1
|
Carpenter RS, Lagou MK, Karagiannis GS, Maryanovich M. Neural regulation of the thymus: past, current, and future perspectives. Front Immunol 2025; 16:1552979. [PMID: 40046055 PMCID: PMC11880003 DOI: 10.3389/fimmu.2025.1552979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
The thymus is a primary lymphoid organ critical for the development of mature T cells from hematopoietic progenitors. A highly structured organ, the thymus contains distinct regions, precise cytoarchitecture, and molecular signals tightly regulating thymopoiesis. Although the above are well-understood, the structural and functional implications of thymic innervation are largely neglected. In general, neural regulation has become increasingly identified as a critical component of immune cell development and function. The central nervous system (CNS) in the brain coordinates these immunological responses both by direct innervation through peripheral nerves and by neuroendocrine signaling. Yet how these signals, particularly direct neural innervation, may regulate the thymus biology is unclear and understudied. In this review, we highlight historical and current data demonstrating direct neural input to the thymus and assess current evidence of the neural regulation of thymopoiesis. We further discuss the current knowledge gaps and summarize recent advances in techniques that could be used to study how nerves regulate the thymic microenvironment.
Collapse
Affiliation(s)
- Randall S. Carpenter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria K. Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - George S. Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, United States
- The Marilyn and Stanely M. Katz Institute for Immunotherapy for Cancer and Inflammatory Disorders, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
- Cancer Dormancy Institute, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, United States
| |
Collapse
|
2
|
Carnevale D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:379-394. [PMID: 35301456 DOI: 10.1038/s41569-022-00678-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Cardiovascular diseases (CVDs) make a substantial contribution to the global burden of disease. Prevention strategies have succeeded in reducing the effect of acute CVD events and deaths, but the long-term consequences of cardiovascular risk factors still represent the major cause of disability and chronic illness, suggesting that some pathophysiological mechanisms might not be adequately targeted by current therapies. Many of the underlying causes of CVD have now been recognized to have immune and inflammatory components. However, inflammation and immune activation were mostly regarded as a consequence of target-organ damage. Only more recent findings have indicated that immune dysregulation can be pathogenic for CVD, identifying a need for novel immunomodulatory therapeutic strategies. The nervous system, through an array of afferent and efferent arms of the autonomic nervous system, profoundly affects cardiovascular function. Interestingly, the autonomic nervous system also innervates immune organs, and neuroimmune interactions that are biologically relevant to CVD have been discovered, providing the foundation to target neural reflexes as an immunomodulatory therapeutic strategy. This Review summarizes how the neural regulation of immunity and inflammation participates in the onset and progression of CVD and explores promising opportunities for future therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Molecular Medicine, Sapienza University, Rome, Italy. .,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
3
|
Decker AM, Kapila YL, Wang HL. The psychobiological links between chronic stress-related diseases, periodontal/peri-implant diseases, and wound healing. Periodontol 2000 2021; 87:94-106. [PMID: 34463997 PMCID: PMC8459609 DOI: 10.1111/prd.12381] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic stress is a relevant disease to periodontal practice, encompassing 25%-28% of the US population (American Psychological Association 2015). While it is well established that chronic psychologic stress can have significant deleterious systemic effects, only in recent decades have we begun to explore the biochemical, microbial, and physiologic impacts of chronic stress diseases on oral tissues. Currently, chronic stress is classified as a "risk indicator" for periodontal disease. However, as the evidence in this field matures with additional clinically controlled trials, more homogeneous data collection methods, and a better grasp of the biologic underpinnings of stress-mediated dysbiosis, emerging evidence suggests that chronic stress and related diseases (depression, anxiety) may be significant contributing factors in periodontal/peri-implant disease progression and inconsistent wound healing following periodontal-related therapeutics. Ideal solutions for these patients include classification of the disease process and de-escalation of chronic stress conditions through coping strategies. This paper also summarizes periodontal/implant-related therapeutic approaches to ensure predictable results for this specific patient subpopulation.
Collapse
Affiliation(s)
- Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| |
Collapse
|
4
|
Walsh CP, Bovbjerg DH, Marsland AL. Glucocorticoid resistance and β2-adrenergic receptor signaling pathways promote peripheral pro-inflammatory conditions associated with chronic psychological stress: A systematic review across species. Neurosci Biobehav Rev 2021; 128:117-135. [PMID: 34116126 PMCID: PMC8556675 DOI: 10.1016/j.neubiorev.2021.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/11/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
Activation of the HPA-axis and SNS are widely accepted to link chronic stress with elevated levels of peripheral pro-inflammatory markers in blood. Yet, empirical evidence showing that peripheral levels of glucocorticoids and/or catecholamines mediate this effect is equivocal. Recent attention has turned to the possibility that cellular sensitivity to these ligands may contribute to inflammatory mediators that accompany chronic stress. We review current evidence for the association of chronic stress with glucocorticoid receptor (GR) and β-adrenergic receptor (β-AR) signaling sensitivity. Across 15 mouse, 7 primate, and 19 human studies, we found that chronic stress reliably associates with downregulation in cellular GR sensitivity, alterations in intracellular β-AR signaling, and upregulation in pro-inflammatory biomarkers in peripheral blood. We also present evidence that alterations in GR and β-AR signaling may be specific to myeloid progenitor cells such that stress-related signaling promotes release of cells that are inherently less sensitive to glucocorticoids and differentially sensitive to catecholamines. Our findings have broad implications for understanding mechanisms by which chronic stress may contribute to pro-inflammatory phenotypes.
Collapse
Affiliation(s)
| | - Dana H Bovbjerg
- Department of Psychology, University of Pittsburgh, United States; Department of Psychiatry, University of Pittsburgh School of Medicine, United States.
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, United States.
| |
Collapse
|
5
|
Rehman A, Baloch NUA, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020; 211:107529. [PMID: 32197794 PMCID: PMC7388546 DOI: 10.1016/j.pharmthera.2020.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The Third International Consensus Definitions (Sepsis-3) define sepsis as life-threatening multi-organ dysfunction caused by a dysregulated host response to infection. Sepsis can progress to septic shock-an even more lethal condition associated with profound circulatory, cellular and metabolic abnormalities. Septic shock remains a leading cause of death in intensive care units and carries a mortality of almost 25%. Despite significant advances in our understanding of the pathobiology of sepsis, therapeutic interventions have not translated into tangible differences in the overall outcome for patients. Clinical trials of antagonists of various pro-inflammatory mediators in sepsis have been largely unsuccessful in the past. Given the diverse physiologic roles played by G-protein coupled receptors (GPCR), modulation of GPCR signaling for the treatment of sepsis has also been explored. Traditional pharmacologic approaches have mainly focused on ligands targeting the extracellular domains of GPCR. However, novel techniques aimed at modulating GPCR intracellularly through aptamers, pepducins and intrabodies have opened a fresh avenue of therapeutic possibilities. In this review, we summarize the diverse roles played by various subfamilies of GPCR in the pathogenesis of sepsis and identify potential targets for pharmacotherapy through these novel approaches.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Noor Ul-Ain Baloch
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - John P Morrow
- Department of Medicine, Columbia University, New York City, NY, United States
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York City, NY, United States.
| |
Collapse
|
6
|
Verlinden TJM, van Dijk P, Hikspoors J, Herrler A, Lamers WH, Köhler SE. Innervation of the human spleen: A complete hilum-embedding approach. Brain Behav Immun 2019; 77:92-100. [PMID: 30593840 DOI: 10.1016/j.bbi.2018.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION The spleen is hypothesized to play a role in the autonomic nervous system (ANS)-mediated control of host defence, but the neuroanatomical evidence for this assumption rests on a sparse number of studies, which mutually disagree with respect to the existence of cholinergic or vagal innervation. METHODS We conducted an immuno- and enzyme-histochemical study of the innervation of the human spleen using a complete hilum-embedding approach to ensure that only nerves that entered or left the spleen were studied, and that all splenic nerves were included in the sampled area. Furthermore, a complete embedded spleen was serially sectioned to prepare a 3D reconstruction of the hilar nerve plexus. RESULTS All detected nerves entering the spleen arise from the nerve plexus that surrounds branches of the splenic artery and are catecholaminergic. Inside the spleen these nerves continue within the adventitia of the white pulpal central arteries and red pulpal arterioles. Staining for either choline acetyltransferase or acetylcholinesterase did not reveal any evidence for cholinergic innervation of the human spleen, irrespective of the type of fixation (regularly fixed, fresh-frozen post-fixed or fresh-frozen cryoslides). Furthermore, no positive VIP staining was observed (VIP is often co-expressed in postganglionic parasympathetic nerves). CONCLUSION Our comprehensive approach did not produce any evidence for a direct cholinergic (or VIP-ergic) innervation of the spleen. This finding does not rule out (indirect) vagal innervation via postganglionic non-cholinergic periarterial fibres.
Collapse
Affiliation(s)
- Thomas J M Verlinden
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands.
| | - Paul van Dijk
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands
| | - Jill Hikspoors
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands
| | - Andreas Herrler
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands
| |
Collapse
|
7
|
Dai X, Hua L, Chen Y, Wang J, Li J, Wu F, Zhang Y, Su J, Wu Z, Liang C. Mechanisms in hypertension and target organ damage: Is the role of the thymus key? (Review). Int J Mol Med 2018; 42:3-12. [PMID: 29620247 PMCID: PMC5979885 DOI: 10.3892/ijmm.2018.3605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/27/2018] [Indexed: 12/23/2022] Open
Abstract
A variety of cells and cytokines have been shown to be involved in the whole process of hypertension. Data from experimental and clinical studies on hypertension have confirmed the key roles of immune cells and inflammation in the process. Dysfunction of the thymus, which modulates the development and maturation of lymphocytes, has been shown to be associated with the severity of hypertension. Furthermore, gradual atrophy, functional decline or loss of the thymus has been revealed to be associated with aging. The restoration or enhancement of thymus function via upregulation in the expression of thymus transcription factors forkhead box N1 or thymus transplantation may provide an option to halt or reverse the pathological process of hypertension. Therefore, the thymus may be key in hypertension and associated target organ damage, and may provide a novel treatment strategy for the clinical management of patients with hypertension in addition to different commercial drugs. The purpose of this review is to summarize and discuss the advances in our understanding of the impact of thymus function on hypertension from data from animal and human studies, and the potential mechanisms.
Collapse
Affiliation(s)
| | | | | | - Jiamei Wang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jingyi Li
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Feng Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yanda Zhang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jiyuan Su
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Zonggui Wu
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
8
|
Feketeova E, Li Z, Joseph B, Shah R, Spolarics Z, Ulloa L. Dopaminergic Control of Inflammation and Glycemia in Sepsis and Diabetes. Front Immunol 2018; 9:943. [PMID: 29780390 PMCID: PMC5945822 DOI: 10.3389/fimmu.2018.00943] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022] Open
Abstract
Most preclinical treatments for sepsis failed in clinical trials in part because the experimental models of sepsis were performed on healthy animals that do not mimic septic patients. Here, we report that experimental diabetes worsens glycemia, inflammation, and mortality in experimental sepsis. Diabetes increases hyperglycemia, systemic inflammation, and mortality in sepsis. Diabetes exacerbates serum tumor necrosis factor (TNF) levels in sepsis by increasing splenic TNF production. Both serum from diabetic mice and glucose increase cytokine production in splenocytes. Anti-inflammatory treatments cannot control hyperglycemia and are less effective in diabetic patients. By contrast, dopaminergic agonist type-1, fenoldopam, attenuates hyperglycemia, and systemic inflammation in diabetic septic mice by inhibiting splenic p65NF-kB phosphorylation. Fenoldopam inhibits TNF production in splenocytes even at high glucose concentrations and inhibits the canonical NF-kB pathway by inhibiting p65RelA and p50NF-kB1 phosphorylation without affecting the non-canonical NF-kB proteins. Treatment with fenoldopam rescues diabetic mice from established polymicrobial peritonitis even when the treatment is started after the onset of sepsis. These results suggest that dopaminergic agonists can control hyperglycemia, systemic inflammation and provide therapeutic advantages for treating diabetic patients with sepsis in a clinically relevant time frame.
Collapse
Affiliation(s)
- Eleonora Feketeova
- Department of Surgery, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Zhifeng Li
- Department of Surgery, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Biju Joseph
- Department of Surgery, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Roshan Shah
- Department of Surgery, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Zoltan Spolarics
- Department of Surgery, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Luis Ulloa
- Department of Surgery, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
9
|
Zhu MY. Noradrenergic Modulation on Dopaminergic Neurons. Neurotox Res 2018; 34:848-859. [DOI: 10.1007/s12640-018-9889-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
|
10
|
Leposavić GM, Pilipović IM. Intrinsic and Extrinsic Thymic Adrenergic Networks: Sex Steroid-Dependent Plasticity. Front Endocrinol (Lausanne) 2018; 9:13. [PMID: 29441042 PMCID: PMC5797573 DOI: 10.3389/fendo.2018.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/11/2018] [Indexed: 12/30/2022] Open
Abstract
The thymus is sexually differentiated organ providing microenvironment for T-cell precursor differentiation/maturation in the major histocompatibility complex-restricted self-tolerant T cells. With increasing age, the thymus undergoes involution leading to the decline in efficacy of thymopoiesis. Noradrenaline from thymic nerve fibers and "(nor)adrenergic" cells is involved in the regulation of thymopoiesis. In rodents, noradrenaline concentration in thymus and adrenoceptor (AR) expression on thymic cells depend on sex and age. These differences are suggested to be implicated in the development of sexual diergism and the age-related decline in thymopoiesis. The programming of both thymic sexual differentiation and its involution occurs during the critical early perinatal period and may be reprogrammed during peripubertal development. The thymic (re)programming is critically dependent on circulating levels of gonadal steroids. Although the underlying molecular mechanisms have not yet been elucidated fully, it is assumed that the gonadal steroid action during the critical perinatal/peripubertal developmental periods leads to long-lasting changes in the efficacy of thymopoiesis partly through (re)programming of "(nor)adrenergic" cell networks and AR expression on thymic cells.
Collapse
Affiliation(s)
- Gordana Momčilo Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- *Correspondence: Gordana Momčilo Leposavić,
| | - Ivan M. Pilipović
- Immunology Research Centre “Branislav Janković”, Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia
| |
Collapse
|
11
|
Joshi N, Singh S. Updates on immunity and inflammation in Parkinson disease pathology. J Neurosci Res 2017; 96:379-390. [DOI: 10.1002/jnr.24185] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Neeraj Joshi
- Department of Biochemistry and Biophysics; Helen Diller Comprehensive Cancer Center; San Francisco California
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
12
|
Houlden A, Goldrick M, Brough D, Vizi E, Lénárt N, Martinecz B, Roberts I, Denes A. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 2016; 57:10-20. [PMID: 27060191 PMCID: PMC5021180 DOI: 10.1016/j.bbi.2016.04.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 12/28/2022] Open
Abstract
Intestinal microbiota are critical for health with changes associated with diverse human diseases. Research suggests that altered intestinal microbiota can profoundly affect brain function. However, whether altering brain function directly affects the microbiota is unknown. Since it is currently unclear how brain injury induces clinical complications such as infections or paralytic ileus, key contributors to prolonged hospitalization and death post-stroke, we tested in mice the hypothesis that brain damage induced changes in the intestinal microbiota. Experimental stroke altered the composition of caecal microbiota, with specific changes in Peptococcaceae and Prevotellaceae correlating with the extent of injury. These effects are mediated by noradrenaline release from the autonomic nervous system with altered caecal mucoprotein production and goblet cell numbers. Traumatic brain injury also caused changes in the gut microbiota, confirming brain injury effects gut microbiota. Changes in intestinal microbiota after brain injury may affect recovery and treatment of patients should appreciate such changes.
Collapse
Affiliation(s)
- A. Houlden
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - M. Goldrick
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - D. Brough
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - E.S. Vizi
- Laboratory of Drug Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O.B. 67, H-1450 Budapest, Hungary,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - N. Lénárt
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - B. Martinecz
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - I.S. Roberts
- Faculty of Life Sciences, University of Manchester, Manchester, UK,Corresponding authors at: Faculty of Life Sciences, University of Manchester, Manchester, UK (I.S. Roberts); Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary (A. Denes).Faculty of Life SciencesUniversity of ManchesterManchesterUK
| | - A. Denes
- Faculty of Life Sciences, University of Manchester, Manchester, UK,Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary,Corresponding authors at: Faculty of Life Sciences, University of Manchester, Manchester, UK (I.S. Roberts); Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary (A. Denes).Faculty of Life SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
13
|
Wirth T, Westendorf AM, Bloemker D, Wildmann J, Engler H, Mollerus S, Wadwa M, Schäfer MKH, Schedlowski M, del Rey A. The sympathetic nervous system modulates CD4(+)Foxp3(+) regulatory T cells via noradrenaline-dependent apoptosis in a murine model of lymphoproliferative disease. Brain Behav Immun 2014; 38:100-10. [PMID: 24440144 DOI: 10.1016/j.bbi.2014.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/04/2014] [Accepted: 01/09/2014] [Indexed: 01/22/2023] Open
Abstract
The sympathetic nervous system (SNS) plays a crucial role in the course and development of autoimmune disease in Fas-deficient lpr/lpr mice. As regulatory T cells (Tregs) are considered important modulators of autoimmune processes, we analyzed the interaction between the SNS and Tregs in this murine model of lymphoproliferative disease. We found that the percentage of Tregs among CD4(+) T cells is increased in the spleen, lymph nodes, and thymus of lpr/lpr mice as compared to age-matched C57Bl/6J (B6) mice. Furthermore, noradrenaline (NA), the main sympathetic neurotransmitter, induced apoptosis in B6- and lpr/lpr-derived Tregs. NA also reduced the frequency of Foxp3(+) cells and Foxp3 mRNA expression via β2-adrenoceptor (β2-AR)-mediated mechanisms in a concentration and time-dependent manner. Destruction of peripheral sympathetic nerves by 6-hydroxydopamine significantly increased the percentage of Tregs in B6 control mice to an extent comparable to aged-matched lpr/lpr mice. The concentration of splenic NA negatively correlated with the frequency of CD4(+)Foxp3(+) Tregs. Additionally, 60days after sympathectomy, a partial recovery of NA concentrations led to Treg percentages comparable to those of intact, vehicle-treated controls. Immunohistochemical analysis of the spleen revealed localization of single Foxp3(+) Tregs in proximity to NA-producing nerve fibers, providing an interface between Tregs and the SNS. Taken together, our data suggest a relation between the degree of splenic sympathetic innervation and the size of the Treg compartment. While there are few examples of endogenous substances capable of affecting Tregs, our results provide a possible explanation of how the magnitude of the Treg compartment in the spleen can be regulated by the SNS.
Collapse
Affiliation(s)
- Timo Wirth
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany; Department of Immunophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Philipps University of Marburg, Germany.
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Dominique Bloemker
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Johannes Wildmann
- Department of Immunophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Philipps University of Marburg, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Sina Mollerus
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Munisch Wadwa
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Martin K-H Schäfer
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps University of Marburg, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Adriana del Rey
- Department of Immunophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Philipps University of Marburg, Germany
| |
Collapse
|
14
|
Mignini F, Sabbatini M, Mattioli L, Cosenza M, Artico M, Cavallotti C. Neuro-immune modulation of the thymus microenvironment (review). Int J Mol Med 2014; 33:1392-400. [PMID: 24676230 DOI: 10.3892/ijmm.2014.1709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/13/2014] [Indexed: 11/05/2022] Open
Abstract
The thymus is the primary site for T-cell lympho-poiesis. Its function includes the maturation and selection of antigen specific T cells and selective release of these cells to the periphery. These highly complex processes require precise parenchymal organization and compartmentation where a plethora of signalling pathways occur, performing strict control on the maturation and selection processes of T lymphocytes. In this review, the main morphological characteristics of the thymus microenvironment, with particular emphasis on nerve fibers and neuropeptides were assessed, as both are responsible for neuro-immune‑modulation functions. Among several neurotransmitters that affect thymus function, we highlight the dopaminergic system as only recently has its importance on thymus function and lymphocyte physiology come to light.
Collapse
Affiliation(s)
- Fiorenzo Mignini
- Human Anatomy, School of Drug and Health Products Science, University of Camerino, Ι-62032 Camerino, Italy
| | - Maurizio Sabbatini
- Human Anatomy, Department of Health Sciences, University of Eastern Piedmont ̔Amedeo Avogadro̓, I-28100 Novara, Italy
| | - Laura Mattioli
- Human Anatomy, School of Drug and Health Products Science, University of Camerino, Ι-62032 Camerino, Italy
| | - Monica Cosenza
- Human Anatomy, School of Drug and Health Products Science, University of Camerino, Ι-62032 Camerino, Italy
| | - Marco Artico
- Department of Anatomical, Histological, Medico-legal and Locomotor System Sciences, Sapienza University of Rome, Ι-00185 Rome, Italy
| | - Carlo Cavallotti
- Department of Sensory Organs, Sapienza University of Rome, Ι-00185 Rome, Italy
| |
Collapse
|
15
|
Bellinger DL, Lorton D. Autonomic regulation of cellular immune function. Auton Neurosci 2014; 182:15-41. [PMID: 24685093 DOI: 10.1016/j.autneu.2014.01.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022]
Abstract
The nervous system and the immune system (IS) are two integrative systems that work together to detect threats and provide host defense, and to maintain/restore homeostasis. Cross-talk between the nervous system and the IS is vital for health and well-being. One of the major neural pathways responsible for regulating host defense against injury and foreign antigens and pathogens is the sympathetic nervous system (SNS). Stimulation of adrenergic receptors (ARs) on immune cells regulates immune cell development, survival, proliferative capacity, circulation, trafficking for immune surveillance and recruitment, and directs the cell surface expression of molecules and cytokine production important for cell-to-cell interactions necessary for a coordinated immune response. Finally, AR stimulation of effector immune cells regulates the activational state of immune cells and modulates their functional capacity. This review focuses on our current understanding of the role of the SNS in regulating host defense and immune homeostasis. SNS regulation of IS functioning is a critical link to the development and exacerbation of chronic immune-mediated diseases. However, there are many mechanisms that need to be further unraveled in order to develop sound treatment strategies that act on neural-immune interaction to resolve or prevent chronic inflammatory diseases, and to improve health and quality of life.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology and Human Anatomy, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA.
| | - Dianne Lorton
- College of Arts and Sciences, Kent State University and the Kent Summa Initiative for Clinical and Translational Research, Summa Health System, Akron, OH 44304, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Functional somatic symptoms (FSS) are common in children and adolescents, but explanatory models that synthesize research findings are lacking. This article reviews the studies published from January 2012 to March 2013 that investigate the neurophysiological mechanisms that may underlie FSS. RECENT FINDINGS Studies from diverse medical disciplines suggest that FSS are associated with functional differences in hypothalamic-pituitary-adrenal function, imbalances in vagal-sympathetic tone, upregulation of immune-inflammatory function, and primed cognitive-emotional responses that serve to amplify reactivity to threatening stimuli, thereby contributing to the subjective experience of somatic symptoms. SUMMARY FSS appear to reflect dysregulations of the stress system. When seemingly disparate research findings are interpreted together within an overarching 'stress-system' framework, a coherent explanatory model begins to emerge.
Collapse
|
17
|
The importance of the nurse cells and regulatory cells in the control of T lymphocyte responses. BIOMED RESEARCH INTERNATIONAL 2012; 2013:352414. [PMID: 23509712 PMCID: PMC3591132 DOI: 10.1155/2013/352414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/12/2012] [Indexed: 11/17/2022]
Abstract
T lymphocytes from the immune system are bone marrow-derived cells whose development and activities are carefully supervised by two sets of accessory cells. In the thymus, the immature young T lymphocytes are engulfed by epithelial “nurse cells” and retained in vacuoles, where most of them (95%) are negatively selected and removed when they have an incomplete development or express high affinity autoreactive receptors. The mature T lymphocytes that survive to this selection process leave the thymus and are controlled in the periphery by another subpopulation of accessory cells called “regulatory cells,” which reduce any excessive immune response and the risk of collateral injuries to healthy tissues. By different times and procedures, nurse cells and regulatory cells control both the development and the functions of T lymphocyte subpopulations. Disorders in the T lymphocytes development and migration have been observed in some parasitic diseases, which disrupt the thymic microenvironment of nurse cells. In other cases, parasites stimulate rather than depress the functions of regulatory T cells decreasing T-mediated host damages. This paper is a short review regarding some features of these accessory cells and their main interactions with T immature and mature lymphocytes. The modulatory role that neurotransmitters and hormones play in these interactions is also revised.
Collapse
|
18
|
Hsing CH, Lin CF, So E, Sun DP, Chen TC, Li CF, Yeh CH. α2-Adrenoceptor agonist dexmedetomidine protects septic acute kidney injury through increasing BMP-7 and inhibiting HDAC2 and HDAC5. Am J Physiol Renal Physiol 2012; 303:F1443-F1453. [PMID: 22933299 DOI: 10.1152/ajprenal.00143.2012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α(2)-adrenoceptor (α(2)-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro, the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α(2)-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.
Collapse
Affiliation(s)
- Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
19
|
Leposavić G, Pilipović I, Perišić M. Cellular and nerve fibre catecholaminergic thymic network: steroid hormone dependent activity. Physiol Res 2011; 60:S71-82. [PMID: 21777027 DOI: 10.33549/physiolres.932175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The thymus plays a critical role in establishing and maintaining the peripheral T-cell pool. It does so by providing a microenvironment within which T-cell precursors differentiate and undergo selection processes to create a functional population of major histocompatibility complex-restricted, self-tolerant T cells. These cells are central to adaptive immunity. Thymic T-cell development is influenced by locally produced soluble factors and cell-to-cell interactions, as well as by sympathetic noradrenergic and endocrine system signalling. Thymic lymphoid and non-lymphoid cells have been shown not only to express beta- and alpha(1)- adrenoceptors (ARs), but also to synthesize catecholamines (CAs). Thus, it is suggested that CAs influence T-cell development via both neurocrine/endocrine and autocrine/paracrine action, and that they serve as immunotransmitters between thymocytes and nerves. CAs acting at multiple sites along the thymocyte developmental route affect T-cell generation not only numerically, but also qualitatively. Thymic CA level and synthesis, as well as AR expression exhibit sex steroid-mediated sexual dimorphism. Moreover, the influence of CAs on T-cell development exhibits glucocorticoid-dependent plasticity. This review summarizes recent findings in this field and our current understanding of complex and multifaceted neuroendocrine-immune communications at thymic level.
Collapse
Affiliation(s)
- G Leposavić
- Immunology Research Centre Branislav Janković, Institute of Virology, Vaccines and Sera Torlak, Belgrade, Serbia.
| | | | | |
Collapse
|
20
|
Sánchez-Araujo M, Puchi A. Acupuncture Prevents Relapses of Recurrent Otitis in Dogs: A 1-Year Follow-Up of a Randomised Controlled Trial. Acupunct Med 2011; 29:21-6. [DOI: 10.1136/aim.2010.002576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Recurrent infections within a particular, well-localised body location are often seen in veterinary and medical practice. This condition could represent a localised or segmental immune deficiency. Recurrent canine otitis seems to be one example of this problem. It has been reported that acupuncture increased the efficacy of conventional treatment for canine otitis by >50%. Objective To assess whether the relapse rate of recurrent canine otitis over 1 year can be modified by acupuncture in adult dogs. Methods One-year follow-up of a randomised controlled trial. 31 dogs with a history of recurring otitis were randomised into two groups. In addition to conventional treatment, each group received four sessions of either real acupuncture, group A (n=16), or sham acupuncture, group B (n=15). The main outcome for the follow-up was the rate of acute otitis episodes in each group over 1 year, with blinded evaluation. A χ2 test was used for statistical analysis. Results There was one dropout in each group. Fourteen (93%) dogs in group A: were free of otitis relapses, compared with 7 (50%) in group B (p<0.01). Conclusion Acupuncture seems effective for preventing relapses in cases of recurrent canine otitis. This result suggests that acupuncture could be tested as a treatment of other recurrent localised infections. Given the ability of acupuncture to modulate neurotransmitters and opioid peptides, which can in turn modulate the immune system, the immune response to acupuncture also seems worth exploring.
Collapse
Affiliation(s)
- Max Sánchez-Araujo
- Research Unit of Complementary Therapy, Universidad “Francisco de Miranda” Coro, Caracas, Venezuela
- Instituto de Investigación de Salud y Terapéutica (INSYT), Caracas, Venezuela
| | - Alfredo Puchi
- Instituto de Investigación de Salud y Terapéutica (INSYT), Caracas, Venezuela
- Clínica Veterinaria Macaracuay, Caracas, Venezuela
| |
Collapse
|
21
|
Vida G, Peña G, Deitch EA, Ulloa L. α7-cholinergic receptor mediates vagal induction of splenic norepinephrine. THE JOURNAL OF IMMUNOLOGY 2011; 186:4340-6. [PMID: 21339364 DOI: 10.4049/jimmunol.1003722] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Classically, sympathetic and parasympathetic systems act in opposition to maintain the physiological homeostasis. In this article, we report that both systems work together to restrain systemic inflammation in life-threatening conditions such as sepsis. This study indicates that vagus nerve and cholinergic agonists activate the sympathetic noradrenergic splenic nerve to control systemic inflammation. Unlike adrenalectomy, splenectomy and splenic neurectomy prevent the anti-inflammatory potential of both the vagus nerve and cholinergic agonists, and abrogate their potential to induce splenic and plasma norepinephrine. Splenic nerve stimulation mimics vagal and cholinergic induction of norepinephrine and re-establishes neuromodulation in α7 nicotinic acetylcholine receptor (α7nAChR)-deficient animals. Thus, vagus nerve and cholinergic agonists inhibit systemic inflammation by activating the noradrenergic splenic nerve via the α7nAChR nicotinic receptors. α7nAChR represents a unique molecular link between the parasympathetic and sympathetic system to control inflammation.
Collapse
Affiliation(s)
- Gergely Vida
- Laboratory of Anti-inflammatory Signaling and Surgical Immunology, Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
22
|
Roggero E, Besedovsky HO, del Rey A. The role of the sympathetic nervous system in the thymus in health and disease. Neuroimmunomodulation 2011; 18:339-49. [PMID: 21952686 DOI: 10.1159/000329581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The existence of a network of immunoneuroendocrine interactions that results in the reciprocal modulation of the classical functions of each system is well established at present. Most of the evidence derives from studies on secondary lymphoid organs, such as the spleen and lymph nodes. In this article, several aspects relevant to understand the role of the sympathetic nervous system in the establishment of these interactions in the thymus are discussed. At present, the sympathetic innervation of the thymus, the expression of adrenergic receptors in thymic cells, particularly of β-adrenergic receptors, and the effect of sympathetic neurotransmitters, although mainly derived from in vitro or pharmacological studies, seem to be relatively well studied. However, other aspects, such as the relevance that immune-sympathetic interactions at the thymic level may have for certain diseases, specially autoimmune or other diseases that primarily involve the activation of the immune system, as well as how the integration of sympathetic and hormonal signals at local levels may affect thymic functions, certainly deserve further investigation.
Collapse
Affiliation(s)
- Eduardo Roggero
- Department of Physiology, Faculty of Medicine, Universidad Abierta Interamericana, Rosario, Argentina
| | | | | |
Collapse
|
23
|
Leposavić G, Pilipović I, Perišić M. Age-associated remodeling of neural and nonneural thymic catecholaminergic network affects thymopoietic productivity. Neuroimmunomodulation 2011; 18:290-308. [PMID: 21952681 DOI: 10.1159/000329499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ageing is associated with a progressive decline in thymic cytoarchitecture followed by a less efficient T cell development and decreased emigration of naïve T cells to the periphery. These thymic changes are linked to increased morbidity and mortality from infectious, malignant and autoimmune diseases in old age. Therefore, it is of paramount importance to understand the thymic homeostatic processes across the life span, as well as to identify factors and elucidate mechanisms driving or contributing to the thymic involution. Catecholamines (CAs) derived from sympathetic nerves and produced locally by thymic cells represent an important component of the thymic microenvironment. In young rats, they provide a subtle tonic suppressive influence on T cell development acting via β(2)- and α(1)-adrenoceptors (ARs) expressed on thymic nonlymphoid cells and thymocytes. In the face of thymic involution, a progressive increase in the thymic noradrenaline level, reflecting a rise in the density of noradrenergic nerve fibers and CA-synthesizing cells, occurs. In addition, the density of β(2)- and α(1)-AR-expressing thymic nonlymphoid cells and the α(1)-AR thymocyte surface density also exhibit a pronounced increase with age. The data obtained from studies investigating effects of AR blockade on T cell development indicated that age-related changes in CA-mediated thymic communications, certainly those involving α(1)-ARs, may contribute to diminished thymopoietic efficiency in the elderly. Having in mind thymic plasticity in the course of ageing, and broadening possibilities for pharmacological modulation of CA signaling, we here present and discuss the progress in research related to a role of CAs in thymic homeostasis and age-related decay in the thymic naïve T cell output.
Collapse
Affiliation(s)
- Gordana Leposavić
- Immunology Research Centre 'Branislav Janković', Institute of Virology, Vaccines and Sera 'Torlak', Belgrade, Serbia. Gordana.Leposavic @ pharmacy.bg.ac.rs
| | | | | |
Collapse
|
24
|
Vizi ES, Fekete A, Karoly R, Mike A. Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 2010; 160:785-809. [PMID: 20136842 DOI: 10.1111/j.1476-5381.2009.00624.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Beyond direct synaptic communication, neurons are able to talk to each other without making synapses. They are able to send chemical messages by means of diffusion to target cells via the extracellular space, provided that the target neurons are equipped with high-affinity receptors. While synaptic transmission is responsible for the 'what' of brain function, the 'how' of brain function (mood, attention, level of arousal, general excitability, etc.) is mainly controlled non-synaptically using the extracellular space as communication channel. It is principally the 'how' that can be modulated by medicine. In this paper, we discuss different forms of non-synaptic transmission, localized spillover of synaptic transmitters, local presynaptic modulation and tonic influence of ambient transmitter levels on the activity of vast neuronal populations. We consider different aspects of non-synaptic transmission, such as synaptic-extrasynaptic receptor trafficking, neuron-glia communication and retrograde signalling. We review structural and functional aspects of non-synaptic transmission, including (i) anatomical arrangement of non-synaptic release sites, receptors and transporters, (ii) intravesicular, intra- and extracellular concentrations of neurotransmitters, as well as the spatiotemporal pattern of transmitter diffusion. We propose that an effective general strategy for efficient pharmacological intervention could include the identification of specific non-synaptic targets and the subsequent development of selective pharmacological tools to influence them.
Collapse
Affiliation(s)
- E S Vizi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | |
Collapse
|
25
|
The influence of long term sound stress on histological structure of immune organs in broiler chickens. ZBORNIK MATICE SRPSKE ZA PRIRODNE NAUKE 2010. [DOI: 10.2298/zmspn1018151z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The aim of this paper was to examine the effect of different duration sound stress on immune organs of broiler chickens of different age. Nine groups, with 10 chickens in each group were included in experiment. The histological structure of bursa of Fabricius, thymus, and spleen were analyzed. The results indicated that the bursa of Fabricius, in relation to the other examined organs, was the most sensitive to this kind of stress. Histological changes of spleen and thymus were also observed, but less prominent except in chickens after more than 30 days of exposure to stress. According to our results, degree of histological changes of immune organs under the influence of sound stress depends on the length of exposure and age of chickens.
Collapse
|
26
|
Kanemaru K, Nishi K, Hasegawa S, Diksic M. Chronic citalopram treatment elevates serotonin synthesis in flinders sensitive and flinders resistant lines of rats, with no significant effect on Sprague-Dawley rats. Neurochem Int 2009; 54:363-71. [PMID: 19418630 DOI: 10.1016/j.neuint.2009.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of citalopram on regional 5-hydroxytryptamine (serotonin, 5-HT) synthesis, one of the most important presynaptic parameters of serotonergic neurotransmission, was studied. Sprague-Dawley (SPD) rats were used as the controls, and Flinders Resistant Line (FRL) rats were used as auxiliary controls, to hopefully obtain a better understanding of the effects of citalopramon Flinders Sensitive Line (FSL; "depressed") rats. Regional 5-HT synthesis was evaluated using a radiographic method with a labelled tryptophan analog tracer. In each strain of rats, the animals were treated with citalopram (10 mg/(kg day)) or saline for 14 days. The groups consisted of between fourteen and twenty rats. There were six groups of rats with citalopram (CIT) and saline (SAL) groups in each of the strains (SPD-AL, SPD-IT, FRL-AL, FRL-IT, FSL-AL and FSL-IT). A two-factor analysis of variance was used to evaluate the effect of the treatment c., SPD-SAL relative to SPD-CIT) followed by planned comparisons to evaluate the effect in each brain region. In addition, the planned comparison with appropriate contrast was used to evaluate a relative effects in SPD relative to FSL and FRL, and FSL relative to FRL groups. A statistical analysis was first performed in the a priori selected regions, because we had learned, from previous work, that it was possible to select the brain regions in which neurochemical variables had been altered by the disorder and subsequent antidepressant treatments. The results clearly show that citalopram treatment does not have an overall effect on synthesis in the control SPD rats; there was no significant (p > 0.05) difference between the SPD-SAL and SPD-CIT rats. In "depressed" FSL rats, citalopram produced a significant (p < 0.05) elevation of synthesis in seventeen out of thirty-four regions, with a significant (p < 0.05) reduction in the dorsal and median raphe. In the FRL rats, there was a significant (p < 0.05) elevation in the synthesis in twenty-two out of thirty-four brain regions, with a reduction in the dorsal raphe. In addition to these regions magnus raphe was different in the SPD and FSL groups, but it was on the statistical grounds identified as an outlier. There were significant changes produced in the FSL and FRL rats in thirteen out of seventeen a priori selected brain regions, while in the SPD rats, citalopram produced significant changes in only four out of seventeen a priori selected regions. The statistical evaluation also revealed that changes produced by citalopram in the FSL and FRL rats were significantly greater than those in the SPD rats and that there was no significant difference between the effect produced in the FSL and FRL rats. The presented results suggest that in "depressed" FSL rats, the antidepressant citalopram elevates 5-HT synthesis, which probably in part relates to the reported improved in behaviour with citalopram.
Collapse
Affiliation(s)
- Kazuya Kanemaru
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | |
Collapse
|
27
|
Rauski A, Kosec D, Vidić-Danković B, Plećas-Solarović B, Leposavić G. EFFECTS OF BETA-ADRENOCEPTOR BLOCKADE ON THE PHENOTYPIC CHARACTERISTICS OF THYMOCYTES AND PERIPHERAL BLOOD LYMPHOCYTES. Int J Neurosci 2009; 113:1653-73. [PMID: 14602539 DOI: 10.1080/00207450390245216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The study revealed that beta-adrenoceptor blockade with propranolol (0.40 mg/100 g/day, s.c.) in adult male DA rats: (i) increased the thymocyte proliferation and apoptosis, (ii) caused disturbances in kinetics of T cell differentiation leading to distinguishable changes in relative proportion of thymocytes at distinct maturational steps and to an expansion of the most mature single positive (CD4+, CD8+) thymocyte pool, (iii) affected the relative proportion of neither CD4+ nor CD8+ peripheral blood lymphocytes (PBL), and (iv) augmented the relative number of CD8+CD25+ cells. Thus, the results suggest the role of beta-adrenoceptors in fine-tuning of T cell maturation, and, possibly, distribution and activation of distinct PBL subsets.
Collapse
Affiliation(s)
- Aleksandra Rauski
- Immunology Research Center Branislav Janković, Institute of Immunology and Virology Torlak, Belgrade, Serbia and Montenegro
| | | | | | | | | |
Collapse
|
28
|
Leposavić G, Pilipović I, Radojević K, Pešić V, Perišić M, Kosec D. Catecholamines as immunomodulators: A role for adrenoceptor-mediated mechanisms in fine tuning of T-cell development. Auton Neurosci 2008; 144:1-12. [DOI: 10.1016/j.autneu.2008.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/16/2008] [Indexed: 01/28/2023]
|
29
|
Mravec B, Gidron Y, Hulin I. Neurobiology of cancer: Interactions between nervous, endocrine and immune systems as a base for monitoring and modulating the tumorigenesis by the brain. Semin Cancer Biol 2008; 18:150-63. [DOI: 10.1016/j.semcancer.2007.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/05/2007] [Indexed: 12/26/2022]
|
30
|
Abstract
Recent studies have begun to clarify the pathogenesis of sickness behavior. Cytokines released by macrophages, dendritic cells and mast cells act on the brain to trigger behavioral changes in infected animals. The major cytokines, interleukin-1, tumor necrosis factor alpha, and others, all act on the hypothalamus to provoke alterations in the normal homeostatic condition. These include elevated body temperature, increased sleep, and loss of appetite as well as major alterations in lipid and protein metabolism leading to significant weight loss. Some of these changes are clearly directed towards enhancing the normal immune responses. The benefits of others such as appetite loss are unclear. It is also important to recognize that other animals may recognize sickness behavior as a sign of weakness and mark the victim out for targeting by predators. As a result, some prey species may work very hard to mask their sickness, a response that serves to complicate veterinary diagnosis.
Collapse
|
31
|
Bellinger DL, Millar BA, Perez S, Carter J, Wood C, ThyagaRajan S, Molinaro C, Lubahn C, Lorton D. Sympathetic modulation of immunity: relevance to disease. Cell Immunol 2008; 252:27-56. [PMID: 18308299 PMCID: PMC3551630 DOI: 10.1016/j.cellimm.2007.09.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 09/01/2007] [Indexed: 02/05/2023]
Abstract
Optimal host defense against pathogens requires cross-talk between the nervous and immune systems. This paper reviews sympathetic-immune interaction, one major communication pathway, and its importance for health and disease. Sympathetic innervation of primary and secondary immune organs is described, as well as evidence for neurotransmission with cells of the immune system as targets. Most research thus far has focused on neural-immune modulation in secondary lymphoid organs, has revealed complex sympathetic modulation resulting in both potentiation and inhibition of immune functions. SNS-immune interaction may enhance immune readiness during disease- or injury-induced 'fight' responses. Research also indicate that dysregulation of the SNS can significantly affect the progression of immune-mediated diseases. However, a better understanding of neural-immune interactions is needed to develop strategies for treatment of immune-mediated diseases that are designed to return homeostasis and restore normal functioning neural-immune networks.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology & Human Anatomy, Loma Linda University School of Medicine, 11021 Campus Street, Alumni Hall 325, Loma Linda, CA 92352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Selmeczy Z, Vizi ES, Csóka B, Pacher P, Haskó G. Role of nonsynaptic communication in regulating the immune response. Neurochem Int 2008; 52:52-59. [PMID: 17640770 PMCID: PMC2225527 DOI: 10.1016/j.neuint.2007.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 12/14/2022]
Abstract
The discovery of nonsynaptic communication in the 1960s and 1970s was an important milestone in investigating the function of the nervous system, and it revolutionized our view about information transmission between neurons. In addition, nonsynaptic communication has a practical importance not only within the nervous system, but in the communication between the peripheral nervous system and other organ systems. Nonsynaptic communication takes place in different immune organs, which are innervated by sympathetic nerve terminals. In addition, the function of microglia, one of the immunocompetent cell types of the brain, can also be affected by neurotransmitters released from axon varicosities. The various functions of immune cells are modulated by released neurotransmitters without any direct synaptic contact between nerve endings and targeted immune cells requiring only functional neurotransmitter receptors on immune cells. Here, we briefly overview the role of the various receptor subtypes mediating nonsynaptic modulation of the function of immunocompetent cells both in the periphery and in the central nervous system.
Collapse
Affiliation(s)
- Zsolt Selmeczy
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O.B. 67, H-1450 Budapest, Hungary.
| | | | | | | | | |
Collapse
|
33
|
Anagnostou VK, Doussis-Anagnostopoulou I, Tiniakos DG, Karandrea D, Agapitos E, Karakitsos P, Kittas C. Ontogeny of intrinsic innervation in the human thymus and spleen. J Histochem Cytochem 2007; 55:813-20. [PMID: 17438351 DOI: 10.1369/jhc.6a7168.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ontogeny of the innervation of human lymphoid organs has not been studied in detail. Our aim was to assess the nature and distribution of parenchymal nerves in human fetal thymus and spleen. We used the peroxidase immunohistochemical technique with antibodies specific to neuron-specific enolase (NSE), neurofilaments (NF), PGP9.5, S100 protein, and tyrosine hydroxylase (TH) and evaluated our results with image analysis. In human fetal thymus, NSE-, NF-, S100-, PGP9.5-, and TH-positive nerves were identified associated with large blood vessels from 18 gestational weeks (gw) onwards, increasing in density during development. Their branches penetrated the septal areas at 20 gw, reaching the cortex and the corticomedullary junction between 20 and 23 gw. Few nerve fibers were seen in the medulla in close association with Hassall's corpuscles. In human fetal spleen, NSE-, NF-, S100-, PGP9.5-, and TH-positive nerve fibers were localized in the connective tissue surrounding the splenic artery at 18 gw. Perivascular NSE-, NF-, S100-, PGP9.5-, and TH-positive nerve fibers were seen extending into the white pulp, mainly in association with the central artery and its branches, increasing in density during gestation. Scattered NSE-, NF-, S100-, PGP9.5-, and TH-positive nerve fibers and endings were localized in the red pulp from 18 gw onward. The predominant perivascular distribution of most parenchymal nerves implies that thymic and splenic innervation may play an important functional role during intrauterine life.
Collapse
Affiliation(s)
- Valsamo K Anagnostou
- Laboratory of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Str, 11527 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
34
|
Wahle M, Hanefeld G, Brunn S, Straub RH, Wagner U, Krause A, Häntzschel H, Baerwald CGO. Failure of catecholamines to shift T-cell cytokine responses toward a Th2 profile in patients with rheumatoid arthritis. Arthritis Res Ther 2007; 8:R138. [PMID: 16889669 PMCID: PMC1779439 DOI: 10.1186/ar2028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/11/2006] [Accepted: 08/06/2006] [Indexed: 11/10/2022] Open
Abstract
To further understand the role of neuro-immunological interactions in the pathogenesis of rheumatoid arthritis (RA), we studied the influence of sympathetic neurotransmitters on cytokine production of T cells in patients with RA. T cells were isolated from peripheral blood of RA patients or healthy donors (HDs), and stimulated via CD3 and CD28. Co-incubation was carried out with epinephrine or norepinephrine in concentrations ranging from 10(-5) M to 10(-11) M. Interferon (IFN)-gamma, tumour necrosis factor (TNF)-alpha, interleukin (IL)-4, and IL-10 were determined in the culture supernatant with enzyme-linked immunosorbent assay. In addition, IFN-gamma and IL-10 were evaluated with intracellular cytokine staining. Furthermore, basal and agonist-induced cAMP levels and catecholamine-induced apoptosis of T cells were measured. Catecholamines inhibited the synthesis of IFN-gamma, TNF-alpha, and IL-10 at a concentration of 10(-5) M. In addition, IFN-gamma release was suppressed by 10(-7) M epinephrine. Lower catecholamine concentrations exerted no significant effect. A reduced IL-4 production upon co-incubation with 10(-5) M epinephrine was observed in RA patients only. The inhibitory effect of catecholamines on IFN-gamma production was lower in RA patients as compared with HDs. In RA patients, a catecholamine-induced shift toward a Th2 (type 2) polarised cytokine profile was abrogated. Evaluation of intracellular cytokines revealed that CD8-positive T cells were accountable for the impaired catecholaminergic control of IFN-gamma production. The highly significant negative correlation between age and catecholamine effects in HDs was not found in RA patients. Basal and stimulated cAMP levels in T-cell subsets and catecholamine-induced apoptosis did not differ between RA patients and HDs. RA patients demonstrate an impaired inhibitory effect of catecholamines on IFN-gamma production together with a failure to induce a shift of T-cell cytokine responses toward a Th2-like profile. Such an unfavorable situation is a perpetuating factor for inflammation.
Collapse
Affiliation(s)
- Matthias Wahle
- Department of Internal Medicine IV, University Hospital Leipzig, Liebigstrasse 22, 04103 Leipzig, Germany
| | - Gesine Hanefeld
- Department of Internal Medicine IV, University Hospital Leipzig, Liebigstrasse 22, 04103 Leipzig, Germany
| | - Stephan Brunn
- Department of Internal Medicine IV, University Hospital Leipzig, Liebigstrasse 22, 04103 Leipzig, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | - Ulf Wagner
- Department of Internal Medicine IV, University Hospital Leipzig, Liebigstrasse 22, 04103 Leipzig, Germany
| | - Andreas Krause
- Immanuel Hospital, Rheumatology Clinic, Königstrasse 63, 14109 Berlin, Germany
| | - Holm Häntzschel
- Department of Internal Medicine IV, University Hospital Leipzig, Liebigstrasse 22, 04103 Leipzig, Germany
| | - Christoph GO Baerwald
- Department of Internal Medicine IV, University Hospital Leipzig, Liebigstrasse 22, 04103 Leipzig, Germany
| |
Collapse
|
35
|
Elenkov IJ. Effects of Catecholamines on the Immune Response. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1567-7443(07)00210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
36
|
Mravec B, Gidron Y, Kukanova B, Bizik J, Kiss A, Hulin I. Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses. J Neuroimmunol 2006; 180:104-16. [PMID: 16945428 DOI: 10.1016/j.jneuroim.2006.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 07/07/2006] [Accepted: 07/07/2006] [Indexed: 12/29/2022]
Abstract
For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.
Collapse
Affiliation(s)
- Boris Mravec
- Laboratory of Neurophysiology, Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
37
|
Calcagni E, Elenkov I. Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann N Y Acad Sci 2006; 1069:62-76. [PMID: 16855135 DOI: 10.1196/annals.1351.006] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Associations between stress and health outcomes have now been carefully documented, but the mechanisms by which stress specifically influences disease susceptibility and outcome remain poorly understood. Recent evidence indicates that glucocorticoids (GCs) and catecholamines (CAs), the major stress hormones, inhibit systemically IL-12, TNF-alpha, and INF-gamma, but upregulate IL-10, IL-4, and TGF-beta production. Thus, during an immune and inflammatory response, the activation of the stress system, through induction of a Th2 shift may protect the organism from systemic "overshooting" with T helper lymphocyte 1 (Th1)/proinflammatory cytokines. In certain local responses and under certain conditions, however, stress hormones may actually facilitate inflammation, through induction of IL-1, IL-6, IL-8, IL-18, TNF-alpha, and CRP production, and through activation of the corticotropin-releasing hormone (CRH)/substance P(SP)-histamine axis. Autoimmunity, chronic infections, major depression, and atherosclerosis are characterized by a dysregulation of the pro/anti-inflammatory and Th1/Th2 cytokine balance. Thus, hyperactive or hypoactive stress system, and a dysfunctional neuroendocrine-immune interface associated with abnormalities of the "systemic anti-inflammatory feedback" and/or "hyperactivity" of the local proinflammatory factors may contribute to the pathogenesis of these diseases. Conditions that are associated with significant changes in stress system activity, such as acute or chronic stress, cessation of chronic stress, pregnancy and the postpartum period, or rheumatoid arthritis (RA) through modulation of the systemic or local pro/anti-inflammatory and Th1/Th2 cytokine balance, may suppress or potentiate disease activity and/or progression. Thus, stress hormones-induced inhibition or upregulation of innate and Th cytokine production may represent an important mechanism by which stress affects disease susceptibility, activity, and outcome of various immune-related diseases.
Collapse
Affiliation(s)
- Emanuele Calcagni
- Laboratory of Neuro-Endocrine-Immunology, San Raffaele Research Center, via della Pisana 235, 00163 Rome, Italy
| | | |
Collapse
|
38
|
Bellinger DL, Millar BA, Perez S, Carter J, Wood C, ThyagaRajan S, Molinaro C, Lubahn C, Lorton D. Innervation of lymphoid organs: Clinical implications. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cnr.2006.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Trotter RN, Stornetta RL, Guyenet PG, Roberts MR. Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Auton Neurosci 2006; 131:9-20. [PMID: 16843070 DOI: 10.1016/j.autneu.2006.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/30/2006] [Accepted: 06/02/2006] [Indexed: 11/24/2022]
Abstract
The thymus is a primary immune organ that is essential for the development of functional T cells. The thymus receives sympathetic innervation, and thymocytes and thymic epithelial cells express functional adrenergic receptors. In this study, we employed retrograde, transneuronal virus tracing to identify the CNS cell groups that regulate sympathetic outflow to the thymus. Pseudorabies virus (PRV) was injected into the thymus, and the pattern of PRV infection in sympathetic regulatory centers of the CNS was determined at 72 and 120 h post-inoculation. PRV infection within the CNS first appeared within the spinal cord at 72 h post-inoculation and was confined to neurons within the intermediolateral cell column at levels T1-T7. At 120 h post-inoculation infection had spread within the spinal cord to include the central autonomic nucleus, intercalated cell nucleus and light infection within the cells of the lateral funiculus. Within the brain, PRV positive cells were found within nuclei of the medulla oblongata, pons and hypothalamus. Infection in the hypothalamus was observed within the arcuate nucleus, dorsal, lateral, and posterior hypothalamus and in all parvicellular subdivisions of the paraventricular hypothalamic nucleus. None of the infected animals exhibited labeling of the dorsal motor nucleus of the vagus. In summary, this study provides the first anatomic map of CNS neurons involved in control of sympathetic outflow to the thymus.
Collapse
Affiliation(s)
- R Nicholas Trotter
- Department of Microbiology, University of Virginia, PO Box 800734, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
40
|
Leposavić G, Arsenović-Ranin N, Radojević K, Kosec D, Pesić V, Vidić-Danković B, Plećas-Solarović B, Pilipović I. Characterization of thymocyte phenotypic alterations induced by long-lasting beta-adrenoceptor blockade in vivo and its effects on thymocyte proliferation and apoptosis. Mol Cell Biochem 2006; 285:87-99. [PMID: 16477376 DOI: 10.1007/s11010-005-9059-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Adult male Wistar rats were subjected to propranolol (P, 0.40 mg/100 g/day) or saline (S) administration (controls) over 14 days. The expression of major differentiation molecules on thymocytes and Thy-1 (CD90) molecules, which are shown to adjust thymocyte sensitivity to TCRalphabeta signaling, was studied. In addition, the sensitivity of thymocytes to induction of apoptosis and concanavalin A (Con A) signaling was estimated. The thymocytes from P-treated (PT) rats exhibited an increased sensitivity to induction of apoptosis, as well as to Con A stimulation. Furthermore, P treatment produced changes in the distribution of thymocyte subsets suggesting that more cells passed positive selection and further differentiated into mature CD4+ or CD8+ single positive (SP) TCRalphabeta(high) cells. These changes may, at least partly, be related to the markedly increased density of Thy-1 surface expression on TCRalphabeta(low) thymocytes from these rats. The increased frequency of cells expressing the CD4+25+ phenotype, which has been shown to be characteristic for regulatory cells in the thymus, may also indicate alterations in thymocyte selection following P treatment. Inasmuch as positive and negative selections play an important role in continuously reshaping the T-cell repertoire and maintaining tolerance, the hereby presented study suggests that pharmacological manipulations with beta-AR signaling, or chemically evoked alterations in catecholamine release, may interfere with the regulation of thymocyte selection, and consequently with the immune response.
Collapse
Affiliation(s)
- G Leposavić
- Immunology Research Center "Branislav Janković", Institute of Immunology and Virology "Torlak", Belgrade, Serbia and Montenegro.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Stress is defined as a state of threatened homeostasis. The principal effectors of the stress system include corticotropin-releasing hormone, arginine vasopressin, the glucocorticoids, and the catecholamines norepinephrine and epinephrine. Activation of the stress system leads to adaptive behavioral and physical changes. The principal stress hormones glucocorticoids and catecholamines affect major immune functions such as antigen presentation, leukocyte proliferation and traffic, secretion of cytokines and antibodies, and selection of the T helper (Th) 1 versus Th2 responses. A fully fledged systemic inflammatory reaction results in stimulation of the stress response, which in turn, through induction of a Th2 shift protects the organism from systemic overshooting with Th1/pro-inflammatory cytokines. Stress is often regarded as immunosuppressive, but recent evidence indicates that stress hormones influence the immune response in a less monochromatic way--systemically they inhibit Th1/pro-inflammatory responses and induce a Th2 shift, whereas in certain local responses they promote pro-inflammatory cytokine production and activation of the corticotropin-releasing hormone-mast cell-histamine axis. Through this mechanism a hyper- or hypoactive stress system associated with abnormalities of the systemic anti-inflammatory feedback and/or hyperactivity of the local pro-inflammatory factors may play a role in the pathogenesis of chronic inflammation and immune-related diseases.
Collapse
Affiliation(s)
- Ilia J Elenkov
- Institute of Neurobiology and Molecular Medicine, Italian National Research Council, Rome, Italy
| | | |
Collapse
|
42
|
Shibakusa T, Iwaki Y, Mizunoya W, Matsumura S, Nishizawa Y, Inoue K, Fushiki T. The physiological and behavioral effects of subchronic intracisternal administration of TGF-β in rats: comparison with the effects of CRF. Biomed Res 2006; 27:297-305. [PMID: 17213686 DOI: 10.2220/biomedres.27.297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the physiological and behavioral effects of subchronic intracisternal administration of transforming growth factor-beta (TGF-beta) for 7 days. Subchronic intracisternal administration of TGF-beta significantly inhibited the increase in body weight of rats but did not affect food intake. In the measurement of locomotor activity after the final intracisternal administration on day 7, the total count for 1.5 h increased significantly in the TGF-beta group compared with the vehicle group. However, that for 10 h was not different between both groups. Furthermore, significant elevations in oxygen consumption were observed in the TGF-beta group during both light and dark phase. Subchronic TGF-beta treatment induced a significant decrease in the number of total leukocytes and lymphocytes and the relative weight of the thymus, and a significant increase in brown adipose tissue weight. Corticotropin-releasing factor (CRF) is the primary neuroendocrine factor released in response to stress. Subchronic treatment with CRF, as a positive control, significantly affected body weight, food intake, oxygen consumption, total leukocyte and lymphocyte counts, and thymus and adrenal weight. Subchronic TGF-beta administration partially mimicked the stress responses, implicating a role for TGF-beta in the brain in stress.
Collapse
Affiliation(s)
- Tetsuro Shibakusa
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Bhatt R, Bhatt S, Hameed M, Rameshwar P, Siegel A. Amygdaloid kindled seizures can induce functional and pathological changes in thymus of rat: role of the sympathetic nervous system. Neurobiol Dis 2005; 21:127-37. [PMID: 16084731 DOI: 10.1016/j.nbd.2005.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 06/03/2005] [Accepted: 06/15/2005] [Indexed: 12/15/2022] Open
Abstract
The present study sought to determine the effects of long-term kindled seizures of the basal amygdala upon immune function in rat, utilizing the thymus, as a principal target for study. Histopathology from kindled Sprague-Dawley rats revealed the presence of epithelial cell thymoma in 70% of these rats. The results revealed an increased rate of apoptosis and proliferation in thymic epithelial cells. Analysis of thymocytes indicated a decrease in the ratio of CD4 to CD8 positive T cells and reduced proliferative response to T-cell mitogens. To determine whether these effects were mediated through the sympathetic nervous system, animals were treated with guanethidine, which blocked the development of epithelial cell thymomas, while mifepristone treatment, employed to determine the possible role of the hypothalamic-pituitary axis, was ineffective in attenuating thymoma development. Thus, the present study demonstrated that functional and pathological changes in the thymus during kindled seizures are mediated through the sympathetic nervous system.
Collapse
Affiliation(s)
- Rekha Bhatt
- Department of Neurology and Neurosciences, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
44
|
Zivković I, Rakin A, Petrović-Djergović D, Miljković B, Mićić M. The effects of chronic stress on thymus innervation in the adult rat. Acta Histochem 2005; 106:449-58. [PMID: 15707654 DOI: 10.1016/j.acthis.2004.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 11/03/2004] [Accepted: 11/04/2004] [Indexed: 11/26/2022]
Abstract
Various stressors induce changes in the immune system. However, it has not yet been analyzed how stressors affect thymus innervation. To examine whether chronic stress alters the morphology of the thymus by changing the nerve components of the thymus, adult male rats, 9-weeks old, were exposed to forced swimming during 21 successive days. The animals were sacrificed by decapitation after the last session and their thymuses were used for analysis of (i) the thymus compartments, (ii) distribution patterns of monoamine-containing nerve profiles and (iii) distribution patterns of acetylcholinesterase (AChE)-containing nerve profiles. Our results show that chronic stress in rats reduces the volume of both thymus cortex and medulla, numbers of thymocytes in the deep cortex and medulla and the density of fluorescent nerve profiles, whereas it increases density of fluorescent cells. The distribution patterns of nerve profiles containing monoamine and AChE were not affected. These changes indicate that chronic stress affects thymus development and T cell maturation by altering the sympathetic nerve component.
Collapse
Affiliation(s)
- Irena Zivković
- Immunology Research Center "Branislav Janković", Institute of Immunology and Virology "Torlak", 458 Vojvode Stepe, 11152 Belgrade, Serbia & Montenegro
| | | | | | | | | |
Collapse
|
45
|
Aviles H, Belay T, Vance M, Sonnenfeld G. Effects of space flight conditions on the function of the immune system and catecholamine production simulated in a rodent model of hindlimb unloading. Neuroimmunomodulation 2005; 12:173-81. [PMID: 15905626 DOI: 10.1159/000084850] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 09/16/2004] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED The rodent model of hindlimb unloading has been successfully used to simulate some of the effects of space flight conditions. Previous studies have indicated that mice exposed to hindlimb-unloading conditions have decreased resistance to infections compared to restrained and normally housed control mice. OBJECTIVE The purpose of this study was to clarify the mechanisms involved in resistance to infection in this model by examining the effects of hindlimb unloading on the function of the immune system and its impact on the production of catecholamines. METHODS Female Swiss Webster mice were hindlimb-unloaded during 48 h and the function of the immune system was assessed in spleen and peritoneal cells immediately after this period. In addition, the kinetics of catecholamine production was measured throughout the hindlimb-unloading period. RESULTS The function of the immune system was significantly suppressed in the hindlimb-unloaded group compared to restrained and normally housed control mice. Levels of catecholamines were increased in the hindlimb-unloaded group and peaked at 12 h following the commencement of unloading. CONCLUSION These results suggest that physiological responses of mice are altered early after hindlimb unloading and that catecholamines may play a critical role in the modulation of the immune system. These changes may affect the ability of mice to resist infections.
Collapse
Affiliation(s)
- Hernan Aviles
- Department of Biology, Binghamton University, Binghamton, NY 13902-6000, USA.
| | | | | | | |
Collapse
|
46
|
Mignini F, Streccioni V, Amenta F. Autonomic innervation of immune organs and neuroimmune modulation. ACTA ACUST UNITED AC 2004; 23:1-25. [PMID: 14565534 DOI: 10.1046/j.1474-8673.2003.00280.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Increasing evidence indicates the occurrence of functional interconnections between immune and nervous systems, although data available on the mechanisms of this bi-directional cross-talking are frequently incomplete and not always focussed on their relevance for neuroimmune modulation. 2. Primary (bone marrow and thymus) and secondary (spleen and lymph nodes) lymphoid organs are supplied with an autonomic (mainly sympathetic) efferent innervation and with an afferent sensory innervation. Anatomical studies have revealed origin, pattern of distribution and targets of nerve fibre populations supplying lymphoid organs. 3. Classic (catecholamines and acetylcholine) and peptide transmitters of neural and non-neural origin are released in the lymphoid microenvironment and contribute to neuroimmune modulation. Neuropeptide Y, substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide represent the neuropeptides most involved in neuroimmune modulation. 4. Immune cells and immune organs express specific receptors for (neuro)transmitters. These receptors have been shown to respond in vivo and/or in vitro to the neural substances and their manipulation can alter immune responses. Changes in immune function can also influence the distribution of nerves and the expression of neural receptors in lymphoid organs. 5. Data on different populations of nerve fibres supplying immune organs and their role in providing a link between nervous and immune systems are reviewed. Anatomical connections between nervous and immune systems represent the structural support of the complex network of immune responses. A detailed knowledge of interactions between nervous and immune systems may represent an important basis for the development of strategies for treating pathologies in which altered neuroimmune cross-talking may be involved.
Collapse
Affiliation(s)
- F Mignini
- Sezione di Anatomia Umana, Dipartimento di Scienze Farmacologiche e Medicina Sperimentale, Università di Camerino, Via Scalzino 3, 62032 Camerino, Italy
| | | | | |
Collapse
|
47
|
Plećas-Solarović B, Lalić L, Leposavić G. Age-dependent morphometrical changes in the thymus of male propranolol-treated rats. Ann Anat 2004; 186:141-7. [PMID: 15125043 DOI: 10.1016/s0940-9602(04)80028-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to elucidate a putative role of neurally derived noradrenaline in the thymus development, and in maintenance of adult thymus structure, sexually immature male rats (21-day-old at the beginning of treatment) and young adult animals (75-day-old on the beginning of treatment) were treated with the non-selective beta-adrenoceptor antagonist propranolol (0.40 mg/100 g BW/day, s.c.) for 15 consecutive days, and their thymuses were analyzed stereologically. The effects of beta-adrenoceptor blockade were much more pronounced in sexually immature than in adult rats. In immature propranolol-treated rats the thymus size and volumes of both the main compartments (cortex and medulla) were significantly decreased reflecting, at least partly, a reduction in the overall number of thymocytes. Furthermore, in both the cortical subcompartments (outer and deep cortex) the mean diameter of thymocytes was increased. However, in adult rats exposed to propranolol treatment, only the volume of interlobular connective tissue was enlarged, whereas in the outer part of the cortex the mean thymocyte diameter was increased. These results indicate that the lack of sympathetic input (via beta-adrenoceptors) during the prepubertal period of development diminishes the normal thymus growth and/or accelerates the thymic involution that starts at puberty, immediately after its maximum size is reached, while it is less significant for the maintenance of the thymus size and structure in adults. Additionally, they suggest that distinct cell types, as well as thymocyte subsets, are sensitive to lack of beta-adrenoceptor-mediated influences in sexually immature and adult rats.
Collapse
Affiliation(s)
- Bosiljka Plećas-Solarović
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia and Montenegro.
| | | | | |
Collapse
|
48
|
Rauski A, Kosec D, Vidić-Danković B, Radojević K, Plećas-Solarović B, Leposavić G. Thymopoiesis following chronic blockade of beta-adrenoceptors. Immunopharmacol Immunotoxicol 2004; 25:513-28. [PMID: 14686794 DOI: 10.1081/iph-120026437] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The present study was undertaken in order to further clarify putative role of the adrenergic innervation in the regulation of the intrathymic T-cell maturation. For this purpose adult male DA rats were subjected to either 4-day- or 16-day-long propranolol treatment (0.40 mg propranolol/100 g/day, s.c.) and the expression of CD4/8/TCRalphabeta on thymocytes, as well as thymocyte proliferative and apoptotic index, was assessed in these animals by flow cytometric analysis. Propranolol treatment, in spite of duration, increased both the thymocyte proliferative and apoptotic index (vs. respective vehicle-treated controls). In 4-day-treated animals the thymus cellularity and thymus weight remained unaltered, while in 16-day-treated rats the values of both of these parameters were reduced (since increase in the thymocyte apoptotic index overcame that in the proliferative index). The treatments of both durations affected the thymocyte phenotypic profile in a similar pattern, but the changes were more pronounced in rats exposed to the treatment of longer duration. The relative proportion of the least mature CD4-8- double negative (DN) TCRalphabeta- cells was increased, those of thymocytes at distinct differentiational stages on the transitional route to the CD4+8+ double positive (DP) TCRalphabetalow stage decreased (all subsets of TCRalphabeta- in both groups of rats, and those with low expression of TCRalphabeta in rats subjected to 16-day-long treatment) or unaltered (all subsets of TCRalphabetalow cells in 4-day-treated rats). Furthermore, the percentage of CD4+8+ DP TCRalphabetalow cells was significantly elevated, as well as those of the most mature CD4+8- TCRalphabetahigh and CD4-8+ TCRalphabetahigh cells (the increase in the percentage of former was much more conspicuous than that of the latter), while the relative proportion of their direct detectable precursors (CD4+8+ DP TCRalphabetahigh) was reduced. Thus, the present study: i) further supports notion of pharmacological manipulation of adrenergic action as an efficient means in modulation of the T-cell development, and hence T-cell-dependent immune response, and ii) provides more specific insight into T-cell maturation sequence point/s particularly sensitive to beta-adrenoceptor ligand action.
Collapse
Affiliation(s)
- Aleksandra Rauski
- Immunology Research Center Branislav Janković, Institute for Immunology and Virology Torlak, Belgrade, Yugoslavia
| | | | | | | | | | | |
Collapse
|
49
|
Hannestad J, Monjil DF, Díaz-Esnal B, Cobo J, Vega JA. Age-dependent changes in the nervous and endocrine control of the thymus. Microsc Res Tech 2004; 63:94-101. [PMID: 14722906 DOI: 10.1002/jemt.20014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The immune system, especially the thymus, undergoes age-related modifications leading to structural and functional changes in the lymphoid organs and immunocompetent cells. Nevertheless, the consequences of thymic involution in the peripheral pool of T-cells are still a matter of controversy. The control of the thymic function is very complex and involves intrathymic signals, the autonomic nervous system, and the endocrine system. Both thymocytes and thymic stromal cells express receptors for a wide range of hormones, as well as for neurotransmitters and neuropeptides, thus affecting thymocytes maturation. This review summarizes the age-dependent variations in the extrathymic components of the thymic microenvironment, i.e., vegetative nerves and hormones, and the possible effects of those changes in the immune function.
Collapse
Affiliation(s)
- Jonas Hannestad
- Department of Psychiatry, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
50
|
Knuepfer MM, Bloodgood TA, Matuschak GM, Lechner AJ. Cocaine enhances susceptibility to endotoxemic shock in a subset of rats. Crit Care Med 2004; 32:175-83. [PMID: 14707577 DOI: 10.1097/01.ccm.0000104202.81041.4b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We hypothesized that the sympathomimetic cocaine may alter cardiovascular and inflammatory responses and enhance susceptibility to endotoxemia due to innate differences in patterns of sympathetic and cardiovascular responsiveness. DESIGN Prospective study. SETTING Experimental animal laboratory. SUBJECTS Fifty-six conscious, instrumented albino rats. INTERVENTIONS Rats were instrumented for determination of arterial pressure and intravenous drug administration and, in some rats, for cardiac output. After recovery, rats were given cocaine (5 mg/kg i.v., twice daily with 4-6 trials) to identify one of two hemodynamic response patterns: a) an increase in systemic vascular resistance with cardiac depression (vascular responders) or b) smaller increases in systemic vascular resistance and no change or an increase in cardiac output (mixed responders). At least 1 month after characterizing response patterns to cocaine, animals were pretreated with cocaine (5 mg/kg i.v.) or an equivalent bolus of vehicle (0.9% saline) while recording hemodynamics. Five minutes later, Escherichia coli lipopolysaccharide (serotype O55:B5, 20 mg/kg i.v.) was administered for 15 mins. MEASUREMENTS AND MAIN RESULTS Hemodynamic responses, pupillary diameter, and serum cytokines were determined at several time points. Lipopolysaccharide administration (5-40 mg/kg) without cocaine produced dose-dependent depressor responses with recovery typically within 2 hrs. Although 87% of rats survived a single 20 mg/kg dose of lipopolysaccharide when given alone, pretreatment of vascular responders with cocaine before lipopolysaccharide resulted in greater increases in systemic vascular resistance and pupillary mydriasis and lethality in five of six vascular responders, whereas only one of six mixed responders died. Pretreatment with the alpha1-adrenoceptor antagonist prazosin (0.1 mg/kg i.v.) before cocaine and lipopolysaccharide attenuated hemodynamic responses and improved survival among vascular responders. Serum interleukin-6 and interleukin-10 were elevated in rats treated with cocaine and lipopolysaccharide compared with rats treated with lipopolysaccharide alone, whereas serum tumor necrosis factor-alpha was reduced by cocaine pretreatment. Moreover, serum interleukin-1beta, tumor necrosis factor-alpha, and interleukin-6 were elevated in nonsurvivors compared with survivors after cocaine and lipopolysaccharide administration. CONCLUSIONS We conclude that cocaine enhances susceptibility and worsens outcome from endotoxic shock by augmenting sympathetic activity, particularly in vascular responders, and that alpha-adrenoceptors mediate the altered inflammatory responses.
Collapse
Affiliation(s)
- Mark M Knuepfer
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, MO 63104, USA.
| | | | | | | |
Collapse
|