1
|
Carrero-Rojas G, Hernández RG, Blumer R, de la Cruz RR, Pastor AM. MIF versus SIF Motoneurons, What Are Their Respective Contribution in the Oculomotor Medial Rectus Pool? J Neurosci 2021; 41:9782-9793. [PMID: 34675089 PMCID: PMC8612643 DOI: 10.1523/jneurosci.1480-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
Multiply-innervated muscle fibers (MIFs) are peculiar to the extraocular muscles as they are non-twitch but produce a slow build up in tension on repetitive stimulation. The motoneurons innervating MIFs establish en grappe terminals along the entire length of the fiber, instead of the typical en plaque terminals that singly-innervated muscle fibers (SIFs) motoneurons establish around the muscle belly. MIF motoneurons have been proposed to participate only in gaze holding and slow eye movements. We aimed to discern the function of MIF motoneurons by recording medial rectus motoneurons of the oculomotor nucleus. Single-unit recordings in awake cats demonstrated that electrophysiologically-identified medial rectus MIF motoneurons participated in different types of eye movements, including fixations, rapid eye movements or saccades, convergences, and the slow and fast phases of the vestibulo-ocular nystagmus, the same as SIF motoneurons did. However, MIF medial rectus motoneurons presented lower firing frequencies, were recruited earlier and showed lower eye position (EP) and eye velocity (EV) sensitivities than SIF motoneurons. MIF medial rectus motoneurons were also smaller, had longer antidromic latencies and a lower synaptic coverage than SIF motoneurons. Peristimulus time histograms (PSTHs) revealed that electrical stimulation to the myotendinous junction, where palisade endings are located, did not recurrently affect the firing probability of medial rectus motoneurons. Therefore, we conclude there is no division of labor between MIF and SIF motoneurons based on the type of eye movement they subserve.SIGNIFICANCE STATEMENT In addition to the common singly-innervated muscle fiber (SIF), extraocular muscles also contain multiply-innervated muscle fibers (MIFs), which are non-twitch and slow in contraction. MIF motoneurons have been proposed to participate only in gaze holding and slow eye movements. In the present work, by single-unit extracellular recordings in awake cats, we demonstrate, however, that both SIF and MIF motoneurons, electrophysiologically-identified, participate in the different types of eye movements. However, MIF motoneurons showed lower firing rates (FRs), recruitment thresholds, and eye-related sensitivities, and could thus contribute to the fine adjustment of eye movements. Electrical stimulation of the myotendinous junction activates antidromically MIF motoneurons but neither MIF nor SIF motoneurons receive a synaptic reafferentation that modifies their discharge probability.
Collapse
Affiliation(s)
- Génova Carrero-Rojas
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville 41012, Spain
- Center of Anatomy and Cell Biology, Medical Imaging Cluster, Medical University Vienna, Vienna 1090, Austria
| | - Rosendo G Hernández
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville 41012, Spain
| | - Roland Blumer
- Center of Anatomy and Cell Biology, Medical Imaging Cluster, Medical University Vienna, Vienna 1090, Austria
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville 41012, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville 41012, Spain
| |
Collapse
|
2
|
Rotterman TM, Alvarez FJ. Microglia Dynamics and Interactions with Motoneurons Axotomized After Nerve Injuries Revealed By Two-Photon Imaging. Sci Rep 2020; 10:8648. [PMID: 32457369 PMCID: PMC7250868 DOI: 10.1038/s41598-020-65363-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/01/2020] [Indexed: 01/08/2023] Open
Abstract
The significance of activated microglia around motoneurons axotomized after nerve injuries has been intensely debated. In particular, whether microglia become phagocytic is controversial. To resolve these issues we directly observed microglia behaviors with two-photon microscopy in ex vivo spinal cord slices from CX3CR1-GFP mice complemented with confocal analyses of CD68 protein. Axotomized motoneurons were retrogradely-labeled from muscle before nerve injuries. Microglia behaviors close to axotomized motoneurons greatly differ from those within uninjured motor pools. They develop a phagocytic phenotype as early as 3 days after injury, characterized by frequent phagocytic cups, high phagosome content and CD68 upregulation. Interactions between microglia and motoneurons changed with time after axotomy. Microglia first extend processes that end in phagocytic cups at the motoneuron surface, then they closely attach to the motoneuron while extending filopodia over the cell body. Confocal 3D analyses revealed increased microglia coverage of the motoneuron cell body surface with time after injury and the presence of CD68 granules in microglia surfaces opposed to motoneurons. Some microglia formed macroclusters associated with dying motoneurons. Microglia in these clusters display the highest CD68 expression and associate with cytotoxic T-cells. These observations are discussed in relation to current theories on microglia function around axotomized motoneurons.
Collapse
Affiliation(s)
- Travis M Rotterman
- Department of Physiology, Emory University, Atlanta, GA, 30322, United States of America.,School of Biological Sciences, Georgia Tech, Atlanta, GA, 30318, United States of America
| | - Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA, 30322, United States of America.
| |
Collapse
|
3
|
Alvarez FJ, Rotterman TM, Akhter ET, Lane AR, English AW, Cope TC. Synaptic Plasticity on Motoneurons After Axotomy: A Necessary Change in Paradigm. Front Mol Neurosci 2020; 13:68. [PMID: 32425754 PMCID: PMC7203341 DOI: 10.3389/fnmol.2020.00068] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Motoneurons axotomized by peripheral nerve injuries experience profound changes in their synaptic inputs that are associated with a neuroinflammatory response that includes local microglia and astrocytes. This reaction is conserved across different types of motoneurons, injuries, and species, but also displays many unique features in each particular case. These reactions have been amply studied, but there is still a lack of knowledge on their functional significance and mechanisms. In this review article, we compiled data from many different fields to generate a comprehensive conceptual framework to best interpret past data and spawn new hypotheses and research. We propose that synaptic plasticity around axotomized motoneurons should be divided into two distinct processes. First, a rapid cell-autonomous, microglia-independent shedding of synapses from motoneuron cell bodies and proximal dendrites that is reversible after muscle reinnervation. Second, a slower mechanism that is microglia-dependent and permanently alters spinal cord circuitry by fully eliminating from the ventral horn the axon collaterals of peripherally injured and regenerating sensory Ia afferent proprioceptors. This removes this input from cell bodies and throughout the dendritic tree of axotomized motoneurons as well as from many other spinal neurons, thus reconfiguring ventral horn motor circuitries to function after regeneration without direct sensory feedback from muscle. This process is modulated by injury severity, suggesting a correlation with poor regeneration specificity due to sensory and motor axons targeting errors in the periphery that likely render Ia afferent connectivity in the ventral horn nonadaptive. In contrast, reversible synaptic changes on the cell bodies occur only while motoneurons are regenerating. This cell-autonomous process displays unique features according to motoneuron type and modulation by local microglia and astrocytes and generally results in a transient reduction of fast synaptic activity that is probably replaced by embryonic-like slow GABA depolarizations, proposed to relate to regenerative mechanisms.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Travis M Rotterman
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Erica T Akhter
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Alicia R Lane
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cellular Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy C Cope
- Department of Biomedical Engineering, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
4
|
Benítez-Temiño B, Davis-López de Carrizosa MA, Morcuende S, Matarredona ER, de la Cruz RR, Pastor AM. Functional Diversity of Neurotrophin Actions on the Oculomotor System. Int J Mol Sci 2016; 17:E2016. [PMID: 27916956 PMCID: PMC5187816 DOI: 10.3390/ijms17122016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 11/16/2022] Open
Abstract
Neurotrophins play a principal role in neuronal survival and differentiation during development, but also in the maintenance of appropriate adult neuronal circuits and phenotypes. In the oculomotor system, we have demonstrated that neurotrophins are key regulators of developing and adult neuronal properties, but with peculiarities depending on each neurotrophin. For instance, the administration of NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor) or NT-3 (neurotrophin-3) protects neonatal extraocular motoneurons from cell death after axotomy, but only NGF and BDNF prevent the downregulation in ChAT (choline acetyltransferase). In the adult, in vivo recordings of axotomized extraocular motoneurons have demonstrated that the delivery of NGF, BDNF or NT-3 recovers different components of the firing discharge activity of these cells, with some particularities in the case of NGF. All neurotrophins have also synaptotrophic activity, although to different degrees. Accordingly, neurotrophins can restore the axotomy-induced alterations acting selectively on different properties of the motoneuron. In this review, we summarize these evidences and discuss them in the context of other motor systems.
Collapse
Affiliation(s)
- Beatriz Benítez-Temiño
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | | | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Esperanza R Matarredona
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
5
|
Morcuende S, Matarredona ER, Benítez-Temiño B, Muñoz-Hernández R, Pastor AM, de la Cruz RR. Differential regulation of the expression of neurotrophin receptors in rat extraocular motoneurons after lesion. J Comp Neurol 2011; 519:2335-52. [PMID: 21456016 DOI: 10.1002/cne.22630] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurotrophins acting through high-affinity tyrosine kinase receptors (trkA, trkB, and trkC) play a crucial role in regulating survival and maintenance of specific neuronal functions after injury. Adult motoneurons supplying extraocular muscles survive after disconnection from the target, but suffer dramatic changes in morphological and physiological properties, due in part to the loss of their trophic support from the muscle. To investigate the dependence of the adult rat extraocular motoneurons on neurotrophins, we examined trkA, trkB, and trkC mRNA expression after axotomy by in situ hybridization. trkA mRNA expression was detectable at low levels in unlesioned motoneurons, and its expression was downregulated 1 and 3 days after injury. Expression of trkB and trkC mRNAs was stronger, and after axotomy a simultaneous, but inverse regulation of both receptors was observed. Thus, whereas a considerable increase in trkB expression was seen about 2 weeks after axotomy, the expression of trkC mRNA had decreased at the same post-lesion period. Injured extraocular motoneurons also experienced an initial induction in expression of calcitonin gene-related peptide and a transient downregulation of cholinergic characteristics, indicating a switch in the phenotype from a transmitter-specific to a regenerative state. These results suggest that specific neurotrophins may contribute differentially to the survival and regenerative responses of extraocular motoneurons after lesion.
Collapse
Affiliation(s)
- Sara Morcuende
- Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Alvarez FJ, Titus-Mitchell HE, Bullinger KL, Kraszpulski M, Nardelli P, Cope TC. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons. J Neurophysiol 2011; 106:2450-70. [PMID: 21832035 DOI: 10.1152/jn.01095.2010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75-95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Mishra B, von der Ohe M, Schulze C, Bian S, Makhina T, Loers G, Kleene R, Schachner M. Functional role of the interaction between polysialic acid and extracellular histone H1. J Neurosci 2010; 30:12400-13. [PMID: 20844135 PMCID: PMC6633434 DOI: 10.1523/jneurosci.6407-09.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 07/12/2010] [Accepted: 07/19/2010] [Indexed: 11/21/2022] Open
Abstract
Polysialic acid (PSA) is a large and highly negatively charged glycan that plays crucial roles in nervous system development and function in the adult. It has been suggested to facilitate cell migration, neurite outgrowth, and synaptic plasticity because its hydration volume could enhance flexibility of cell interactions. Evidence for receptors of PSA has so far been elusive. We now identified histone H1 as binding partner of PSA via a single-chain variable fragment antibody using an anti-idiotypic approach. Histone H1 directly binds to PSA as shown by ELISA. Surface biotinylation of cultured cerebellar neurons indicated an extracellular localization of histone H1. Immunostaining of live cerebellar neurons and Schwann cells confirmed that an extracellular pool of histone H1 colocalizes with PSA at the cell surface. Histone H1 was also detected in detergent-insoluble synaptosomal membrane subfractions and postsynaptic densities. When applied in vitro, histone H1 stimulated neuritogenesis, process formation and proliferation of Schwann cells, and migration of neural precursor cells via a PSA-dependent mechanism, further indicating that histone H1 is active extracellularly. These in vitro observations suggested an important functional role for the interaction between histone H1 and PSA not only for nervous system development but also for regeneration in the adult. Indeed, histone H1 improved functional recovery, axon regrowth, and precision of reinnervation of the motor branch in adult mice with femoral nerve injury. Our findings encourage investigations on the therapeutic potential of histone H1 in humans.
Collapse
Affiliation(s)
- Bibhudatta Mishra
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Maren von der Ohe
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Christian Schulze
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Shan Bian
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Tatjana Makhina
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg–Eppendorf, 20246 Hamburg, Germany, and
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
8
|
Alvarez FJ, Bullinger KL, Titus HE, Nardelli P, Cope TC. Permanent reorganization of Ia afferent synapses on motoneurons after peripheral nerve injuries. Ann N Y Acad Sci 2010; 1198:231-41. [PMID: 20536938 DOI: 10.1111/j.1749-6632.2010.05459.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
After peripheral nerve injuries to a motor nerve, the axons of motoneurons and proprioceptors are disconnected from the periphery and monosynaptic connections from group I afferents and motoneurons become diminished in the spinal cord. Following successful reinnervation in the periphery, motor strength, proprioceptive sensory encoding, and Ia afferent synaptic transmission on motoneurons partially recover. Muscle stretch reflexes, however, never recover and motor behaviors remain uncoordinated. In this review, we summarize recent findings that suggest that lingering motor dysfunction might be in part related to decreased connectivity of Ia afferents centrally. First, sensory afferent synapses retract from lamina IX, causing a permanent relocation of the inputs to more distal locations and significant disconnection from motoneurons. Second, peripheral reconnection between proprioceptive afferents and muscle spindles is imperfect. As a result, a proportion of sensory afferents that retain central connections with motoneurons might not reconnect appropriately in the periphery. A hypothetical model is proposed in which the combined effect of peripheral and central reconnection deficits might explain the failure of muscle stretch to initiate or modulate firing of many homonymous motoneurons.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Neurosciences, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA.
| | | | | | | | | |
Collapse
|
9
|
Mehanna A, Mishra B, Kurschat N, Schulze C, Bian S, Loers G, Irintchev A, Schachner M. Polysialic acid glycomimetics promote myelination and functional recovery after peripheral nerve injury in mice. Brain 2009; 132:1449-62. [DOI: 10.1093/brain/awp128] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
10
|
de la Cruz RR, Pastor AM, Delgado-garcía JM. The Neurotoxic Effects ofRicinus communisAgglutinin-II. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549509089967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Wiley RG, Kline RH, Vierck CJ. Anti-nociceptive effects of selectively destroying substance P receptor-expressing dorsal horn neurons using [Sar9,Met(O2)11]-substance P-saporin: behavioral and anatomical analyses. Neuroscience 2007; 146:1333-45. [PMID: 17418497 DOI: 10.1016/j.neuroscience.2007.01.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 01/29/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
Lumbar intrathecal injections of substance P-saporin (SP-sap) destroy dorsal horn neurons that express the neurokinin-1 receptor (NK-1R) resulting in decreased responses to a range of noxious stimuli and decreased hyperalgesia and allodynia. Forebrain injections of SP-sap produce considerable non-specific damage raising some concern about use of this toxin in vivo. The more stable and selective substance P congener, [Sar9,Met(O2)11]substance P coupled to saporin (SSP-sap) produces much more selective forebrain lesions at significantly lower doses. The present study sought to determine the anatomic and nocifensive behavioral effects of lumbar intrathecal injections of the more precisely targeted SSP-sap. On the basis of loss of lamina I NK-1R staining, lumbar intrathecal SSP-sap was seven times more potent than SP-sap and produced no loss of NK-1R expressing neurons in deeper laminae (III-VI or X). Transient decreases in hotplate responding occurred at 44 degrees C and 47 degrees C but not 52 degrees C during the first 3 weeks after SSP-sap injection with return to baseline by 4 weeks. Operant escape responses were reduced at 0.3 degrees C, 44 degrees C and 47 degrees C for at least 4 months. In the formalin test, SSP-sap also was about seven times more potent than SP-sap in reducing phase two behavior in both female Long Evans and male Sprague-Dawley rats. Both SSP-sap and SP-sap reduced formalin-induced FOS expression in deep and superficial laminae of the L4 dorsal horn in parallel with the reduction in phase 2 behavior. In summary, SSP-sap is highly effective in destroying lamina I NK-1R expressing neurons, without loss of deep NK-1R neurons. The behavioral effects of SSP-sap are similar to SP-sap suggesting that the antinociceptive effects of both toxins are indeed due to selective loss of NK-1R neurons in lamina I. SSP-sap is an attractive agent for possible treatment of chronic pain.
Collapse
MESH Headings
- Analgesics
- Animals
- Behavior, Animal/drug effects
- Conditioning, Operant/drug effects
- Data Interpretation, Statistical
- Escape Reaction/drug effects
- Female
- Formaldehyde
- Genes, fos/drug effects
- Hot Temperature
- Immunohistochemistry
- Injections, Spinal
- Male
- Pain Measurement/drug effects
- Posterior Horn Cells/drug effects
- Posterior Horn Cells/metabolism
- Posterior Horn Cells/ultrastructure
- Rats
- Rats, Long-Evans
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Receptors, Neurokinin-1/biosynthesis
- Receptors, Neurokinin-1/metabolism
- Recombinant Fusion Proteins/pharmacology
- Ribosome Inactivating Proteins, Type 1
- Saporins
Collapse
Affiliation(s)
- R G Wiley
- Laboratory of Experimental Neurology, VA TVHS, Nashville, TN 37212-2637, USA.
| | | | | |
Collapse
|
12
|
Stephens B, Guiloff RJ, Navarrete R, Newman P, Nikhar N, Lewis P. Widespread loss of neuronal populations in the spinal ventral horn in sporadic motor neuron disease. A morphometric study. J Neurol Sci 2006; 244:41-58. [PMID: 16487542 DOI: 10.1016/j.jns.2005.12.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
The cytopathology and loss of neurons was studied in 7670 neurons from the ventral horn of the third lumbar segment of the spinal cord of six sporadic motor neuron disease (MND) patients compared with 7568 neurons in seven age matched control subjects. A modified Tomlinson et al. [Tomlinson BE, Irving D, Rebeiz JJ. Total numbers of limb motor neurones in the human lumbosacral cord and an analysis of the accuracy of various sampling procedures. J Neurol Sci 1973;20:313-27] sampling procedure was used for neuronal counts. The ventral horn was divided in quadrants. Neuronal populations were also classified by the maximum cell diameter through the nucleolus. There was widespread loss of neurons in all quadrants of the ventral horn in MND. Size distribution histograms showed similar neuron loss across all populations of neurons. The dorsomedial quadrant contains almost exclusively interneurons and the ventrolateral quadrant mostly motor neurons. The cytopathology of neurons in the dorsomedial quadrant and of large motorneurons in the ventrolateral quadrant MND was similar. In the dorsomedial quadrant, neuron loss (56.7%) was similar to the loss of large motor neurons in the ventrolateral quadrant (64.4%). The loss of presumed motor neurons and interneurons increased with increased disease duration. There was no evidence that loss of presumed interneurons occurred prior, or subsequent, to loss of motor neurons. We conclude that, in sporadic MND, all neuronal populations in the ventral horn are affected and that interneurons are involved to a similar extent and in parallel with motor neurons, as reported in the G86R transgenic mouse model of familial MND. The increasing evidence of loss of neurons other than motor neurons in MND suggests the need for revising the concept of selective motor neuron vulnerability.
Collapse
Affiliation(s)
- Benjamin Stephens
- Neuromuscular Unit, West London Neurosciences Centre, Imperial College London, UK
| | | | | | | | | | | |
Collapse
|
13
|
Morcuende S, Benítez-Temiño B, Pecero ML, Pastor AM, de la Cruz RR. Abducens internuclear neurons depend on their target motoneurons for survival during early postnatal development. Exp Neurol 2005; 195:244-56. [PMID: 15935346 DOI: 10.1016/j.expneurol.2005.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 04/07/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
The highly specific projection of abducens internuclear neurons onto medial rectus motoneurons in the oculomotor nucleus is a good model to evaluate the dependence on target cells for survival during development and in the adult. Thus, the procedure we chose to selectively deprive abducens internuclear neurons of their natural target was the enucleation of postnatal day 1 rats to induce the death of medial rectus motoneurons. Two months later, we evaluated both the extent of reduction in target size, by immunocytochemistry against choline acetyltransferase (ChAT) and Nissl counting, and the percentage of abducens internuclear neurons surviving target loss, by calretinin immunostaining and horseradish peroxidase (HRP) retrograde tracing. Firstly, axotomized oculomotor motoneurons died in a high percentage ( approximately 80%) as visualized 2 months after lesion. In addition, we showed a transient (1 month) and reversible down-regulation of ChAT expression in extraocular motoneurons induced by injury. Secondly, 2 months after enucleation, 61.6% and 60.5% of the population of abducens internuclear neurons appeared stained by retrograde tracing and calretinin immunoreaction, respectively, indicating a significant extent of cell death after target loss (38.4% or 39.5%). By contrast, in the adult rat, neither extraocular motoneurons died in response to axotomy nor abducens internuclear neurons died due to the loss of their target motoneurons induced by the retrograde transport of toxic ricin injected in the medial rectus muscle. These results indicate that, during development, abducens internuclear neurons depend on their target motoneurons for survival, and that they lose this dependence with maturation.
Collapse
Affiliation(s)
- Sara Morcuende
- Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012-Sevilla, Spain
| | | | | | | | | |
Collapse
|
14
|
Benítez-Temiño B, de la Cruz RR, Tena JJ, Pastor AM. Cerebellar grafting in the oculomotor system as a model to study target influence on adult neurons. ACTA ACUST UNITED AC 2004; 49:317-29. [PMID: 16111559 DOI: 10.1016/j.brainresrev.2004.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 08/31/2004] [Accepted: 09/15/2004] [Indexed: 11/19/2022]
Abstract
In the last decades, there have been many efforts directed to gain a better understanding on adult neuron-target cell relationships. Embryonic grafts have been used for the study of neural circuit rewiring. Thus, using several donor neuronal tissues, such as cerebellum or striatum, developing grafted cells have been shown to have the capability of substituting neural cell populations and establishing reciprocal connections with the host. In addition, different lesion paradigms have also led to a better understanding of target dependence in neuronal cells. Thus, for example, axotomy induces profound morphofunctional changes in adult neurons, including the loss of synaptic inputs and discharge alterations. These alterations are probably due to trophic factor loss in response to target disconnection. In this review, we summarize the different strategies performed to disconnect neurons from their targets, and the effects of target substitution, performed by tissue grafting, upon neural properties. Using the oculomotor system-and more precisely the abducens internuclear neurons-as a model, we describe herein the effects of disconnecting a population of central neurons from its natural target (i.e., the medial rectus motoneurons at the mesencephalic oculomotor nucleus). We also analyze target-derived influences in the structure and physiology of these neurons by using cerebellar embryonic grafts as a new target for the axotomized abducens internuclear neurons.
Collapse
Affiliation(s)
- Beatriz Benítez-Temiño
- Dept. Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes, 6 41012 Sevilla, E-41012, Spain
| | | | | | | |
Collapse
|
15
|
Duchala CS, Shick HE, Garcia J, Deweese DM, Sun X, Stewart VJ, Macklin WB. The toppler mouse: a novel mutant exhibiting loss of Purkinje cells. J Comp Neurol 2004; 476:113-29. [PMID: 15248193 DOI: 10.1002/cne.20206] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe the genetic and neurological features of toppler, a spontaneous autosomal mutation that appeared in a colony of FVB/N mice and that manifests as severe ataxia appearing at around 12 days of age, worsening with age. The lifespan of affected mice is 8-12 months, with occasional mice living longer. Both homozygous males and females are fertile, and females are able to nurture litters. Histological examination of brain revealed no striking abnormalities other than the loss of cerebellar Purkinje cells. The toppler mutation was mapped to mouse chromosome 8, and to assess whether it was novel or a recurrence of a previously described chromosome 8 mouse mutant, toppler mice were crossed with the nervous and tottering mouse mutants. These studies demonstrate that toppler is a unique mouse mutation. Purkinje cell abnormalities in toppler mice were obvious around postnatal day (P) 14, i.e., toppler Purkinje cells already exhibited abnormal morphology. Staining for calbindin, a calcium binding protein enriched in Purkinje cells, showed altered dendritic morphology. Between P14 and P30, dramatic Purkinje cell loss occurred, although there were differences in the degree of Purkinje cell loss in each lobule. At P30, the surviving Purkinje cells expressed zebrin II. From P30 through 6 months, many of the remaining Purkinje cells gradually degenerated. Purkinje cell loss was analyzed by terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL), and Purkinje cells were TUNEL-positive most abundantly at P21. In addition, Bergmann glia were TUNEL positive at P21, and they expressed activated caspase-3 at earlier time points. Interestingly, despite the apparent death of some Bergmann glia, there was up-regulation of glial fibrillary acidic protein, expressed in astrocytes as well as Bergmann glia. Given the changes in both Purkinje cells and glia in toppler cerebellum, this may be a very useful model in which to investigate the developmental interaction of Purkinje cells and Bergmann glia.
Collapse
Affiliation(s)
- Cynthia S Duchala
- Department of Neurosciences, The Lerner Research Institute, NC30, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Benítez-Temiño B, Morcuende S, Mentis GZ, de la Cruz RR, Pastor AM. Expression of Trk receptors in the oculomotor system of the adult cat. J Comp Neurol 2004; 473:538-52. [PMID: 15116389 DOI: 10.1002/cne.20095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We examined the expression of the three Trk receptors for neurotrophins (TrkA, TrkB, and TrkC) in the extraocular motor nuclei of the adult cat by using antibodies directed against the full-Trk proteins in combination with horseradish peroxidase retrograde tracing. The three receptors were present in all neuronal populations investigated, including abducens motoneurons and internuclear neurons, medial rectus motoneurons of the oculomotor nucleus, and trochlear motoneurons. They were also present in the vestibular and prepositus hypoglossi nuclei. TrkA, TrkB, and TrkC immunopositive cells were found in similar percentages in the oculomotor and in the trochlear nuclei. In the abducens nucleus, however, a significantly higher percentage of cells expressed TrkB than the other two receptors, among both motoneurons (81.8%) and internuclear neurons (88.4%). The percentages obtained for the three Trk receptors in identified neuronal populations pointed to the colocalization of two or three receptors in a large number of cells. We used confocal microscopy to elucidate the subcellular location of Trk receptors. In this case, abducens motoneurons and internuclear neurons were identified with antibodies against choline acetyltransferase and calretinin, respectively. We found a different pattern of staining for each neurotrophin receptor, suggesting the possibility that each receptor and its cognate ligand may use a different route for cellular signaling. Therefore, the expression of Trk receptors in oculomotor, trochlear, and abducens motoneurons, as well as abducens internuclear neurons, suggests that their associated neurotrophins may exert an influence on the normal operation of the oculomotor circuitry. The presence of multiple Trk receptors on individual cells indicates that they likely act in concert with each other to regulate distinct functions.
Collapse
|
17
|
Abstract
Although only recently applied to the study of nociception, 'molecular neurosurgery', producing highly selective neural lesions using targeted cytotoxins, has proven a valuable tool for analysis of nociceptive systems and promises to yield much more information on the role of specific types of neurons in pain perception and possibly new pain therapies. Neuropeptide-toxin conjugates, particularly, substance P-saporin, have proven useful research tools and may find clinical applications. Targeting non-lethal moieties (enzymes, genes, viruses) also may prove useful for research and therapeutic purposes.
Collapse
Affiliation(s)
- Ronald G Wiley
- Department of Neurology, Vanderbilt University, Nashville, TN 37212, USA.
| | | |
Collapse
|
18
|
Benítez-Temiño B, de la Cruz RR, Pastor AM. Grafting of a new target prevents synapse loss in abducens internuclear neurons induced by axotomy. Neuroscience 2003; 118:611-26. [PMID: 12710971 DOI: 10.1016/s0306-4522(03)00003-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The loss of afferent synaptic boutons is a prominent alteration induced by axotomy on adult central neurons. In this work we attempted to prove whether synapse loss could be reverted by reconnection with a new target. We severed the medial longitudinal fascicle of adult cats and then transplanted embryonic cerebellar primordia at the lesion site immediately after lesion. As previously shown, the transected axons from abducens internuclear neurons penetrate and reinnervate the graft [J Comp Neurol 444 (2002) 324]. By immunocytochemistry and electron microscopy we studied the synaptology of abducens internuclear neurons under three conditions: control, axotomy and transplant (2 months of survival time). Semithin sections of the abducens nucleus were immunostained against calretinin, to identify abducens internuclear neurons, and either synaptophysin (SF), to label synaptic terminals, or glial fibrillary acidic protein (GFAP) to detect the astrocytic reaction. Optical and linear density of SF and GFAP immunostaining were measured. Data revealed a significant decrease in the density of SF-labeled terminals with a parallel increase in GFAP-immunoreactive elements after axotomy. On the contrary, in the transplant group, the density of SF-labeled terminals was found similar to control, and the astrocytic reaction induced by lesion was significantly reduced. At the ultrastructural level, synaptic coverage and linear density of boutons were measured around the somata of abducens internuclear neurons. Whereas a significant reduction in both parameters was found after axotomy, cells of the transplant group received a normal density of synaptic endings. The ratio between F- and S-type boutons was found similar in the three groups. Therefore, these findings indicate that the grafting of a new target can prevent the loss of afferent synaptic boutons produced by the axotomy.
Collapse
Affiliation(s)
- B Benítez-Temiño
- Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | | | | |
Collapse
|
19
|
Gonzalez-Forero D, de la Cruz RR, Delgado-Garcia JM, Alvarez FJ, Pastor AM. Functional alterations of cat abducens neurons after peripheral tetanus neurotoxin injection. J Neurophysiol 2003; 89:1878-90. [PMID: 12686570 DOI: 10.1152/jn.01006.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tetanus neurotoxin (TeNT) cleaves synaptobrevin, a protein involved in synaptic vesicle docking and fusion, thereby preventing neurotransmitter release and causing a functional deafferentation. We injected TeNT into the lateral rectus muscle of adult cats at 0.5 or 5 ng/kg (low and high dose, respectively). In the periphery, TeNT slightly slowed motor axon conduction velocity, and at high doses, partially blocked neuromuscular transmission. TeNT peripheral actions displayed time courses different to the more profound and longer-lasting central actions. Central effects were first observed 2 days postinjection and reversed after 1 mo. The low dose induce depression of inhibitory inputs, whereas the high dose produce depression of both inhibitory and excitatory inputs. Simultaneous recordings of eye movement and neuronal firing revealed that low-dose injections specifically reduced inhibition of firing during off-directed saccadic movements, while high-dose injections of TeNT affected both inhibitory and excitatory driven firing patterns. Motoneurons and abducens interneurons were both affected in a similar way. These alterations resulted in modifications in all discharge characteristic analyzed such as background firing, threshold for recruitment, and firing sensitivities to both eye position and velocity during spontaneous movements or vestibulo-ocular reflexes. Removal of inhibition after low-dose injections also altered firing patterns, and although firing activity increased, it did not result in muscle tetanic contractions. Removal of inhibition and excitation by high-dose injections resulted in a decrease in firing modulation with eye movements. Our findings suggest that the distinct behavior of oculomotor and spinal motor output following TeNT intoxication could be explained by their different interneuronal and proprioceptive control.
Collapse
|
20
|
de la Cruz RR, Benítez-Temiño B, Pastor AM. Intrinsic determinants of synaptic phenotype: an experimental study of abducens internuclear neurons connecting with anomalous targets. Neuroscience 2002; 112:759-71. [PMID: 12088736 DOI: 10.1016/s0306-4522(02)00133-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present experiments investigate the role of postsynaptic neurons in the morphological differentiation of presynaptic terminals that are formed de novo in the adult CNS. Abducens internuclear neurons in the adult cat were chosen as the experimental model. These neurons project onto the contralateral medial rectus motoneurons of the oculomotor nucleus. Abducens internuclear axon terminals were identified by their anterograde labeling with biocytin and analyzed at the electron microscopic level. To promote the formation of new synapses, two different experimental approaches were used. First, after the selective ablation of medial rectus motoneurons with ricin, abducens internuclear neurons reinnervated the neighboring oculomotor internuclear neurons. Second, after axotomy followed by embryonic cerebellar grafting, abducens internuclear axons invaded the implanted tissue and established synaptic connections in both the molecular and granule cell layer. Boutons contacting the oculomotor internuclear neurons developed ultrastructural characteristics that resembled the control synapses on medial rectus motoneurons. In the grafted cerebellar tissue, abducens internuclear axons and terminals did not resemble climbing or mossy fibers but showed similarities with control boutons. However, labeled boutons analyzed in the granule cell layer established a higher number of synaptic contacts than controls. This could reflect a trend towards the mossy fiber phenotype, although labeled boutons significantly differed in every measured parameter with the mossy fiber rosettes found in the graft. We conclude that at least for the abducens internuclear neurons, the ultrastructural differentiation of axon terminals reinnervating novel targets in the adult brain seems to be mainly under intrinsic control, with little influence by postsynaptic cells.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia y Comportamiento, Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Spain.
| | | | | |
Collapse
|
21
|
Benítez-Temiño B, De La Cruz RR, Pastor AM. Firing properties of axotomized central nervous system neurons recover after graft reinnervation. J Comp Neurol 2002; 444:324-44. [PMID: 11891646 DOI: 10.1002/cne.10147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Axotomy produces changes in the electrical properties of neurons and in their synaptic inputs, leading to alterations in firing pattern. We have considered the possibility that these changes occur as a result of the target deprivation induced by the lesion. Thus, we have provided a novel target to axotomized central neurons by grafting embryonic tissue at the lesion site to study the target dependence of discharge characteristics. The extracellular single-unit electrical activity of abducens internuclear neurons was recorded in the alert behaving cat in control, after axotomy, and after axotomy plus the implantation of cerebellar primordium. As recently characterized (de la Cruz et al. [2000] J. Comp. Neurol. 427:391-404), firing alterations induced by axotomy included an overall decrease in firing rate and a loss of eye-related signals, i.e., eye position and velocity neuronal sensitivities, that do not resume to normality with time. The grafting of a novel target to the injured abducens internuclear neurons restored the normal firing and sensitivities as recorded in the majority of units. To study the reinnervation of the implant, we performed anterograde labeling with biocytin combined with electron microscopy visualization. Axons of abducens internuclear neurons grew into the transplant sprouting into granule cell and molecular layers, as characterized by the immunostaining for gamma-aminobutyric acid and calbindin D-28k. Ultrastructural examination of labeled axons and boutons revealed the establishment of synaptic contacts, mainly axodendritic, with different cell types of the grafted cerebellar cortex. Therefore, these data indicate that axotomized central neurons resume to normal firing after the reinnervation of a novel target.
Collapse
Affiliation(s)
- Beatriz Benítez-Temiño
- Departamento de Fisiología y Biología Animal, Universidad de Sevilla, 41012-Seville, Spain
| | | | | |
Collapse
|
22
|
|
23
|
Novikov LN, Novikova LN, Holmberg P, Kellerth J. Exogenous brain-derived neurotrophic factor regulates the synaptic composition of axonally lesioned and normal adult rat motoneurons. Neuroscience 2001; 100:171-81. [PMID: 10996467 DOI: 10.1016/s0306-4522(00)00256-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brain-derived neurotrophic factor has previously been shown to promote survival and axonal regeneration in injured spinal motoneurons and, also, to modulate synaptic transmission and regulate the density of synaptic innervation in a variety of neurons. The present light and electron microscopic study demonstrates synaptotrophic effects of exogenously applied brain-derived neurotrophic factor on the synaptic composition of both normal and axonally lesioned adult rat spinal motoneurons. After L5-L6 ventral root avulsion, a massive loss of all types of boutons occurred on the somata of the lesioned motoneurons which persisted for at least 12 weeks postoperatively. We found that (i) intrathecal infusion of brain-derived neurotrophic factor during the first postoperative week did not prevent the synaptic detachment and activation of glial cells; (ii) prolonged treatment for four weeks restored synaptic covering and significantly reduced microglial reaction; (iii) the synaptotrophic effect remained significant for at least eight weeks after cessation of the treatment; (iv) brain-derived neurotrophic factor mainly supported F-type boutons with presumably inhibitory function, while it had little effect on S-type boutons associated with excitatory action; and (v) in normal unlesioned motoneurons, four weeks of treatment with brain-derived neurotrophic factor induced sprouting of F-type boutons, a loss of S-type boutons and motoneuron atrophy. The present data show that exogenous neurotrophins not only help to restore synaptic circuitry in axonally injured motoneurons, but also strongly influence the synaptic composition in normal motoneurons.
Collapse
Affiliation(s)
- L N Novikov
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, S-901 87, Umeå, Sweden
| | | | | | | |
Collapse
|
24
|
Pastor AM, Delgado-García JM, Martínez-Guijarro FJ, López-García C, de La Cruz RR. Response of abducens internuclear neurons to axotomy in the adult cat. J Comp Neurol 2000; 427:370-90. [PMID: 11054700 DOI: 10.1002/1096-9861(20001120)427:3<370::aid-cne5>3.0.co;2-m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly specific projection of abducens internuclear neurons on the medial rectus motoneurons of the oculomotor nucleus constitutes an optimal model for investigating the effects of axotomy in the central nervous system. We have analyzed the morphological changes induced by this lesion on both the cell bodies and the transected axons of abducens internuclear neurons in the adult cat. Axotomy was performed by the transection of the medial longitudinal fascicle. Cell counts of Nissl-stained material and calretinin-immunostained abducens internuclear neurons revealed no cell death by 3 months postaxotomy. Ultrastructural examination of these cells at 6, 14, 24, and 90 days postaxotomy showed normal cytological features. However, the surface membrane of axotomized neurons appeared contacted by very few synaptic boutons compared to controls. This change was quantified by measuring the percentage of synaptic coverage of the cell bodies and the linear density of boutons. Both parameters decreased significantly after axotomy, with the lowest values at 90 days postlesion ( approximately 70% reduction). We also explored axonal regrowth and the possibility of reinnervation of a new target by means of anterograde labeling with biocytin. At all time intervals analyzed, labeled axons were observed to be interrupted at the caudal limit of the lesion; in no case did they cross the scar tissue to reach the distal part of the tract. Nonetheless, a conspicuous axonal sprouting was present at the caudal aspect of the lesion site. Structures suggestive of axonal growth were found, such as large terminal clubs, from which short filopodium-like branches frequently emerged. Similar findings were obtained after parvalbumin and calretinin immunostaining. At the electron microscopy level, biocytin-labeled boutons originating from the sprouts appeared surrounded by either extracellular space, which was extremely dilated at the lesion site, or by glial processes. The great majority of labeled boutons examined were, thus, devoid of neuronal contact, indicating absence of reinnervation of a new target. Altogether, these data indicate that abducens internuclear neurons survive axotomy in the adult cat and show some form of axonal regrowth, even in the absence of target connection.
Collapse
Affiliation(s)
- A M Pastor
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, 41012-Sevilla, Spain
| | | | | | | | | |
Collapse
|
25
|
de La Cruz RR, Delgado-García JM, Pastor AM. Discharge characteristics of axotomized abducens internuclear neurons in the adult cat. J Comp Neurol 2000; 427:391-404. [PMID: 11054701 DOI: 10.1002/1096-9861(20001120)427:3<391::aid-cne6>3.0.co;2-e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of the present work was to characterize the axotomy-induced changes in the discharge properties of central nervous system neurons recorded in the alert behaving animal. The abducens internuclear neurons of the adult cat were the chosen model. The axons of these neurons course through the contralateral medial longitudinal fascicle and contact the medial rectus motoneurons of the oculomotor nucleus. Axotomy was carried out by the unilateral transection of this fascicle (right side) and produced immediate oculomotor deficits, mainly the incapacity of the right eye to adduct across the midline. Extracellular single-unit recording of abducens neurons was carried out simultaneously with eye movements. The main alteration observed in the firing of these axotomized neurons was the overall decrease in firing rate. During eye fixations, the tonic signal was reduced, and, on occasion, a progressive decay in firing rate was observed. On-directed saccades were not accompanied by the high-frequency spike burst typical of controls; instead, there was a moderate increase in firing. Similarly, during the vestibular nystagmus, neurons hardly modulated during both the slow and the fast phases. Linear regression analysis between firing rate and eye movement parameters showed a significant reduction in eye position and velocity sensitivities with respect to controls, during both spontaneous and vestibularly induced eye movements. These firing alterations were observed during the 3 month period of study after lesion, with no sign of recovery. Conversely, abducens motoneurons showed no significant alteration in their firing pattern. Therefore, axotomy produced long-lasting changes in the discharge characteristics of abducens internuclear neurons that presumably reflected the loss of afferent oculomotor signals. These alterations might be due to the absence of trophic influences derived from the target.
Collapse
Affiliation(s)
- R R de La Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, 41012-Sevilla, Spain.
| | | | | |
Collapse
|
26
|
Chang SL, LoTurco JJ, Nisenbaum LK. In vitro biocytin injection into perinatal mouse brain: a method for tract tracing in developing tissue. J Neurosci Methods 2000; 97:1-6. [PMID: 10771069 DOI: 10.1016/s0165-0270(99)00190-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Injection of biocytin provides an effective method for labeling axonal projections. Several difficulties arise when this technique is employed in fetal or early postnatal animals in vivo, including limited access to injection sites and extended post-injection survival periods. To circumvent these problems, we adapted the technique of extracellular biocytin injection for use in explanted brain hemispheres of developing mice. Briefly, entire brain hemispheres from perinatal mice (E16-P9) were removed and placed in oxygenated aCSF in a brain slice recording chamber. Following visually guided injection of biocytin (2%) into the prelimbic cortex, the brains were then incubated in oxygenated artificial cerebrospinal fluid (aCSF) for varying periods of time and then immersion-fixed in 4% paraformaldehyde and 0.5% glutaraldehyde. The next day, the brains were sectioned and processed for biocytin histochemistry using the avidin-biotin-complex method. We examined the method of injection, electrode type, time of injection, and post-injection incubation period. We found that in E16-P9 animals iontophoresis of biocytin using 8- to 12-megaohm patch clamp electrodes for a duration of 10 min provides optimal axonal labeling. Post-injection incubation times of four or more hours are sufficient for labeling fine caliber collaterals as well as axon bundles that reach distances over 3 mm. In vitro injection of biocytin into explanted brain hemispheres provides a quick and easy method for tract tracing in developing brains.
Collapse
Affiliation(s)
- S L Chang
- Department of Physiology and Neurobiology, University of Connecticut, 3107 Horsebarn Hill Rd., U-156, Storrs, CT 06269, USA
| | | | | |
Collapse
|
27
|
Monnet E, Orton EC, Child G, Getzy D, Jacobs G, Metelman L. Neuromuscular function of the latissimus dorsi muscle in goats after dynamic cardiomyoplasty. Pacing Clin Electrophysiol 1999; 22:1625-33. [PMID: 10598966 DOI: 10.1111/j.1540-8159.1999.tb00382.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Skeletal muscle deterioration is emerging as a limitation to long-term cardiac assist by dynamic cardiomyoplasty. Chronic electrical stimulation of in situ skeletal muscle showed that ischemia, decreased muscle preload, muscle overuse, and chronic electrical stimulation are factors for muscle deterioration. Transposition around the heart has been associated with signs of muscle denervation after chronic electrical stimulation. To evaluate latissimus dorsi muscle neuromuscular function after longterm dynamic cardiomyoplasty, we performed neuromuscular functional analysis and histology on the latissimus dorsi muscle and thoracodorsal nerve of six normal goats and six goats after 6 months of dynamic cardiomyoplasty. Electromyographic analysis showed positive sharp waves and fibrillation potentials in the latissimus dorsi of three goats from the dynamic cardiomyoplasty group. Conduction velocity of the thoracodorsal nerve of goats from the dynamic cardiomyoplasty group (58.32+/-9.80 m/s) was reduced compared to the goats from the control group (71.48+/-5.71 m/s, P = 0.02). Histologic changes in skeletal muscle were compatible with denervation. Loss of myelin sheaths, collapse of endoneurial connective tissue, and solitary foci of axonophagia and myelinophagia further documented severe injury to the thoracodorsal nerve in goats from the dynamic cardiomyoplasty group. The latissimus dorsi muscle wrap was denervated after long-term dynamic cardiomyoplasty. Traction on the neurovascular pedicle at each contraction of the transposed muscle may induce afferent axonal injury of the thoracodorsal nerve resulting in diminished muscular function.
Collapse
Affiliation(s)
- E Monnet
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Delgado-García JM. Output-to-input approach to neural plasticity in vestibular pathways. Otolaryngol Head Neck Surg 1998; 119:221-30. [PMID: 9743078 DOI: 10.1016/s0194-5998(98)70057-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Some thoughts on current interpretations of available data regarding vestibular compensation at functional, network, and neural levels are presented. Basic concepts related to neural plasticity (or elasticity) underlying motor learning and regeneration also are discussed briefly. Modifiability in vestibular pathways, at both the functional and structural levels, after peripheral and central axotomy, and subsequent to transient or permanent chemical target removal, is presented as an experimental ground to explain similarities and differences between regenerative, compensatory, and adaptive mechanisms in the mammal central nervous system.
Collapse
Affiliation(s)
- J M Delgado-García
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
29
|
de la Cruz RR, Pastor AM, Martińez-Guijarro FJ, López-García C, Delgado-García JM. Localization of parvalbumin, calretinin, and calbindin D-28k in identified extraocular motoneurons and internuclear neurons of the cat. J Comp Neurol 1998. [PMID: 9455899 DOI: 10.1002/(sici)1096-9861(19980119)390:3%3c377::aid-cne6%3e3.0.co;2-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Calcium-binding proteins have been shown to be excellent markers of specific neuronal populations. We aimed to characterize the expression of calcium-binding proteins in identified populations of the cat extraocular motor nuclei by means of immunohistochemistry against parvalbumin, calretinin, and calbindin D-28k. Abducens, medial rectus, and trochlear motoneurons were retrogradely labeled with horseradish peroxidase from their corresponding muscles. Oculomotor and abducens internuclear neurons were retrogradely labeled after horseradish peroxidase injection into either the abducens or the oculomotor nucleus, respectively. Parvalbumin staining produced the highest density of immunoreactive terminals in all extraocular motor nuclei and was distributed uniformly. Around 15-20% of the motoneurons were moderately stained with antibody against parvalbumin, but their axons were heavily stained, indicating an intracellular segregation of parvalbumin. Colchicine administration increased the number of parvalbumin-immunoreactive motoneurons to approximately 85%. Except for a few calbindin-immunoreactive trochlear motoneurons (1%), parvalbumin was the only marker of extraocular motoneurons. Oculomotor internuclear neurons identified from the abducens nucleus constituted a nonuniform population, because low percentages of the three types of immunostaining were observed, calbindin being the most abundant (28.5%). Other interneurons located within the boundaries of the oculomotor nucleus were mainly calbindin-immunoreactive. The medial longitudinal fascicle contained numerous parvalbumin- and calretinin-immunoreactive but few calbindin-immunoreactive axons. The majority of abducens internuclear neurons projecting to the oculomotor nucleus (80.7%) contained calretinin. Moreover, the distribution of calretinin-immunoreactive terminals in the oculomotor nucleus overlapped that of the medial rectus motoneurons and matched the anterogradely labeled terminal field of the abducens internuclear neurons. Parvalbumin immunostained 42% of the abducens internuclear neurons. Colocalization of parvalbumin and calretinin was demonstrated in adjacent semithin sections, although single-labeled neurons were also observed. Therefore, calretinin is proven to be a good marker of abducens internuclear neurons. From all of these data, it is concluded that parvalbumin, calretinin, and calbindin D-28k selectively delineate certain neuronal populations in the oculomotor system and constitute valuable tools for further analysis of oculomotor function under normal and experimental conditions.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | |
Collapse
|
30
|
de la Cruz RR, Pastor AM, Martińez-Guijarro FJ, López-García C, Delgado-García JM. Localization of parvalbumin, calretinin, and calbindin D-28k in identified extraocular motoneurons and internuclear neurons of the cat. J Comp Neurol 1998; 390:377-91. [PMID: 9455899 DOI: 10.1002/(sici)1096-9861(19980119)390:3<377::aid-cne6>3.0.co;2-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium-binding proteins have been shown to be excellent markers of specific neuronal populations. We aimed to characterize the expression of calcium-binding proteins in identified populations of the cat extraocular motor nuclei by means of immunohistochemistry against parvalbumin, calretinin, and calbindin D-28k. Abducens, medial rectus, and trochlear motoneurons were retrogradely labeled with horseradish peroxidase from their corresponding muscles. Oculomotor and abducens internuclear neurons were retrogradely labeled after horseradish peroxidase injection into either the abducens or the oculomotor nucleus, respectively. Parvalbumin staining produced the highest density of immunoreactive terminals in all extraocular motor nuclei and was distributed uniformly. Around 15-20% of the motoneurons were moderately stained with antibody against parvalbumin, but their axons were heavily stained, indicating an intracellular segregation of parvalbumin. Colchicine administration increased the number of parvalbumin-immunoreactive motoneurons to approximately 85%. Except for a few calbindin-immunoreactive trochlear motoneurons (1%), parvalbumin was the only marker of extraocular motoneurons. Oculomotor internuclear neurons identified from the abducens nucleus constituted a nonuniform population, because low percentages of the three types of immunostaining were observed, calbindin being the most abundant (28.5%). Other interneurons located within the boundaries of the oculomotor nucleus were mainly calbindin-immunoreactive. The medial longitudinal fascicle contained numerous parvalbumin- and calretinin-immunoreactive but few calbindin-immunoreactive axons. The majority of abducens internuclear neurons projecting to the oculomotor nucleus (80.7%) contained calretinin. Moreover, the distribution of calretinin-immunoreactive terminals in the oculomotor nucleus overlapped that of the medial rectus motoneurons and matched the anterogradely labeled terminal field of the abducens internuclear neurons. Parvalbumin immunostained 42% of the abducens internuclear neurons. Colocalization of parvalbumin and calretinin was demonstrated in adjacent semithin sections, although single-labeled neurons were also observed. Therefore, calretinin is proven to be a good marker of abducens internuclear neurons. From all of these data, it is concluded that parvalbumin, calretinin, and calbindin D-28k selectively delineate certain neuronal populations in the oculomotor system and constitute valuable tools for further analysis of oculomotor function under normal and experimental conditions.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | |
Collapse
|
31
|
Pastor AM, Moreno-López B, De La Cruz RR, Delgado-García JM. Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: ultrastructural and synaptic alterations. Neuroscience 1997; 81:457-78. [PMID: 9300434 DOI: 10.1016/s0306-4522(97)00200-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synaptic alterations induced in abducens motoneurons by the injection of 3 ng/kg of botulinum neurotoxin type A into the lateral rectus muscle were studied using ultrastructural and electrophysiological techniques. Motoneurons identified by the retrograde transport of horseradish peroxidase showed a progressive synaptic stripping already noticeable by four days post-injection which increased over the study period. By 35 days post-injection, the normal coverage of motoneurons by synaptic boutons (66.4 +/- 4.0%) significantly decreased to 27.2 +/- 4.0%. Synaptic boutons detached by a widening of the subsynaptic space but remained apposed by synaptic contacts and desmosomes to the motoneuron. Detachment did not affect equally flat and round vesicle-containing boutons. The control motoneuron had almost equal numbers of both types of boutons, but after 35 days post-injection the ratio of round to flat vesicle-containing boutons was 1.20 +/- 0.01. Synaptic boutons impinging on motoneurons showed signs of alterations in membrane turnover, as indicated by an increase in the number of synaptic vesicles and a decrease in the number of coated vesicles and synaptic vesicles near the active zone. Abducens motoneurons had a transient increase in soma size by 15 days that returned to normal at 35 days, but no signs of chromatolysis or organelle degeneration were seen. Accompanying the swelling of motoneurons, a 15-fold increase in the number of spines, very infrequent in controls, was observed. Spines located in the soma and proximal dendritic trunk received synaptic contacts from both flat and round vesicle-containing boutons that could be either partly detached or completely attached to the motoneuron. An increased turnover of the plasmatic membrane of the motoneuron was observed, as indicated by a four-fold increase in the number of somatic coated vesicles. Animals were implanted with bipolar electrodes in the ampulla of both horizontal semicircular canals for evoking contralateral excitatory and ipsilateral inhibitory postsynaptic potentials. Motoneurons were antidromically identified from the lateral rectus muscle. Synaptic potentials of vestibular origin were recorded in abducens motoneurons. In the period between two and six days post-injection, a complete abolition of inhibitory synaptic potentials was observed. By contrast, excitatory synaptic potentials remained, but were reduced by 82%. The imbalance between excitatory and inhibitory inputs to motoneurons induced a progressive increase of firing frequency within a few stimuli applied to the contralateral canal. Between 7 and 15 days post-injection, both excitatory and inhibitory postsynaptic potentials were virtually abolished and remained so up to the longest time checked (105 days). Some motoneurons recorded beyond 60 days post-injection showed signs of recovery of excitatory postsynaptic potentials. During the whole time-span studied, presynaptic wavelets were present, indicating no affecting of the conduction of afferent volleys to the abducens nucleus. Taken together, these data indicate that botulinum neurotoxin at high doses causes profound synaptic alterations in motoneurons responsible for the effects seen in the behavior of motoneurons recorded in alert animals.
Collapse
Affiliation(s)
- A M Pastor
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
32
|
de la Cruz RR, Pastor AM, Delgado-García JM. Influence of the postsynaptic target on the functional properties of neurons in the adult mammalian central nervous system. Rev Neurosci 1996; 7:115-49. [PMID: 8819206 DOI: 10.1515/revneuro.1996.7.2.115] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this review we have attempted to summarize present knowledge concerning the regulatory role of target cells on the expression and maintenance of the neuronal phenotype during adulthood. It is well known that in early developmental stages the survival of neurons is maintained by specific neurotrophic factors derived from their target tissues. Neuronal survival is not the only phenotype that is regulated by target-derived neurotrophic factors since the expression of electrophysiological and cytochemical properties of neurons is also affected. However, a good deal of evidence indicates that the survival of neurons becomes less dependent on their targets in the adult stage. The question is to what extent are target cells still required for the maintenance of the pre-existing or programmed state of the neuron; i.e., what is the functional significance of target-derived factors during maturity? Studies addressing this question comprise a variety of neuronal systems and technical approaches and they indicate that trophic interactions, although less apparent, persist in maturity and are most easily revealed by experimental manipulation. In this respect, research has been directed to analyzing the consequences of disconnecting a group of neurons from their target-by either axotomy or selective target removal using different neurotoxins-and followed (or not) by the implant of a novel target, usually a piece of embryonic tissue. Numerous alterations have been described as taking place in neurons following axotomy, affecting their morphology, physiology and metabolism. All these neuronal properties return to normal values when regeneration is successful and reinnervation of the target is achieved. Nevertheless, most of the changes persist if reinnervation is prevented by any procedure. Although axotomy may represent, besides target disconnection, a cellular lesion, alternative approaches (e.g., blockade of either the axoplasmic transport or the conduction of action potentials) have been used yielding similar results. Moreover, in the adult mammalian central nervous system, neurotoxins have been used to eliminate a particular target selectively and to study the consequences on the intact but target-deprived presynaptic neurons. Target depletion performed by excitotoxic lesions is not followed by retrograde cell death, but targetless neurons exhibit several modifications such as reduction in soma size and in the staining intensity for neurotransmitter-synthesizing enzymes. Recently, the oculomotor system has been used as an experimental model for evaluating the functional effects of target removal on the premotor abducens internuclear neurons whose motoneuronal target is destroyed following the injection of toxic ricin into the extraocular medial rectus muscle. The functional characteristics of these abducens neurons recorded under alert conditions simultaneously with eye movements show noticeable changes after target loss, such as a general reduction in firing frequency and a loss of the discharge signals related to eye position and velocity. Nevertheless, the firing pattern of these targetless abducens internuclear neurons recovers in parallel with the establishment of synaptic contacts on a presumptive new target: the small oculomotor internuclear neurons located in proximity to the disappeared target motoneurons. The possibility that a new target may restore neuronal properties towards a normal state has been observed in other systems after axotomy and is also evident from experiments of transplantation of immature neurons into the lesioned central nervous system of adult mammals. It can be concluded that although target-derived factors may not control neuronal survival in the adult nervous system, they are required for the maintenance of the functional state of neurons, regulating numerous aspects of neuronal structure, chemistry and electro-physiology.(ABSTRUCT TRUNCATED)
Collapse
Affiliation(s)
- R R de la Cruz
- Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
33
|
Angelov DN, Gunkel A, Stennert E, Neiss WF. Phagocytic microglia during delayed neuronal loss in the facial nucleus of the rat: time course of the neuronofugal migration of brain macrophages. Glia 1995; 13:113-29. [PMID: 7649615 DOI: 10.1002/glia.440130205] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The injection of Fluoro-Gold (FG) into the whisker pad of rats yields a stable fluorescent labeling of the motoneurons in the lateral facial subnucleus. Following resection of 8-10 mm of the facial nerve, the microglia phagocytose the FG-preloaded neurons and assume the label. Employing this vital labeling of microglia in situ we studied the fate of same after completion of phagocytic activity. Starting at 56 days post resection (DPR) the FG-labeled microglia spread out from the lateral facial subdivision and invaded the entire facial nucleus. The quantitative analysis of this redistribution of the fluorescent marker revealed a prolonged increase in the number of labeled microglia strictly proportional to the delayed loss of neurons. The differentiation between microglia and shrunken neurons was performed with the new method of immunoquenching: the staining of vibratome sections with anti-rat neuron-specific enolase (NSE) combined with an ABC-HRP kit and DAB as detector totally extinguished (quenched) all fluorescence from the pre-labeled facial motoneurons. The fluorescent microglia were additionally stained with GSA I-B4 and OX-42, which should completely quench all fluorescence in the section. However, a few small round cells, always closely opposed to neuronal perikarya, still fluoresced. These NSE-negative, GSA I-B4 and OX-42 negative, but fluorescent cells may represent a new, immunologically uncharacterized microglial cell type, that participates in neuronophagia.
Collapse
Affiliation(s)
- D N Angelov
- Institut I für Anatomie, Universität zu Köln, Germany
| | | | | | | |
Collapse
|
34
|
de la Cruz RR, Pastor AM, Delgado-García JM. Effects of target depletion on adult mammalian central neurons: functional correlates. Neuroscience 1994; 58:81-97. [PMID: 7512704 DOI: 10.1016/0306-4522(94)90157-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The physiological signals and patterns of synaptic connectivity that CNS neurons display after the loss of their target cells were evaluated in adult cats for one year. Abducens internuclear neurons were chosen as the experimental model because of their highly specific projection onto the medial rectus motoneurons of the oculomotor nucleus. Selective death of medial rectus motoneurons was induced by the injection into the medial rectus muscle of ricin, a potent cytotoxic lectin that leaves the presynaptic axons intact. The electrical activity of antidromically identified abducens internuclear neurons was recorded in chronic alert animals, during both spontaneous and vestibularly induced eye movements, before and after target removal. During the three weeks that followed ricin injection, abducens internuclear neurons exhibited several firing-related abnormal properties. There was an overall reduction in firing rate with a corresponding increase in the eye position threshold for recruitment. In addition, neuronal sensitivities to eye position and velocity were significantly decreased with respect to control data. Bursting activity was also altered since low-frequency delayed burst accompanied the saccades in the on-direction and, occasionally, internuclear neurons exhibited low-frequency discharges associated with off-directed saccades. Intracellular recordings carried out seven and 15 days after ricin injection demonstrated no significant changes in their electrical properties, although a marked depression of synaptic transmission was evident. The amplitude of both excitatory and inhibitory postsynaptic potentials of vestibular origin was reduced by 60-85% with respect to controls. However, postsynaptic potentials recorded one month after ricin injection showed normal amplitude values which persisted unaltered one year after target loss. Recovery of synaptic transmission occurred at the same time as the re-establishment of normal eye-related signals in the discharge pattern of abducens internuclear neurons recorded in alert cats from days 25-30 post lesion. The functional restoration of firing properties was maintained in the long term (one year). Conversely, abducens motoneurons showed normal firing and synaptic patterns at all time intervals analysed. These results demonstrate that, after an initial period of altered physiological properties, abducens internuclear neurons survive the loss of their target motoneurons and regain a normal discharge pattern and afferent synaptic connections.
Collapse
Affiliation(s)
- R R de la Cruz
- Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|