1
|
Benzoni P, Bertoli G, Giannetti F, Piantoni C, Milanesi R, Pecchiari M, Barbuti A, Baruscotti M, Bucchi A. The funny current: Even funnier than 40 years ago. Uncanonical expression and roles of HCN/f channels all over the body. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:189-204. [PMID: 34400215 DOI: 10.1016/j.pbiomolbio.2021.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Discovered some 40 years ago, the If current has since been known as the "pacemaker" current due to its role in the initiation and modulation of the heartbeat and of neuronal excitability. But this is not all, the funny current keeps entertaining the researchers; indeed, several data discovering novel and uncanonical roles of f/HCN channel are quickly accumulating. In the present review, we provide an overview of the expression and cellular functions of HCN/f channels in a variety of systems/organs, and particularly in sour taste transduction, hormones secretion, activation of astrocytes and microglia, inhibition of osteoclastogenesis, renal ammonium excretion, and peristalsis in the gastrointestinal and urine systems. We also analyzed the role of HCN channels in sustaining cellular respiration in mitochondria and their participation to mitophagy under specific conditions. The relevance of HCN currents in undifferentiated cells, and specifically in the control of stem cell cycle and in bioelectrical signals driving left/right asymmetry during zygote development, is also considered. Finally, we present novel data concerning the expression of HCN mRNA in human leukocytes. We can thus conclude that the emerging evidence presented in this review clearly points to an increasing interest and importance of the "funny" current that goes beyond its role in cardiac sinoatrial and neuronal excitability regulation.
Collapse
Affiliation(s)
- Patrizia Benzoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Giorgia Bertoli
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Federica Giannetti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Chiara Piantoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy; Present Address: Institute of Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Raffaella Milanesi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy; Present Address: Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via Dell'Università 6, 26900, Lodi, Italy
| | - Matteo Pecchiari
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via L. Mangiagalli 32, 20133, Milan, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
2
|
Wang L, Challis C, Li S, Fowlkes CC, Kumar SR, Yuan PQ, Taché YF. Multicolor sparse viral labeling and 3D digital tracing of enteric plexus in mouse proximal colon using a novel adeno-associated virus capsid. Neurogastroenterol Motil 2021; 33:e14014. [PMID: 33094876 PMCID: PMC8568587 DOI: 10.1111/nmo.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/15/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intravenous administration of adeno-associated virus (AAV) can be used as a noninvasive approach to trace neuronal morphology and links. AAV-PHP.S is a variant of AAV9 that effectively transduces the peripheral nervous system. The objective was to label randomly and sparsely enteric plexus in the mouse colon using AAV-PHP.S with a tunable two-component multicolor vector system and digitally trace individual neurons and nerve fibers within microcircuits in three dimensions (3D). METHODS A vector system including a tetracycline inducer with a tet-responsive element driving three separate fluorophores was packaged in the AAV-PHP.S capsid. The vectors were injected retro-orbitally in mice, and the colon was harvested 3 weeks after. Confocal microscopic images of enteric plexus were digitally segmented and traced in 3D using Neurolucida 360, neuTube, or Imaris software. KEY RESULTS The transduction of multicolor AAV vectors induced random sparse spectral labeling of soma and neurites primarily in the myenteric plexus of the proximal colon, while neurons in the submucosal plexus were occasionally transduced. Digital tracing in 3D showed various types of wiring, including multiple conjunctions of one neuron with other neurons, neurites en route, and endings; clusters of neurons in close apposition between each other; axon-axon parallel conjunctions; and intraganglionic nerve endings consisting of multiple nerve endings and passing fibers. Most of digitally traced neuronal somas were of small or medium in size. CONCLUSIONS & INFERENCES The multicolor AAV-PHP.S-packaged vectors enabled random sparse spectral labeling and revealed complexities of enteric microcircuit in the mouse proximal colon. The techniques can facilitate digital modeling of enteric micro-circuitry.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Medicine, Taman Manoukisan Digestive Diseases Division, UCLA, Los Angeles, CA, USA,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Collin Challis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Songlin Li
- Department of Medicine, Taman Manoukisan Digestive Diseases Division, UCLA, Los Angeles, CA, USA
| | | | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Pu-Qing Yuan
- Department of Medicine, Taman Manoukisan Digestive Diseases Division, UCLA, Los Angeles, CA, USA
| | - Yvette F. Taché
- Department of Medicine, Taman Manoukisan Digestive Diseases Division, UCLA, Los Angeles, CA, USA,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
3
|
Humenick A, Chen BN, Wattchow DA, Zagorodnyuk VP, Dinning PG, Spencer NJ, Costa M, Brookes SJH. Characterization of putative interneurons in the myenteric plexus of human colon. Neurogastroenterol Motil 2021; 33:e13964. [PMID: 32839997 PMCID: PMC7772282 DOI: 10.1111/nmo.13964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The enteric nervous system contains multiple classes of neurons, distinguishable by morphology, immunohistochemical markers, and projections; however, specific combinations differ between species. Here, types of enteric neurons in human colon were characterized immunohistochemically, using retrograde tracing combined with multiple labeling immunohistochemistry, focussing on non-motor neurons. METHODS The fluorescent carbocyanine tracer, DiI, was applied to the myenteric plexus in ex vivo preparations, filling neurons projecting within the plexus. Limits of projection lengths of motor neurons were established, allowing them to be excluded from the analysis. Long ascending and descending interneurons were then distinguished by labeling for discriminating immunohistochemical markers: calbindin, calretinin, enkephalin, 5-hydroxytryptamine, nitric oxide synthase, and substance P. These results were combined with a previous published study in which nitric oxide synthase and choline acetyltransferase immunoreactivities were established. KEY RESULTS Long ascending neurons (with projections longer than 8 mm, which excludes more than 95% motor neurons) formed four types, in descending order of abundance, defined by immunoreactivity for: (a) ChAT+/ENK+, (b) ChAT+/ENK+/SP+, (c) ChAT+/Calb+, and (d) ChAT+/ENK+/Calb+. Long descending neurons, up to 70 mm long also formed at least four types, distinguished by immunoreactivity for (a) NOS + cells (without ChAT), (b) ChAT+/NOS+, (c) ChAT+/Calret+, and (d) ChAT+/5HT + cells (with or without NOS). CONCLUSIONS AND INFERENCES Long interneurons, which do not innervate muscularis externa, are likely to coordinate neural activity over distances of many centimeters along the colon. Characterizing their neurochemical coding provides a basis for understanding their roles, investigating their connectivity, and building a comprehensive account of human colonic enteric neurons.
Collapse
Affiliation(s)
- Adam Humenick
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - Bao Nan Chen
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Human, South Australia 5042
| | | | - Phil G Dinning
- Department of Surgery, Flinders Medical Centre, Human, South Australia 5042
| | - Nick J Spencer
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - Marcello Costa
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| | - Simon JH Brookes
- Human Physiology, Medical Bioscience, College of Medicine and Public Health, Flinders University, South Australia 5042
| |
Collapse
|
4
|
Calretinin immunostaining as an adjunct in the diagnosis of Hirschsprung disease. Ann Diagn Pathol 2011; 15:323-8. [DOI: 10.1016/j.anndiagpath.2011.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/08/2011] [Indexed: 11/19/2022]
|
5
|
Calretinin immunohistochemistry: a simple and efficient tool to diagnose Hirschsprung disease. Mod Pathol 2009; 22:1379-84. [PMID: 19648883 DOI: 10.1038/modpathol.2009.110] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diagnosis of Hirschsprung disease (HD) is quite entirely based on the histopathological analysis of suction rectal biopsies. This hematoxylin and eosin approach has some limitations, despite the help of acetylcholinesterase staining. The aim of this study was to assess the diagnostic value of calretinin immunochemistry as a simple and reliable method in the diagnosis of HD. A total of 131 initial rectal biopsies carried out for suspicion of HD in children were retrieved, and calretinin immunohistochemistry was carried out on paraffin-embedded biopsies. Diagnosis of HD was made when no staining was observed. The results were statistically analyzed in comparison with our standard method (histology and acetylcholinesterase staining). 130 biopsies were accurately diagnosed on the basis of the positivity or negativity of calretinin staining. The senior pathologists diagnosed all cases of HD with no false positives. Furthermore, 12 additional cases initially considered as doubtful for HD using the standard method, were accurately diagnosed using calretinin immunohistochemistry. The false negative was a case of HD with a calretinin-positive biopsy. We also demonstrate the ease of calretinin interpretation compared with acetylcholinesterase for the junior pathologist. Calretinin immunohistochemistry overcomes most of the difficulties encountered using the combination of histology and acetylcholinesterase staining, and detects almost all cases of HD with confidence, with no false positives. Thus, we demonstrate that calretinin is superior to acetylcholinesterase to complete histology and could advantageously substitute for acetylcholinesterase.
Collapse
|
6
|
Yang X, Sheng L, Guan Y, Qian W, Hou X. Synaptic plasticity: the new explanation of visceral hypersensitivity in rats with Trichinella spiralis infection? Dig Dis Sci 2009; 54:937-46. [PMID: 19058006 DOI: 10.1007/s10620-008-0444-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 07/02/2008] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIM Synaptic plasticity plays an important role in affecting the intensity of visceral reflex. It may also be involved in the development of visceral hypersensitivity. The aim of this study was to investigate the role of synaptic plasticity on visceral hypersensitivity of rats infected by Trichinella spiralis. METHODS Thirty male Sprague-Dawley (SD) rats were randomly divided into control, acute, and chronic infection groups, and were investigated at 1 week after adaptive feeding and at 2 and 8 weeks post infection (PI) by oral administration of 1 ml phosphate-buffered saline (PBS) containing 8,000 Trichinella spiralis larvae. Visceral sensitivity was evaluated by electromyography (EMG) recording during colorectal distension. Intestinal inflammation was observed by hematoxylin-eosin (HE) staining. Synaptic ultrastructure parameters, such as postsynaptic density (PSD) length, synaptic cleft, and number of synaptic vesicles, were examined by transmission electron microscopy (TEM). The expression of protein associated with synaptic plasticity, including postsynaptic density-95 (PSD-95), synaptophysin, calbindin-28 K, N-methyl-D-aspartate receptor-1 (NMDA-R1), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPA-R), and glial cell line-derived neurotrophic factor (GDNF), were analyzed by Western blot. RESULTS (1) Visceral hypersensitivity was noted in the chronic infection group, although the inflammation was nearly eliminated (P<0.05). Severe inflammation and downregulation of visceral sensitivity were observed in the acute infection group (P<0.05). (2) There were many more synaptic vesicles and longer PSD in the chronic infection group than in the control group (P<0.05, respectively). However, in comparison with control rats, disappearance of mitochondria cristae in the synapses, and decrease of synaptic vesicles and length of PSD were observed in the acute infection group. There was no significant difference in width of synaptic cleft among the three groups. (3) Compared with the control, the expression of proteins associated with synaptic plasticity was significantly upregulated during chronic infection phase (P<0.05), and downregulated during acute infection phase. CONCLUSION Synaptic plasticity was observed in SD rats infected by Trichinella spiralis and was associated with visceral sensitivity, which suggests that it may play an important role in the formation of visceral hypersensitivity.
Collapse
Affiliation(s)
- Xiaojun Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China.
| | | | | | | | | |
Collapse
|
7
|
Murphy EMA, Defontgalland D, Costa M, Brookes SJH, Wattchow DA. Quantification of subclasses of human colonic myenteric neurons by immunoreactivity to Hu, choline acetyltransferase and nitric oxide synthase. Neurogastroenterol Motil 2007; 19:126-34. [PMID: 17244167 DOI: 10.1111/j.1365-2982.2006.00843.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An accurate method to count human enteric neurons is essential to develop a comprehensive account of the classes of nerve cells responsible for gut function and dysfunction. The majority of cells in the enteric nervous system utilize acetyl choline, or nitric oxide, or a combination of these, as neurotransmitters. Antisera raised against the RNA-binding protein Hu, were used to identify nerve cell bodies in whole mounts of the myenteric plexus of human colon, and then were utilized to analyse cells immunoreactive for combinations of choline acetyltransferase and nitric oxide synthase. Antisera to Hu provided a reliable means to count apparently all enteric nerve cell bodies, revealing 10% more cell bodies than labelling with neuron specific enolase, and no labelling of glial cells as revealed by S100. ChAT+/NOS- neurons accounted for 48% (+/-3%) of myenteric neurons and ChAT-/NOS+ neurons accounted for 43% (+/-2.5%). ChAT+/NOS+ neurons comprised 4% (+/-0.5) of the total number of neurons, and a novel class of small ChAT-/NOS- neurons, making up 5% (+/-0.9%) of all cells, was described for the first time.
Collapse
Affiliation(s)
- E M A Murphy
- Departments of Human Physiology and of Surgery, Flinders University, Adelaide, SA 5001, Australia
| | | | | | | | | |
Collapse
|
8
|
Kuramoto H, Kadowaki M, Yamamoto T, Kuwano R. Calbindin is predominantly expressed in nitrergic neurons in rat esophagus. Neurosci Lett 2006; 401:174-7. [PMID: 16600497 DOI: 10.1016/j.neulet.2006.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/07/2006] [Accepted: 03/08/2006] [Indexed: 11/27/2022]
Abstract
We used immunohistochemistry to investigate the colocalization pattern of calbindin D28k (Calb) with nitric oxide and acetylcholine in myenteric neurons in the rat esophagus and compared it to that in the ileum or distal colon. The proportion of Calb-immunoreactive (IR) neurons to the total neurons in the esophagus (8%) was lower than that in the ileum (38%) or distal colon (27%). A majority (84%) of the esophageal Calb-IR neurons were uniaxonal neurons. On the other hand, 88% and 66% of Calb-IR neurons in the ileum and distal colon, respectively, had Dogiel type II morphology, while most of the others were Dogiel type I neurons. Double immunolabeling indicated that most (87%) of the esophageal Calb-IR neurons were nitric oxide synthase (NOS) positive and a minority (21%) were choline acetyltransferase (ChAT) positive. Most (93% and 89%, respectively) of the Calb-IR neurons in the ileum and distal colon showed ChAT immunoreactivity and only a small number exhibited NOS immunoreactivity in the ileum and distal colon. In the esophagus, some of Calb-IR nerve endings surrounding the myenteric neurons were NOS positive, but no Calb immunoreactivity was found on the motor endplates of the striated muscles. Therefore, the present study revealed that most of the Calb-IR neurons in the esophagus are nitrergic, and it suggested that the Calb-IR neurons might be primarily involved in interneuronal roles in the esophageal nervous system.
Collapse
Affiliation(s)
- Hirofumi Kuramoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.
| | | | | | | |
Collapse
|
9
|
Bartoo AC, Sprunger LK, Schneider DA. Expression of sodium channel Nav1.6 in cholinergic myenteric neurons of guinea pig proximal colon. Cell Tissue Res 2006; 325:203-9. [PMID: 16555052 DOI: 10.1007/s00441-006-0179-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 01/24/2006] [Indexed: 11/30/2022]
Abstract
We wished to establish the functional identity of Na(v)1.6-expressing myenteric neurons of the guinea pig proximal colon by determining the extent of colocalization of Na(v)1.6 and selected neurochemical markers. Na(v)1.6-like immunoreactivity (-li) was primarily localized to the hillock and initial segments of myenteric neurons located near junctions with internodal fiber tracts. Immunoreactivity for Na(v)1.6 was co-localized with choline-acetyltransferase-li, representing 96% of Na(v)1.6-immunoreactive neurons; about 5% of these neurons showed co-localization with calretinin-li, but none with substance-P-li. Cholinergic neurons expressing Na(v)1.6 were amongst the smallest (somal area <300 mum(2)) of all cholinergic myenteric neurons observed. Only three of 234 Na(v)1.6-immunoreactive neurons exhibited nNOS-li, and none co-localized with calbindin-li. These data suggest that Na(v)1.6 is expressed in a small uniform population of cholinergic myenteric neurons that lie within the guinea pig proximal colon and that are likely to function as excitatory motor neurons.
Collapse
Affiliation(s)
- A C Bartoo
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
10
|
Bartoo AC, Sprunger LK, Schneider DA. Expression of the sodium channel Nav1.2 in chemically identified myenteric neurons in the guinea pig. Cell Tissue Res 2005; 324:25-32. [PMID: 16372194 DOI: 10.1007/s00441-005-0107-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Our purpose was to identify Na(v)1.2-expressing myenteric neurons of the small and large intestine of the guinea pig by using antibodies directed against Na(v)1.2 and selected neurochemical markers. Na(v)1.2-like immunoreactivity (-li) co-localized with immunoreactivity for choline acetyltransferase in all regions, representing 45%-67% of Na(v)1.2-positive neurons. Na(v)1.2-li co-localized with immunoreactivity for the neural form of nitric oxide synthase more frequently in the colon (20% of neurons exhibiting Na(v)1.2-li) than in the ileum (8%). Co-localization of Na(v)1.2-li with immunoreactivity for a form of neurofilament (NF145) was infrequently observed in the ileum and colon. Enkephalin-immunoreactive cell bodies co-localized with Na(v)1.2-li in all regions. Few myenteric cell bodies immunoreactive for neuropeptide Y were observed in the ileum, but all co-localized with Na(v)1.2-li. This and our previous data suggest that Na(v)1.2 is widely expressed within the guinea pig enteric nervous system, including the three main classes of myenteric neurons (sensory, motor, and interneurons), and is involved in both excitatory and inhibitory pathways. Notable exceptions include the excitatory motor neurons to the longitudinal smooth muscle, the ascending interneurons of the ileum, and the myenteric neurons immunoreactive for NF145, few of which are immunoreactive for Na(v)1.2.
Collapse
Affiliation(s)
- A C Bartoo
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|
11
|
Van Nassauw L, Wu M, De Jonge F, Adriaensen D, Timmermans JP. Cytoplasmic, but not nuclear, expression of the neuronal nuclei (NeuN) antibody is an exclusive feature of Dogiel type II neurons in the guinea-pig gastrointestinal tract. Histochem Cell Biol 2005; 124:369-77. [PMID: 16049694 DOI: 10.1007/s00418-005-0019-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2005] [Indexed: 01/20/2023]
Abstract
This study aimed to reveal if NeuN, a neuronal nuclei (NeuN) antibody, is a selective marker of intrinsic primary afferent neurons (IPANs) in the guinea-pig gastrointestinal tract as previously hypothesised. The NeuN immunoreactivity was found in the enteric nervous system with exception of the esophagus. Two groups of NeuN-expressing neurons were observed: neurons with immunostained nuclei and cytoplasm (NeuN(NC)) and neurons only expressing immunoreactivity in their nuclei (NeuN(N)). The NeuN(N)-immunoreactive neurons were found in the myenteric plexus of the stomach and the colon. In the stomach, none of the NeuN(N)-expressing neurons, of which 55+/-3% co-expressed calbindin, had a Dogiel type I or II morphology. The NeuN(N)-positive neurons of the colon, which did not express calbindin, did not resemble a Dogiel type II morphology either, but were small-sized neurons. The NeuN(NC)-immunoreactive neurons were observed in both the small and large intestine. These neurons were smooth-contoured and bigger-sized, resembling a Dogiel type II morphology. Some of these neurons co-expressed calbindin. The present data reveal the existence of two populations of Dogiel type II neurons, exhibiting NeuN(NC)+/calbindin+ or NeuN(NC)+/calbindin- immunoreactivity, in the intestine. Assuming that all IPANs exhibit a Dogiel type II morphology, we conclude that the cytoplasmic expression of NeuN is an exclusive feature of IPANs.
Collapse
Affiliation(s)
- Luc Van Nassauw
- Laboratory of Cell Biology and Histology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
12
|
Xiang Z, Burnstock G. Distribution of P2Y6 and P2Y12 receptor: their colocalization with calbindin, calretinin and nitric oxide synthase in the guinea pig enteric nervous system. Histochem Cell Biol 2005; 125:327-36. [PMID: 16195889 DOI: 10.1007/s00418-005-0071-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2005] [Indexed: 12/31/2022]
Abstract
The distribution of P2Y(6) and P2Y(12) receptor-immunoreactive (ir) neurons and fibers and their coexistence with calbindin, calretinin and nitric oxide synthase (NOS) has been investigated with single and double labeling immunostaining methods. The results showed that 30-36% of the ganglion cells in the myenteric plexus are strongly P2Y(6) receptor-ir neurons; they are distributed widely in the myenteric plexus of stomach, jejunum, ileum and colon, but not in the submucosal plexus, with a typical morphology of multipolar neurons with a long axon-like process. About 42-46% of ganglion cells in both the myenteric and submucosal plexuses show P2Y(12) receptor-ir. About 28-35% of P2Y(6) receptor-ir neurons were found to coexist with NOS and 41-47% of them coexist with calretinin, but there was no coexistence of P2Y(6) receptor-ir with calbindin. In contrast, all P2Y(12) receptor-ir neurons were immunopositive for calbindin, although occasionally P2Y(12) receptor-ir neurons without calbindin immunoreactivity were found, while none of the P2Y(12) receptor-ir neurons were found to coexist with calretinin or NOS in the gastrointestinal system of guinea pig. The P2Y(12) receptor-ir neurons coexpressing calbindin-ir in the small intestine are Dogiel type II/AH, intrinsic primary afferent neurons.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 200433, Shanghai, People's Republic of China
| | | |
Collapse
|
13
|
Barshack I, Fridman E, Goldberg I, Chowers Y, Kopolovic J. The loss of calretinin expression indicates aganglionosis in Hirschsprung's disease. J Clin Pathol 2004; 57:712-6. [PMID: 15220363 PMCID: PMC1770342 DOI: 10.1136/jcp.2004.016030] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Hirschsprung's disease (HD) is a congenital disorder characterised by the absence of ganglion cells in the large bowel, leading to functional obstruction and colonic dilatation proximal to the affected segment. A subclass of nerve cell bodies in both submucosa and myenteric ganglia of the human gastrointestinal tract were found to show immunopositivity for calretinin, a calcium binding protein, which plays an important role in the organisation and functioning of the central nervous system. AIM To investigate calretinin immunostaining in ganglionic and aganglionic HD colon specimens, and compare it with staining for S100, neurone specific enolase, and c-kit. METHODS Ten large bowel, full thickness specimens from patients with classic rectosigmoid HD were selected from the pathology repository. In total, 54 paraffin wax blocks-24 from the ganglionic zone, 17 from the aganglionic zone, and 13 from the transitional zone-were processed. RESULTS Calretinin was not expressed in aganglionic segments of HD and associated nerve fibres, whereas in ganglionic HD segments and in normal colon both ganglion cells and nerve fibres were immunopositive. In addition, c-kit showed an altered distribution in the interstitial cells of Cajal. The transitional zone showed a broad spectrum of histomorphological and immunohistochemical patterns of both calretinin and c-kit expression. CONCLUSION The absence of calretinin expression may serve as a diagnostic aid in identifying aganglionic segments in HD.
Collapse
Affiliation(s)
- I Barshack
- Department of Pathology, The Chaim Sheba Medical Centre, Tel-Hashomer, 52621, Affiliated to the Tel-Aviv University, Sackler School of Medicine, Israel.
| | | | | | | | | |
Collapse
|
14
|
Ermilov LG, Miller SM, Schmalz PF, Hanani M, Lennon VA, Szurszewski JH. Morphological characteristics and immunohistochemical detection of nicotinic acetylcholine receptors on intestinofugal afferent neurones in guinea-pig colon. Neurogastroenterol Motil 2003; 15:289-98. [PMID: 12787338 DOI: 10.1046/j.1365-2982.2003.00411.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intestinofugal afferent neurones (IFANs) provide excitatory synaptic input to abdominal prevertebral ganglion neurones. Input is greatly reduced during blockade of nicotinic acetylcholine receptors (nAChRs) in the wall of the colon, suggesting two projection pathways: a direct pathway without synaptic interruption and an indirect pathway interrupted by at least one nicotinic cholinergic synapse. This study aimed to characterize the morphology of IFANs and examine the distribution of nAChRs on them. We identified IFANs in guinea-pig colon by retrograde labelling with fluorescent tracer DiI placed either on the lumbar colonic nerves in vitro or inferior mesenteric ganglion in vivo. Confocal laser scanning microscopy and computerized image-processing software were used for 3D image reconstruction. Approximately 70% of identified IFANs had Dogiel type I-like morphology, the remainder were Dogiel type II-like. In vivo labelled IFANs were injected with Lucifer Yellow and immunostained for nAChRs using monoclonal antibody MAb35. Approximately 3% of total plasma membrane surface of IFANs with Dogiel type I morphology had MAb35-IR. In contrast, <1% of membrane surface of IFANs with Dogiel type II morphology had MAb35-IR. The finding that IFANs displayed immunostaining for nAChRs suggests the presence of putative nicotinic synapses.
Collapse
Affiliation(s)
- L G Ermilov
- Enteric Neuroscience Program and Department of Physiology and Biophysics, Mayo Clinic, Rochester, MN, 55905 USA
| | | | | | | | | | | |
Collapse
|
15
|
Kang SH, Vanden Berghe P, Smith TK. Ca2+-activated Cl- current in cultured myenteric neurons from murine proximal colon. Am J Physiol Cell Physiol 2003; 284:C839-47. [PMID: 12456397 DOI: 10.1152/ajpcell.00437.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole cell patch-clamp recordings were made from cultured myenteric neurons taken from murine proximal colon. The micropipette contained Cs(+) to remove K(+) currents. Depolarization elicited a slowly activating time-dependent outward current (I(tdo)), whereas repolarization was followed by a slowly deactivating tail current (I(tail)). I(tdo) and I(tail) were present in approximately 70% of neurons. We identified these currents as Cl(-) currents (I(Cl)), because changing the transmembrane Cl(-) gradient altered the measured reversal potential (E(rev)) of both I(tdo) and I(tail) with that for I(tail) shifted close to the calculated Cl(-) equilibrium potential (E(Cl)). I(Cl) are Ca(2+)-activated Cl(-) current [I(Cl(Ca))] because they were Ca(2+) dependent. E(Cl), which was measured from the E(rev) of I(Cl(Ca)) using a gramicidin perforated patch, was -33 mV. This value is more positive than the resting membrane potential (-56.3 +/- 2.7 mV), suggesting myenteric neurons accumulate intracellular Cl(-). omega-Conotoxin GIVA [0.3 microM; N-type Ca(2+) channel blocker] and niflumic acid [10 microM; known I(Cl(Ca)) blocker], decreased the I(Cl(Ca)). In conclusion, these neurons have I(Cl(Ca)) that are activated by Ca(2+) entry through N-type Ca(2+) channels. These currents likely regulate postspike frequency adaptation.
Collapse
Affiliation(s)
- Sok Han Kang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
16
|
Nurgali K, Furness JB, Stebbing MJ. Correlation of electrophysiology, shape and synaptic properties of myenteric AH neurons of the guinea pig distal colon. Auton Neurosci 2003; 103:50-64. [PMID: 12531398 DOI: 10.1016/s1566-0702(02)00212-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Well-defined correlations between morphology, electrophysiological properties and the types of synaptic inputs received are established for myenteric neurons in the guinea pig ileum. However, in the distal colon, the correlations between AH electrophysiological properties, presence of fast excitatory post-synaptic potentials (EPSPs) and neuronal shape have been inadequately resolved and it is unknown whether any colon neurons receive synaptic inputs that generate sustained excitation. In this work, we have used intracellular recording, dye filling via the recording electrode, and immunohistochemistry to classify distal colon neurons. Neurons (24 of 168) had Dogiel type II morphology and 42% of these were dendritic type II neurons, compared to about 10% in the ileum. All Dogiel type II neurons had AH electrophysiological properties, including a prolonged post-spike after-hyperpolarization (AHP). None of these received fast excitatory post-synaptic potentials, 11 of 22 tested exhibited sustained slow post-synaptic excitation (SSPE) in response to 1 Hz pre-synaptic stimulation and 13 of 15 tested were immunoreactive for calbindin. Neurons (127) had Dogiel type I, filamentous or other uniaxonal cell shape and S type electrophysiology. Neurons of this group had fast excitatory post-synaptic responses to stimulation of synaptic inputs, but did not exhibit a prolonged post-spike after-hyperpolarization or sustained slow post-synaptic excitation. Another group of neurons (17) had both AH electrophysiological characteristics and fast excitatory post-synaptic potentials. These neurons had Dogiel type I, filamentous or other uniaxonal shapes, but none had Dogiel type II morphology and none showed sustained slow post-synaptic excitation. It is concluded that Dogiel type II neurons are all AH neurons and are probably intrinsic sensory neurons that could be involved in long-term changes in excitability in the colon. All other neurons are monoaxonal; these are motor neurons and interneurons, and most are S neurons, electrophysiologically. A small number of monoaxonal neurons display AH electrophysiology and also receive fast excitatory synaptic inputs. These include motor and interneurons, but not sensory neurons.
Collapse
Affiliation(s)
- Kulmira Nurgali
- Department of Anatomy and Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
17
|
Manning BP, Sharkey KA, Mawe GM. Effects of PGE2 in guinea pig colonic myenteric ganglia. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1388-97. [PMID: 12388206 DOI: 10.1152/ajpgi.00141.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PGE(2) is a proinflammatory mediator that can influence many cell types. This study was conducted to determine whether PGE(2) alters the electrical activity of distal colonic myenteric neurons, because colitis is typically associated with altered motility and changes in neural signaling may be involved. The electrical properties of intact myenteric neurons were evaluated with intracellular microelectrodes. Acute application of PGE(2) elicited a prolonged depolarization in both AH and S neurons with little effect on input resistance or electrical excitability. PGE(2) effects were suppressed by tetrodotoxin (TTX) or neurokinin (NK) receptor antagonists, indicating that PGE(2) acts directly and indirectly to depolarize colonic neurons. PGE(2)-evoked depolarization was concentration dependent (approximately 3 microM EC(50)) and was attenuated by the E prostanoid (EP)1/2 receptor antagonist, AH-6809. When preparations were maintained for 48 h in the presence of the stable PGE(2) analog PGE(2)-ethanolamide (10 microM), neurons exhibited a significant membrane depolarization and enhanced excitability. These results suggest that PGE(2) can play a role in altered motility in colitis by evoking changes in the electrical properties of myenteric neurons.
Collapse
Affiliation(s)
- Brian P Manning
- Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
18
|
Spencer NJ, Hennig GW, Smith TK. A rhythmic motor pattern activated by circumferential stretch in guinea-pig distal colon. J Physiol 2002; 545:629-48. [PMID: 12456839 PMCID: PMC2290691 DOI: 10.1113/jphysiol.2002.028647] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Simultaneous intracellular recordings were made from pairs of circular muscle (CM) cells, at the oral and anal ends of a segment of guinea-pig distal colon, to investigate the neuronal mechanisms underlying faecal pellet propulsion. When a minimum degree of circumferential stretch was applied to sheet preparations of colon, recordings from CM cells revealed either no ongoing junction potentials, or alternatively, small potentials usually < 5 mV in amplitude. Maintained circumferential stretch applied to these preparations evoked an ongoing discharge of excitatory junction potentials (EJPs) at the oral recording site (range: 1-25 mV), which lasted for up to 6 h. The onset of each large oral EJP was time-locked with the onset of an inhibitory junction potential (IJP) at an anal recording electrode, located 2 cm from the oral recording. Similar results were obtained in isolated intact tube preparations of colon, when recordings were made immediately oral and anal of an artificial faecal pellet. The amplitudes of many large (> 5 mV) oral EJPs were linearly related to the amplitudes of anal IJPs occurring 20 mm apart. In the absence of an L-type Ca(2+) channel blocker, action potentials occurred on each large oral EJP. Synchronized discharges of stretch-activated EJPs and IJPs were preserved following pretreatment with capsaicin (10 microM), were unaffected by nifedipine (1 microM) and did not require the mucosa or submucous plexus. EJPs and IJPs were abolished by hexamethonium (300 microM) or tetrodotoxin (1 microM), but persisted in the presence of pyridoxal phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 10 microM) or an NK(3) tachykinin receptor antagonist (Neurokinin A 4-10; 100 nM to 5 microM). In summary, maintained circumferential stretch of the distal colon activates a population of intrinsic mechanosensory neurons that generate repetitive firing of ascending excitatory and descending inhibitory pathways to CM. These mechanosensory neurons, which may be interneurons, are stretch sensitive, rather than muscle tension sensitive, since they are resistant to muscular paralysis. We suggest the synchrony in onset of oral EJPs and anal IJPs over large regions of colon is due to synchronous synaptic activation of ascending and descending interneurons.
Collapse
Affiliation(s)
- Nick J Spencer
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
19
|
Kelles A, Janssens J, Tack J. Electrical behaviour of interleukin-1 beta (IL-1 beta) and prostaglandin-E2 (PGE2) on colonic myenteric neurones. Neurogastroenterol Motil 2002; 14:321-30. [PMID: 12213099 DOI: 10.1046/j.1365-2982.2002.00336.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract Intracellular recordings were used to examine the effects on electrical and synaptic behaviour of interleukin (IL)-1beta and prostaglandin E2(PGE2) on myenteric neurones of the guinea-pig colon. Application of IL-1beta and PGE2resulted in a concentration-dependent slow depolarization with enhanced spike discharge in, respectively, 45% (21/47) and 83% (33/41) of the impaled colonic neurones. Administration of IL-1beta in three neurones (6%) elicited a hyperpolarization. Responses remained during tetrodotoxin application, indicative of a direct effect of both substances on the impaled neurones. The effects of IL-1beta remained in the presence of indomethacine, a prostaglandin synthase inhibitor. Responses were seen in both nitric oxide synthase- and choline acetyl transferase-immunoreactive neurones. IL-1beta evoked a 26% reduction of the fast excitatory postsynaptic potential. These results indicate that the application of IL-1beta and PGE2evoke direct excitatory actions on a subset of myenteric neurones. For IL-1beta, direct inhibition and presynaptic inhibition of the fast excitatory postsynaptic potential has also been found. In the distal colon, responses to IL-1beta are not mediated through PGE2pathways.
Collapse
Affiliation(s)
- A Kelles
- Center for G.I. Research K.U. Leuven, Belgium., University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
20
|
De Laet A, Cornelissen W, Adriaensen D, Van Bogaert PP, Scheuermann DW, Timmermans JP. Ca2+ involvement in the action potential generation of myenteric neurones in the rat oesophagus. Neurogastroenterol Motil 2002; 14:161-72. [PMID: 11975716 DOI: 10.1046/j.1365-2982.2002.00315.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intracellular recordings were used to study the physiological behaviour of rat oesophageal myenteric neurones, which are embedded in striated muscle. Injection of depolarizing pulses evoked action potentials with a clear 'shoulder' in all neurones. This shoulder disappeared under low Ca2+/high Mg2+ conditions. Tetrodotoxin (TTX; 1 micromol L-1) did not impede spike firing, whereas under combined TTX and low Ca2+/high Mg2+ conditions the action potentials were completely abolished, indicating that TTX- resistant action potentials are mediated by a Ca2+ current. Further experiments with omega-conotoxin GVIA (100 nmol L-1) revealed that these Ca2+ currents enter the cell via N-type voltage-activated Ca2+ channels (see also accompanying paper). Tetraethylammonium (10 mmol L-1) caused broadening of the action potentials, which probably resulted from prolonged Ca2+ influx due to blockade of the delayed rectifier K+ channel. Although Ca2+ appears to be involved in the spike generation of all rat oesophageal myenteric neurones, only a minority (14%) shows a slow afterhyperpolarization. Thus, no strict correlation exists between the presence of a shoulder and a slow afterhyperpolarization. Furthermore, morphological identification of 25 of the impaled neurones revealed that there was no strict correlation between morphology and electrophysiological behaviour. Consequently, rat oesophageal myenteric neurones appear to differ in several aspects from myenteric neurones in smooth muscle regions of the gastrointestinal tract.
Collapse
Affiliation(s)
- A De Laet
- Laboratory of Cell Biology and Histology, University of Antwerp (RUCA), Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Vanden Berghe P, Missiaen L, Janssens J, Tack J. Calcium signalling and removal mechanisms in myenteric neurones. Neurogastroenterol Motil 2002; 14:63-73. [PMID: 11874555 DOI: 10.1046/j.1365-2982.2002.00303.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To characterize further the Ca2+ signalling mechanisms of myenteric neurones, we studied the effect of thapsigargin, a blocker of the Ca2+-store ATPase, and the mechanisms involved in restoring the intracellular Ca2+ concentration ([Ca2+]i) after activation. Thapsigargin (5 x 10(-6) mol L(-1)) induced an oscillatory [Ca2+]i response in 86.6% of the neurones (n=276), which was blocked by the removal of extracellular Ca2+ and by omega-conotoxin MVIIA (5 x 10(-7) mol L(-1)). The IP3-blocker, 2-aminoethyl-diphenyl-borate (75 x 10(-6) mol L(-1)), blocked or reduced the responses in 74.5% of the neurones. The oscillatory responses induced by the depletion of Ca2+ stores suggest that myenteric neurones might recruite N-type Ca2+ channels as a refill mechanism. Thapsigargin pretreatment increased the amplitude, the upstroke and duration of the K+-induced [Ca2+]i responses. Mitochondrial blockers (rotenone and antimycin/oligomycin) also prolonged the responses, but without affecting the amplitude. Furthermore, it was found that for high [Ca2+]i, the thapsigargin-sensitive Ca2+ uptake was crucial, while mitochondrial blockade affected the Ca2+ uptake over a wide range of concentrations. The Ca2+-sequestering components might also have been compensating for each other, as most drugs only delayed and not inhibited Ca2+ removal.
Collapse
Affiliation(s)
- P Vanden Berghe
- Center for Gastroenterological Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
22
|
Neunlist M, Michel K, Reiche D, Dobreva G, Huber K, Schemann M. Glycine activates myenteric neurones in adult guinea-pigs. J Physiol 2001; 536:727-39. [PMID: 11691868 PMCID: PMC2278892 DOI: 10.1111/j.1469-7793.2001.00727.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. We studied the effects of glycine on myenteric neurones and muscle activity in the colon and stomach of adult guinea-pigs. 2. Intracellular recordings revealed that myenteric neurones responded to local microejection of glycine (1 mM) with a fast, transient membrane potential depolarisation (57 % of 191 colonic neurones and 26 % of 50 gastric neurones). Most glycine-sensitive neurones had ascending projections and were choline acetyltransferase immunoreactive. Glycine preferentially activated neurones with a late afterhyperpolarisation (AH-neurones) and tonic spiking neurones with fast synaptic inputs (tonic S-neurones) but less frequently phasic S-neurones and inexcitable (non-spiking) neurones. The depolarisation had a reversal potential at -19 +/- 13 mV, which was increased by 18 +/- 10 % upon lowering extracellular chloride concentration and decreased by 38 +/- 14 % in furosemide (frusemide, 2 mM). 3. Strychnine (300 nM) reversibly abolished the glycine-induced depolarisation and the Cl(-) channel blocker picrotoxin (100 microM) reduced the amplitude of the depolarisation by 55 +/- 5 %. The glycine effect was a postsynaptic response because it was not changed after nerve blockade with tetrodotoxin (1 microM) or blockade of synaptic transmission in reduced extracellular [Ca(2+)]. The effect was specific since the response was not changed by the nicotinic antagonists hexamethonium (200 microM) and mecamylamine (100 microM), the GABA(A) receptor antagonist bicuculline (10 microM), the NMDA antagonist MK-801 (20 microM) or the 5-HT(3) antagonist ICS 205930 (1 microM). 4. Glycine (1 mM) induced a tetrodotoxin- and strychnine-sensitive contractile response in the colon; the contractile response in the stomach was tetrodotoxin insensitive. 5. Glycine activated myenteric neurones in the adult enteric nervous system through strychnine-sensitive mechanisms. The glycine-evoked depolarisation was caused by Cl(-) efflux and the maintenance of relatively high intracellular chloride concentrations involved furosemide-sensitive cation-chloride co-transporters.
Collapse
Affiliation(s)
- M Neunlist
- Department of Physiology, School of Veterinary Medicine, Bischofsholer Damm 15/102, 30173 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Tamura K, Ito H, Wade PR. Morphology, electrophysiology, and calbindin immunoreactivity of myenteric neurons in the guinea pig distal colon. J Comp Neurol 2001; 437:423-37. [PMID: 11503144 DOI: 10.1002/cne.1293] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The morphological and physiological characteristics of myenteric neurons in the guinea pig distal colon were determined using Lucifer yellow- or N-(2-aminoethyl) biotinamide-containing microelectrodes and intracellular recording and staining methods. The neurons in this study (n = 204) were classified on the basis of the shapes of their cell bodies and short processes or dendrites and the number of long processes or axons as Dogiel type I (n = 75 neurons; 36.8%), filamentous (n = 31 neurons; 15.2%), Dogiel type II (n = 38 neurons; 18.6%), and unclassified (n = 60 neurons; 29.4%). All Dogiel type II neurons had action potentials followed by an after-spike hyperpolarization (AH), and most of them (84%) had large, smooth somata and filamentous, short processes in addition to multiple, long processes or axons. Most of Dogiel type I, filamentous, and unclassified neurons (98%) had a single, long process, but four Dogiel type I neurons and one unclassified neuron had two long processes terminating as varicosities within other ganglia or on the surface of longitudinal muscle. The projections of monoaxonal neurons were distributed equally between oral and aboral directions, and most of them received fast excitatory postsynaptic potentials (EPSPs). All of the Dogiel type II neurons and seven Dogiel type I neurons were positive for calbindin immunoreactivity, but three filamentous neurons received fEPSPs, had spikes followed by AH, and were negative for calbindin. The presence of calbindin-immunoreactive(-IR) neurons was quite variable among the ganglia. These results confirm that neither the presence of calbindin immunoreactivity nor the absence of fEPSPs can be used as a predictor of cellular morphology or electrophysiological properties of myenteric neurons in the distal colon.
Collapse
Affiliation(s)
- K Tamura
- Department of Physiology, Tokai University, Boseidi, Isehara 259-1193, Japan.
| | | | | |
Collapse
|
24
|
Lomax AE, Bertrand PP, Furness JB. Electrophysiological characteristics distinguish three classes of neuron in submucosal ganglia of the guinea-pig distal colon. Neuroscience 2001; 103:245-55. [PMID: 11311805 DOI: 10.1016/s0306-4522(00)00545-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intracellular recordings were made from neurons in the submucosal ganglia of the guinea-pig distal colon. The recording electrode contained the intracellular marker biocytin, which was injected into neurons so that their electrophysiological characteristics could be correlated with their shape. Correlations of electrophysiology and shape have not been reported previously for neurons in this region. Three types of neuron were identified on electrophysiological grounds. Neurons of the first type (S neurons) had tetrodotoxin-sensitive soma action potentials, and received fast and slow excitatory synaptic inputs. They had uniaxonal morphologies and may function as secretomotor or possibly vasomotor neurons. The second type (AH neurons) received only slow synaptic input, while the soma action potential had tetrodotoxin-sensitive and -insensitive components with a shoulder on the falling phase and a long-lasting afterhyperpolarisation of the membrane potential following a single action potential. Neurons of this type had multipolar morphologies and provided dense innervation of adjacent submucosal ganglia. These neurons are similar to the submucosal intrinsic primary afferent neurons of the guinea-pig small intestine. The final type of neuron [the low-threshold (LT) neuron] had electrophysiological characteristics that set it apart from those described previously within enteric plexuses. They expressed tetrodotoxin-insensitive voltage-gated soma currents, did not have long-lasting afterhyperpolarisations and received only slow synaptic input. In addition, these neurons were very excitable: they had large input resistances and low thresholds for action potential discharge, and often fired action potentials in the absence of stimulation. Neurons with these characteristics were uniaxonal and thus are likely to be secretomotor or possibly vasomotor neurons. This study has shown that submucosal neurons of the distal colon fall into three distinct types, which can be distinguished by a combination of electrophysiological and morphological criteria.
Collapse
Affiliation(s)
- A E Lomax
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
25
|
Abstract
Neuroanatomical tracing techniques, and retrograde labelling in particular, are widely used tools for the analysis of neuronal pathways in the central and peripheral nervous system. Over the last 10 years, these techniques have been used extensively to identify enteric neuronal pathways. In combination with multiple-labelling immunohistochemistry, quantitative data about the projections and neurochemical profile of many functional classes of cells have been acquired. These data have revealed a high degree of organization of the neuronal plexuses, even though the different classes of nerve cell bodies appear to be randomly assorted in ganglia. Each class of neurone has a predictable target, length and polarity of axonal projection, a particular combination of neurochemicals in its cell body and distinctive morphological characteristics. The combination of retrograde labelling with targeted intracellular recording has made it possible to target small populations of cells that would rarely be sampled during random impalements. These neuroanatomical techniques have also been applied successfully to human tissue and are gradually unravelling the complexity of the human enteric nervous system.
Collapse
Affiliation(s)
- S Brookes
- Department of Human Physiology and Centre for Neuroscience, Flinders University, South Australia.
| |
Collapse
|
26
|
Hillsley K, Jennings LJ, Mawe GM. Neural control of the gallbladder: an intracellular study of human gallbladder neurons. Digestion 2000; 59:125-9. [PMID: 9586824 DOI: 10.1159/000007476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Gallbladder neurons are important governors of gallbladder function. In animal models, gallbladder ganglia can be regulated both by neural and hormonal inputs. The purpose of this study was to demonstrate the feasibility of obtaining recordings from human gallbladder neurons. METHODS Human gallbladders (n = 33) were bathed in oxygenated Krebs solution (37 degrees C) containing the vital fluorescent stain 4-Di-2-ASP to localize the ganglia. Cells were characterized using conventional intracellular recording techniques. RESULTS The mean resting membrane potential of human gallbladder neurons was -51.2 +/- 1.8 mV (n = 11). Depolarizing current pulses elicited only 1-4 spikes regardless of the amplitude or duration of the stimulus. Afterspike hyperpolarizations had a mean duration of 144.5 +/- 19.2 ms (n = 10). Anodal break excitation was not recorded with hyperpolarizing current pulses. Fiber tract stimulation elicited fast excitatory postsynaptic potentials in all neurons tested. CONCLUSION Intracellular recordings of human gallbladder neurons utilizing 4-Di-2-ASP are thus feasible, but are very problematic due to the density of connective tissue overlying the ganglia. As human and guinea pig gallbladder neurons have similar basic electrical properties, the guinea pig may be an appropriate model for further electrophysiological studies into gallbladder disease.
Collapse
Affiliation(s)
- K Hillsley
- Department of Anatomy and Neurobiology, The University of Vermont, Burlington 05405, USA
| | | | | |
Collapse
|
27
|
Cornelissen W, De Laet A, Kroese AB, Van Bogaert PP, Scheuermann DW, Timmermans JP. Electrophysiological features of morphological Dogiel type II neurons in the myenteric plexus of pig small intestine. J Neurophysiol 2000; 84:102-11. [PMID: 10899188 DOI: 10.1152/jn.2000.84.1.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By intracellular recording, 99 myenteric neurons with Dogiel type II morphology were electrophysiologically characterized in the porcine ileum and further subdivided into three groups based on their different types of afterhyperpolarization (AHP). In response to a depolarizing current injection, a fast AHP (fAHP; duration 34 +/- 11 ms; amplitude -11 +/- 6 mV; mean +/- SD) immediately followed every action potential in all neurons. In 32% of the neurons, this fAHP was the sole type of hyperpolarization recorded. Statistical analysis revealed the presence of two neuronal subpopulations that displayed either a long-lasting medium AHP (mAHP; duration after a single spike 773 +/- 753 ms; 51% of neurons) or a slow AHP (sAHP; 4, 205 +/- 1,483 ms; 17%). Slow AHP neurons also differed from mAHP neurons in the delayed onset of the AHP (mAHP 0 ms; sAHP 100-200 ms), as well as in maximum amplitude values and in the time to reach this amplitude (t(max); 148 +/- 11 ms vs. 628 +/- 108 ms). Medium AHP neurons further differed from the sAHP neurons in the occurrence of the AHP following subthreshold current injection and in their resting membrane potential (mAHP, -53 +/- 8 mV; sAHP, -62 +/- 10 mV). Medium AHP and sAHP behaved similarly in that a higher number of spikes increased their amplitude and duration, but not t(max). The majority of neurons fired multiple spikes (up to 25) in response to a 500-ms current injection (81/99) and showed a clear TTX-resistant shoulder on the repolarizing phase of the action potential (77/99), irrespective of the presence of sAHP or mAHP. These results demonstrate that the porcine Dogiel type II neurons differ in various essential electrophysiological properties from their morphological counterparts in the guinea pig ileal myenteric plexus. The most striking interspecies differences were the low occurrence of sAHP (17% vs. 80-90% in guinea pig) with relatively small amplitude (-5 vs. -20 mV), the high occurrence of mAHPs (unusual in guinea pig) and the ability to fire long spike trains (up to 25 spikes vs. 1-3 in guinea pig). In fact, Dogiel type II neurons in porcine ileum combine distinct electrophysiological features considered typical of either S-type or sAHP-type neurons in guinea pig. It can therefore be concluded that in spite of a similar morphology, Dogiel type II neurons do not behave electrophysiologically in a universal way in large and small mammals.
Collapse
Affiliation(s)
- W Cornelissen
- Laboratory of Cell Biology and Histology, University of Antwerp (RUCA), 2020 Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Vogalis F, Hillsley K, Smith T. Recording ionic events from cultured, DiI-labelled myenteric neurons in the guinea-pig proximal colon. J Neurosci Methods 2000; 96:25-34. [PMID: 10704668 DOI: 10.1016/s0165-0270(99)00180-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
To date investigations of enteric neurons by patch clamping/calcium imaging have been limited by studying unidentified heterogeneous populations of neurons. In DiI-labelled colonic myenteric neurons, the feasibility of recording ionic events was determined by applying DiI either to the mucosa or the circular muscle, dispersing neurons after 48 h organotypic culture, and patch-clamping/calcium imaging labeled neurons after 3-7 days in culture. Myenteric neurons with diffuse DiI fluorescence were typically smooth and agranular. Neurons labeled after DiI was applied to circular muscle, fired in either a phasic or a tonic manner, and exhibited fast afterhyperpolarizations (100-300 ms duration) at the end of a depolarizing pulse. They expressed a fast inward current and at least three different outward currents. Action potentials elicited in DiI-labeled sensory neurons were followed by a prolonged afterhyperpolarization (AH, 4-6 s). The offset of a suprathreshold depolarizing step elicited a prolonged outward tail current that approximated the timecourse of the prolonged AH. In addition, in response to membrane depolarization in DiI-labeled neurons loaded with fura-2, robust Ca(2+) transients were recorded using the perforated patch technique. These results demonstrate that DiI labeling of cultured myenteric neurons is feasible, and patch clamp/Ca(2+) fluorescence recordings can be made from specific populations of cultured DiI-labeled colonic myenteric neurons.
Collapse
Affiliation(s)
- F Vogalis
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | |
Collapse
|
29
|
Vogalis F, Hillsley K, Smith TK. Diverse ionic currents and electrical activity of cultured myenteric neurons from the guinea pig proximal colon. J Neurophysiol 2000; 83:1253-63. [PMID: 10712453 DOI: 10.1152/jn.2000.83.3.1253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to perform a patch-clamp analysis of myenteric neurons from the guinea pig proximal colon. Neurons were enzymatically dispersed, cultured for 2-7 days, and recorded from using whole cell patch clamp. The majority of cells fired phasically, whereas about one-quarter of the neurons fired in a tonic manner. Neurons were divided into three types based on the currents activated. The majority of tonically firing neurons lacked an A-type current, but generated a large fast transient outward current that was associated with the rapid repolarizing phase of an action potential. The fast transient outward current was dependent on calcium entry and was blocked by tetraethylammonium. Cells that expressed both an A-type current and a fast transient outward current were mostly phasic. Depolarization of these cells to suprathreshold potentials from less than -60 mV failed to trigger action potentials, or action potentials were only triggered after a delay of >50 ms. However, depolarizations from more positive potentials triggered action potentials with minimal latency. Neurons that expressed neither the A-type current or the fast transient outward current were all phasic. Sixteen percent of neurons were similar to AH/type II neurons in that they generated a prolonged afterhyperpolarization following an action potential. The current underlying the prolonged afterhyperpolarization showed weak inward rectification and had a reversal potential near the potassium equilibrium potential. Thus cultured isolated myenteric neurons of the guinea pig proximal colon retain many of the diverse properties of intact neurons. This preparation is suitable for further biophysical and molecular characterization of channels expressed in colonic myenteric neurons.
Collapse
Affiliation(s)
- F Vogalis
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
30
|
Browning KN, Lees GM. Inhibitory effects of NPY on ganglionic transmission in myenteric neurones of the guinea-pig descending colon. Neurogastroenterol Motil 2000; 12:33-41. [PMID: 10652114 DOI: 10.1046/j.1365-2982.2000.00178.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intracellular recordings were made from myenteric neurones of the guinea-pig descending colon. Neuropeptide Y (NPY) and related pancreatic polypeptides were applied by superfusion and the effects upon the amplitude of fast excitatory synaptic potentials (ESPs) and the ratio of paired fast ESPs evoked by stimulation of internodal fibre tracts were noted. NPY produced a concentration-dependent inhibition in fast ESP amplitude in the majority of neurones (17/21) with a calculated IC50 value of 7 nM; in some neurones this inhibition was mediated via the local release of noradrenaline. Peptide YY (PYY) (eight out of 11 neurones; IC50 = 1 nM), NPY(3-36) (three out of three neurones) and [Leu31, Pro34]NPY (four out of five neurones) also decreased the amplitude of fast ESPs. The effects of two or more pancreatic polypeptides or analogues on fast synaptic transmission were compared directly in six neurones; the apparent relative potency of agonists suggested the involvement of Y2-receptors and at least one other Y-receptor type. In the absence of any direct postsynaptic effects of pancreatic polypeptides on the active or passive properties of myenteric neurones, or on their sensitivity to ionophoretically applied acetylcholine, inhibition of fast ganglionic transmission was presumed to be presynaptic in origin. It is concluded that, in addition to their previously described depressant actions on neuro-effector transmission to colonic smooth muscle, pancreatic polypeptides can exert powerful inhibitory effects on myenteric neurones of the descending colon.
Collapse
Affiliation(s)
- K N Browning
- Department of Biomedical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB9 1AS UK.
| | | |
Collapse
|
31
|
Neunlist M, Dobreva G, Schemann M. Characteristics of mucosally projecting myenteric neurones in the guinea-pig proximal colon. J Physiol 1999; 517 ( Pt 2):533-46. [PMID: 10332100 PMCID: PMC2269343 DOI: 10.1111/j.1469-7793.1999.0533t.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Using retrograde tracing with 1,1'-didodecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate (DiI) in combination with electrophysiological and immunohistochemical techniques we determined the properties of the putative intrinsic primary afferent myenteric neurones with mucosal projections in the guinea-pig proximal colon. 2. Eighty-four out of eighty-five DiI-labelled myenteric neurones were AH neurones with a late after-hyperpolarization. Thirty-three per cent of them exhibited atropine- and tetrodotoxin-resistant spontaneously occurring hyperpolarizing potentials (SHPs) during which the membrane resistance and excitability decreased. 3. DiI-labelled AH neurones had multipolar Dogiel type II morphology, primarily of the dendritic type. Sixty-one per cent of the neurones were immunoreactive for choline acetyltransferase (ChAT) and calbindin (Calb) and 23 % were ChAT positive but Calb negative. 4. DiI-labelled neurones did not receive fast excitatory postsynaptic potentials but 94 % (34/36) received slow excitatory postsynaptic potentials (sEPSPs). The neurokinin-3 (NK-3) agonist (MePhe7)-NKB but not the NK-1 agonist [(SAR9,Met(O2)11]-SP mimicked this response. The NK-3 receptor antagonist SR 142801 (1 microM) significantly decreased the amplitude and duration of the sEPSPs; the NK-1 receptor antagonist CP-99,994 (1 microM) was ineffective. Atropine (0.5 microM) increased the duration but not the amplitude of the sEPSPs. 5. Microejection of 100 mM sodium butyrate onto the neurones induced in 90 % of the DiI-labelled neurones a transient depolarization associated with an increased excitability. In neurones with SHPs sodium butyrate evoked, additionally, a late onset hyperpolarization. Perfusion of 0.1-10 mM sodium butyrate induced a dose-dependent increase in neuronal excitability. Sodium butyrate was ineffective when applied directly onto the mucosa. 6. Mucosally projecting myenteric neurones of the colon are multipolar AH neurones with NK-3-mediated slow EPSPs and somal butyrate sensitivity.
Collapse
Affiliation(s)
- M Neunlist
- School of Veterinary Medicine, Department of Physiology, Bischofsholer Damm 15/102, 30173 Hannover, Germany
| | | | | |
Collapse
|
32
|
Lomax AE, Sharkey KA, Bertrand PP, Low AM, Bornstein JC, Furness JB. Correlation of morphology, electrophysiology and chemistry of neurons in the myenteric plexus of the guinea-pig distal colon. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1999; 76:45-61. [PMID: 10323306 DOI: 10.1016/s0165-1838(99)00008-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intracellular recordings were made from myenteric neurons of the guinea-pig distal colon to determine their electrical behaviour in response to intracellular current injection and stimulation of synaptic inputs. The recording microelectrode contained the intracellular marker biocytin, which was injected into impaled neurons so that electrophysiology, shape and immunohistochemistry could be correlated. Myenteric neurons in the distal colon were divided into four morphological groups based on their shapes and projections. One group (29 of the 78 that were characterized electrophysiologically, morphologically and immunohistochemically) was the multiaxonal Dogiel type II neurons, the majority (25/29) of which were calbindin immunoreactive. Each of these neurons had an inflection on the falling phase of the action potential that, in 24/29 neurons, was followed by a late afterhyperpolarizing potential (AHP). Slow excitatory postsynaptic potentials were recorded in 20 of 29 Dogiel type II neurons in response to high frequency internodal strand stimulation and two neurons responded with slow inhibitory postsynaptic potentials. Low amplitude fast excitatory postsynaptic potentials occurred in 3 of 29 Dogiel type II neurons. Neurons of the other three groups were all uniaxonal: neurons with Dogiel type I morphology, filamentous ascending interneurons and small filamentous neurons with local projections to the longitudinal or circular muscle or to the tertiary plexus. Dogiel type I neurons were often immunoreactive for nitric oxide synthase or calretinin, as were some small filamentous neurons, while all filamentous ascending interneurons tested were calretinin immunoreactive. All uniaxonal neurons exhibited prominent fast excitatory postsynaptic potentials and did not have a late AHP following a single action potential, that is, all uniaxonal neurons displayed S type electrophysiological characteristics. However, in 6/19 Dogiel type I neurons and 2/8 filamentous ascending interneurons, a prolonged hyperpolarizing potential ensued when more than one action potential was evoked. Slow depolarizing postsynaptic potentials were observed in 20/29 Dogiel type I neurons, 6/8 filamentous ascending interneurons and 8/12 small filamentous neurons. Six of 29 Dogiel type I neurons displayed slow inhibitory postsynaptic potentials, as did 2/8 filamentous ascending interneurons and 4/12 small filamentous neurons. These results indicate that myenteric neurons in the distal colon of the guinea-pig are electrophysiologically similar to myenteric neurons in the ileum, duodenum and proximal colon. Also, the correlation of AH electrophysiological characteristics with Dogiel type II morphology and S electrophysiological characteristics with uniaxonal morphology is preserved in this region. However, filamentous ascending interneurons have not been encountered in other regions of the gastrointestinal tract and there are differences between the synaptic properties of neurons in this region compared to other regions studied, including the presence of slow depolarizing postsynaptic potentials that appear to involve conductance increases and frequent slow inhibitory postsynaptic potentials.
Collapse
Affiliation(s)
- A E Lomax
- Department of Anatomy, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Sharkey KA, Lomax AE, Bertrand PP, Furness JB. Electrophysiology, shape, and chemistry of neurons that project from guinea pig colon to inferior mesenteric ganglia. Gastroenterology 1998; 115:909-18. [PMID: 9753494 DOI: 10.1016/s0016-5085(98)70263-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Prevertebral sympathetic ganglia receive inputs from intestinofugal neurons, with cell bodies located in the wall of the bowel. Intestinofugal neurons are part of the afferent limbs of intestino-intestinal reflexes. The aim of this study was to define the properties of intestinofugal neurons using intracellular recordings. METHODS Intestinofugal neurons of the distal colon were retrogradely labeled from the inferior mesenteric ganglia. In whole mounts of the myenteric plexus/longitudinal muscle of the distal colon, labeled neurons were identified by their fluorescence and recordings were made using biocytin-filled electrodes. Labeled nerves were characterized immunohistochemically and morphologically. RESULTS Intestinofugal neurons were uniaxonal neurons with multiple dendrites that had lamellar expansions. They were immunoreactive for choline acetyltransferase. Stimulation of nerve fiber tracts elicited large-amplitude excitatory postsynaptic potentials in all labeled neurons. Some received spontaneous fast excitatory postsynaptic potentials. Those cells that fired action potentials fired only one or two at the start of a depolarizing current pulse. No intestinofugal neurons had Dogiel type II morphology or a late afterhyperpolarizing potential. CONCLUSIONS Intestinofugal neurons are likely to be activated by other neurons in the gut wall. They are not AH or Dogiel type II neurons. Thus they seem to be second order neurons in afferent pathways of intestino-intestinal reflexes.
Collapse
Affiliation(s)
- K A Sharkey
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
34
|
Kuriyama H, Kitamura K, Itoh T, Inoue R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 1998; 78:811-920. [PMID: 9674696 DOI: 10.1152/physrev.1998.78.3.811] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Visceral smooth muscle cells (VSMC) play an essential role, through changes in their contraction-relaxation cycle, in the maintenance of homeostasis in biological systems. The features of these cells differ markedly by tissue and by species; moreover, there are often regional differences within a given tissue. The biophysical features used to investigate ion channels in VSMC have progressed from the original extracellular recording methods (large electrode, single or double sucrose gap methods), to the intracellular (microelectrode) recording method, and then to methods for recording from membrane fractions (patch-clamp, including cell-attached patch-clamp, methods). Remarkable advances are now being made thanks to the application of these more modern biophysical procedures and to the development of techniques in molecular biology. Even so, we still have much to learn about the physiological features of these channels and about their contribution to the activity of both cell and tissue. In this review, we take a detailed look at ion channels in VSMC and at receptor-operated ion channels in particular; we look at their interaction with the contraction-relaxation cycle in individual VSMC and especially at the way in which their activity is related to Ca2+ movements and Ca2+ homeostasis in the cell. In sections II and III, we discuss research findings mainly derived from the use of the microelectrode, although we also introduce work done using the patch-clamp procedure. These sections cover work on the electrical activity of VSMC membranes (sect. II) and on neuromuscular transmission (sect. III). In sections IV and V, we discuss work done, using the patch-clamp procedure, on individual ion channels (Na+, Ca2+, K+, and Cl-; sect. IV) and on various types of receptor-operated ion channels (with or without coupled GTP-binding proteins and voltage dependent and independent; sect. V). In sect. VI, we look at work done on the role of Ca2+ in VSMC using the patch-clamp procedure, biochemical procedures, measurements of Ca2+ transients, and Ca2+ sensitivity of contractile proteins of VSMC. We discuss the way in which Ca2+ mobilization occurs after membrane activation (Ca2+ influx and efflux through the surface membrane, Ca2+ release from and uptake into the sarcoplasmic reticulum, and dynamic changes in Ca2+ within the cytosol). In this article, we make only limited reference to vascular smooth muscle research, since we reviewed the features of ion channels in vascular tissues only recently.
Collapse
Affiliation(s)
- H Kuriyama
- Seinan Jogakuin University, Kokura-Kita, Fukuoka, Japan
| | | | | | | |
Collapse
|
35
|
Clerc N, Furness JB, Bornstein JC, Kunze WA. Correlation of electrophysiological and morphological characteristics of myenteric neurons of the duodenum in the guinea-pig. Neuroscience 1998; 82:899-914. [PMID: 9483544 DOI: 10.1016/s0306-4522(97)00318-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intracellular recording, dye filling and immunohistochemistry were used to investigate neurons of the proximal duodenum of the guinea-pig. Recordings were made from neurons of the myenteric plexus in the presence of nicardipine to quell muscle contractions, using microelectrodes that contained the marker substance Neurobiotin. Preparations were subsequently processed histochemically to reveal nerve cell shapes and immunoreactivity for calbindin, calretinin or nitric oxide synthase. Neurons were distinguished by their shapes and axonal projections as Dogiel type II, Dogiel type I, filamentous descending interneurons and small filamentous neurons. Dogiel type II cells had large cell bodies and multiple axon processes. They each had a broad action potential (mean half-width, 2.9 ms) and a prominent inflection (hump) on the falling phase of the action potential. The majority (70%) of Dogiel type II cells were AH neurons, defined by their having a prolonged hyperpolarizing potential that followed a soma action potential and lasted more than 2 s. Fast excitatory postsynaptic potentials were not recorded from Dogiel type II neurons. Two thirds of Dogiel type II neurons fired phasically in response to intracellularly injected 500 ms depolarizing current pulses and one-third fired tonically. Calbindin immunoreactivity occurred in 70% of Dogiel type II neurons. Dogiel type I neurons had lamellar dendrites and a single axon. They had brief action potentials (mean half-width, 1.7 ms) with no, or a slight hump. They responded to fibre tract stimulation with fast excitatory postsynaptic potentials. Only 2/21 exhibited a prolonged hyperpolarization following action potentials. The majority of Dogiel type I neurons thus belong to the S neuron category. Nine Dogiel type I neurons fired phasically in response to 500 ms depolarizing current pulses, while 12 fired tonically. Filamentous descending interneurons had long, branching filamentous dendrites and a single anally-projecting axon which gave rise to varicose branches in myenteric ganglia. Action potential characteristics of filamentous interneurons ranged between those of Dogiel type II and type I neurons. Small neurons. Small neurons with short filamentous, or few simple dendrites were also characterized. They had single axons, which could be traced either locally to the circular muscle, or to the longitudinal muscle. None of 12 filamentous interneurons or of 10 small filamentous neurons exhibited a prolonged post-spike hyperpolarization, whereas fast excitatory postsynaptic potentials were recorded from a majority. It is concluded that the morphological types of neuron that are encountered in the ileum also occur in the duodenum, but the electrophysiological characteristics of the neurons are more variable for each morphological class. Thus, it is not always possible to predict the morphology of myenteric neurons in the duodenum from their electrophysiological properties. Part of the electrophysiological variability appears to be due to duodenal neurons being more excitable than ileal neurons.
Collapse
Affiliation(s)
- N Clerc
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
36
|
Browning KN, Lees GM. Myenteric neurons of the rat descending colon: electrophysiological and correlated morphological properties. Neuroscience 1996; 73:1029-47. [PMID: 8809822 DOI: 10.1016/0306-4522(96)00118-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Conventional intracellular electrophysiological recordings were made from 502 myenteric neurons of the rat descending colon. Myenteric neurons could be classified into three groups on the basis of distinct electrophysiological properties. The first group of neurons (51% of all neurons) fired tetrodotoxin-sensitive action potentials in response to direct somal depolarization and the majority (98%) of this group generated fast cholinergic excitatory synaptic potentials in response to focal stimulation and were therefore designated S/Type 1 neurons. The second group (40%) of neurons fired tetrodotoxin-insensitive action potentials which were followed by long-lasting membrane afterhyperpolarizations, hence were termed AH neurons. These neurons did not receive fast cholinergic synaptic inputs but ionophoretic application of acetylcholine induced rapid nicotinic cholinoceptor-mediated depolarizations. The final group of neurons (9%), named Type 3 neurons, received fast cholinergic synaptic inputs but could never be made to fire action potentials. Rundown in amplitude of successive fast excitatory synaptic potentials evoked by a short train of presynaptic nerve stimuli was observed in only a small proportion of neurons (8/37; 22%) with the majority of neurons (29/37; 78%) showing no such decrease in amplitude, even at frequencies of stimulation as high as 10 Hz. Superfusion of 5-hydroxytryptamine could induce both an inhibition and a facilitation of cholinergic fast synaptic transmission. Evidence was adduced that these presynaptic inhibitory and facilitatory actions appeared to be mediated via 5-hydroxytryptamine 1A and 5-hydroxytryptamine 4 receptors, respectively. Muscarinic slow excitatory synaptic potentials were not detected (9/9 neurons tested) and non-cholinergic slow excitatory synaptic potentials following repetitive focal presynaptic nerve stimulation were observed in only 39/502 (8%) of all neurons. In those neurons in which a demonstrable change in membrane input resistance was detectable, slow excitatory potentials were accompanied by an increased input resistance. In addition, in a small subset (4%) of S/Type 1 neurons, slow membrane hyperpolarizations accompanied by an increased membrane input resistance were observed following tetanic presynaptic nerve stimulation. Superfusion of 5-hydroxytryptamine induced both membrane depolarizations and hyperpolarizations. Membrane depolarizations were observed in 40% of all neuronal types (34% of S/Type 1 neurons, 58% of AH neurons and 11% of Type 3 neurons) and were accompanied by an increased membrane input resistance and occasionally, in S/Type 1 and AH neurons, by anodal break excitation or spontaneous action potential firing. Membrane hyperpolarizations were observed in S/Type 1 neurons (5%) only and were accompanied, unexpectedly, by an increased membrane input resistance. In those neurons that responded both to application of 5-hydroxytryptamine and tetanic presynaptic nerve stimulation, 5-hydroxytryptamine always mimicked the slow synaptic response indicating that 5-hydroxytryptamine may function as a slow synaptic mediator in some myenteric neurons. Myenteric neurons identified by intracellular injection of the neuronal marker Neurobiotin TM were found to conform to the morphological classification schemes proposed for myenteric neurons of the guinea-pig and porcine intestine, that is, Dogiel Types I and II and Stach Type IV neurons were present. Simultaneous electrophysiological recording and intracellular staining techniques revealed that a correlation existed between the electrophysiological and morphological properties of myenteric neurons of the rat colon, with electrophysiological classified S/Type 1 neurons having Dogiel Type I morphologies (95/108 neurons; 88%) and electrophysiological classified AH neurons having Dogiel Type II morphologies (87/94 neurons; 93%)...
Collapse
Affiliation(s)
- K N Browning
- Department of Biomedical Sciences, University of Aberdeen, Marischal College, UK
| | | |
Collapse
|
37
|
Stebbing MJ, Bornstein JC. Electrophysiological mapping of fast excitatory synaptic inputs to morphologically and chemically characterized myenteric neurons of guinea-pig small intestine. Neuroscience 1996; 73:1017-28. [PMID: 8809821 DOI: 10.1016/0306-4522(96)00121-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurons within the myenteric plexus of the guinea-pig ileum were impaled using conventional intracellular electrodes. Points of stimulation within the surrounding ganglia and connectives which gave rise to fast excitatory synaptic potentials were mapped using a movable monopolar stimulating electrode. Cells were then injected with the intracellular marker, biocytin, and processed for multiple label immunohistochemistry to reveal their morphologies, chemical contents and, hence, their functional classes. Of 65 neurons belonging to the S electrophysiological class, 53 received fast excitatory synaptic inputs from stimulation at sites at least 2 mm away in a directly circumferential direction. These inputs almost certainly arise from stimulation of the circumferentially-directed axons of the Dogiel type II/AH-neurons, which are thought to be intrinsic sensory neurons. The majority of cells which projected anally and were immunoreactive for nitric oxide synthase (19/25), all neurons which ramified in the tertiary plexus and were identified as longitudinal muscle motor neurons (6/6) and all neurons identified as excitatory motor neurons innervating the circular muscle (12/12) received inputs from these circumferentially-directed pathways. However only one of six descending filamentous interneurons impaled received such inputs, suggesting they may be differentially innervated. The conduction velocities of circumferentially-directed axons giving rise to fast excitatory post synaptic potentials were estimated to be 0.41 +/- 0.10 m/s (mean +/- standard deviation, n = 21). The conduction velocities estimated for longitudinally-directed pathways were 0.55 +/- 0.25 m/s (n = 29). Thus, the majority of myenteric neurons receive fast excitatory synaptic input from putative intrinsic sensory neurons which project circumferentially around the intestine.
Collapse
Affiliation(s)
- M J Stebbing
- Department of Physiology, University of Melbourne, Parkville, Vic, Australia
| | | |
Collapse
|
38
|
Wattchow DA, Brookes SJ, Costa M. The morphology and projections of retrogradely labeled myenteric neurons in the human intestine. Gastroenterology 1995; 109:866-75. [PMID: 7657116 DOI: 10.1016/0016-5085(95)90396-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS Myenteric ganglia in the human gastrointestinal tract contain a mixture of many different types of nerve cells that cannot be distinguished by their location. The aim of this study was to characterize different functional types of cells by using retrograde labeling in vitro to identify neurons according to their targets. METHODS The retrograde label 1,1'-didodecyl 3,3,3',3'-indocarbocyanine perchlorate (Dil) was applied to different target layers of human small or large intestine. After 3-5 days in organotypic culture, myenteric neurons projecting to the Dil application site were visualized and mapped using fluorescence microscopy. RESULTS Myenteric motor neurons projecting to the external muscle layer were typically unipolar cells with lamellar dendrites (Dogiel type I) and had short projections up to 16 mm long. In contrast, presumed interneurons with Dogiel type I morphology were shown to project up to 68 mm aborally or up to 38 mm orally. Multipolar Dogiel type II neurons with smooth cell bodies were labeled most frequently from the submucous plexus. No myenteric neurons were labeled by Dil applied to the mucosa. CONCLUSIONS Myenteric neurons labeled from each target had characteristic size, morphology, polarity, and length of projections, indicating that there is a high degree of organization in the human enteric nervous system.
Collapse
Affiliation(s)
- D A Wattchow
- Department of Surgery, Flinders University of South Australia, Adelaide
| | | | | |
Collapse
|
39
|
Kunze WA, Bornstein JC, Furness JB, Hendriks R, Stephenson DS. Charybdotoxin and iberiotoxin but not apamin abolish the slow after-hyperpolarization in myenteric plexus neurons. Pflugers Arch 1994; 428:300-6. [PMID: 7529400 DOI: 10.1007/bf00724511] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myenteric neurons of guinea-pig ileum were studied with intracellular microelectrodes. The specific toxins charybdotoxin, iberiotoxin and apamin were used to characterize the prolonged after-hyperpolarizations of AH neurons in this preparation. Charybdotoxin and iberiotoxin blocked prolonged after-hyperpolarizations in 23 of 24 AH neurons, but apamin had no effect on 5 of 5 AH neurons. Abolition of the after-hyperpolarizations was accompanied by depolarization and increases in input resistances of those AH neurons affected, but the shapes of action potentials were unchanged. The excitability of the AH neurons was enhanced as shown by an increase in the number of action potentials evoked by a 500-ms depolarizing current pulse or by a train of 15-ms depolarizing current pulses (10Hz). The other class of myenteric neurons, S neurons, was also investigated. The 19 S neurons studied fired action potentials only at the start of a 500 ms depolarization, but the toxins had no effect on this behaviour or on their other properties. Intracellular injection of Neurobiotin into the neurons studied and subsequent immunohistochemical staining to localise the calcium-binding protein, calretinin, indicated that all major classes of S neurons were included in the sample. Thus, the prolonged after-hyperpolarizations in AH neurons may be due to opening of a large-conductance (BK) calcium-dependent potassium channel, but similar channels play little or no role in regulation of the excitability of S neurons.
Collapse
Affiliation(s)
- W A Kunze
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|