1
|
Kisielewska K, Gudelska M, Kiezun M, Dobrzyn K, Zaobidna E, Rytelewska E, Kopij G, Wasilewska B, Smolinska N, Kaminski T. Expression of the apelin system in the porcine pituitary during the oestrous cycle and early pregnancy and the effect of apelin on LH and FSH secretion. Theriogenology 2024; 230:263-277. [PMID: 39357165 DOI: 10.1016/j.theriogenology.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Reproductive success requires considerable energy investment. Research has shown that some adipokines, i.e. the hormones produced in adipose tissue, affect reproductive functions by influencing all structures of the hypothalamic-pituitary-ovarian axis. Apelin is a recently identified member of the adipokine family. To the best of the authors' knowledge, this is the first study to investigate the gene and protein expression of the apelin system (the apelin hormone and the apelin receptor, APJ) in the anterior (AP) and posterior (PP) pituitary lobes of the domestic pig during different phases of the oestrous cycle (days 2 to 3, 10 to 12, 14 to 16, and 17 to 19) and in early pregnancy (days 10 to 11, 12 to 13, 15 to 16, and 27 to 28). It was also assumed that apelin participates in the regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion and influences Akt, MAPK/Erk1/2, and AMPK signalling pathways in the AP during the oestrous cycle. Apelin, APJ mRNAs and proteins were detected in both pituitary lobes. Apelin was identified in gonadotropes, somatotropes, lactotropes, and thyrotropes. The study also revealed that apelin and APJ mRNA/protein levels fluctuate during the oestrous cycle and early gestation. Apelin affects basal, GnRH- and/or insulin-stimulated gonadotropin secretion in some phases of the cycle, as well as the phosphorylation of Akt, MAPK/Erk1/2, and AMPK proteins in AP cells. These findings suggest that apelin may be produced locally in the pituitary and that this gland is receptive to apelin's action. The study also suggest that apelin may influence female reproductive functions by controlling the release of LH and FSH from AP cells, and that it affects Akt, MAPK/Erk1/2, and AMPK signalling pathways.
Collapse
Affiliation(s)
- Katarzyna Kisielewska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Edyta Rytelewska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387, Krakow, Poland.
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Barbara Wasilewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| |
Collapse
|
2
|
Szymanska K, Zaobidna E, Rytelewska E, Mlyczynska E, Kurowska P, Dobrzyn K, Kiezun M, Kaminska B, Smolinska N, Rak A, Kaminski T. Visfatin in the porcine pituitary gland: expression and regulation of secretion during the oestrous cycle and early pregnancy. Sci Rep 2023; 13:18253. [PMID: 37880346 PMCID: PMC10600231 DOI: 10.1038/s41598-023-45255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Visfatin is a multifunctional protein which, besides the control of energy homeostasis, seems to be also involved in the regulation of female fertility through the influence on the endocrine hypothalamus-pituitary-gonadal axis, including the pituitary. The aim of this study was to investigate the expression of visfatin mRNA and protein in the anterior (AP) and posterior pituitary lobes of the pig during the oestrous cycle and early pregnancy. In AP, we also examined colocalisation of visfatin with pituitary tropic hormones. Moreover, we aimed to evaluate the in vitro effects of GnRH, FSH, LH, and insulin on visfatin protein concentration and secretion in AP cells during the cycle. The study showed that visfatin is present in all types of porcine pituitary endocrine cells and its expression is reliant on stage of the cycle or pregnancy. GnRH, FSH, LH and insulin stimulated visfatin secretion by AP cells on days 17 to 19 of the cycle, while on days 2 to 3 visfatin release was enhanced only by LH. Summarising, visfatin is locally produced in the pituitary in a way dependent on hormonal milieu typical for reproductive status of pigs. Further research is required to clarify the role of visfatin in the pituitary gland.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
3
|
Kisielewska K, Rytelewska E, Gudelska M, Kiezun M, Dobrzyn K, Bogus-Nowakowska K, Kaminska B, Smolinska N, Kaminski T. Expression of chemerin receptors CMKLR1, GPR1 and CCRL2 in the porcine pituitary during the oestrous cycle and early pregnancy and the effect of chemerin on MAPK/Erk1/2, Akt and AMPK signalling pathways. Theriogenology 2020; 157:181-198. [PMID: 32814246 DOI: 10.1016/j.theriogenology.2020.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Studies on adipokines, substances that are produced in adipose tissue, indicate that they influence both metabolism and reproduction. Chemerin is a novel addition to the adipokine family. It is believed that chemerin receptors are expressed in different structures of the hypothalamic-pituitary-gonadal (HPG) axis, which are crucial for endocrine control of reproductive functions, including the pituitary. The aim of this study was to investigate the expression of chemerin receptors (CMKLR1, GPR1, CCRL2) genes and proteins in the porcine pituitary. The effect of chemerin on MAPK/Erk1/2, Akt and AMPK signalling pathways was also investigated. The anterior (AP) and posterior (PP) lobes of the pituitary were examined on days 2 to 3, 10 to 12, 14 to 16, and 17 to 19 of the oestrous cycle and on days 10 to 11, 12 to 13, 15 to 16, and 27 to 28 of pregnancy. This is the first study to demonstrate that CMKLR1, GPR1 and CCRL2 are expressed in the porcine AP and PP, which implies that this gland is sensitive to chemerin action. The expression of the studied chemerin receptors fluctuated during different phases of the cycle and early gestation, which could be related to changes in the endocrine status of female pigs. The study also revealed that CMKLR1 and CCRL2 proteins were present in gonadotrophs and thyrotrophs, whereas CCRL2 was also present in somatotrophs, during the cycle and early pregnancy. We observed that chemerin affected MAPK/Erk1/2, Akt and AMPK signalling pathways in the porcine AP. These results suggest that chemerin may participate in the regulation of reproductive functions at the level of the pituitary.
Collapse
Affiliation(s)
- Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
4
|
Kisielewska K, Rytelewska E, Gudelska M, Kiezun M, Dobrzyn K, Bogus-Nowakowska K, Kaminska B, Smolinska N, Kaminski T. Relative abundance of chemerin mRNA transcript and protein in pituitaries of pigs during the estrous cycle and early pregnancy and associations with LH and FSH secretion during the estrous cycle. Anim Reprod Sci 2020; 219:106532. [PMID: 32828407 DOI: 10.1016/j.anireprosci.2020.106532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023]
Abstract
Adipokines such as chemerin affect metabolic status and reproductive function in many species. The hypothesis in the present study was that there were chemerin mRNA transcript and protein in the pituitary of pigs and that relative abundances fluctuate during the estrous cycle and early pregnancy. Chemerin is thought to modulate luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion during the estrous cycle. Changes in the relative abundance of chemerin mRNA transcript and protein in anterior (AP) and posterior (PP) pituitaries of pigs were investigated, for the first time in the present study, during four phases of the estrous cycle and four periods of early pregnancy. Chemerin protein was localized in gonadotrophs, thyrotrophs and somatotrophs during the estrous cycle and early gestation. Chemerin treatments affected both basal, GnRH- and/or insulin-induced LH and FSH production, with there being variations with phase of the estrous cycle when tissues were collected. These findings indicate chemerin may be produced locally in the pituitary and may affect female reproductive function by controlling the release of LH and FSH from AP cells.
Collapse
Affiliation(s)
- Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| |
Collapse
|
5
|
Rodríguez E, Guerra M, Peruzzo B, Blázquez JL. Tanycytes: A rich morphological history to underpin future molecular and physiological investigations. J Neuroendocrinol 2019; 31:e12690. [PMID: 30697830 DOI: 10.1111/jne.12690] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/04/2023]
Abstract
Tanycytes are located at the base of the brain and retain characteristics from their developmental origins, such as radial glial cells, throughout their life span. With transport mechanisms and modulation of tight junction proteins, tanycytes form a bridge connecting the cerebrospinal fluid with the external limiting basement membrane. They also retain the powers of self-renewal and can differentiate to generate neurones and glia. Similar to radial glia, they are a heterogeneous family with distinct phenotypes. Although the four subtypes so far distinguished display distinct characteristics, further research is likely to reveal new subtypes. In this review, we have re-visited the work of the pioneers in the field, revealing forgotten work that is waiting to inspire new research with today's cutting-edge technologies. We have conducted a systematic ultrastructural study of α-tanycytes that resulted in a wealth of new information, generating numerous questions for future study. We also consider median eminence pituicytes, a closely-related cell type to tanycytes, and attempt to relate pituicyte fine morphology to molecular and functional mechanism. Our rationale was that future research should be guided by a better understanding of the early pioneering work in the field, which may currently be overlooked when interpreting newer data or designing new investigations.
Collapse
Affiliation(s)
- Esteban Rodríguez
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Montserrat Guerra
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Bruno Peruzzo
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Luis Blázquez
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Abstract
Prolactin (PRL) released from lactotrophs of the anterior pituitary gland in response to the suckling by the offspring is the major hormonal signal responsible for stimulation of milk synthesis in the mammary glands. PRL secretion is under chronic inhibition exerted by dopamine (DA), which is released from neurons of the arcuate nucleus of the hypothalamus into the hypophyseal portal vasculature. Suckling by the young activates ascending systems that decrease the release of DA from this system, resulting in enhanced responsiveness to one or more PRL-releasing hormones, such as thyrotropin-releasing hormone. The neuropeptide oxytocin (OT), synthesized in magnocellular neurons of the hypothalamic supraoptic, paraventricular, and several accessory nuclei, is responsible for contracting the myoepithelial cells of the mammary gland to produce milk ejection. Electrophysiological recordings demonstrate that shortly before each milk ejection, the entire neurosecretory OT population fires a synchronized burst of action potentials (the milk ejection burst), resulting in release of OT from nerve terminals in the neurohypophysis. Both of these neuroendocrine systems undergo alterations in late gestation that prepare them for the secretory demands of lactation, and that reduce their responsiveness to stimuli other than suckling, especially physical stressors. The demands of milk synthesis and release produce a condition of negative energy balance in the suckled mother, and, in laboratory rodents, are accompanied by a dramatic hyperphagia. The reduction in secretion of the adipocyte hormone, leptin, a hallmark of negative energy balance, may be an important endocrine signal to hypothalamic systems that integrate lactation-associated food intake with neuroendocrine systems.
Collapse
Affiliation(s)
- William R Crowley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
7
|
Effects of orexin-monoaminergic interactions on oxytocin secretion in rat neurohypophyseal cell cultures. ACTA ACUST UNITED AC 2012; 175:43-8. [DOI: 10.1016/j.regpep.2012.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/03/2011] [Accepted: 01/10/2012] [Indexed: 11/23/2022]
|
8
|
Nagyeri G, Valkusz Z, Radacs M, Ocsko T, Hausinger P, Laszlo M, Laszlo F, Juhasz A, Julesz J, Galfi M. Behavioral and endocrine effects of chronic exposure to low doses of chlorobenzenes in Wistar rats. Neurotoxicol Teratol 2012; 34:9-19. [DOI: 10.1016/j.ntt.2011.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 10/16/2022]
|
9
|
Valkusz Z, Nagyéri G, Radács M, Ocskó T, Hausinger P, László M, László F, Juhász A, Julesz J, Pálföldi R, Gálfi M. Further analysis of behavioral and endocrine consequences of chronic exposure of male Wistar rats to subtoxic doses of endocrine disruptor chlorobenzenes. Physiol Behav 2011; 103:421-30. [DOI: 10.1016/j.physbeh.2011.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/01/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
|
10
|
Abstract
Analgesia or anesthesia is frequently used for women in labor. A wide range of opioid analgesics with vastly different pharmacokinetics, potencies, and potential side effects can be considered by physicians and midwives for laboring patients requesting pain relief other than a labor epidural. The past 50 years have seen the use of the classic mu opioid agonist morphine and other opioids diminish markedly for several reasons, including availability of epidural anesthetics, side effects, formulary restrictions, and concern for neonatal respiratory depression. Morphine is now primarily used in obstetrics to provide rest and sedation as appropriate for the stressed prodromal stages of a labor without sufficient cervical dilatation. This review discusses the scientific basis for opioid modulation of oxytocin release from the posterior pituitary and the practical implications of this relationship to explain well-known clinical observations of the effect of morphine on prodromal labor.
Collapse
Affiliation(s)
- Mark S Morris
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5617, USA
| | | | | |
Collapse
|
11
|
Radács M, Molnár AH, László FA, Varga C, László F, Gálfi M. Inhibitory Effect of Galanin on Adrenaline- and Noradrenaline-Induced Increased Oxytocin Secretion in Rat Neurohypophyseal Cell Cultures. J Mol Neurosci 2010; 42:59-66. [DOI: 10.1007/s12031-010-9331-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
|
12
|
Nagyéri G, Gálfi M, Radács M, Molnár AH, László F, Varga C, László FA. Effects of galanin-monoaminergic interactions on vasopressin secretion in rat neurohypophyseal cell cultures. ACTA ACUST UNITED AC 2009; 155:76-80. [PMID: 19289145 DOI: 10.1016/j.regpep.2009.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 03/04/2009] [Accepted: 03/07/2009] [Indexed: 11/28/2022]
Abstract
The effects of dopamine (DA), serotonin (5-HT), histamine (HA), adrenaline (ADR), noradrenaline (NADR) and K(+) administration on vasopressin (VP) secretion were studied in 13-14-day cultures of rat neurohypophyseal (NH) cells, and it was examined whether galanin (GAL) can modify the VP release enhancement induced by these monoaminergic compounds. An enzymatic dissociation technique was used to make the rat NH cell cultures. The VP contents of the supernatants of 14-day cultures were determined by radioimmunoassay. Following the administration of 10(-6) M GAL, the VP secretion into the supernatant media decreased. DA, 5-HT, ADR or NADR treatment increased the VP level substantially, while the enhancing effect of HA was more moderate. GAL administration before DA, ADR and NADR treatment prevented the VP concentration increase induced by DA, ADR or NADR. Preincubation with GAL reduced the 5-HT- or HA-induced VP level increases; the VP concentrations of the supernatant media remained above the control level. The GAL blocking effect was prevented by previous treatment with the GAL receptor antagonist galantid (M15). GAL had no effect on the VP level increase induced by K(+), which causes a non-specific hormone secretion. The results indicate that the changes in VP secretion induced by the monoaminergic system can be directly influenced by the GAL-ergic system. The interactions between the monoaminergic and GAL-ergic systems regarding VP secretion occur at the level of the posterior pituitary.
Collapse
Affiliation(s)
- Gy Nagyéri
- Department of Biology, Faculty of Juhász Gyula Teachers Training College, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
13
|
Radács M, Gálfi M, Nagyéri G, Molnár A, Varga C, László F, László F. Significance of the adrenergic system in the regulation of vasopressin secretion in rat neurohypophyseal tissue cultures. ACTA ACUST UNITED AC 2008; 148:1-5. [DOI: 10.1016/j.regpep.2008.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 01/07/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
|
14
|
Ferrandino I, Grimaldi MC. Ultrastructural study of the pituicytes in the pituitary gland of the teleost Diplodus sargus. Brain Res Bull 2008; 75:133-7. [DOI: 10.1016/j.brainresbull.2007.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 08/01/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
|
15
|
Abstract
The pituitary gland is a critical endocrine organ that controls homeostasis, metabolism, reproduction and growth. Pituitary organogenesis involves the initial proliferation process of progenitor cells and the subsequent differentiation process into distinct cell types. Although various signaling molecules and transcription factors play roles in the pituitary development, the mechanisms that control progenitor cells remain to be elucidated. The mammalian Hes basic helix-loop-helix genes, known as Notch effectors, play essential roles in the development of various tissues and organs by maintaining progenitor cells in an undifferentiated state and by regulating binary cell fate decisions. Recently, it has been reported that Hes genes play crucial roles in pituitary development by regulating progenitor cells. This review describes essential roles of Hes genes in pituitary development.
Collapse
Affiliation(s)
- Masato Hojo
- a Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Aya Kita
- b Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan and Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryoichiro Kageyama
- c Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Nobuo Hashimoto
- d Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
16
|
Radács M, Gálfi M, Juhász A, Varga C, Molnár A, László F, László FA. Histamine-induced enhancement of vasopressin and oxytocin secretion in rat neurohypophyseal tissue cultures. ACTA ACUST UNITED AC 2006; 134:82-8. [PMID: 16530280 DOI: 10.1016/j.regpep.2006.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 01/17/2006] [Accepted: 01/27/2006] [Indexed: 11/18/2022]
Abstract
The effects of histamine (HA) on vasopressin (VP) and oxytocin (OT) secretion were studied in 13-14-day cultures of isolated rat neurohypophyseal (NH) tissue. The VP and OT contents of the supernatant were determined by radioimmunoassay (RIA) after a 1 or 2-h incubation. Significantly increased levels of VP and OT production were detected in the tissue culture media following HA administration, depending on the HA dose. The elevation of NH hormone secretion could be partially blocked by previous administration of the HA antagonist mepyramine (MEP, an H1 receptor antagonist) or cimetidine (CIM, an H2 receptor antagonist). Thioperamide (TPE, an H3-H4 receptor antagonist) did not influence the VP or OT secretion increase induced by HA. The application of MEP, CIM or TPE after HA administration proved ineffective. The H1 and H2 receptors are mainly involved in the HA-induced increase of both VP and OT secretion in isolated NH tissue cultures. The results indicate that NH hormone release is influenced directly by the histaminergic system, and the histaminergic control of VP and OT secretion from the NH tissue in rats can occur at the level of the posterior pituitary.
Collapse
Affiliation(s)
- M Radács
- Department of Biology, Faculty of Juhász Gyula Teachers Training College, University of Sciences, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
17
|
Ponzio TA, Ni Y, Montana V, Parpura V, Hatton GI. Vesicular glutamate transporter expression in supraoptic neurones suggests a glutamatergic phenotype. J Neuroendocrinol 2006; 18:253-65. [PMID: 16503920 PMCID: PMC1413582 DOI: 10.1111/j.1365-2826.2006.01410.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnocellular neuroendocrine cells of the supraoptic nucleus (SON) release the peptides oxytocin (OT) and vasopressin (VP) from their dendrites and terminals. In addition to peptide-containing large dense-core vesicles, axon terminals from these cells contain clear microvesicles that have been shown to contain glutamate. Using multilabelling confocal microscopy, we investigated the presence of vesicular glutamate transporters (VGLUTs) in astrocytes as well as VP and OT neurones of the SON. Simultaneous probing of the SON with antibodies against VGLUT isoforms 1-3, OT, VP and glial fibrillary acidic protein (GFAP) revealed the presence of VGLUT-2 in somata and dendrites of SON neurones. Immunoreactivity (-ir) for VGLUT-3 was also detected in both OT and VP neurones as well as in GFAP-ir astrocytes and other cells of the ventral glial lamina. Colocalisation of VGLUT-2 and VGLUT-3 in individual SON neurones was also examined and VGLUT-ir with both antibodies could be detected in both types of SON neurones. Although VGLUT-1-ir was strong lateral to the SON, only sparse labelling was apparent within the nucleus, and no colocalisation with either SON neurones or astrocytes was observed. The SON or the SON plus its surrounding perinuclear zone was probed using the reverse transcriptase-polymerase chain reaction and the presence of mRNA for all three VGLUT isoforms was detected. These results suggest that similar arrangements of transmitters exist in SON neuronal dendrites and their neurohypophysial terminals and that magnocellular neuroendocrine somata and dendrites may be capable of glutamatergic transmission.
Collapse
Affiliation(s)
- T A Ponzio
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA, USA.
| | | | | | | | | |
Collapse
|
18
|
Gálfi M, Radács M, Juhász A, László F, Molnár A, László FA. Serotonin-induced enhancement of vasopressin and oxytocin secretion in rat neurohypophyseal tissue culture. ACTA ACUST UNITED AC 2005; 127:225-31. [PMID: 15680491 DOI: 10.1016/j.regpep.2004.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 12/07/2004] [Indexed: 11/24/2022]
Abstract
The effects of serotonin (5-hydroxytryptamine; 5-HT) on vasopressin (VP) and oxytocin (OT) secretion were studied in 13-14-day cultures of isolated rat neurohypophyseal (NH) tissue. The VP and OT contents of the supernatant were determined by radioimmunoassay after a 1 or 2 h incubation. Significantly increased levels of VP and OT production were detected in the tissue culture media following 5-HT administration, depending on the 5-HT dose. The elevation of NH hormone secretion could be partially blocked by previous administration of the 5-HT antagonist ketanserin or metergoline. WAY-100635 did not influence the increased VP secretion induced by 5-HT, but the elevated OT production was prevented by WAY-100635 before 5-HT administration. The application of WAY-100635, ketanserin or metergoline, after 5-HT administration proved ineffective. The results indicate that NH hormone release is influenced directly by the serotonergic system. The serotonergic control of VP and OT secretion from the NH tissue in rats can occur at the level of the posterior pituitary.
Collapse
Affiliation(s)
- M Gálfi
- Department of Biology, Faculty of Juhász Gyula Teachers Training College, University of Szeged, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
19
|
Thorn A, Tuxen M, Moesby L, Hansen EW, Christensen JD. Regulation of interleukin-6 secretion in murine pituicytes. Eur J Pharmacol 2005; 519:168-74. [PMID: 16109400 DOI: 10.1016/j.ejphar.2005.06.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 06/23/2005] [Accepted: 06/30/2005] [Indexed: 11/29/2022]
Abstract
Pituicytes, the astrocytic glial cells of the neural lobe, are known to secrete interleukin-6 and nitric oxide upon stimulation with various inflammatory mediators, i.e. interleukin-1beta. Nitric oxide is described to modulate the secretion of interleukin-6 in various cell types. The aim of the present study was to investigate the effect of nitric oxide on interleukin-1beta induced interleukin-6 secretion. Furthermore the effect of interferon-gamma on interleukin-6 and nitric oxide release was investigated. Cultures of pituicytes were prepared of neural lobes from male mice. The effect of interleukin-1beta and interferon-gamma on interleukin-6 and nitric oxide secretion was investigated in pituicytes cultured for 14 days. The secretion of interleukin-6 and nitric oxide was determined after 24 h of stimulation. Pituicytes secrete interleukin-6 upon stimulation with interleukin-1beta dose dependently but did not induce any detectable nitric oxide release. Co-stimulation with interferon-gamma and interleukin-1beta induced a significant nitric oxide release. In addition interferon-gamma inhibits interleukin-1beta induced interleukin-6 secretion dose dependently. The observed effect of interferon-gamma on interleukin-6 secretion was not affected by the specific inducible nitric oxide synthase inhibitor 1400W (N-(3-[aminomethyl]benzyl)acetamidine). Furthermore interferon-gamma dose dependently inhibits unstimulated interleukin-6 secretion. Use of the nitric oxide releaser DETA/NO (2,2'-(hydroxynitrosohydrazono)bis-ethanimine) demonstrated that nitric oxide does not inhibit interleukin-1beta induced interleukin-6 secretion. These results demonstrated that nitric oxide has no influence on interleukin-1beta induced interleukin-6 secretion in cultured pituicytes. However the results are showing that interferon-gamma has an inhibitory effect on interleukin-6 secretion.
Collapse
Affiliation(s)
- Anders Thorn
- The Danish University of Pharmaceutical Sciences, Department of Pharmacology, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
20
|
Molnár A, Baláspiri L, Gálfi M, László F, Varga C, Berkó A, László FA. Inhibitory effects of different galanin compounds and fragments on osmotically and histamine-induced enhanced vasopressin secretion in rats. Eur J Pharmacol 2005; 516:174-9. [PMID: 15925363 DOI: 10.1016/j.ejphar.2005.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 04/05/2005] [Accepted: 04/11/2005] [Indexed: 11/27/2022]
Abstract
The effects of rat, porcine and human galanin, and the human 1-16 and human 16-30 terminal galanin fragments on vasopressin secretion were studied in rat. The plasma vasopressin level was determined by radioimmunoassay (RIA). There were no changes in the basal vasopressin secretion after galanin administration. A significant increase in vasopressin concentration was detected following 2.5% NaCl or histamine administration. I.c.v. injected rat, porcine or human galanin or the 1-16 N-terminal galanin fragment prevented the plasma vasopressin level enhancement. Following the i.v. administration of rat galanin or the i.c.v. injected 16-30 C-terminal galanin fragment, the vasopressin concentration did not return to the normal level. Administration of the galanin antagonist galantid (M15) i.c.v. before the rat galanin i.c.v. injection prevented the inhibitory effect on the increased plasma vasopressin level following 2.5% NaCl solution or histamine administration. The results indicate that there is no significant difference in the inhibitory effect of rat, porcine or human galanin or the 1-16 galanin fragment on the enhanced plasma vasopressin secretion induced by hyperosmosis or histamine administration. Our findings suggest that galanin, as a peptide modulator, is physiologically involved in the regulation of vasopressin release following different forms of stimulation: an osmotic response or histamine administration.
Collapse
Affiliation(s)
- Andor Molnár
- Department of Comparative Physiology, University of Szeged, Középfasor 52., H-6726 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
21
|
Shen J, Gundlach AL. Galanin-like peptide mRNA alterations in arcuate nucleus and neural lobe of streptozotocin-diabetic and obese zucker rats. Further evidence for leptin-dependent and independent regulation. Neuroendocrinology 2004; 79:327-37. [PMID: 15256810 DOI: 10.1159/000079752] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 05/24/2004] [Indexed: 11/19/2022]
Abstract
Galanin-like peptide (GALP) is a 60-amino-acid peptide with structural similarities to galanin and a high affinity for galanin receptors. GALP is expressed by a discrete population of neurons in the arcuate nucleus (ARC) and median eminence of the hypothalamus of several species, including the rat. GALP neurons express leptin receptors and GALP mRNA levels are decreased slightly in fasted rats and stimulated significantly by acute leptin treatment in combination with fasting. In studies to further explore the leptin dependence of GALP expression, we examined GALP mRNA levels in the hypothalamus of obese Zucker and streptozotocin-induced diabetic (STZ-DM) rats. In leptin receptor-deficient obese Zucker rats, with 75% higher body weight than lean littermates, GALP mRNA levels in the ARC were decreased by 75%, while neuropeptide Y (NPY) mRNA levels were increased 7-fold (n = 5, p < 0.001), consistent with earlier reports. In hypoleptinemic diabetic rats with 4.5-fold higher blood glucose and 15% lower body weight than controls, GALP mRNA levels in the ARC were decreased by 90%, while NPY mRNA levels were increased 9-fold (n = 5, p < 0.001). GALP is also expressed by pituicytes in the neural lobe of the rat pituitary gland and GALP expression is increased by osmotic stimulation such as dehydration and salt loading. Thus, in STZ-DM rats that are in a hyperosmotic state with elevated plasma vasopressin levels, GALP mRNA levels were increased by approximately 20-fold in the neural lobe relative to control (n = 4, p < 0.001). The current findings are consistent with a strong tonic influence of leptin receptor signalling on hypothalamic GALP expression under normal conditions, and possible abnormalities in GALP neuronal signalling and their putative targets, thyrotropin-releasing hormone and gonadotropin hormone-releasing hormone neurons, under pathophysiological conditions such as diabetes and obesity. Our data in STZ-DM rats also clearly demonstrate that GALP gene expression is differentially regulated in neurons and pituicytes.
Collapse
Affiliation(s)
- Jun Shen
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Melbourne, Vic. 3010, Australia
| | | |
Collapse
|
22
|
Cunningham MJ, Cunnningham MJ, Krasnow SM, Gevers EF, Chen P, Thompson CK, Robinson ICAF, Smith MS, Clifton DK, Steiner RA. Regulation of galanin-like peptide gene expression by pituitary hormones and their downstream targets. J Neuroendocrinol 2004; 16:10-8. [PMID: 14962070 DOI: 10.1111/j.1365-2826.2004.01118.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Galanin-like peptide (GALP) mRNA is expressed in neurones of the hypothalamic arcuate nucleus and within pituicytes in the neurohypophysis. Several neuropeptides that are expressed in the arcuate nucleus participate in the neuroendocrine regulation of pituitary hormone secretion. Our objective was to determine the extent to which GALP might be a target for regulation by pituitary hormones or their downstream targets in the rat. The expression of GALP mRNA in the arcuate nucleus was reduced by hypophysectomy as determined by in situ hybridization. However, this did not appear to be attributable to the loss of either gonadal or adrenal steroids because castrated, ovariectomized and adrenalectomized rats had GALP mRNA expression that was indistinguishable from their respective controls. Next, we investigated the effects of growth hormone deficiency on GALP mRNA expression by studying dwarf rats and found that GALP gene expression was not different between dwarf rats and controls. We found that thyroidectomy led to a significant reduction in GALP mRNA expression compared to intact controls, and thyroidectomized rats implanted with thyroxine pellets had GALP mRNA expression that was similar to intact controls. Thus, the reduction of GALP mRNA expression seen in hypophysectomized animals may reflect, in part, a selective loss of thyroid hormone. We also found that the expression of GALP mRNA was increased in the neurohypophysis of lactating rats compared to nonlactating rats, whereas GALP mRNA expression in the arcuate nucleus was unaffected by lactation. This suggests that the induction of GALP gene expression in pituicytes is physiologically associated with activation of oxytocin and vasopressin secretion during lactation.
Collapse
Affiliation(s)
- M J Cunningham
- Graduate Program in Neurobiology and Behaviour, University of Washington, Seattle, WA 98195-7290, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
O'Carroll AM, Lolait SJ. Regulation of rat APJ receptor messenger ribonucleic acid expression in magnocellular neurones of the paraventricular and supraopric nuclei by osmotic stimuli. J Neuroendocrinol 2003; 15:661-6. [PMID: 12787050 DOI: 10.1046/j.1365-2826.2003.01044.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The novel apelin receptor (APJ receptor, APJR) has a restricted expression in the central nervous system suggestive of an involvement in the regulation of body fluid homeostasis. The endogenous ligand for APJR, apelin, is also highly concentrated in regions that are involved in the control of drinking behaviour. While the physiological roles of APJR and apelin are not fully known, apelin has been shown to stimulate drinking behaviour in rats and to have a regulatory effect on vasopressin release from magnocellular neurones of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. To determine the role of APJR in the regulation of water balance, this study examined the effects of osmotic stimulation on the expression of APJR mRNA in the magnocellular PVN (mPVN) and SON of salt-loaded and water-deprived rats. Intake of 2% NaCl and water deprivation for 48 h induced expression of APJR mRNA in the mPVN and SON. Using dual-label in situ hybridization histochemistry, we also investigated whether APJR is colocalized within vasopressin neurones in control, salt-loaded and water-deprived rats. APJR mRNA was found to colocalize with a small population of vasopressin-containing magnocellular neurones in control and water-deprived rats. Salt-loading resulted in an increased colocalization of APJR and vasopressin mRNAs in the SON. These data verify a role for APJ receptors in body fluid regulation and suggest a role for apelin in the regulation of vasopressin-containing neurones via a local autocrine/paracrine action of the peptide.
Collapse
Affiliation(s)
- A-M O'Carroll
- University Research Centre for Neuroendocrinology, University of Bristol, Bristol, UK
| | | |
Collapse
|
24
|
Kjeldsen TH, Rivier C, Lee S, Hansen EW, Christensen JD, Moesby L. Inducible nitric oxide synthase is responsible for nitric oxide release from murine pituicytes. J Neuroendocrinol 2003; 15:250-5. [PMID: 12588513 DOI: 10.1046/j.1365-2826.2003.00985.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigated whether pituicytes were able to produce and release nitric oxide (NO), and which type of nitric oxide synthase (NOS) would be responsible for this phenomenon. Lipopolysaccharide (LPS) 1 micro g/ml was used as inflammatory mediator. Because pituicytes are known to secrete interleukin (IL)-6 upon stimulation with LPS, this parameter was also investigated. Cultured pituicytes, from 4-week-old male mice, were stimulated with LPS for 6 h or 24 h. At 24 h, there was a significant increase in accumulated nitrite indicating NO formation. In contrast, IL-6 release was already significantly higher 6 h after stimulation and further increased at 24 h. The correlation between accumulated nitrite and secreted IL-6 was 0.84 after 24 h of incubation with LPS. The expression of inducible NOS (iNOS) mRNA in the pituicytes was significantly higher than the control level after 6 h and 24 h of exposure to LPS, with levels at 6 h being significantly higher than those at 24 h. There was no detected expression of endothelial NOS or neuronal NOS mRNA. Cultured pituicytes were also subjected to immunocytochemistry for iNOS protein at 6, 12, and 24 h after stimulation with LPS. Most cells were positive for iNOS, but there were no observable differences with the time points that we used. Collectively, these results show that pituicytes are able to produce NO, and that the inducible form of NOS is responsible for this production. Furthermore, there is a weak correlation between NO and IL-6 released from pituicytes after 24 h of stimulation with LPS.
Collapse
Affiliation(s)
- T H Kjeldsen
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, CA, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Grinevich V, Ma XM, Jirikowski G, Verbalis J, Aguilera G. Lipopolysaccharide endotoxin potentiates the effect of osmotic stimulation on vasopressin synthesis and secretion in the rat hypothalamus. J Neuroendocrinol 2003; 15:141-9. [PMID: 12535156 DOI: 10.1046/j.1365-2826.2003.00967.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vasopressin secreted by magnocellular neurones of the hypothalamic supraoptic and paraventricular nuclei is essential for water balance. In this study, we examined magnocellular neurone responses to osmotic stimulation in vehicle-injected controls or rats receiving an intraperitoneal (i.p.) injection of 250 microg/100 g of lipopolysaccharide (LPS), 3 h or 6 h earlier. LPS injection had no effect on plasma vasopressin concentrations in control rats but it caused marked and transient potentiation of the responses to a single i.p. injection of hypertonic saline (five- and two-fold, 3 and 6 h after LPS, respectively). The enhancement of plasma vasopressin responses was independent of plasma sodium concentrations or changes in blood pressure. Basal vasopressin mRNA expression in the paraventricular and supraoptic nuclei decreased slightly 6 h after LPS injection, without changes in vasopressin transcription as indicated by vasopressin heteronuclear (hn) RNA levels. Parvocellular neurones showed expected increases in vasopressin hnRNA expression following LPS injection and a further increase after i.p. hypertonic saline injection (due to the painful component). In contrast to magnocellular vasopressin mRNA expression, the effects of LPS and hypertonic saline injections in parvocellular neurones were additive and not synergistic. Light microscopic immunohistochemical examination revealed an increase in size of vasopressin but not oxytocin axonal terminals in the neural lobe 3 h after LPS injection. Osmotic stimulation caused marked depletion of vasopressin immunoreactivity in axonal terminals of the neural lobe in both control and LPS-pretreated rats. The changes in vasopressin axon terminals were accompanied by induction of interleukin (IL)-1 beta and IL-6 in the posterior pituitary. The data show that endotoxemia causes morphological and functional alterations of the hypothalamic neurohypophyseal system, resulting in facilitation rather than inhibition of vasopressin synthesis, and secretion in response to osmotic stimulation.
Collapse
Affiliation(s)
- V Grinevich
- Section on Endocrine Physiology, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20982, USA
| | | | | | | | | |
Collapse
|
26
|
Gálfi M, Baláspiri L, Tóth R, Pávó I, László F, Morschl E, Varga C, László FA. Inhibitory effect of galanin on dopamine-induced enhanced vasopressin secretion in rat neurohypophyseal tissue cultures. REGULATORY PEPTIDES 2002; 110:17-23. [PMID: 12468105 DOI: 10.1016/s0167-0115(02)00112-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of galanin (GAL) on vasopressin (VP) secretion was studied in 13-14-day cultures of isolated rat neurohypophyseal (NH) tissue. The VP content of the supernatant was determined by radioimmunoassay (RIA) after a 1- or 2-h incubation. A significantly decreased content of VP was detected following the administration of 10(-6)-10(-9) M doses of GAL. Dopamine (DA) and the DA-active drugs apomorphine (APM) and Pro-Lys-Gly (PLG) (10(-6) M in each medium) increased the VP level of NH tissue cultures. This VP concentration elevation could be blocked by the administration of GAL together with DA, APM or PLG. The DA-blocking effect of GAL was prevented by previous treatment with the GAL receptor antagonist galantid (M15). The results indicate that VP release is directly influenced by the GAL-ergic system. The GAL-ergic control of VP secretion from NH tissue in rats can occur independently of the hypothalamus, at the level of the posterior pituitary.
Collapse
Affiliation(s)
- M Gálfi
- Department of Biology, Faculty of Juhász Gyula Teacher Training College, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hussy N. Glial cells in the hypothalamo-neurohypophysial system: key elements of the regulation of neuronal electrical and secretory activity. PROGRESS IN BRAIN RESEARCH 2002; 139:95-112. [PMID: 12436929 DOI: 10.1016/s0079-6123(02)39010-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Nicolas Hussy
- CNRS-UMR 5101, CCIPE, 141 rue de la Cardonille, 34094 Montpellier, France.
| |
Collapse
|
28
|
Kjeldsen TH, Hansen EW, Christensen JD, Moesby L. Baclofen influences lipopolysaccharide-mediated interleukin-6 release from murine pituicytes. Eur J Pharmacol 2002; 451:209-15. [PMID: 12231393 DOI: 10.1016/s0014-2999(02)02222-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pituicytes, the glial cells of the neurohypophysis, secrete interleukin-6 upon stimulation with various inflammatory mediators, i.e. lipopolysaccharide. Previous studies have identified several receptors on pituicytes. This study investigates the effect of GABA(B) receptor activation on interleukin-6 release from pituicytes. Cultured murine pituicytes were stimulated for 24 h with lipopolysaccharide (0.5 ng/ml) to give a significant interleukin-6 release compared to control. The interleukin-6 release was significantly potentiated by the GABA(B) receptor agonist (R)-4-amino-3-(4-chlorophenyl) butanoic acid (R-baclofen; 10, 100 or 500 microM). However, R-baclofen itself (10, 100 or 500 microM) did not stimulate the interleukin-6 secretion. Furthermore, the potent GABA(B) receptor antagonists 3-[[(3,4-Dichlorophenyl)methyl]amino]propyl]diethoxymethyl) phosphinic acid (CGP52432; 30 or 300 microM) and (RS)-3-Amino-2-(4-chlorophenyl)-2-hydroxypropyl-sulphonic acid (2-OH-saclofen; 10 or 100 microM) did not remove the effect of R-baclofen (100 microM). Gamma-amino butyric acid (GABA; 30 or 300 microM) did not alter the lipopolysaccharide-mediated interleukin-6 response. After 30 min, intracellular cyclic AMP (cAMP) was higher in cells stimulated with lipopolysaccharide compared to control, and R-baclofen significantly inhibited this increase in cAMP. Nevertheless, neither lipopolysaccharide nor R-baclofen had any effect on intracellular cAMP after 24 h of stimulation. The results suggest that the effect of R-baclofen on lipopolysaccharide-stimulated interleukin-6 secretion is independent of GABA(B) receptors.
Collapse
Affiliation(s)
- Tine H Kjeldsen
- Department of Pharmacology, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
29
|
Abstract
The magnocellular neurosecretory cells (MNCs) in the supraoptic nucleus (SON) express multiple kinds of genes, including not only the classical hormones arginine vasopressin (AVP) and oxytocin (OXT), but also other physiologically active substances including neuropeptides, their receptors, and nitric oxide (NO) synthase, the rate-limiting enzyme in the synthesis of NO under physiological condition. For example, osmotic stimuli such as dehydration and chronic salt loading cause a wide range of changes of the expression levels of the genes and marked induction of the expression of the genes in the SON. The expression of the NO synthase gene in the SON under physiological conditions is reviewed.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | |
Collapse
|
30
|
Miyata S, Hatton GI. Activity-related, dynamic neuron-glial interactions in the hypothalamo-neurohypophysial system. Microsc Res Tech 2002; 56:143-57. [PMID: 11810717 DOI: 10.1002/jemt.10012] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnocellular neurons located in the supraoptic nucleus send their principal axons to terminate in the neurohypophysis, where they release vasopressin and oxytocin into the blood circulation. This magnocellular hypothalamo-neurohypophysial system is known to undergo dramatic activity-dependent structural plasticity during chronic physiological stimulation, such as dehydration and lactation. This structural plasticity is accompanied not only by synaptic remodeling, increased direct neuronal membrane apposition, and dendritic bundling in the supraoptic nucleus, but also organization of neurovascular contacts in the neurohypophysis. The adjacent glial cells actively participate in these plastic changes in addition to magnocellular neurons themselves. Many molecules that are possibly concerned with dynamic structural remodeling are highly expressed in the hypothalamo-neurohypophysial system, although they are generally at low expression levels in other regions of adult brains. Interestingly, some of them are highly expressed only in embryonic brains. On the basis of function, these molecules are classified mainly into two categories. Cytoskeletal proteins, such as tubulin, microtubule-associated proteins, and intermediate filament proteins, are responsible for changing both glial and neuronal morphology and location. Cell adhesion molecules, belonging to immunoglobulin superfamily proteins and extracellular matrix glycoproteins, also participate in neuronal-glial, neuronal-neuronal, and glial-glial recognition and guidance. Thus, the hypothalamo-neurohypophysial system is an interesting model for elucidating physiological significance and molecular mechanisms of activity-dependent structural plasticity in adult brains.
Collapse
Affiliation(s)
- Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 Japan.
| | | |
Collapse
|
31
|
Matsunaga W, Osawa S, Miyata S, Kiyohara T. Astrocytic Fos expression in the rat posterior pituitary following LPS administration. Brain Res 2001; 898:215-23. [PMID: 11306007 DOI: 10.1016/s0006-8993(01)02185-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Systemic lipopolysaccharide (LPS) administration has been shown to cause profound Fos expression in multiple regions of the brain. In the present experiment, Fos expression in the hypothalamic supraoptic nucleus (SON), posterior pituitary, and anterior pituitary was investigated using quantitative immunohistochemistry. In the SON and anterior pituitary, a large number of Fos-positive cells were observed by restraint stress, hyperosmotic administration (1.5, 3, and 9% NaCl), and LPS administration (5, 25, and 125 microg/kg). In the posterior pituitary, LPS administration caused a significant increase in the number of Fos-positive nuclei in a dose-dependent manner, whereas restraint stress and hyperosmotic stimulation (1.5 and 3% NaCl) did not increase the number of Fos-positive cells and 9% NaCl administration induced weak Fos immunoreactivity. Moreover, a dual-labeling study using a confocal microscope revealed that Fos-positive cells in the posterior pituitary were astrocytes using MAP2, an astrocytic marker in the posterior pituitary. Here, we demonstrated that the astrocytes of the posterior pituitary expressed Fos in response to LPS administration, which suggests that Fos expression participates in the activation of astrocytes during acute-phase responses with LPS administration.
Collapse
MESH Headings
- Animals
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Cell Count
- Fever/metabolism
- Fever/microbiology
- Fever/physiopathology
- Gram-Negative Bacterial Infections/metabolism
- Gram-Negative Bacterial Infections/physiopathology
- Immunohistochemistry
- Lipopolysaccharides/pharmacology
- Male
- Microtubule-Associated Proteins/drug effects
- Microtubule-Associated Proteins/metabolism
- Pituitary Gland, Anterior/cytology
- Pituitary Gland, Anterior/drug effects
- Pituitary Gland, Anterior/metabolism
- Pituitary Gland, Posterior/cytology
- Pituitary Gland, Posterior/drug effects
- Pituitary Gland, Posterior/metabolism
- Proto-Oncogene Proteins c-fos/drug effects
- Proto-Oncogene Proteins c-fos/metabolism
- Rats
- Rats, Wistar
- Restraint, Physical/adverse effects
- Saline Solution, Hypertonic/pharmacology
- Stress, Physiological/metabolism
- Stress, Physiological/physiopathology
- Supraoptic Nucleus/cytology
- Supraoptic Nucleus/drug effects
- Supraoptic Nucleus/metabolism
Collapse
Affiliation(s)
- W Matsunaga
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, 606-8585, Kyoto, Japan
| | | | | | | |
Collapse
|
32
|
Burazin TC, Larm JA, Gundlach AL. Regulation by osmotic stimuli of galanin-R1 receptor expression in magnocellular neurones of the paraventricular and supraoptic nuclei of the rat. J Neuroendocrinol 2001; 13:358-70. [PMID: 11264724 DOI: 10.1046/j.1365-2826.2001.00640.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurones of the supraoptic nucleus (SON) and the magnocellular and parvocellular divisions of the paraventricular nucleus (PVN) express galanin and [125I]galanin binding sites. Although the precise role(s) of galanin in these different cell populations is still unknown, it has been shown to regulate the electrophysiological, neurochemical and secretory activity of magnocellular neurones. In light of the well-described effects of hyperosmotic stimuli, such as salt-loading on magnocellular neurone activity and galanin synthesis and release, and the recent identification of multiple galanin receptors in brain, this study assessed the possible regulation of galanin receptor subtype expression in the PVN/SON of salt-loaded, dehydrated and food-deprived rats. Gal-R1 mRNA was abundant in the SON (and magnocellular PVN) of control rats and levels were increased in these same cells after 4 days of salt-loading (2% NaCl solution as drinking water) or water deprivation. The density of specific [125I]galanin(1-29) binding and the intensity of Gal-R1-like immunostaining were also increased in the characteristically enlarged, magnocellular neurones of the PVN and SON after these treatments. Gal-R2 mRNA was detected in the parvocellular PVN, but levels were not altered by the hyperosmotic stimuli. In contrast, food deprivation (4 days), which has been shown to reduce levels of several neurochemical markers in magnocellular neurones, produced a significant reduction in Gal-R1 (and galanin) mRNA levels in the SON, but no consistent change in neurone size, [125I]galanin binding levels, or Gal-R1 immunostaining. Along with previous findings from this and other laboratories, these data suggest that the expression of galanin and Gal-R1 receptors is regulated in parallel with functional and morphological changes in hypothalamic magnocellular neurones. Furthermore, Gal-R1 immunoreactivity was primarily detected in somatodendritic areas and thus galanin may influence the activity of these cells, particularly vasopressin synthesis/release, via autocrine or paracrine activation of Gal-R1 receptors, especially during long-lasting stimulation.
Collapse
Affiliation(s)
- T C Burazin
- The University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria 3010, Australia
| | | | | |
Collapse
|
33
|
Abstract
An increase in pulsatile release of LHRH is essential for the onset of puberty. However, the mechanism controlling the pubertal increase in LHRH release is still unclear. In primates the LHRH neurosecretory system is already active during the neonatal period but subsequently enters a dormant state in the juvenile/prepubertal period. Neither gonadal steroid hormones nor the absence of facilitatory neuronal inputs to LHRH neurons is responsible for the low levels of LHRH release before the onset of puberty in primates. Recent studies suggest that during the prepubertal period an inhibitory neuronal system suppresses LHRH release and that during the subsequent maturation of the hypothalamus this prepubertal inhibition is removed, allowing the adult pattern of pulsatile LHRH release. In fact, y-aminobutyric acid (GABA) appears to be an inhibitory neurotransmitter responsible for restricting LHRH release before the onset of puberty in female rhesus monkeys. In addition, it appears that the reduction in tonic GABA inhibition allows an increase in the release of glutamate as well as other neurotransmitters, which contributes to the increase in pubertal LHRH release. In this review, developmental changes in several neurotransmitter systems controlling pulsatile LHRH release are extensively reviewed.
Collapse
Affiliation(s)
- E Terasawa
- Department of Pediatrics, Wisconsin Regional Primate Research Center, and University of Wisconsin-Madison, 53715-1299, USA.
| | | |
Collapse
|
34
|
Shen J, Larm JA, Gundlach AL. Galanin-like peptide mRNA in neural lobe of rat pituitary. Increased expression after osmotic stimulation suggests a role for galanin-like peptide in neuron-glial interactions and/or neurosecretion. Neuroendocrinology 2001; 73:2-11. [PMID: 11174012 DOI: 10.1159/000054615] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Galanin-like peptide (GALP) was recently identified in the porcine hypothalamus, pituitary gland and gut, and has reported selectivity for the GalR2, c.f. the GalR1 receptor. GALP cDNAs have been cloned from pig, rat and human, and GALP mRNA expression is restricted to the arcuate nucleus in normal rat brain. This study examined the regional and cellular distribution of GALP mRNA in the rat pituitary gland, and subsequently determined the effect of osmotic stimulation on GALP transcript levels. GALP mRNA was not detected in the anterior or intermediate lobes, but moderate levels of GALP mRNA were present in the neural (posterior) lobe, in presumed pituicytes, of normal male and female rats. Osmotic stimulation by dehydration or salt loading produced a time-dependent increase in GALP mRNA levels in the neural lobe. Thus, dehydration for 4 days increased GALP mRNA 40-fold, while salt loading for 4, 7 or 10 days increased GALP levels 14-, 21- and 25-fold, respectively (p < or = 0.001). Levels of vasopressin (VP) mRNA in the neural lobe were also increased by these treatments, consistent with previous reports. Galanin (GAL) and GalR2 receptor mRNAs were not detected in the neural lobe, under normal or osmotic stimulation conditions. In addition, GALP mRNA levels in the arcuate nucleus were not altered in dehydrated or salt-loaded rats; and GALP mRNA was not detected in magnocellular neurons of the supraoptic or paraventricular nucleus, despite the characteristic up-regulation of VP and GAL mRNA in these cells. In view of the established anatomy and function of VP/oxytocin neurons in the hypothalamo-neurohypophysial system and the role played by pituicytes in their regulation, the likely synthesis/release of GALP by these specialized astrocytes strongly suggests a role for this novel peptide in regulation of pituicyte morphology/function and/or neurohormone release.
Collapse
Affiliation(s)
- J Shen
- Department of Medicine, University of Melbourne, Austin & Repatriation Medical Centre, Heidelberg, Vic., Australia
| | | | | |
Collapse
|
35
|
Shuster SJ, Riedl M, Li X, Vulchanova L, Elde R. The kappa opioid receptor and dynorphin co-localize in vasopressin magnocellular neurosecretory neurons in guinea-pig hypothalamus. Neuroscience 2000; 96:373-83. [PMID: 10683577 DOI: 10.1016/s0306-4522(99)00472-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The relationship between the cloned kappa opioid receptor, dynorphin, and the neurohypophysial hormones vasopressin and oxytocin was analysed in the guinea-pig hypothalamic magnocellular neurosecretory neurons. This analysis was performed in order to understand better which population of neuroendocrine neurons in the guinea-pig is modulated by kappa opioid receptors and its endogenous ligand dynorphin. Extensive co-localization was observed between kappa opioid receptor immunoreactivity and preprodynorphin immunoreactivity in neuronal cell bodies in the paraventricular and supraoptic nuclei. Cells positive for either the kappa opioid receptor or both the kappa opioid receptor and preprodynorphin were restricted to the vasopressin expressing neuronal population and not found in the oxytocin expressing neuronal population. The kappa opioid receptor and dynorphin were examined in the posterior pituitary and both were found to be extensively distributed. Staining for the kappa opioid receptor and dynorphin B co-localized in posterior pituitary. In addition, immunogold electron microscopy confirmed that kappa opioid receptor and dynorphin B immunoreactivity were found in the same nerve terminals. Ultrastructural analysis also revealed that kappa opioid receptor immunoreactivity was associated with both nerve terminals and pituicytes. Within nerve terminals, kappa opioid receptor immunoreactivity was often associated with large secretory vesicles and rarely associated with the plasma membrane. Our data suggest that the cloned kappa opioid receptor may directly modulate the release of vasopressin but not oxytocin in guinea-pig hypothalamic magnocellular neurosecretory neurons and posterior pituitary. Furthermore, we propose that this receptor is an autoreceptor in this system because our results demonstrate a high degree of co-localization between kappa opioid receptor and dynorphin peptide immunoreactivity in magnocellular nerve terminals.
Collapse
Affiliation(s)
- S J Shuster
- Department of Neuroscience, University of Minnesota, Minneapolis 55108, USA
| | | | | | | | | |
Collapse
|
36
|
Hansen EW, Malling D, Christensen JD. Endotoxin-stimulated release of cytokines by cultured cells from the murine neurohypophysis: role of dexamethasone and indomethacin. Neuroimmunomodulation 1999; 6:330-5. [PMID: 10474051 DOI: 10.1159/000026392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It is well established that many cell types produce inflammatory cytokines and we were interested to see whether cells in the neurohypophysis had this ability. This study examines the effect of lipopolysaccharide (LPS) on cytokine production in cultured murine neural lobe (NL) cells. Cells were cultured from the neurohypophysis of mice not older than 5 days and the experiments were performed after 12 days in culture. The majority of cells in culture were immunoreactive for glial fibrillary acidic protein, indicating that the cells were pituicytes. Cytokines were measured in 24-hour samples using commercial ELISA kits. Cells growing in a medium free of endotoxin released 94.3 +/- 6.6 pg IL-6/NL/24 h (mean +/- SEM, n = 21). The release of interleukin-6 (IL-6) was reversible and increased concentration dependently with LPS in the concentration range of 0.1-1 ng/ml. The addition of 1 ng/ml LPS increased the IL-6 release 12-fold to a maximum value of 1,134 +/- 85.5 pg IL-6/NL/24 h (mean +/- SEM, n = 6). No trace of interleukin-1beta (IL-1beta) (<3 pg/NL/24 h) or tumor necrosis factor-alpha (<10 pg/NL/24 h) was detected after LPS stimulation. We examined the effect of dexamethasone (10(-6) M) and indomethacin (10(-4) M) on the release of IL-6 in submaximally stimulated cells. Dexamethasone inhibited the unstimulated and the LPS-stimulated release of IL-6 by 70 and 81%, respectively. Indomethacin had no influence on the release, and it is concluded that cyclooxygenase is not involved in the response. A close association exists between the membrane of the neurosecretory endings and the pituicytes in the neurohypophysis. This naturally raises the question as to whether IL-6 might reflect a physiological connection between the two cell types.
Collapse
Affiliation(s)
- E W Hansen
- Department of Pharmacology, The Royal Danish School of Pharmacy, Copenhagen, Denmark.
| | | | | |
Collapse
|
37
|
Christensen JD, Hansen EW, Frederiksen C, Mølris M, Moesby L. Adrenaline influences the release of interleukin-6 from murine pituicytes: role of beta2-adrenoceptors. Eur J Pharmacol 1999; 378:143-8. [PMID: 10478575 DOI: 10.1016/s0014-2999(99)00448-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study, we examined the effect of adrenaline and interleukin-1beta on interleukin-6 secretion from cultured murine neurohypophyseal cells. Cells were cultured from neurohypophyses of 3- to 5-week-old mice and experiments were performed after 13 days in culture. Interleukin-6 was measured in 24-h samples using a sandwich fluoroimmunoassay. Unstimulated cells released 19+/-3 fmol interleukin-6/neurohypophysis/24 h (mean +/- S.E.M., n = 42). Adrenaline and interleukin-1beta increased the release of interleukin-6 from the cells in a concentration-dependent manner. Incubation with adrenaline (10(-6) M) or interleukin-1beta (11 pM) induced maximal secretion of interleukin-6, resulting in a 2.2-fold and 19.8-fold increase, respectively (P<0.01). The action of adrenaline (10(-6) M) and interleukin-1beta (1.1 pM) was examined separately and together. The sum of the effect of the two compounds given alone was significantly less (P<0.05) than the effect when adrenaline and interleukin-1beta were given together. We examined the effect of the beta-adrenoceptor antagonist propranolol (3.4x10(-6) M), the beta2-adrenoceptor antagonist (+/-)-1-[2,3-(Dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methyl-eth yl)amino]-2-butanol (ICI 118551) (10(-7) M) and the beta1-adrenoceptor antagonist atenolol (10(-7) M and 10(-6) M) on the adrenaline-stimulated release of interleukin-6. Propranolol and ICI 118551 completely blocked the action of adrenaline, whereas atenolol was inactive. It is concluded that the stimulatory effect of adrenaline is mediated via beta2-adrenoceptors.
Collapse
Affiliation(s)
- J D Christensen
- Department of Pharmacology, The Royal Danish School of Pharmacy, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
38
|
Matsunaga W, Miyata S, Kiyohara T. Redistribution of MAP2 immunoreactivity in the neurohypophysial astrocytes of adult rats during dehydration. Brain Res 1999; 829:7-17. [PMID: 10350525 DOI: 10.1016/s0006-8993(99)01285-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The low-molecular-weight microtubule-associated protein-2 (LMW MAP2) is expressed in immature and developing brains, and decreases its content dramatically along with maturation of the central nervous system. In our previous studies, we demonstrated through western blots and dual-labeling immunohistochemistry that LMW MAP2 is expressed in the pituicytes, modified astrocytes of the neurohypophysis in adult rats. The present study aimed to examine changes in the MAP2 immunoreactivity within pituicyte in adult rats under various hydration states using quantitative morphometrical analysis to demonstrate in vivo shape conversion of the pituicyte morphology. In well-hydrated control rats, light microscopic observation revealed that MAP2-stained pituicytes ramified long and well-branched processes. At electron microscopic level, MAP2 immunoreactivity was found in the fine process and cell body of all pituicyte cytoplasm, but not in the axonal terminals containing neurosecretory vesicles. The quantitative analysis demonstrated that the cell size and perimeter of MAP2-stained pituicytes were significantly greater as compared with those of cells stained with glial fibrillary acidic protein (GFAP). When the rats were dehydrated with water deprivation or drinking of 2% saline solution, the process of MAP2-stained pituicytes was less branched due to retracting their cellular processes as compared with those of well-hydrated control and rehydrated rats. The quantitative analysis further demonstrated that water deprivation significantly reduced the cell size, perimeter and length of cellular processes of MAP2-stained pituicytes as compared with those of control. The present finding indicates that MAP2 staining is better method for investigating in vivo shape conversion of the pituicyte morphology than GFAP one. Moreover, the finding that hydration states significantly and reversibly alter in vivo pituicyte shape supports the hypothesis that the plastic shape conversion of pituicyte morphology is responsible for morphological plasticity in the neurohypophysis.
Collapse
Affiliation(s)
- W Matsunaga
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | |
Collapse
|
39
|
Nakai S, Furuya K, Miyata S, Kiyohara T. Intracellular Ca2+ responses to nucleotides, peptides, amines, amino acids and prostaglandins in cultured pituicytes from adult rat neurohypophysis. Neurosci Lett 1999; 266:185-8. [PMID: 10465704 DOI: 10.1016/s0304-3940(99)00286-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study aimed to investigate the reactivity of cultured pituicytes from adult neurohypophysis to various bioactive substances using Ca2+ indicator dye Fura-2. A transient increase of intracellular Ca2+ [Ca2+]i was observed when pituicytes were treated with nucleotides (ATP, ADP, UTP, and UDP) and amines (5-HT2 and alpha2-agonist). Treatment with peptides such as endothelin-1 (ET-1), endothelin-3 (ET-3), bradykinin (BK), vasopressin (AVP), and angiotensin II (Ang II) also induced [Ca2+]i increase in pituicytes. Prostaglandin E2 (PGE2) and F2alpha (PGF2alpha) increased [Ca2+]i, but amino acids of GABA, glutamate (Glu), and taurine had no effect. Serum-free culture condition augmented [Ca2+]i responses to ATP, Ang II and 5-HT within 24 h. These results indicate that pituicytes express many of receptors for neurotransmitters or neuromodulators.
Collapse
Affiliation(s)
- S Nakai
- Department of Applied Biology, Kyoto Institute of Technology, Japan
| | | | | | | |
Collapse
|
40
|
|
41
|
Hatton GI. Astroglial modulation of neurotransmitter/peptide release from the neurohypophysis: present status. J Chem Neuroanat 1999; 16:203-21. [PMID: 10422739 DOI: 10.1016/s0891-0618(98)00067-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reviewed in this article are those studies that have contributed heavily to our current conceptualizations of glial participation in the functioning of the magnocellular hypothalamo-neurohypophysial system. This system undergoes remarkable morphological and functional reorganization induced by increased demand for peptide synthesis and release, and this reorganization involves the astrocytic elements in primary roles. Under basal conditions, these glia appear to be vested with the responsibility of controlling the neuronal microenvironment in ways that reduce neuronal excitability, restrict access to neuronal membranes by neuroactive substances and deter neuron neuron interactions within the system. With physiological activation, the glial elements, via receptor-mediated mechanisms, take up new positions. This permissively facilitates neuron neuron interactions such as the exposure of neuronal membranes to released peptides and the formation of gap junctions and new synapses, enhances and prolongs the actions of those excitatory neurotransmitters for which there are glial uptake mechanisms, and facilitates the entry of peptides into the blood. In addition, subpopulations of these glia either newly synthesize or increase synthesis of neuroactive peptides for which their neuronal neighbors have receptors. Release of these peptides by the glia or their functional roles in the system have not yet been demonstrated.
Collapse
Affiliation(s)
- G I Hatton
- Department of Neuroscience, University of California, Riverside 92521, USA.
| |
Collapse
|
42
|
Miyata S, Furuya K, Nakai S, Bun H, Kiyohara T. Morphological plasticity and rearrangement of cytoskeletons in pituicytes cultured from adult rat neurohypophysis. Neurosci Res 1999; 33:299-306. [PMID: 10401983 DOI: 10.1016/s0168-0102(99)00021-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The adult rat neurohypophysis reveals drastic morphological plasticity of neuron-glial organization during chronic physiological stimulation. Pituicytes are modified astrocytes in the neurohypophysis, and shape conversion of them largely contributes to the morphological plasticity. The present study aimed to investigate the receptor-mediated mechanism for shape conversion of the pituicyte morphology, particularly in relation with changes of cytoskeletal organization. The cultured pituicytes from adult rat neurohypophysis were mostly flat amorphous shape in normal salt solution. Histochemical experiments showed that thick bundle of microfilament (stress fibers) and fine fibers of microtubule distributed evenly within the pituicyte. When pituicytes were treated with adenosine (more than 1 microM), isoproterenol (IPR); beta-agonist, more than 10 nM), and dibutyryl cyclic AMP (dBcAMP, 1 mM), the pituicyte morphology changed from flat to stellate shape. Upon treatment with dBcAMP, stress fibers within pituicyte cytoplasm disappeared, and microtubule assembled in the cellular processes and cytoplasm surrounding the nucleus. Pretreatment with colchicine (microtubule-disrupting agent, 25 microM) and orthovanadate (tyrosine phosphatase inhibitor, 1 mM) prevented dBcAMP-induced stellation of the pituicyte morphology. Treatment with sphingosine (protein kinase C inhibitor, 10 microM), W-7 (calmodulin dependent protein kinase inhibitor, 40 microM), ML-9 (myosin light chain kinase inhibitor, 20 microM), and cytochalasinB (CytB; microfilament disrupting agent, 5 microM), induced stellation of the pituicyte morphology. Treatment of endothelin-1 (more than 0.1 nM) and endotheline-3 (more than 0.1 nM) reverted dBcAMP-induced stellation of the pituicyte morphology to original flat one and also reverted arrangement of cytoskeletons of stress fiber and microtubules as seen in control one. The present results reveal that pituicyte shape conversion is mediated via beta-adrenergic, adenosine and endotheline and depend on rearrangement of stress fibers and microtubules. In addition, the mechanism of shape conversion of pituicytes cultured from adult neurohypophysis is quite similar to that of astrocytes cultured from neonatal brains and possibly is useful for understanding morphological plasticity of adult brains.
Collapse
Affiliation(s)
- S Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Japan.
| | | | | | | | | |
Collapse
|
43
|
van Leeuwen FW, Verwer RW, Spence H, Evans DA, Burbach JP. The magnocellular neurons of the hypothalamo-neurohypophyseal system display remarkable neuropeptidergic phenotypes leading to novel insights in neuronal cell biology. PROGRESS IN BRAIN RESEARCH 1999; 119:115-26. [PMID: 10074784 DOI: 10.1016/s0079-6123(08)61565-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
For decades the magnocellular neurons of the hypothalamo-neurophypophyseal system (HNS), in which either vasopressin or oxytocin are produced and released into the bloodstream, have been playing a pivotal role in fundamental discoveries in the nervous system. The primary structure of vasopressin and oxytocin was the first of all neuropeptides to be published, i.e., in the 1950s by the Nobel prize laureate Du Vigneaud. Moreover, many trend-setting discoveries have their origin in the HNS, which abundantly expresses vasopressin and oxytocin, clearly displays its function and is relatively easily to manipulate. Examples are the phenomenon of coexpression of neuropeptides, patch-clamping of nerve endings, axonal transport of RNA, neuroglia interactions and the behavioral effects. An extraordinarily intriguing example is the homozygous Brattleboro rat, which lacks vasopressin by a germ-line mutation, and has disclosed many of the fundamental characteristics of peptidergic neurons, and neurons in general. In this chapter we will discuss a few of them, in particular the recent data on mutations in vasopressin RNA. It is to be expected that the HNS will retain its informative role in the next decades.
Collapse
Affiliation(s)
- F W van Leeuwen
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Madeira MD, Paula-Barbosa MM. Effects of alcohol on the synthesis and expression of hypothalamic peptides. Brain Res Bull 1999; 48:3-22. [PMID: 10210163 DOI: 10.1016/s0361-9230(98)00131-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies aimed at analyzing the deleterious effects of excess alcohol in the brain have revealed structural alterations that are often associated with functional and behavioral disturbances. Among the neuronal damage related to prolonged alcohol exposure, alterations in the synthesizing capabilities and levels of expression of neuroactive peptides have been increasingly reported. Actually, such changes frequently represent the sole repercussion of acute and short-term exposure to ethanol. This review gathers the existing data on the effects of ethanol exposure on the synthesis and expression of hypothalamic peptides. Amid those that can act both as neurotransmitters and neurohormones, we allude to vasopressin, corticotropin-releasing hormone, thyrotropin-releasing hormone and pro-opiomelanocortin and related peptides produced by paraventricular, supraoptic and arcuate neurons. With respect to peptides that act exclusively as neurotransmitters, we address the effects of alcohol on vasoactive intestinal polypeptide, gastrin-releasing peptide, somatostatin and vasopressin synthesized by suprachiasmatic neurons. Hypothalamic neurons that produce peptides that act as neurotransmitters are supposed to be modulated primarily by influences exerted by neuronal afferents, whereas those producing peptides that additionally act as neurohormones are also regulated by peripheral stimuli (e.g., plasma levels of circulating hormones, osmotic challenges). These peculiar features endue the hypothalamus with characteristics that are particularly propitious to enlighten the still cryptic mechanisms underlying the ethanol effects on protein synthesis.
Collapse
Affiliation(s)
- M D Madeira
- Department of Anatomy, Porto Medical School, Portugal.
| | | |
Collapse
|
45
|
Yokoi H, Arima H, Kondo K, Murase T, Iwasaki Y, Yang HY, Oiso Y. Antiserum against neuropeptide FF augments vasopressin release in conscious rats. Peptides 1998; 19:393-5. [PMID: 9493874 DOI: 10.1016/s0196-9781(97)00375-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We previously reported that centrally administered neuropeptide FF (NPFF) inhibited arginine vasopressin (AVP) release. In this study, immunoneutralization of central NPFF was performed to evaluate the role of endogenous NPFF in the regulation of AVP release. Intracerebroventricular (ICV) injection of antiserum against NPFF (Anti-NPFF) significantly augmented the plasma AVP increase induced by hyperosmolality [intraperitoneal injection of hypertonic saline (600 mOsm/kg, 2% BW)] at 60 min after ICV injection compared with normal rabbit serum (NRS) (NRS: 4.20+/-0.30 pg/ml, Anti-NPFF: 5.83+/-0.46 pg/ml, p < 0.01). Anti-NPFF did not cause significant change in plasma osmolality, plasma volume or arterial blood pressure. This evidence indicates that endogenous NPFF might be physiologically involved in osmoregulation of the plasma AVP level through its inhibitory action.
Collapse
Affiliation(s)
- H Yokoi
- First Department of Internal Medicine, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In the brain, astrocytes are associated intimately with neurons and surround synapses. Due to their close proximity to synaptic clefts, astrocytes are in a prime location for receiving synaptic information from released neurotransmitters. Cultured astrocytes express a wide range of neurotransmitter receptors, but do astrocytes in vivo also express neurotransmitter receptors and, if so, are the receptors activated by synaptically released neurotransmitters? In recent years, considerable efforts has gone into addressing these issues. The experimental results of this effort have been compiled and are presented in this review. Although there are many different receptors which have not been identified on astrocytes in situ, it is clear that astrocytes in situ express a number of different receptors. There is evidence of glutamatergic, GABAergic, adrenergic, purinergic, serotonergic, muscarinic, and peptidergic receptors on protoplasmic, fibrous, or specialized (Bergmann glia, pituicytes, Müller glia) astrocytes in situ and in vivo. These receptors are functionally coupled to changes in membrane potential or to intracellular signaling pathways such as activation of phospholipase C or adenylate cyclase. The expression of neurotransmitter receptors by astrocytes in situ exhibits regional and intraregional heterogeneity and changes during development and in response to injury. There is also evidence that receptors on astrocytes in situ can be activated by neurotransmitter(s) released from synaptic terminals. Given the evidence of extra-synaptic signaling and the expression of neurotransmitter receptors by astrocytes in situ, direct communication between neurons and astrocytes via neurotransmitters could be a widespread form of communication in the brain which may affect many different aspects of brain function, such as glutamate uptake and the modulation of extracellular space.
Collapse
Affiliation(s)
- J T Porter
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | |
Collapse
|
47
|
Abstract
Physiological activation of the magnocellular hypothalamo-neurohypophysial system induces a coordinated astrocytic withdrawal from between the magnocellular somata and the parallel-projecting dendrites of the supraoptic nucleus. Neural lobe astrocytes release engulfed axons and retract from their usual positions along the basal lamina. Occurring on a minutes-to-hours time scale, these changes are accompanied by increased direct apposition of both somatic and dendritic membrane, the formation of dendritic bundles, the appearance of novel multiple synapses in both the somatic and dendritic zones, and increased neural occupation of the perivascular basal lamina. Reversal, albeit with varying time courses, is achieved by removing the activating stimuli. Additionally, activation results in interneuronal coupling increases that are capable of being modulated synaptically via second messenger-dependent mechanisms. These changes appear to play important roles in control and coordination of oxytocin and vasopressin release during such conditions as lactation and dehydration.
Collapse
Affiliation(s)
- G I Hatton
- Department of Neuroscience, University of California, Riverside 92521, USA
| |
Collapse
|
48
|
Swaab D. Chapter II Neurobiology and neuropathology of the human hypothalamus. HANDBOOK OF CHEMICAL NEUROANATOMY 1997. [DOI: 10.1016/s0924-8196(97)80004-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|