we used Entpd1- and Entpd2-deficient mice to show that the differential and cell-selective regulation of purine hydrolysis by NTPDase1 and -2 plays important roles in barrier function, gut motility, and neuromuscular communication in health and disease.
Collapse
Affiliation(s)
- Vladimir Grubišić
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Alberto L. Perez-Medina
- 2Department of Pharmacology and Toxicology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - David E. Fried
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Jean Sévigny
- 3Centre de recherche du CHU de Québec–Université Laval, Québec City, Quebec, Canada,4Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Quebec, Canada
| | - Simon C. Robson
- 5Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James J. Galligan
- 2Department of Pharmacology and Toxicology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Brian D. Gulbransen
- 1Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
3
|
The ecto-enzymes CD73 and adenosine deaminase modulate 5'-AMP-derived adenosine in myofibroblasts of the rat small intestine. Purinergic Signal 2018; 14:409-421. [PMID: 30269308 DOI: 10.1007/s11302-018-9623-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a versatile signaling molecule recognized to physiologically influence gut motor functions. Both the duration and magnitude of adenosine signaling in enteric neuromuscular function depend on its availability, which is regulated by the ecto-enzymes ecto-5'-nucleotidase (CD73), alkaline phosphatase (AP), and ecto-adenosine deaminase (ADA) and by dipyridamole-sensitive equilibrative transporters (ENTs). Our purpose was to assess the involvement of CD73, APs, ecto-ADA in the formation of AMP-derived adenosine in primary cultures of ileal myofibroblasts (IMFs). IMFs were isolated from rat ileum longitudinal muscle segments by means of primary explant technique and identified by immunofluorescence staining for vimentin and α-smooth muscle actin. IMFs confluent monolayers were exposed to exogenous 5'-AMP in the presence or absence of CD73, APs, ecto-ADA, or ENTs inhibitors. The formation of adenosine and its metabolites in the IMFs medium was monitored by high-performance liquid chromatography. The distribution of CD73 and ADA in IMFs was detected by confocal immunocytochemistry and qRT-PCR. Exogenous 5'-AMP was rapidly cleared being almost undetectable after 60-min incubation, while adenosine levels significantly increased. Treatment of IMFs with CD73 inhibitors markedly reduced 5'-AMP clearance whereas ADA blockade or inhibition of both ADA and ENTs prevented adenosine catabolism. By contrast, inhibition of APs did not affect 5'-AMP metabolism. Immunofluorescence staining and qRT-PCR analysis confirmed the expression of CD73 and ADA in IMFs. Overall, our data show that in IMFs an extracellular AMP-adenosine pathway is functionally active and among the different enzymatic pathways regulating extracellular adenosine levels, CD73 and ecto-ADA represent the critical catabolic pathway.
Collapse
|
4
|
Wang GD, Wang XY, Liu S, Xia Y, Zou F, Qu M, Needleman BJ, Mikami DJ, Wood JD. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum. Am J Physiol Gastrointest Liver Physiol 2015; 308:G955-63. [PMID: 25813057 PMCID: PMC4451321 DOI: 10.1152/ajpgi.00430.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/18/2015] [Indexed: 01/31/2023]
Abstract
Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions.
Collapse
Affiliation(s)
- Guo-Du Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Xi-Yu Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Sumei Liu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Yun Xia
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; ,2Department of Anesthesiology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Fei Zou
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Meihua Qu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Bradley J. Needleman
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dean J. Mikami
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jackie D. Wood
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
5
|
Cardoso AM, Schetinger MRC, Correia-de-Sá P, Sévigny J. Impact of ectonucleotidases in autonomic nervous functions. Auton Neurosci 2015; 191:25-38. [PMID: 26008223 DOI: 10.1016/j.autneu.2015.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Adenine and uracil nucleotides play key functions in the autonomic nervous system (ANS). For instance, ATP acts as a neurotransmitter, co-transmitter and neuromodulator in the ANS. The purinergic system encompasses (1) receptors that respond to extracellular purines, which are designated as P1 and P2 purinoceptors, (2) purine release and uptake, and (3) a cascade of enzymes that regulate the concentration of purines near the cell surface. Ectonucleotidases and adenosine deaminase (ADA) are enzymes responsible for the hydrolysis of ATP (and other nucleotides such as ADP, UTP, UDP, AMP) and adenosine, respectively. Accordingly, these enzymes are expected to play an important role in the control of neuro-effector transmission in tissues innervated by both the sympathetic and parasympathetic divisions of the ANS. Indeed, ectonucleotidases have the ability to either terminate P2 receptor responses initiated by nucleoside triphosphates (ATP and UTP), and/or to favor the activation of ADP (e.g. P2Y1,12,13) and UDP (e.g. P2Y6) and/or adenosine (P1) specific receptors. In addition, ectonucleotidases can also importantly protect some P2 receptors from desensitization (e.g. P2X1, P2Y1). In this review, we present the (putative) roles of ectonucleotidases and ADA in the ANS with a focus on their regulatory activity at neuro-effector junctions in the following tissues: heart, vas deferens, urinary bladder, salivary glands, blood vessels and the intestine. We also present their implication in nociceptive transmission.
Collapse
Affiliation(s)
- Andréia Machado Cardoso
- Post-Graduation Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria Rio Grande do Sul, Brazil; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec G1V 4G2, Canada.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduation Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria Rio Grande do Sul, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, MedInUP, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), 4050-313 Porto, Portugal
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec G1V 4G2, Canada.
| |
Collapse
|
6
|
Feed-forward inhibition of CD73 and upregulation of adenosine deaminase contribute to the loss of adenosine neuromodulation in postinflammatory ileitis. Mediators Inflamm 2014; 2014:254640. [PMID: 25210228 PMCID: PMC4152956 DOI: 10.1155/2014/254640] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 01/31/2023] Open
Abstract
Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders.
Collapse
|
7
|
Zoppellaro C, Bin A, Brun P, Banzato S, Macchi V, Castagliuolo I, Giron MC. Adenosine-mediated enteric neuromuscular function is affected during herpes simplex virus type 1 infection of rat enteric nervous system. PLoS One 2013; 8:e72648. [PMID: 24015268 PMCID: PMC3754913 DOI: 10.1371/journal.pone.0072648] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/11/2013] [Indexed: 02/06/2023] Open
Abstract
Adenosine plays an important role in regulating intestinal motility and inflammatory processes. Previous studies in rodent models have demonstrated that adenosine metabolism and signalling are altered during chronic intestinal inflammatory diseases. However, the involvement of the adenosinergic system in the pathophysiology of gut dysmotility associated to a primary neurodysfunction is still unclear. Recently, we showed that the neurotropic Herpes simplex virus type-1 (HSV-1), orally inoculated to rodents, infects the rat enteric nervous system (ENS) and affects gut motor function without signs of systemic infection. In this study we examined whether changes in purinergic metabolism and signaling occur during permanent HSV-1 infection of rat ENS. Using isolated organ bath assays, we found that contraction mediated by adenosine engagement of A1 or A2A receptors was impaired at 1 and 6 weeks post-viral administration. Immunofluorescence studies revealed that viral infection of ENS led to a marked redistribution of adenosine receptors: A1 and A2B receptors were confined to the muscle layers whereas A2A and A3 receptors were expressed mainly in the myenteric plexus. Viral-induced ENS neurodysfunction influenced adenosine metabolism by increasing adenosine deaminase and CD73 levels in longitudinal muscle-myenteric plexus with no sign of frank inflammation. This study provides the first evidence for involvement of the adenosinergic system during HSV-1 infection of the ENS. As such, this may represent a valid therapeutic target for modulating gut contractility associated to a primary neurodysfunction.
Collapse
Affiliation(s)
- Chiara Zoppellaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Anna Bin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Serena Banzato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Veronica Macchi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
8
|
Antonioli L, Colucci R, Pellegrini C, Giustarini G, Tuccori M, Blandizzi C, Fornai M. The role of purinergic pathways in the pathophysiology of gut diseases: pharmacological modulation and potential therapeutic applications. Pharmacol Ther 2013; 139:157-88. [PMID: 23588157 DOI: 10.1016/j.pharmthera.2013.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Gut homeostasis results from complex neuro-immune interactions aimed at triggering stereotypical and specific programs of coordinated mucosal secretion and powerful motor propulsion. A prominent role in the regulation of this highly integrated network, comprising a variety of immune/inflammatory cells and the enteric nervous system, is played by purinergic mediators. The cells of the digestive tract are literally plunged into a "biological sea" of functionally active nucleotides and nucleosides, which carry out the critical task of driving regulatory interventions on cellular functions through the activation of P1 and P2 receptors. Intensive research efforts are being made to achieve an integrated view of the purinergic system, since it is emerging that the various components of purinergic pathways (i.e., enzymes, transporters, mediators and receptors) are mutually linked entities, deputed to finely modulating the magnitude and the duration of purinergic signaling, and that alterations occurring in this balanced network could be intimately involved in the pathophysiology of several gut disorders. This review article intends to provide a critical appraisal of current knowledge on the purinergic system role in the regulation of gastrointestinal functions, considering these pathways as a whole integrated network, which is capable of finely controlling the levels of bioactive nucleotides and nucleosides in the biophase of their respective receptors. Special attention is paid to the mechanisms through which alterations in the various compartments of the purinergic system could contribute to the pathophysiology of gut disorders, and to the possibility of counteracting such dysfunctions by means of pharmacological interventions on purinergic molecular targets.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zizzo MG, Mastropaolo M, Lentini L, Mulè F, Serio R. Adenosine negatively regulates duodenal motility in mice: role of A(1) and A(2A) receptors. Br J Pharmacol 2012; 164:1580-9. [PMID: 21615720 DOI: 10.1111/j.1476-5381.2011.01498.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Adenosine is considered to be an important modulator of intestinal motility. This study was undertaken to investigate the role of adenosine in the modulation of contractility in the mouse duodenum and to characterize the adenosine receptor subtypes involved. EXPERIMENTAL APPROACH RT-PCR was used to investigate the expression of mRNA encoding for A(1), A(2A), A(2B) and A(3) receptors. Contractile activity was examined in vitro as changes in isometric tension. KEY RESULTS In mouse duodenum, all four classes of adenosine receptors were expressed, with the A(2B) receptor subtype being confined to the mucosal layer. Adenosine caused relaxation of mouse longitudinal duodenal muscle; this was antagonized by the A(1) receptor antagonist and mimicked by N(6) -cyclopentyladenosine (CPA), selective A(1) agonist. The relaxation induced by A(1) receptor activation was insensitive to tetrodotoxin (TTX) or N(ω) -nitro-l-arginine methyl ester (l-NAME). Adenosine also inhibited cholinergic contractions evoked by neural stimulation, effect reversed by the A(1) receptor antagonist, but not myogenic contractions induced by carbachol. CPA and 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate (CGS-21680), A(2A) receptor agonist, both inhibited the nerve-evoked cholinergic contractions. l-NAME prevented only the CGS-21680-induced effects. S-(4-Nitrobenzyl)-6-thioinosine, a nucleoside uptake inhibitor, reduced the amplitude of nerve-evoked cholinergic contractions, an effect reversed by an A(2A) receptor antagonist or l-NAME. CONCLUSIONS AND IMPLICATIONS Adenosine can negatively regulate mouse duodenal motility either by activating A(1) inhibitory receptors located post-junctionally or controlling neurotransmitter release via A(1) or A(2A) receptors. Both receptors are available for pharmacological recruitment, even if only A(2A) receptors appear to be preferentially stimulated by endogenous adenosine.
Collapse
Affiliation(s)
- M G Zizzo
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Laboratorio di Fisiologia Generale, Università di Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
10
|
Plasticity of non-adrenergic non-cholinergic bladder contractions in rats after chronic spinal cord injury. Brain Res Bull 2011; 86:91-6. [PMID: 21689735 DOI: 10.1016/j.brainresbull.2011.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to examine the pharmacologic plasticity of cholinergic, non-adrenergic non-cholinergic (NANC), and purinergic contractions in neurogenic bladder strips from spinal cord injured (SCI) rats. Bladder strips were harvested from female rats three to four weeks after T(9)-T(10) spinal cord transection. The strips were electrically stimulated using two experimental protocols to compare the contribution of muscarinic and NANC/purinergic contractions in the presence and the absence of carbachol or muscarine. The endpoints of the study were: (1) percent NANC contraction that was unmasked by the muscarinic antagonist 4-DAMP, and (2) P2X purinergic contraction that was evoked by α,β-methylene ATP. NANC contraction accounted for 78.5% of the neurally evoked contraction in SCI bladders. When SCI bladder strips were treated with carbachol (10 μM) prior to 4-DAMP (500 nM), the percent NANC contraction decreased dramatically to only 13.1% of the neurally evoked contraction (P=0.041). This was accompanied by a substantial decrease in α,β-methylene ATP evoked P2X contraction, and desensitization of purinergic receptors (the ratio of subsequent over initial P2X contraction decreased from 97.2% to 42.1%, P=0.0017). Sequential activation of the cholinergic receptors with carbachol (or with muscarine in neurally intact bladders) and unmasking of the NANC response with 4-DAMP switched the neurally evoked bladder contraction from predominantly NANC to predominantly cholinergic. We conclude that activation of muscarinic receptors (with carbachol or muscarine) blocks NANC and purinergic contractions in neurally intact or in SCI rat bladders. The carbachol-induced inhibition of the NANC contraction is expressed more in SCI bladders compared to neurally intact bladders. Along with receptor plasticity, this change in bladder function may involve P2X-independent mechanisms.
Collapse
|
11
|
Antonioli L, Fornai M, Colucci R, Awwad O, Ghisu N, Tuccori M, Del Tacca M, Blandizzi C. Differential recruitment of high affinity A1 and A2A adenosine receptors in the control of colonic neuromuscular function in experimental colitis. Eur J Pharmacol 2010; 650:639-49. [PMID: 21034735 DOI: 10.1016/j.ejphar.2010.10.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 01/03/2023]
Abstract
This study investigated the expression of A(1) and A(2A) receptors in the rat colonic neuromuscular compartment, and characterized their roles in the control of motility during inflammation. Colitis was induced by 2,4-dinitrobenzenesulfonic acid. A(1), A(2A) receptors, and ecto-5'-nucleotidase (CD73, adenosine producing enzyme) mRNA expression was examined by RT-PCR. The effects of DPCPX (A(1) receptor antagonist), CCPA (A(1) receptor agonist), 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (A(2A) receptor antagonist), 4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (A(2A) receptor agonist), AOPCP (CD73 inhibitor) were tested on electrically or carbachol-evoked contractions in colonic longitudinal muscle preparations. In normal colon, RT-PCR revealed the presence of A(1) receptors, A(2A) receptors and CD73, and an increased expression of A(2A) receptors and CD73 was detected in inflamed tissues. In normal colon, DPCPX or 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol enhanced electrically-induced contractions, while in inflamed preparations the effect of DPCPX no longer occurred. In normal colon, CCPA or 4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl] benzenepropanoic acid hydrochloride decreased electrically-induced contractions. Under inflammation, 4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl] benzenepropanoic acid hydrochloride reduced electrically evoked contractions with higher efficacy, while the inhibition by CCPA remained unchanged. A(1) and A(2A) receptor ligands did not affect carbachol-induced contractions. AOPCP enhanced electrically-induced contractions and prevented the contractile effects of 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol, without interfering with DPCPX, both in normal and inflamed colons. These results indicate that, in normal colon, both A(1) and A(2A) receptors contribute to the inhibitory control of motor functions at neuronal level. Under bowel inflammation, A(1) receptor loses its modulating actions, while the recruitment of A(2A) receptor by CD73-dependent endogenous adenosine drives an enhanced inhibitory control of colonic neuromotility.
Collapse
Affiliation(s)
- Luca Antonioli
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nilsson KF, Grishina VA, Glaumann C, Gustafsson LE. Estimation of endogenous adenosine activity at adenosine receptors in guinea-pig ileum using a new pharmacological method. Acta Physiol (Oxf) 2010; 199:231-41. [PMID: 20121712 DOI: 10.1111/j.1748-1716.2010.02090.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Adenosine modulates neurotransmission and in the intestine adenosine is continuously released both from nerves and from smooth muscle. The main effect is modulation of contractile activity by inhibition of neurotransmitter release and by direct smooth muscle relaxation. Estimation of adenosine concentration at the receptors is difficult due to metabolic inactivation. We hypothesized that endogenous adenosine concentrations can be calculated by using adenosine receptor antagonist and agonist and dose ratio (DR) equations. METHODS Plexus-containing guinea-pig ileum longitudinal smooth muscle preparations were made to contract intermittently by electrical field stimulation in organ baths. Schild plot regressions were constructed with 2-chloroadenosine (agonist) and 8-(p-sulfophenyl)theophylline (8-PST; antagonist). In separate experiments the reversing or enhancing effect of 8-PST and the inhibiting effect of 2-chloroadenosine (CADO) were analysed in the absence or presence of an adenosine uptake inhibitor (dilazep), and nucleoside overflow was measured by HPLC. RESULTS Using the obtained DR, baseline adenosine concentration was calculated to 28 nm expressed as CADO activity, which increased dose dependently after addition of 10(-6) m dilazep to 150 nm (P < 0.05). HPLC measurements yielded a lower fractional increment (80%) in adenosine during dilazep, than found in the pharmacological determination (440%). CONCLUSION Endogenous adenosine is an important modulator of intestinal neuro-effector activity, operating in the linear part of the dose-response curve. Other adenosine-like agonists might contribute to neuromodulation and the derived formulas can be used to calculate endogenous agonist activity, which is markedly affected by nucleoside uptake inhibition. The method described should be suitable for other endogenous signalling molecules in many biological systems.
Collapse
Affiliation(s)
- K F Nilsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
13
|
Burnstock G, Fredholm BB, North RA, Verkhratsky A. The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 2010; 199:93-147. [PMID: 20345419 DOI: 10.1111/j.1748-1716.2010.02114.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purinergic signalling system is one of the most ancient and arguably the most widespread intercellular signalling system in living tissues. In this review we present a detailed account of the early developments and current status of purinergic signalling. We summarize the current knowledge on purinoceptors, their distribution and role in signal transduction in various tissues in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
14
|
Marini P, Romanelli L, Valeri D, Tucci P, Valeri P, Palmery M. Acute withdrawal induced by adenosine A1-receptor activation in isolated guinea-pig ileum: role of opioid receptors and effect of cholecystokinin. J Pharm Pharmacol 2010; 62:622-32. [DOI: 10.1211/jpp.62.05.0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Manoonkitiwongsa PS, Whitter EF, Chavez JN, Schultz RL. Blood-brain barrier Ca2+-ATPase cytochemistry: incubation media and fixation methods for differentiating Ca2+-specific ATPase from ecto-ATPase. Biotech Histochem 2009; 85:257-68. [PMID: 19886754 DOI: 10.3109/10520290903344411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ca2+-ATPase cytochemistry frequently uses the incubation medium of Ando et al. that was introduced in 1981. Some studies, however, have suggested that this medium localizes ecto-ATPase in addition to Ca2+-ATPase and that Ca2+-ATPase is sensitive to fixation. Strong activity of the enzyme on the luminal surface of the blood-brain barrier (BBB) also is considered indicative of immature or pathological microvessels. We address here five questions. 1) Is the incubation medium of Ando et al. specific for BBB Ca2+-ATPase or does it also localize ecto-ATPase? 2) How are the two enzymes distributed in the BBB? 3) How would data interpretation be prone to error if the cytochemical study does not use controls identifying ecto-ATPase? 4) Does the amount of reaction product of both enzymes vary significantly when the cortical tissue is exposed to different fixatives? 5) Does the presence of Ca2+-ATPase on the luminal membrane of the BBB necessarily indicate immature or abnormal brain endothelial cells? Adult male Sprague-Dawley rats were perfused with one of two different fixatives and vibratome slices of the brain cortex were incubated in the medium of Ando et al. The controls used were those demonstrating the ecto-ATPase and those that do not. The results indicate that the incubation medium is not specific for Ca2+-ATPase, because it also localizes the ecto-ATPase. Ca2+-ATPase appears to be localized primarily on the luminal surface of the BBB, while ecto-ATPase is localized on both the luminal and abluminal surfaces. The portion of the reaction product contributed by Ca2+-ATPase would not have been identified if the controls uniquely identifying the ecto-ATPase had not been used. The amount of reaction product formed by Ca2+-ATPase is strongly dependent on the type of fixative used. The strong localization of Ca2+-ATPase on the luminal surface of the BBB is not only normal, but also better accounts for the physiological homeostasis of Ca2+ across the blood-brain interface and should not be interpreted as indicative of immature or pathological microvessels.
Collapse
Affiliation(s)
- P S Manoonkitiwongsa
- Neural Engineering Program, Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| | | | | | | |
Collapse
|
16
|
Vieira C, Duarte-Araújo M, Adães S, Magalhães-Cardoso T, Correia-de-Sá P. Muscarinic M(3) facilitation of acetylcholine release from rat myenteric neurons depends on adenosine outflow leading to activation of excitatory A(2A) receptors. Neurogastroenterol Motil 2009; 21:1118-e95. [PMID: 19470085 DOI: 10.1111/j.1365-2982.2009.01326.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acetylcholine (ACh) is a major excitatory neurotransmitter in the myenteric plexus, and it regulates its own release acting via muscarinic autoreceptors. Adenosine released from stimulated myenteric neurons modulates ACh release preferentially via facilitatory A(2A) receptors. In this study, we investigated how muscarinic and adenosine receptors interplay to regulate ACh from the longitudinal muscle-myenteric plexus of the rat ileum. Blockade of the muscarinic M(2) receptor with 11-[[2-1[(diethylamino) methyl-1-piperidinyl]- acetyl]]-5,11-dihydro-6H-pyrido [2,3-b][1,4] benzodiazepine-6-one (AF-DX 116), 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and atropine facilitated [3H]ACh release evoked by short stimulation trains (5 Hz, 200 pulses). Prolonging stimulus train length (>750 pulses) shifted muscarinic autoinhibition towards facilitatory M(3) receptors activation, as predicted by blockade with J104129 (a selective M(3) antagonist), 4-DAMP and atropine, whereas the selective M(2) antagonist, AF-DX 116, was without of effect. Blockade of A(2A) receptors with ZM 241385, inhibition of adenosine transport with dipyridamole, and inhibition of ecto-5'-nucleotidase with concanavalin A, all attenuated release inhibition caused by 4-DAMP. J104129 and 4-DAMP, but not AF-DX 116, decreased ( approximately 60%) evoked adenosine outflow (5 Hz, 3000 pulses). Oxotremorine (300 micromol L(-1)) facilitated the release of [3H]ACh (34 +/- 4%, n = 5) and adenosine (57 +/- 3%, n = 6) from stimulated myenteric neurons. 4-DAMP, dipyridamole and concanavalin A prevented oxotremorine-induced facilitation. ZM 241385 blocked oxotremorine facilitation of [3H]ACh release, but kept adenosine outflow unchanged. Thus, ACh modulates its own release from myenteric neurons by activating inhibitory M(2) and facilitatory M(3) autoreceptors. While the M(2) inhibition is prevalent during brief stimulation periods, muscarinic M(3) facilitation is highlighted during sustained nerve activity as it depends on extracellular adenosine accumulation leading to activation of facilitatory A(2A) receptors.
Collapse
Affiliation(s)
- C Vieira
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
17
|
Duarte-Araújo M, Nascimento C, Timóteo MA, Magalhães-Cardoso MT, Correia-de-Sá P. Relative contribution of ecto-ATPase and ecto-ATPDase pathways to the biphasic effect of ATP on acetylcholine release from myenteric motoneurons. Br J Pharmacol 2009; 156:519-33. [PMID: 19154428 DOI: 10.1111/j.1476-5381.2008.00058.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The relative contribution of distinct ecto-nucleotidases to the modulation of purinergic signalling may depend on differential tissue distribution and substrate preference. EXPERIMENTAL APPROACH Extracellular ATP catabolism (assessed by high-performance liquid chromatography) and its influence on [(3)H]acetylcholine ([(3)H]ACh) release were investigated in the myenteric plexus of rat ileum in vitro. KEY RESULTS ATP was primarily metabolized via ecto-ATPDase (adenosine 5'-triphosphate diphosphohydrolase) into AMP, which was then dephosphorylated into adenosine by ecto-5'-nucleotidase. Alternative conversion of ATP into ADP by ecto-ATPase (adenosine 5'-triphosphatase) was more relevant at high ATP concentrations. ATP transiently increased basal [(3)H]ACh outflow in a 2',3'-O-(2,4,6-trinitrophenyl)adenosine-5'-triphosphate (TNP-ATP)-dependent, tetrodotoxin-independent manner. ATP and ATPgammaS (adenosine 5'-[gamma-thio]triphosphate), but not alpha,beta-methyleneATP, decreased [(3)H]ACh release induced by electrical stimulation. ADP and ADPbetaS (adenosine 5'[beta-thio]diphosphate) only decreased evoked [(3)H]ACh release. Inhibition by ADPbetaS was prevented by MRS 2179 (2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate diammonium salt, a selective P2Y(1) antagonist); blockade of ADP inhibition required co-application of MRS 2179 plus adenosine deaminase (which inactivates endogenous adenosine). Blockade of adenosine A(1) receptors with 1,3-dipropyl-8-cyclopentyl xanthine enhanced ADPbetaS inhibition, indicating that P2Y(1) stimulation is cut short by tonic adenosine A(1) receptor activation. MRS 2179 facilitated evoked [(3)H]ACh release, an effect reversed by the ecto-ATPase inhibitor, ARL67156, which delayed ATP conversion into ADP without affecting adenosine levels. CONCLUSIONS AND IMPLICATIONS ATP transiently facilitated [(3)H]ACh release from non-stimulated nerve terminals via prejunctional P2X (probably P2X(2)) receptors. Hydrolysis of ATP directly into AMP by ecto-ATPDase and subsequent formation of adenosine by ecto-5'-nucleotidase reduced [(3)H]ACh release via inhibitory adenosine A(1) receptors. Stimulation of inhibitory P2Y(1) receptors by ADP generated alternatively via ecto-ATPase might be relevant in restraining ACh exocytosis when ATP saturates ecto-ATPDase activity.
Collapse
Affiliation(s)
- M Duarte-Araújo
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Portugal
| | | | | | | | | |
Collapse
|
18
|
Antonioli L, Fornai M, Colucci R, Ghisu N, Tuccori M, Del Tacca M, Blandizzi C. Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications. Pharmacol Ther 2008; 120:233-53. [PMID: 18848843 DOI: 10.1016/j.pharmthera.2008.08.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/04/2008] [Indexed: 12/20/2022]
Abstract
The wide distribution of ATP and adenosine receptors as well as enzymes for purine metabolism in different gut regions suggests a complex role for these mediators in the regulation of gastrointestinal functions. Studies in rodents have shown a significant involvement of adenosine in the control of intestinal secretion, motility and sensation, via activation of A1, A2A, A2B or A3 purinergic receptors, as well as the participation of ATP in the regulation of enteric functions, through the recruitment of P2X and P2Y receptors. Increasing interest is being focused on the involvement of ATP and adenosine in the pathophysiology of intestinal disorders, with particular regard for inflammatory bowel diseases (IBDs), intestinal ischemia, post-operative ileus and related dysfunctions, such as gut dysmotility, diarrhoea and abdominal discomfort/pain. Current knowledge suggests that adenosine contributes to the modulation of enteric immune and inflammatory responses, leading to anti-inflammatory actions. There is evidence supporting a role of adenosine in the alterations of enteric motor and secretory activity associated with bowel inflammation. In particular, several studies have highlighted the importance of adenosine in diarrhoea, since this nucleoside participates actively in the cross-talk between immune and epithelial cells in the presence of diarrhoeogenic stimuli. In addition, adenosine exerts complex regulatory actions on pain transmission at peripheral and spinal sites. The present review illustrates current information on the role played by adenosine in the regulation of enteric functions, under normal or pathological conditions, and discusses pharmacological interventions on adenosine pathways as novel therapeutic options for the management of gut disorders and related abdominal symptoms.
Collapse
Affiliation(s)
- Luca Antonioli
- Division of Pharmacology and Chemotherapy, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Ren J, Bertrand PP. Purinergic receptors and synaptic transmission in enteric neurons. Purinergic Signal 2008; 4:255-66. [PMID: 18368519 PMCID: PMC2486344 DOI: 10.1007/s11302-007-9088-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/06/2007] [Indexed: 12/16/2022] Open
Abstract
Purines such as ATP and adenosine participate in synaptic transmission in the enteric nervous system as neurotransmitters or neuromodulators. Purinergic receptors are localized on the cell bodies or nerve terminals of different functional classes of enteric neurons and, with other receptors, form unique receptor complements. Activation of purinergic receptors can regulate neuronal activity by depolarization, by regulating intracellular calcium, or by modulating second messenger pathways. Purinergic signaling between enteric neurons plays an important role in regulating specific enteric reflexes and overall gastrointestinal function. In the present article, we review evidence for purine receptors in the enteric nervous system, including P1 (adenosine) receptors and P2 (ATP) receptors. We will explore the role they play in mediating fast and slow synaptic transmission and in presynaptic inhibition of transmission. Finally, we will examine the molecular properties of the native receptors, their signaling mechanisms, and their role in gastrointestinal pathology.
Collapse
Affiliation(s)
- Jianhua Ren
- Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - Paul P. Bertrand
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557 USA
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
20
|
Lai HH, Smith CP, Munoz A, Boone TB, Szigeti GP, Somogyi GT. Activation of cholinergic receptors blocks non-adrenergic non-cholinergic contractions in the rat urinary bladder. Brain Res Bull 2008; 77:420-6. [PMID: 18755252 DOI: 10.1016/j.brainresbull.2008.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 11/18/2022]
Abstract
In the present study, the plasticity of the non-adrenergic non-cholinergic (NANC) response was investigated. Isolated rat bladder strips were electrically stimulated and the evoked contractions were isometrically recorded. The NANC part of the contractions were unmasked by applying 500 nM 4-DAMP, a potent muscarinic antagonist. Treatment of the bladder strips with 10 microM carbachol (a cholinergic agonist) increased the muscle tone but did not alter the neurally evoked contractions. However, carbachol decreased: (1) the NANC response from 74.6% to 33.3% of control and (2) the purinergic contractile response to alpha,beta-methylene ATP (alpha,beta-mATP) (10 microM) from 97.0% to 43.4% (p<0.05). Treatment with the cholinesterase inhibitor eserine (10 microM) also significantly decreased the NANC response to 21.1% (p<0.0001). The purinergic receptor antagonist suramin (100 microM) did not affect the neurally evoked contractions, however; subsequent addition of 4-DAMP decreased the contractions to 31%. Activation of the smooth muscle cholinergic receptors (with carbachol or eserine) and purinergic receptors (with alpha,beta-mATP) decreased the NANC contractions and the direct contractile response to alpha,beta-mATP. When the electrically evoked contractions were facilitated by the L-type Ca2+ channel activator, Bay-K 8644 the subsequent application of 4-DAMP did not unmask inhibited NANC contractions. We conclude that activation of muscarinic receptors by cholinergic agonist, carbachol or by endogenous acetylcholine (ACh) induce a cascade of events that leads to diminished purinergic response and consequently an inhibition of the bladder NANC response.
Collapse
Affiliation(s)
- H Henry Lai
- Neurology Laboratory, Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
21
|
Giron MC, Bin A, Brun P, Etteri S, Bolego C, Florio C, Gaion RM. Cyclic AMP in rat ileum: evidence for the presence of an extracellular cyclic AMP-adenosine pathway. Gastroenterology 2008; 134:1116-26. [PMID: 18316082 DOI: 10.1053/j.gastro.2008.01.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 01/04/2008] [Indexed: 01/30/2023]
Abstract
BACKGROUND & AIMS Extracellular adenosine plays a relevant role in regulating intestinal motility and preventing inflammatory processes. Adenosine 3',5'-cyclic monophosphate (cAMP) extruded from cells may be converted to adenosine monophosphate and then to adenosine by ecto-phosphodiesterase and CD73/ecto-5'nucleotidase, respectively, thus representing a source of adenosine. Our purpose was to assess the existence of a functional extracellular cAMP-adenosine pathway in intestinal tissue, obtaining evidence for CD73 expression and evaluating the effect of cAMP on ileum motility. METHODS The formation of cAMP metabolites in rat ileum strips incubated with exogenous cAMP or [(3)H]cAMP was monitored by high-performance liquid chromatography. CD73 was detected by immunoprecipitation and immunofluorescence. The functional activity of exogenous cAMP on ileum strips was recorded by measuring tension changes. RESULTS In ileum strips, the generation of cAMP-derived adenosine monophosphate, adenosine, and inosine was time and concentration dependent and was blocked by phosphodiesterase or CD73 inhibitors in a manner consistent with exogenous cAMP being processed through the extracellular cAMP-adenosine pathway. Accordingly, [(3)H]cAMP uptake in ileum strips was negligible. Immunofluorescence revealed CD73 surface expression on intestinal smooth muscle cells and intact smooth muscle. Exogenous cAMP concentration-dependently increased ileum muscle tension partially inhibited by adenosine inactivation or receptor blockade. Forskolin-stimulated endogenous cAMP induced concentration-dependent ileum relaxations. CONCLUSIONS A functioning extracellular cAMP-adenosine pathway featuring CD73 expression is present in rat ileum and affects intestinal motility. Extracellular cAMP may therefore act on intestinal muscle both directly by binding to specific smooth muscle cell membrane sites and indirectly through its degradation products.
Collapse
Affiliation(s)
- Maria Cecilia Giron
- Department of Pharmacology and Anesthesiology, University of Padova, Padova, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Adenine-based purines, such as adenosine and ATP, are ubiquitous molecules that, in addition to their roles in metabolism, act as modulators of neurotransmitter release through activation of presynaptic P1 purinoceptors or adenosine receptors (activated by adenosine) and P2 receptors (activated by nucleotides). Of the latter, the P2Y receptors are G protein-coupled, whereas the P2X receptors are ligand-gated ion channels and not covered in this review.
Collapse
MESH Headings
- Adenosine/pharmacology
- Adenosine/physiology
- Animals
- Humans
- Neurotransmitter Agents/metabolism
- Purines/metabolism
- Receptor, Adenosine A1/drug effects
- Receptor, Adenosine A1/metabolism
- Receptors, Adenosine A2/drug effects
- Receptors, Adenosine A2/metabolism
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/physiology
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/physiology
Collapse
Affiliation(s)
- Jorge Gonçalves
- Department of Pharmacology, University of Porto, Porto, Portugal.
| | | |
Collapse
|
23
|
Smith CP, Gangitano DA, Munoz A, Salas NA, Boone TB, Aoki KR, Francis J, Somogyi GT. Botulinum toxin type A normalizes alterations in urothelial ATP and NO release induced by chronic spinal cord injury. Neurochem Int 2007; 52:1068-75. [PMID: 18187233 DOI: 10.1016/j.neuint.2007.11.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/02/2007] [Accepted: 11/08/2007] [Indexed: 01/27/2023]
Abstract
The purpose of this paper was to simultaneously examine changes in urothelial ATP and NO release in normal and spinal cord injured animals as well as in spinal cord injured animals treated with botulinum toxin type A (BoNT-A). Furthermore we correlated changes in transmitter release with functional changes in bladder contraction frequency, and determined the effects of BoNT-A on bladder efferent nerve function. Normal and spinal cord injured rat bladders were injected on day 0 with either vehicle (saline containing bovine serum albumin) or BoNT-A. On day 2, in vitro neurotransmitter release and bladder strip contractility studies as well as in vivo cystometrographic studies were conducted. Resting ATP release was significantly enhanced following spinal cord injury (i.e. 57% increase, p<0.05) and was unaffected by BoNT-A treatment. SCI increased hypoosmotic evoked urothelial ATP release by 377% (p<0.05). BoNT-A treatment reduced evoked ATP release in SCI bladders by 83% (p<0.05). In contrast, hypoosmotic stimulation induced NO release was significantly inhibited following SCI (i.e. 50%, p<0.05) but recovered in SCI rats treated with BoNT-A (i.e. 195% increase in NO release in SCI-BTX-treated rats compared to SCI controls, p<0.01). Changes in urothelial transmitter release coincided with a significant decrease in non-voiding bladder contraction frequency (i.e. 71%, p<0.05) in SCI-BTX rats compared to SCI rats. While no difference was measured between neurally evoked contractile amplitude between SCI and SCI-BTX animals, atropine (1 microM) inhibited contractile amplitude to a greater extent (i.e. 76%, p<0.05) in the SCI-BTX group compared to the SCI group. We hypothesize that alterations in the ratio of excitatory (i.e. ATP) and inhibitory (i.e. NO) urothelial transmitters promote bladder hyperactivity in rat bladders following SCI that can be reversed, to a large extent, by treatment with BoNT-A.
Collapse
Affiliation(s)
- Christopher P Smith
- Scott Department of Urology, Baylor College of Medicine, One Baylor Plaza, Alkek N720, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bornstein JC. Purinergic mechanisms in the control of gastrointestinal motility. Purinergic Signal 2007; 4:197-212. [PMID: 18368521 DOI: 10.1007/s11302-007-9081-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 09/06/2007] [Indexed: 02/08/2023] Open
Abstract
For many years, ATP and adenosine have been implicated in movement regulation of the gastrointestinal tract. They act through three major receptor subtypes: adenosine or P1 receptors, P2X receptors and P2Y receptors. Each of these major receptor types can be subdivided into several different classes and is widely distributed amongst various neurons, muscle types, glia and interstitial cells that regulate intestinal functions. Several key roles for the different receptors and their endogenous ligands have been identified in physiological and pharmacological studies. For example, adenosine acting at A(1) receptors appears to inhibit intestinal motility in various pathological conditions. Similarly, ATP acting at P2Y receptors is an important component of inhibitory neuromuscular transmission, acting as a cotransmitter with nitric oxide. ATP acting at P2X and P2Y(1) receptors is important for synaptic transmission in simple descending excitatory and inhibitory reflex pathways. Some P2Y receptor subtypes prefer uridine nucleotides over purine nucleotides. Thus, roles for UTP and UDP as enteric transmitters in place of ATP cannot be excluded. ATP also appears to be important for sensory transduction, especially in chemosensitive pathways that initiate local inhibitory reflexes. Despite this evidence, data are lacking about the roles of either adenosine or ATP in more complex motility patterns such as segmentation or the interdigestive migrating motor complex. Clarification of roles for purinergic transmission in these common, but understudied, motility patterns will depend on the use of subtype-specific antagonists that in some cases have not yet been developed.
Collapse
Affiliation(s)
- J C Bornstein
- Department of Physiology, University of Melbourne, Parkville, VIC, 3010, Australia,
| |
Collapse
|
25
|
Gao N, Hu HZ, Liu S, Gao C, Xia Y, Wood JD. Stimulation of adenosine A1 and A2A receptors by AMP in the submucosal plexus of guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 2007; 292:G492-500. [PMID: 17023550 DOI: 10.1152/ajpgi.00257.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Actions of adenosine 5'-monophosphate (AMP) on electrical and synaptic behavior of submucosal neurons in guinea pig small intestine were studied with "sharp" intracellular microelectrodes. Application of AMP (0.3-100 microM) evoked slowly activating depolarizing responses associated with increased excitability in 80.5% of the neurons. The responses were concentration dependent with an EC(50) of 3.5 +/- 0.5 microM. They were abolished by the adenosine A(2A) receptor antagonist ZM-241385 but not by pyridoxal-phosphate-6-azophenyl-2,4-disulfonic acid, trinitrophenyl-ATP, 8-cyclopentyl-1,3-dimethylxanthine, suramin, or MRS-12201220. The AMP-evoked responses were insensitive to AACOCF3 or ryanodine. They were reduced significantly by 1) U-73122, which is a phospholipase C inhibitor; 2) cyclopiazonic acid, which blocks the Ca(2+) pump in intraneuronal membranes; and 3) 2-aminoethoxy-diphenylborane, which is an inositol (1,4,5)-trisphosphate receptor antagonist. Inhibitors of PKC or calmodulin-dependent protein kinase also suppressed the AMP-evoked excitatory responses. Exposure to AMP suppressed fast nicotinic ionotropic postsynaptic potentials, slow metabotropic excitatory postsynaptic potentials, and slow noradrenergic inhibitory postsynaptic potentials in the submucosal plexus. Inhibition of each form of synaptic transmission reflected action at presynaptic inhibitory adenosine A(1) receptors. Slow excitatory postsynaptic potentials, which were mediated by the release of ATP and stimulation of P2Y(1) purinergic receptors in the submucosal plexus, were not suppressed by AMP. The results suggest an excitatory action of AMP at adenosine A(2A) receptors on neuronal cell bodies and presynaptic inhibitory actions mediated by adenosine A(1) receptors for most forms of neurotransmission in the submucosal plexus, with the exception of slow excitatory purinergic transmission mediated by the P2Y(1) receptor subtype.
Collapse
Affiliation(s)
- Na Gao
- Dept of Physiology and Cell Biology, Columbus, OH 43210-1218, USA
| | | | | | | | | | | |
Collapse
|
26
|
Martín-Satué M, Torrejón-Escribano B, Felipe A, de Aranda IG, Elías M, Marsal J, Blasi J, Solsona C. Cloning, molecular characterization and expression of ecto-nucleoside triphosphate diphosphohydrolase-1 from Torpedo electric organ. Neurochem Int 2007; 50:256-63. [PMID: 17030469 DOI: 10.1016/j.neuint.2006.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
During synaptic transmission large amounts of ATP are released from pre- and post-synaptic sources of Torpedo electric organ. A chain reaction sequentially hydrolyses ATP to adenosine, which inhibits acetylcholine secretion. The first enzyme implicated in this extracellular ATP hydrolysis is an ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) that dephosphorylates both ATP and ADP to AMP. This enzyme has been biochemically characterized in the synaptosomal fraction of Torpedo electric organ, having almost equal affinity for ATP as for ADP, a fact that pointed to the type-1 NTPDase enzyme. In the present work we describe the cloning and molecular characterization of the cDNA for an NTPDase from Torpedo marmorata electric organ. The clone, obtained using the RACE-PCR technique, contains and open-reading frame of 1506bp and encodes a 502 amino acids protein that exhibits high homology with other NTPDases1 from vertebrates previously identified, including those of zebrafish and Xenopus, as well as human, rat and mouse. Topology analyses revealed the existence of two transmembrane regions, two short cytoplasmic tails and a long extracellular domain containing five apyrase-conserved regions. Gene expression studies revealed that this gene is expressed in all the Torpedo tissues analyzed. Finally, activity and cellular localization of the protein encoded by this newly cloned cDNA was assessed by heterologous expression experiments involving COS-7 and HeLa cells.
Collapse
Affiliation(s)
- Mireia Martín-Satué
- Laboratori de Neurobiologia Cellular i Molecular, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Institut d'Investigacions Biomèdiques de Bellvitge-Universitat de Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Invited Lectures : Overviews Purinergic signalling: past, present and future. Purinergic Signal 2006; 2:1-324. [PMID: 18404494 PMCID: PMC2096525 DOI: 10.1007/s11302-006-9006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 12/11/2022] Open
|
28
|
Correia-de-Sá P, Adães S, Timóteo MA, Vieira C, Magalhães-Cardoso T, Nascimento C, Duarte-Araújo M. Fine-tuning modulation of myenteric motoneurons by endogenous adenosine: on the role of secreted adenosine deaminase. Auton Neurosci 2006; 126-127:211-24. [PMID: 16563876 DOI: 10.1016/j.autneu.2006.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 02/15/2006] [Indexed: 11/30/2022]
Abstract
Besides the well-characterized inhibitory effect of adenosine in the gastrointestinal tract mediated by A1 receptors, we recently demonstrated that endogenously generated adenosine facilitates [3H]acetylcholine release from myenteric neurons through preferential activation of prejunctional A2A receptors. The co-existence of both receptor subtypes on cholinergic neurons prompted the question of how does adenosine discriminate between these receptors to regulate synaptic transmission in the longitudinal muscle-myenteric plexus (LM-MP) of the rat ileum. Electrical stimulation of the LM-MP increased the outflow of adenosine, inosine and hypoxanthine. Myenteric neurons seem to be the main source of endogenous adenosine, since blockade of action potentials with tetrodotoxin (1 microM) or omission of Ca2+ (plus EGTA, 1 mM) in the buffer essentially abolished nucleosides release, while adenosine outflow remained unchanged when smooth muscle contractions were prevented by nifedipine (1 microM). Inhibition of ecto-5'-nucleotidase by concanavalin A (0.1 mg ml-1) produced only a moderate decrease (approximately 25%) on adenosine accumulation in the LM-MP, indicating that the extracellular catabolism of released ATP might not be a major source of the nucleoside. Data using the acetylcholinesterase inhibitor, physiostigmine (10 microM), and several subtype-specific muscarinic receptor antagonists, 4-DAMP (100 nM), AF-DX 116 (10 microM) and muscarinic toxin-7 (1 nM), suggest that cholinergic motoneurons are endowed with muscarinic M3 autoreceptors facilitating the outflow of adenosine. Surprisingly, bath samples collected after stimulating the LM-MP exhibited a relatively high adenosine deaminase (ADA) activity (0.60+/-0.07 U ml-1), which increased in parallel with the accumulation of adenosine and its deamination products. Our findings are in keeping with the hypothesis that ADA secretion, along with a less-efficient dipyridamole-sensitive nucleoside transport system, may restrict endogenous adenosine actions to the synaptic region channelling to facilitatory A2A receptors activation. Such a local environment may also limit diffusion of exogenously added adenosine towards the active zones, as we showed that this constrain may be overcome by inhibiting ADA activity with erythro-9(2-hydroxy-3-nonyl) adenine (50 microM).
Collapse
Affiliation(s)
- Paulo Correia-de-Sá
- Laboratório de Farmacologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, L. Prof. Abel Salazar, 2, 4099-003 Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
29
|
Paes-de-Carvalho R, Dias BV, Martins RA, Pereira MR, Portugal CC, Lanfredi C. Activation of glutamate receptors promotes a calcium-dependent and transporter-mediated release of purines in cultured avian retinal cells: possible involvement of calcium/calmodulin-dependent protein kinase II. Neurochem Int 2005; 46:441-51. [PMID: 15769546 DOI: 10.1016/j.neuint.2004.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 11/19/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
Calcium-dependent release of purines was previously demonstrated in cultures of chick retinal cells stimulated with high potassium concentrations but there is no evidence for an exocytotic mechanism of adenosine release from presynaptic terminals. Here we show that activation of NMDA or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate glutamate ionotropic receptors promotes a two- to three-fold increase in the release of purines from these cultures. Approximately 96% of intracellular radioactivity is found as nucleotides after incubation with [(3)H]adenosine, but more than 85% of glutamate-stimulated released material is found as inosine (60%), hypoxanthine (19.9%) and adenosine (7.8%). The release is prevented by removal of extracellular calcium, by the transporter blocker nitrobenzylthioinosine, or inhibitors of calcium/calmodulin-dependent protein kinase II (CAMK II). The uptake of [(3)H]adenosine, but not of [(3)H]GABA or [(3)H]choline, is also blocked by 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN62), N-[2-(N-(4-chlorocinnamyl)-N-methylaminomethyl)phenyl-N-[2-hydroxiethyl]-4-methoxybenzenesulfonamide (KN93) or the myristoylated autocamtide-2-related inhibitory peptide, suggesting that the enzyme modulates the nucleoside transporter. The distribution of intracellular purines was not affected by KN62. These results indicate that activation of glutamate receptors triggers the release of purines from retinal cells by a mechanism involving calcium influx, CAMK II and the nitrobenzylthioinosine-sensitive nucleoside transporter. The regulation of adenosine release by glutamate receptors and CAMK II could have important consequences in the presynaptic control of glutamate release.
Collapse
Affiliation(s)
- Roberto Paes-de-Carvalho
- Program of Neuroimmunology and Department of Neurobiology, Institute of Biology, Federal Fluminense University, Caixa Postal 100180, Niterói, Rio de Janeiro 24001-970, Brazil.
| | | | | | | | | | | |
Collapse
|
30
|
Nitahara K, Vizi ES, Shono S, Iihoshi M, Higuchi H, Higa K. Reversal of neuromuscular effects of adenosine by specific adenosine A1-receptor antagonist in live rats. Int J Neurosci 2005; 115:405-410. [PMID: 15804723 DOI: 10.1080/00207450590520993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intravenous adenosine in-vivo was shown to potentiate the effects of non-depolarizing neuromuscular blocking agents. This study aimed to determine whether adenosine A1-receptors mediated this potentiation. The authors investigated the effects of intravenous adenosine, N6-cyclopentyladenosine, specific A1-receptor agonist, and 8-cyclopentyl-1,3-dipropylxanthine, specific A1-receptor antagonist, on neuromuscular block by vecuronium, in in-vivo rat sciatic nerve-tibialis anterior preparations. In the presence of 50% steady state block by vecuronium, adenosine, and N6-cyclopentyladenosine caused similar degree of depressions of twitch tension. Twitch tension returned to its pre-injection value more rapidly when 8-cyclopentyl-1,3-dipropylxanthine was given at the maximal block than when it was allowed to recover spontaneously. It was concluded that in in-vivo adenosine potentiated the neuromuscular effects of vecuronium through adenosine A1-receptors in rats.
Collapse
Affiliation(s)
- Keiichi Nitahara
- Department of Anesthesiology, Fukuoka University School of Medicine, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Yip L, Leung HCH, Kwok YN. Role of adenosine A1 receptor in the regulation of gastrin release. J Pharmacol Exp Ther 2004; 310:477-87. [PMID: 15044554 DOI: 10.1124/jpet.104.066654] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine has been demonstrated to inhibit gastric acid secretion. In the rat stomach, this inhibitory effect may be mediated indirectly by the inhibition of gastrin release. Results show that the A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) suppressed immunoreactive gastrin (IRG) release in a concentration-dependent manner. CPA significantly inhibited IRG release at 0.001 microM and maximally inhibited IRG release at 1 microM. At concentrations of 0.001 to 0.1 microM, the A(2A) receptor-selective agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine and A(3) receptor-selective agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-beta-d-ribofuranuronamide, had no effect on IRG release, suggesting the involvement of A(1) receptors. In agreement, the A(1) receptor-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine abolished adenosine-induced inhibition of IRG release. Results of immunohistochemistry experiments reveal the presence of A(1) receptor immunoreactivity on mucosal G-cells and D-cells, and the gastric plexi, but not parietal cells, suggesting that adenosine may act directly on G-cells or indirectly on the gastric plexi to modulate IRG release. The structure of the mucosal A(1) receptor was found to be identical to that in the rat brain. Alternative splicing within the coding region of this receptor did not occur. A real-time reverse transcription-polymerase chain reaction assay was developed to measure gastric A(1) receptor gene expression. The highest level of gastric A(1) receptor mRNA was found in the corporeal muscle. However, this level was significantly lower in comparison with the striatum. In conclusion, this study shows that adenosine may suppress IRG release, at least in part, by activating A(1) receptors localized on G-cells and may consequently result in an inhibition of gastric acid secretion.
Collapse
Affiliation(s)
- Linda Yip
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
32
|
Duarte-Araújo M, Nascimento C, Alexandrina Timóteo M, Magalhães-Cardoso T, Correia-de-Sá P. Dual effects of adenosine on acetylcholine release from myenteric motoneurons are mediated by junctional facilitatory A(2A) and extrajunctional inhibitory A(1) receptors. Br J Pharmacol 2004; 141:925-34. [PMID: 14993098 PMCID: PMC1574269 DOI: 10.1038/sj.bjp.0705697] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 11/30/2003] [Accepted: 01/13/2004] [Indexed: 11/08/2022] Open
Abstract
1. The coexistence of both inhibitory A(1) and facilitatory A(2) adenosine receptors in the rat myenteric plexus prompted the question of how adenosine activates each receptor subtype to regulate cholinergic neurotransmission. 2. Exogenously applied adenosine (0.3-300 microm) decreased electrically evoked [(3)H]acetylcholine ([(3)H]ACh) release. Blocking A(1) receptors with 1,3-dipropyl-8-cyclopentylxanthine (10 nm) transformed the inhibitory action of adenosine into a facilitatory effect. Adenosine-induced inhibition was mimicked by the A(1) receptor agonist R-N(6)-phenylisopropyladenosine (0.3 microm), but the A(2A) agonist CGS 21680C (0.003 microm) produced a contrasting facilitatory effect. 3. Increasing endogenous adenosine levels, by the addition of (1) the adenosine precursor AMP (30-100 microm), (2) the adenosine kinase inhibitor 5'-iodotubercidin (10 microm) or (3) inhibitors of adenosine uptake (dipyridamole, 0.5 microm) and of deamination (erythro-9(2-hydroxy-3-nonyl)adenine, 50 microm), enhanced electrically evoked [(3)H]ACh release (5 Hz for 40 s). Release facilitation was prevented by adenosine deaminase (ADA, 0.5 U ml(-1)) and by the A(2A) receptor antagonist ZM 241385 (50 nm); these compounds decreased [(3)H]ACh release by 31+/-6% (n=7) and 37+/-10% (n=6), respectively. 4. Although inhibition of ecto-5'-nucleotidase by alpha,beta-methylene ADP (200 microm) or by concanavalin A (0.1 mg ml(-1)) attenuated endogenous adenosine formation from AMP, analysed by HPLC, the corresponding reduction in [(3)H]ACh release only became evident when stimulation of the myenteric plexus was prolonged to over 250 s. 5. In summary, we found that endogenously generated adenosine plays a predominantly tonic facilitatory effect mediated by prejunctional A(2A) receptors. Extracellular deamination and cellular uptake may restrict endogenous adenosine actions to the neuro-effector region near the release/production sites.
Collapse
Affiliation(s)
- Margarida Duarte-Araújo
- Laboratório de Farmacologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, L. Prof. Abel Salazar, 2, 4099-003 Porto, Portugal
| | - Carlos Nascimento
- Laboratório de Farmacologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, L. Prof. Abel Salazar, 2, 4099-003 Porto, Portugal
| | - M Alexandrina Timóteo
- Laboratório de Farmacologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, L. Prof. Abel Salazar, 2, 4099-003 Porto, Portugal
| | - Teresa Magalhães-Cardoso
- Laboratório de Farmacologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, L. Prof. Abel Salazar, 2, 4099-003 Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia/UMIB, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, L. Prof. Abel Salazar, 2, 4099-003 Porto, Portugal
| |
Collapse
|
33
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 584] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
34
|
Talubmook C, Forrest A, Parsons M. Streptozotocin-induced diabetes modulates presynaptic and postsynaptic function in the rat ileum. Eur J Pharmacol 2003; 469:153-8. [PMID: 12782197 DOI: 10.1016/s0014-2999(03)01722-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Altered gastrointestinal motility frequently occurs in diabetic patients and also in animal models of diabetes but the underlying causes are not clear. In the present study, contractile responses to agonists and electrical field stimulation (EFS) and the inhibitory actions of an adenosine A(1) receptor agonist were investigated on ilea from 8-week streptozotocin (STZ)-induced diabetic rats. Contractile responses to carbachol, prostaglandin F(2 alpha) (PGF(2 alpha)), the calcium ionophore A23187 and to EFS were increased in diabetic tissues compared to controls. In contrast, the inhibitory effects of a potent and selective adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) on electrical field stimulation-evoked contractions were decreased in diabetic tissues compared to controls but its ability to relax carbachol-contracted tissues was unaltered. These results suggest that diabetes may cause alterations at both pre- and postsynaptic sites and this may lead in turn to the gastrointestinal complications seen in diabetic patients.
Collapse
Affiliation(s)
- Chusri Talubmook
- Department of Biology, Faculty of Sciences, Mahasarakham University, Mahasarakham 44150, Thailand
| | | | | |
Collapse
|
35
|
Begg M, Dale N, Llaudet E, Molleman A, Parsons ME. Modulation of the release of endogenous adenosine by cannabinoids in the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum. Br J Pharmacol 2002; 137:1298-304. [PMID: 12466239 PMCID: PMC1573610 DOI: 10.1038/sj.bjp.0704985] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 08/14/2002] [Accepted: 09/13/2002] [Indexed: 11/09/2022] Open
Abstract
1. Interactions between the cannabinoid system and the adenosine system were investigated in the myenteric plexus-longitudinal muscle (MPLM) of the guinea-pig ileum. 2. Electrically-evoked contractions of the MPLM were inhibited in a concentration dependent manner by exogenous adenosine and the adenosine receptor agonist 2-chloroadenosine. These inhibitory effects were reversed by the selective A(1) receptor antagonist DPCPX (20 nM). 3. Preincubation of the MPLM with the cannabinoid receptor agonist CP55,940 (1 nM) or the endogenous cannabinoid ligand anandamide caused a significant leftward shift in the concentration-effect curves to adenosine and 2-chloroadenosine. 4. Electrically-evoked contractions of the MPLM were inhibited in a concentration dependent manner by the adenosine uptake inhibitor dipyridamole. This inhibition was reversed by DPCPX (20 nM). 5. Pretreatment with CP55,940 (1 nM) or anandamide (10 microM) significantly reduced the inhibition produced by dipyridamole, an effect which was completely reversed by the selective CB(1) receptor ligand SR141716 (100 nM). 6. Electrically evoked adenosine release, measured in real time by means of adenosine-specific biosensors, was inhibited by CP55,940 (10 nM). This inhibition was blocked when CP55,940 was applied in the presence of SR141716 (100 nM). 7. These results confirm the presence of presynaptic CB(1) and A(1) receptors in the guinea-pig MPLM, and suggest that CB(1) receptor stimulation reduces electrically-evoked adenosine release. Overall the data raise the possibility that the cannabinoid system plays a role in the modulation of adenosine transmission in the MPLM.
Collapse
Affiliation(s)
- M Begg
- Department of Biosciences, University of Hertfordshire, C.P. Snow Building, College Lane, Hatfield, Herts. AL10 9AB, U.K
| | - N Dale
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - E Llaudet
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - A Molleman
- Department of Biosciences, University of Hertfordshire, C.P. Snow Building, College Lane, Hatfield, Herts. AL10 9AB, U.K
| | - M E Parsons
- Department of Biosciences, University of Hertfordshire, C.P. Snow Building, College Lane, Hatfield, Herts. AL10 9AB, U.K
| |
Collapse
|
36
|
Kittel A, Garrido M, Varga G. Localization of NTPDase1/CD39 in normal and transformed human pancreas. J Histochem Cytochem 2002; 50:549-56. [PMID: 11897808 DOI: 10.1177/002215540205000412] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Elevated levels of extracellular ATP have been observed in many tumors. We have localized NTPDase1/CD39, one of the principal extracellular nucleotide-hydrolyzing enzymes, in normal and cancerous human pancreas. NTPDase/E-ATPDase activity was demonstrated with an enzyme histochemical technique on cryosections of human pancreas. Acinar and duct epithelial cells were devoid of E-ATPDase activity in both normal and transformed tissue. Endothelial cells and smooth muscle around blood vessels and larger ducts showed strong activity. Nerves, connective tissue, and the beta-cells of the islets were also stained. In cancerous tissue this activity was diminished in the smooth muscle around the ducts and was absent from newly formed connective tissue. Immunostaining for CD39 supported these results but revealed the presence of inactive CD39 in the duct epithelial cells. We hypothesize that the significantly diminished activity of NTPDase1 in the tissues surrounding the ducts may be associated with the processes that lead to tumor formation in human pancreas.
Collapse
Affiliation(s)
- Agnes Kittel
- Department of Pathophysiology, Laboratory of Gastrointestinal Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, PO Box 67, 1450 Budapest, Hungary.
| | | | | |
Collapse
|
37
|
Lee JJ, Talubmook C, Parsons ME. Activation of presynaptic A1-receptors by endogenous adenosine inhibits acetylcholine release in the guinea-pig ileum. JOURNAL OF AUTONOMIC PHARMACOLOGY 2001; 21:29-38. [PMID: 11422576 DOI: 10.1046/j.1365-2680.2001.00201.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. It is well established that presynaptic adenosine A1-receptor activation inhibits acetylcholine (ACh) release in the guinea-pig ileum. The present study extends this observation and examines a possible role for endogenous adenosine in modulating cholinergic nerve function. 2. The actions of the adenosine uptake blocker, dipyridamole, the adenosine deaminase inhibitor, erythro-9(2-hydroxy-3-nonyl)adenine (EHNA) and the A1-receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) were examined on electrically evoked neurogenic, cholinergic twitch contractions of the guinea-pig ileum. Some additional studies measuring [3H]-ACh release were also performed. 3. Adenosine and the selective A1-receptor agonist, 2-chloroadenosine (2-CA), inhibited electrically evoked contractions and, in the case of 2-CA, [3H]-ACh release. The actions were antagonized by DPCPX. At low concentrations, dipyridamole and EHNA enhanced the effect of adenosine causing a leftward shift of the concentration-response curve. In contrast, inhibition induced by 2-CA was unaffected by either dipyridamole or EHNA. 4. When applied alone at higher concentrations, EHNA and dipyridamole produced a concentration-dependent suppression of cholinergic neurotransmission. In both cases, the effect could be reversed by DPCPX. At the same concentration, DPCPX alone produced a small but consistent increase in twitch height and [3H]-ACh release. 5. The data confirm the existence of inhibitory presynaptic adenosine A1-receptors modulating cholinergic nerve function in the guinea-pig ileum and suggests that these receptors can be activated by endogenous adenosine released either as adenosine itself or as an ATP metabolite.
Collapse
Affiliation(s)
- J J Lee
- Biosciences Division, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, UK
| | | | | |
Collapse
|
38
|
Kadowaki M, Tokita K, Nagakura Y, Takeda M, Hanaoka K, Tomoi M. Adenosine A1 receptor blockade reverses dysmotility induced by ischemia-reperfusion in rat colon. Eur J Pharmacol 2000; 409:319-23. [PMID: 11108827 DOI: 10.1016/s0014-2999(00)00867-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study was designed to assess whether adenosine A1 receptor antagonists [(R)-1-[(E)-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl) acryloyl]-piperidin-2-yl acetic acid (FK352) and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)] reverse dysmotility induced by ischemia-reperfusion in the rat colon. The gene of adenosine A1 receptor was expressed in the colon. Clamping (30 min) of the colonic marginal vessels was followed by reperfusion, and the propulsive colonic motility was evaluated. Propulsion was significantly slowed by ischemia-reperfusion, while FK352 and DPCPX abolished this delay. In contrast, the non-selective adenosine receptor antagonist, 8-phenyltheophylline, failed to affect the dysmotility. Thus, adenosine A1 receptor antagonists have potent therapeutic potential against ischemia-reperfusion-induced dysmotility in the colon.
Collapse
Affiliation(s)
- M Kadowaki
- Pharmacological Research Laboratories, Fujisawa Pharmaceutical Co. Ltd., 532-0031, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Materi LM, Rasmusson DD, Semba K. Inhibition of synaptically evoked cortical acetylcholine release by adenosine: an in vivo microdialysis study in the rat. Neuroscience 2000; 97:219-26. [PMID: 10799754 DOI: 10.1016/s0306-4522(00)00075-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The release of cortical acetylcholine from the intracortical axonal terminals of cholinergic basal forebrain neurons is closely associated with electroencephalographic activity. One factor which may act to reduce cortical acetylcholine release and promote sleep is adenosine. Using in vivo microdialysis, we examined the effect of adenosine and selective adenosine receptor agonists and antagonists on cortical acetylcholine release evoked by electrical stimulation of the pedunculopontine tegmental nucleus in urethane anesthetized rats. All drugs were administered locally within the cortex by reverse dialysis. None of the drugs tested altered basal release of acetylcholine in the cortex. Adenosine significantly reduced evoked cortical acetylcholine efflux in a concentration-dependent manner. This was mimicked by the adenosine A(1) receptor selective agonist N(6)-cyclopentyladenosine and blocked by the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The A(2A) receptor agonist 2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosi ne hydrochloride (CGS 21680) did not alter evoked cortical acetylcholine release even in the presence of DPCPX. Administered alone, neither DPCPX nor the non-selective adenosine receptor antagonist caffeine affected evoked cortical acetylcholine efflux. Simultaneous delivery of the adenosine uptake inhibitors dipyridamole and S-(4-nitrobenzyl)-6-thioinosine significantly reduced evoked cortical acetylcholine release, and this effect was blocked by the simultaneous administration of caffeine. These data indicate that activation of the A(1) adenosine receptor inhibits acetylcholine release in the cortex in vivo while the A(2A) receptor does not influence acetylcholine efflux. Such inhibition of cortical acetylcholine release by adenosine may contribute to an increased propensity to sleep during prolonged wakefulness.
Collapse
Affiliation(s)
- L M Materi
- Departments of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | | |
Collapse
|
40
|
Vizi ES, Nitahara K, Sato K, Sperlágh B. Stimulation-dependent release, breakdown, and action of endogenous ATP in mouse hemidiaphragm preparation: the possible role of ATP in neuromuscular transmission. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 81:278-84. [PMID: 10869732 DOI: 10.1016/s0165-1838(00)00129-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study the in vitro mouse phrenic nerve- hemidiaphragm preparation was utilized to study the release and extracellular catabolism of endogenous ATP and its action on the postsynaptic site, i.e. on the contraction force evoked by nerve stimulation. ATP, measured by the luciferin-luciferase assay, was released stimulation-dependently from the mouse hemidiaphragm in response to electrical field stimulation at 10 Hz. Blockade of the Na(+) channel activity by tetrodotoxin inhibited the majority of the release of ATP in response to stimulation, showing that it is related to neuronal activity. The nicotinic receptor antagonists d-tubocurarine, and alpha-bungarotoxin and cooling the bath temperature to 7 degrees C also reduced stimulation-induced ATP outflow, suggesting that nicotinic receptors are responsible for the part of the release of ATP that is released from postsynaptic sites in a carrier-mediated manner. Exogenous ATP (20-500 microM) added to the bath was degraded to ADP and AMP by the action of ectoATPase and ectoATPdiphosphohydrolase; the K(m) and v(max) values of these enzymes were 185.8 microM and 55.16 nmol/min.g respectively. However, the total amount of nucleotides ([ATP+ADP+AMP]) was increased after the addition of ATP, indicating that ATP itself promoted further adenine nucleotide release. Twitch contractions of the rat hemidiaphragm preparation evoked by low frequency electrical stimulation was blocked concentration-dependently by the non-depolarizing muscle relaxants d-tubocurarine and pancuronium. Suramin (100 microM-1 mM) reversed neuromuscular blockade by d-tubocurarine and pancuronium; i.e., it shifted their concentration-response curves to the right Taken together our data, that endogenous ATP is released by stimulation and subsequently catabolized in the hemidiaphragm preparation and that suramin inhibits ecto-ATPase activity could be interpreted as meaning that suramin prolongs the action of endogenous ATP to elicit twitch contraction, which points to a new, undefined role of ATP in neuromuscular transmission. The source of ATP is partly postsynaptic, released from the muscle in response to activation of nicotinic ACh receptors expressed on the muscle.
Collapse
Affiliation(s)
- E S Vizi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67, H-1450, Budapest, Hungary.
| | | | | | | |
Collapse
|
41
|
Manoonkitiwongsa PS, Whitter EF, Wareesangtip W, McMillan PJ, Nava PB, Schultz RL. Calcium-dependent ATPase unlike ecto-ATPase is located primarily on the luminal surface of brain endothelial cells. THE HISTOCHEMICAL JOURNAL 2000; 32:313-24. [PMID: 10939519 DOI: 10.1023/a:1004093113985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Numerous cytochemical studies have reported that calcium-activated adenosine triphosphatase (Ca2+-ATPase) is localized on the abluminal plasma membrane of mature brain endothelial cells. Since the effects of fixation and co-localization of ecto-ATPase have never been properly addressed, we investigated the influence of these parameters on Ca2+-ATPase localization in rat cerebral microvessel endothelium. Formaldehyde at 2% resulted in only abluminal staining while both luminal and abluminal surfaces were equally stained following 4% formaldehyde. Fixation with 2% formaldehyde plus 0.25% glutaraldehyde revealed more abluminal staining than luminal while 2% formaldehyde plus 0.5% glutaraldehyde produced vessels with staining similar to 4% and 2% formaldehyde plus 0.25% glutaraldehyde. The abluminal reaction appeared unaltered when ATP was replaced by GTP, CTP, UTP, ADP or when Ca2+ was replaced by Mg2+ or Mn2+ or p-chloromercuribenzoate included as inhibitor. But the luminal reaction was diminished. Contrary to previous reports, our results showed that Ca2+-specific ATPase is located more on the luminal surface while the abluminal reaction is primarily due to ecto-ATPase. The strong Ca2+-specific-ATPase luminal localization explains the stable Ca2+ gradient between blood and brain, and is not necessarily indicative of immature or pathological vessels as interpreted in the past.
Collapse
|
42
|
Kadowaki M, Takeda M, Tokita K, Hanaoka K, Tomoi M. Molecular identification and pharmacological characterization of adenosine receptors in the guinea-pig colon. Br J Pharmacol 2000; 129:871-6. [PMID: 10696084 PMCID: PMC1571909 DOI: 10.1038/sj.bjp.0703123] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim of this study is to elucidate the role of adenosine in the motor function of the guinea-pig distal colon.2 To determine whether adenosine A(1) receptors and A(2B) receptors are expressed in the guinea-pig colon, we employed the reverse transcription-polymerase chain reaction (RT - PCR). The gene expression of A(1) receptor and A(2B) receptor was found for the first time in the guinea-pig proximal and distal colon.3 Adenosine A(1) agonist N(6)-cyclopentyladenosine (CPA), and A(1)/A(2) agonist 5'-N-ethylcarboxamidoadenosine (NECA) concentration-dependently inhibited neurogenic responses to electrical field stimulation (EC(50)=1.07x10(-8) and 2.12x10(-8) M) in the longitudinal muscle, but A(2A) agonist 2-p-(2-carboxyethyl)phenylethylamino-5'-N-ethycarboxamido-ad enosine (CGS21680) had only a slight inhibitory effect (25.9%, 1 microM). A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 10 nM: A(1) selective concentration) antagonized responses to CPA and NECA. Furthermore, the affinity order of antagonists at inhibiting the effect NECA was: DPCPX>8-phenyltheophylline (8-PT: A(1)/A(2) antagonist).3 In the presence of tetrodotoxin (TTX, 0.3 microM), CPA and NECA relaxed myogenic precontraction induced by KCl (50 mM) (EC(50)=1.26x10(-5) and 1.04x10(-5) M, respectively), but CGS21680 (1 microM) did not cause any relaxation. DPCPX did not affect responses to CPA and NECA at a concentration of 10 nM, but a higher concentration (1 microM) of DPCPX and 10 microM of 8-PT antagonized those responses.5 These data lead us to the hypothesis that adenosine may mediate relaxation through two different inhibitory receptor subtypes; A(1) receptors on the enteric neuron and A(2B) receptor on the smooth muscle in the guinea-pig distal colon.
Collapse
Affiliation(s)
- M Kadowaki
- Pharmacological Research Laboratory, Fujisawa Pharmaceutical Co. Ltd., Osaka 532-0031, Japan
| | | | | | | | | |
Collapse
|
43
|
Abstract
Enteric ganglia can maintain integrated functions, such as the peristaltic reflex, in the absence of input from the central nervous system, which has a modulatory role. Several clinical and experimental observations suggest that homeostatic control of gut function in a changing environment may be achieved through adaptive changes occurring in the enteric ganglia. A distinctive feature of enteric ganglia, which may be crucial during the development of adaptive responses, is the vicinity of the final effector cells, which are an important source of mediators regulating cell growth. The aim of this review is to focus on the possible mechanisms underlying neuronal plasticity in the enteric nervous system and to consider approaches to the study of plasticity in this model. These include investigations of neuronal connectivity during development, adaptive mechanisms that maintain function after suppression of a specific neural input, and the possible occurrence of activity-dependent modifications of synaptic efficacy, which are thought to be important in storage of information in the brain. One of the applied aspects of the study of plasticity in the enteric nervous system is that knowledge of the underlying mechanisms may eventually enable us to develop strategies to correct neuronal alterations described in several diseases.
Collapse
Affiliation(s)
- C Giaroni
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | | | | | | |
Collapse
|
44
|
Vizi ES, Sperlágh B. Receptor- and carrier-mediated release of ATP of postsynaptic origin: cascade transmission. PROGRESS IN BRAIN RESEARCH 1999; 120:159-69. [PMID: 10550995 DOI: 10.1016/s0079-6123(08)63553-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- E S Vizi
- Department of Pharmacology, Hungarian Academy of Sciences, Budapest, Hungary.
| | | |
Collapse
|
45
|
Vizi ES, Liang SD, Sperlágh B, Kittel A, Jurányi Z. Studies on the release and extracellular metabolism of endogenous ATP in rat superior cervical ganglion: support for neurotransmitter role of ATP. Neuroscience 1997; 79:893-903. [PMID: 9219952 DOI: 10.1016/s0306-4522(96)00658-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The release of endogenous ATP, measured by the luciferin-luciferase assay, and the release of [3H]acetylcholine from the isolated superior cervical ganglion of the rat loaded with [3H]choline were studied simultaneously. Electrical field stimulation enhanced the release of endogenous ATP and acetylcholine in a [Ca2+]o-dependent manner. The Na+ channel blocker, tetrodotoxin (1 microM) inhibited the stimulation-evoked release of endogenous ATP and of [3H]acetylcholine, but did not change the resting release. The release of ATP was dependent on the frequency of stimulation between 2 and 10 Hz. when the number of shocks was kept constant (360 shocks), while acetylcholine was not released in a frequency-dependent fashion. Ten days after cutting of the preganglionic nerve of the superior cervical ganglion the stimulation-evoked release of acetylcholine and ATP was abolished and the uptake of [3H]choline was significantly reduced but not inhibited. Hexamethonium, (100 microM) a nicotinic acetylcholine receptor antagonist, significantly reduced the release of both acetylcholine and ATP, indicating a positive feedback modulation of ACh and ATP release. 8-Cyclopentyl-1,3-dipropylxanthine (10 nM), the selective A1-adenosine receptor antagonist exhibited similar effect on the release of ATP and acetylcholine: both of them were augmented, showing that the stimulation-evoked release of ATP and acetylcholine are under the inhibitory control of A1-adenosine receptors. When the temperature was reduced to 7 degrees C to inhibit carrier-mediated processes, the resting and stimulated release of acetylcholine was not changed. Conversely, the release of ATP in response to stimulation was reduced by 79.9 +/- 5.6%, and the basal release was also almost completely blocked. Carbamylcholine by itself was able to release ATP, but not acetylcholine, in a hexamethonium-inhibitable manner, even from ganglia whose preganglionic nerve had been cut 10 days prior to experiments, suggesting that ATP release can occur in response to nicotinic receptor stimulation of postsynaptic cells. The breakdown of ATP or AMP by superior cervical ganglion was measured by high performance liquid chromatography combined with UV detection. ATP and AMP, added to the tissues, were readily decomposed: the Km (apparent Michaelis constant) and Vmax (apparent maximal velocity) were 475 +/- 24 microM and 3.50 +/- 0.18 nmol/min per mg for ectoATPase and 1550 +/- 120 microM and 14.5 +/- 0.9 nmol/min per mg tissue for 5'-nucleotidase. In addition, by using electron microscopic enzyme histochemistry, the presence of ectoATPase was also shown in the superior cervical ganglion. It is concluded that endogenous ATP and acetylcholine are released simultaneously in response to stimulation of preganglionic nerve terminals in the superior cervical ganglion in a [Ca2+]o-dependent, tetrodotoxin-sensitive manner and is metabolized by ectoenzymes present in the tissue. The dissociation of the release of ATP and acetylcholine at different stimulation frequencies and temperatures shows that the release-ratio of acetylcholine and ATP can vary upon the condition of stimulation: this can reflect either the different composition of synaptic vesicles in the preganglionic nerve terminals or a significant contribution of non-exocytotic, carrier-mediated type of release of ATP to the bulk release.
Collapse
Affiliation(s)
- E S Vizi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | | | | | | | |
Collapse
|
46
|
Poli E, Pozzoli C. Histamine H3 receptors do not modulate reflex-evoked peristaltic motility in the isolated guinea-pig ileum. Eur J Pharmacol 1997; 327:49-56. [PMID: 9185835 DOI: 10.1016/s0014-2999(97)89677-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the role played by histamine H3 receptors in the control of intestinal peristalsis, using two different in vitro preparations of guinea-pig ileum. (a) Ileal segments were perfused from the oral end, inducing peristaltic movements (emptying waves), due to the activation of intramural reflexes. Such peristaltic motility was measured as changes in the perfusion pressure during the emptying phase and the threshold pressure for triggering the emptying wave was determined. (b) Ileal segments were mounted horizontally and circular muscle contraction evoked by the ascending peristaltic reflex was triggered by caudal distension of the intestinal wall. In perfused ileal segments, specific agonists acting at histamine H3 receptors, ((R)-alpha-methylhistamine and immepip, 1 nmol-10 micromol/l), did not cause any change in the threshold pressure for triggering the peristaltic wave, or in the rise of the perfusion pressure during the emptying phase. Similarly, circular muscle contractions evoked by caudal distension of the wall were not affected by these histamine H3 receptor agonists up to 10 micromol/l. In the same conditions, a complete inhibition of peristaltic movements was elicited by agonists acting at alpha2-adrenoceptors or adenosine A1 receptors (compound UK 14,304 and N6-cyclopentyladenosine, respectively), their effects being prevented by the respective receptor antagonists, idazoxan and 8-cyclopentyl-1,3-dimethyl-xanthine. These data demonstrate that, contrary to alpha2-adrenoceptors and adenosine A1 receptors, histamine H3 receptors are not primarily involved in the modulation of intramural reflexes that modulate the peristaltic motility of the isolated guinea-pig ileum.
Collapse
Affiliation(s)
- E Poli
- Institute of Pharmacology, School of Medicine, University of Parma, Italy
| | | |
Collapse
|
47
|
Venugopal M, Jamison JM, Gilloteaux J, Koch JA, Summers M, Giammar D, Sowick C, Summers JL. Synergistic antitumor activity of vitamins C and K3 on human urologic tumor cell lines. Life Sci 1996; 59:1389-400. [PMID: 8890917 DOI: 10.1016/0024-3205(96)00466-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A micro-tetrazolium assay was employed to evaluate vitamin C (VC), vitamin K3 (VK3) and vitamin C/vitamin K3 combinations (VC/VK3) for their antitumor activity against eight human urologic tumor cell lines. While the individual vitamins exhibited antitumor activity at high concentrations, co-administration of the vitamins in a VC : VK3 ratio of 100 : 1 potentiated antitumor activity 4- to 61-fold even when exposure times were as short as 1 hour. Administration of exogenous catalase destroyed the antitumor activity of the vitamins and suggested that hydrogen peroxide and perhaps other reactive oxygen species were involved in the antitumor mechanism of these vitamins. Electron micrographs taken in a previous study demonstrated that vitamin treatment damaged mitochondria and may have impaired ATP synthesis. Analysis of cellular ATP and thiol levels as well as DNA and protein synthesis during the first five hours following a one hour VC/VK3 treatment, revealed: a transient increase in ATP production, a substantial decrease in DNA synthesis, an increase in protein synthesis and a decrease in thiol levels. These results suggested that redox cycling of the vitamin combination increased oxidative stress until it surpassed the reducing ability of the cellular thiols and cellular or genetic damage ensued.
Collapse
Affiliation(s)
- M Venugopal
- Department of Urology, Summa Health System, Akron, Ohio 44304, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zimmermann H. Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 1996; 49:589-618. [PMID: 8912394 DOI: 10.1016/0301-0082(96)00026-3] [Citation(s) in RCA: 345] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nucleotides such as ATP, ADP, UTP or the diadenosine polyphosphates and possibly even NAD+ are extracellular signaling substances in the brain and in other tissues. Enzymes located on the cell surface catalyze the hydrolysis of these compounds and thus limit their spatio-temporal activity. As a final hydrolysis product they generate the nucleoside and phosphate. The paper discusses the biochemical properties, cellular localization and functional properties of surface-located enzymes that hydrolyse nucleotides released from nervous tissue. This is preceded by a brief discussion of nucleotide receptors, cellular storage and mechanisms of nucleotide release. In nervous tissue nucleoside 5'-triphosphates are hydrolysed by ecto-ATP-diphosphohydrolase and possibly in addition also by ecto-nucleoside triphosphatase and ecto-nucleoside diphosphatase. The molecular identity of the ATP-diphosphohydrolase has now been revealed. The hydrolysis of nucleoside 5'-monophosphates is catalysed by 5'-nucleotidase whose biochemical properties and molecular structure have been studied in detail. Little is known about the molecular properties of the diadenosine polyphosphatases. Surface located enzymes for the extracellular hydrolysis of NAD+ and also ecto-protein kinases are discussed briefly. The cellular localization of the ecto-nucleotidases is only partly defined. Whereas in adult mammalian brain activity for hydrolysis of ATP and ADP may be associated with nerve cells or glial cells 5'-nucleotidase appears to have a preferential glial allocation in the adult mammal. The extracellular hydrolysis of the nucleotides is of functional importance not only during synaptic transmission where it functions in signal elimination. It plays a crucial role also for the survival and differentiation of neural cells in vitro and presumably during neuronal development in vivo.
Collapse
Affiliation(s)
- H Zimmermann
- Biozentrum der J.W Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|