1
|
Mahady LJ, Perez SE, Emerich DF, Wahlberg LU, Mufson EJ. Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain. J Comp Neurol 2016; 525:553-573. [PMID: 27490949 DOI: 10.1002/cne.24087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 11/10/2022]
Abstract
Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75NTR . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75NTR -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura J Mahady
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona.,Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, Arizona
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | | | | | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
2
|
Wang L, Ennis M, Szabó G, Armstrong WE. Characteristics of GABAergic and cholinergic neurons in perinuclear zone of mouse supraoptic nucleus. J Neurophysiol 2014; 113:754-67. [PMID: 25376783 DOI: 10.1152/jn.00561.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perinuclear zone (PNZ) of the supraoptic nucleus (SON) contains some GABAergic and cholinergic neurons thought to innervate the SON proper. In mice expressing enhanced green fluorescent protein (eGFP) in association with glutamate decarboxylase (GAD)65 we found an abundance of GAD65-eGFP neurons in the PNZ, whereas in mice expressing GAD67-eGFP, there were few labeled PNZ neurons. In mice expressing choline acetyltransferase (ChAT)-eGFP, large, brightly fluorescent and small, dimly fluorescent ChAT-eGFP neurons were present in the PNZ. The small ChAT-eGFP and GAD65-eGFP neurons exhibited a low-threshold depolarizing potential consistent with a low-threshold spike, with little transient outward rectification. Large ChAT-eGFP neurons exhibited strong transient outward rectification and a large hyperpolarizing spike afterpotential, very similar to that of magnocellular vasopressin and oxytocin neurons. Thus the large soma and transient outward rectification of large ChAT-eGFP neurons suggest that these neurons would be difficult to distinguish from magnocellular SON neurons in dissociated preparations by these criteria. Large, but not small, ChAT-eGFP neurons were immunostained with ChAT antibody (AB144p). Reconstructed neurons revealed a few processes encroaching near and passing through the SON from all types but no clear evidence of a terminal axon arbor. Large ChAT-eGFP neurons were usually oriented vertically and had four or five dendrites with multiple branches and an axon with many collaterals and local arborizations. Small ChAT-eGFP neurons had a more restricted dendritic tree compared with parvocellular GAD65 neurons, the latter of which had long thin processes oriented mediolaterally. Thus many of the characteristics found previously in unidentified, small PNZ neurons are also found in identified GABAergic neurons and in a population of smaller ChAT-eGFP neurons.
Collapse
Affiliation(s)
- Lie Wang
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Matthew Ennis
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Gábor Szabó
- Department of Gene Technology and Developmental Biology, Institute of Experimental Medicine, Budapest, Hungary
| | - William E Armstrong
- Department of Anatomy and Neurobiology and Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee; and
| |
Collapse
|
3
|
Brown CH, Bains JS, Ludwig M, Stern JE. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol 2013; 25:678-710. [PMID: 23701531 PMCID: PMC3852704 DOI: 10.1111/jne.12051] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023]
Abstract
The hypothalamic supraoptic and paraventricular nuclei contain magnocellular neurosecretory cells (MNCs) that project to the posterior pituitary gland where they secrete either oxytocin or vasopressin (the antidiuretic hormone) into the circulation. Oxytocin is important for delivery at birth and is essential for milk ejection during suckling. Vasopressin primarily promotes water reabsorption in the kidney to maintain body fluid balance, but also increases vasoconstriction. The profile of oxytocin and vasopressin secretion is principally determined by the pattern of action potentials initiated at the cell bodies. Although it has long been known that the activity of MNCs depends upon afferent inputs that relay information on reproductive, osmotic and cardiovascular status, it has recently become clear that activity depends critically on local regulation by glial cells, as well as intrinsic regulation by the MNCs themselves. Here, we provide an overview of recent advances in our understanding of how intrinsic and local extrinsic mechanisms integrate with afferent inputs to generate appropriate physiological regulation of oxytocin and vasopressin MNC activity.
Collapse
Affiliation(s)
- C H Brown
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
4
|
López JM, Perlado J, Morona R, Northcutt RG, González A. Neuroanatomical organization of the cholinergic system in the central nervous system of a basal actinopterygian fish, the senegal bichir Polypterus senegalus. J Comp Neurol 2013; 521:24-49. [PMID: 22628072 DOI: 10.1002/cne.23155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 11/10/2022]
Abstract
Polypterid bony fishes are believed to be basal to other living ray-finned fishes, and their brain organization is therefore critical in providing information as to primitive neural characters that existed in the earliest ray-finned fishes. The cholinergic system has been characterized in more advanced ray-finned fishes, but not in polypterids. In order to establish which cholinergic neural centers characterized the earliest ray-finned fishes, the distribution of choline acetyltransferase (ChAT) is described in Polypterus and compared with the distribution of this molecule in other ray-finned fishes. Cell groups immunoreactive for ChAT were observed in the hypothalamus, the habenula, the optic tectum, the isthmus, the cranial motor nuclei, and the spinal motor column. Cholinergic fibers were observed in both the telencephalic pallium and the subpallium, in the thalamus and pretectum, in the optic tectum and torus semicircularis, in the mesencephalic tegmentum, in the cerebellar crest, in the solitary nucleus, and in the dorsal column nuclei. Comparison of the data within a segmental neuromeric context indicates that the cholinergic system in polypterid fishes is generally similar to that in other ray-finned fishes, but cholinergic-positive neurons in the pallium and subpallium, and in the thalamus and cerebellum, of teleosts appear to have evolved following the separation of polypterids and other ray-finned fishes.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, University Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
5
|
Morona R, López JM, Northcutt RG, González A. Comparative Analysis of the Organization of the Cholinergic System in the Brains of Two Holostean Fishes, the Florida GarLepisosteus platyrhincusand the BowfinAmia calva. BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:109-42. [DOI: 10.1159/000347111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/12/2013] [Indexed: 11/19/2022]
|
6
|
López JM, Domínguez L, Morona R, Northcutt RG, González A. Organization of the cholinergic systems in the brain of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Struct Funct 2011; 217:549-76. [DOI: 10.1007/s00429-011-0341-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/23/2011] [Indexed: 01/29/2023]
|
7
|
Liu X, Popescu IR, Denisova JV, Neve RL, Corriveau RA, Belousov AB. Regulation of cholinergic phenotype in developing neurons. J Neurophysiol 2008; 99:2443-55. [PMID: 18322006 PMCID: PMC6896333 DOI: 10.1152/jn.00762.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specification of neurotransmitter phenotype is critical for neural circuit development and is influenced by intrinsic and extrinsic factors. Recent findings in rat hypothalamus in vitro suggest the role of neurotransmitter glutamate in the regulation of cholinergic phenotype. Here we extended our previous studies on the mechanisms of glutamate-dependent regulation of cholinergic phenotypic properties in hypothalamic neurons. Using immunocytochemistry, electrophysiology, and calcium imaging, we demonstrate that hypothalamic expression of choline acetyltransferase (the cholinergic marker) and responsiveness of neurons to acetylcholine (ACh) receptor agonists increase during chronic administration of an N-methyl-D-aspartate receptor (NMDAR) blocker, MK-801, in developing rats in vivo and genetic and pharmacological inactivation of NMDARs in mouse and rat developing neuronal cultures. In hypothalamic cultures, an inactivation of NMDA receptors also induces ACh-dependent synaptic activity, as do inactivations of PKA, ERK/MAPK, CREB, and NF-kappaB, which are known to be regulated by NMDA receptors. Interestingly, the increase in cholinergic properties in developing neurons that is induced by NMDAR blockade is prevented by the blockade of ACh receptors, suggesting that function of ACh receptor is required for the cholinergic up-regulation. Using dual recording of monosynaptic excitatory postsynaptic currents, we further demonstrate that chronic inactivation of ionotropic glutamate receptors induces the cholinergic phenotype in a subset of glutamatergic neurons. The phenotypic switch is partial as ACh and glutamate are coreleased. The results suggest that developing neurons may not only coexpress multiple transmitter phenotypes, but can also change the phenotypes following changes in signaling in neuronal circuits.
Collapse
Affiliation(s)
- Xinhuai Liu
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, 2146 W. 39th Avenue, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
8
|
Cavun S, Savci V, Ulus IH. Centrally injected CDP-choline increases plasma vasopressin levels by central cholinergic activation. Fundam Clin Pharmacol 2004; 18:71-7. [PMID: 14748757 DOI: 10.1046/j.0767-3981.2003.00213.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, both the effects of intracerebroventricular (i.c.v.) injection of cytidine-5'-diphosphate choline (CDP-choline) on plasma vasopressin levels and the choline involvement of these effects were investigated. I.c.v. administration of CDP-choline (0.5, 1.0 and 2.0 micromol) increased plasma vasopressin levels dose- and time-dependently. I.c.v. injection of equimolar dose of choline (1 micromol) produced similar vasopressin response. However equimolar dose of cytidine (1 micromol; i.c.v.), the other hydrolysis product of CDP-choline, did not affect plasma vasopressin levels. Pretreatment of rats with hemicholinium-3, neuronal high affinity choline uptake inhibitor (20 microg; i.c.v.) blocked the vasopressin response to i.c.v. CDP-choline (1 micromol). Pretreatment of rats with mecamylamine (50 microg; i.c.v.), a nonselective nicotinic receptor antagonist, abolished the increase in plasma vasopressin induced by CDP-choline while atropine (10 microg; i.c.v.), nonselective muscarinic receptor antagonist, failed to change the response. In conclusion, intracerebroventricularly injected CDP-choline can increase plasma vasopressin levels by activating central nicotinic cholinergic receptors through the activation of presynaptic cholinergic mechanisms.
Collapse
Affiliation(s)
- Sinan Cavun
- Department of Pharmacology and Clinical Pharmacology, Medical Faculty, Uludag University, 16059, Bursa, Turkey
| | | | | |
Collapse
|
9
|
Hajszán T, Zaborszky L. Direct catecholaminergic-cholinergic interactions in the basal forebrain. III. Adrenergic innervation of choline acetyltransferase-containing neurons in the rat. J Comp Neurol 2002; 449:141-57. [PMID: 12115685 DOI: 10.1002/cne.10279] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The central adrenergic neurons have been suggested to play a role in the regulation of arousal and in the neuronal control of the cardiovascular system. To provide morphological evidence that these functions could be mediated via the basal forebrain, we performed correlated light and electron microscopic double-immunolabeling experiments using antibodies against phenylethanolamine N-methyltransferase (PNMT) and choline acetyltransferase, the synthesizing enzymes for adrenaline and acetylcholine, respectively. Most adrenergic/cholinergic appositions were located in the horizontal limb of diagonal band of Broca, within the substantia innominata, and in a narrow band bordering the substantia innominata and the globus pallidus. Quantitative analysis indicated that cholinergic neurons of the substantia innominata receive significantly higher numbers of adrenergic appositions than cholinergic cells in the rest of the basal forebrain. In the majority of cases, the ultrastructural analysis revealed axodendritic asymmetric synapses. By comparing the number and distribution of dopamine beta-hydroxylase (DBH)/cholinergic appositions, described earlier, with those of PNMT/cholinergic interactions in the basal forebrain, it can be concluded that a significant proportion of putative DBH/cholinergic contacts may represent adrenergic input. Our results support the hypothesis that the adrenergic/cholinergic link in the basal forebrain may represent a critical component of a central network coordinating autonomic regulation with cortical activation.
Collapse
Affiliation(s)
- Tibor Hajszán
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | | |
Collapse
|
10
|
González A, López JM, Sánchez-Camacho C, Marín O. Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, Dermophis mexicanus (Amphibia: Gymnophiona). J Comp Neurol 2002; 448:249-67. [PMID: 12115707 DOI: 10.1002/cne.10233] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The organization of the cholinergic system in the brain of anuran and urodele amphibians was recently studied, and significant differences were noted between both amphibian orders. However, comparable data are not available for the third order of amphibians, the limbless gymnophionans (caecilians). To further assess general and derived features of the cholinergic system in amphibians, we have investigated the distribution of choline acetyltransferase immunoreactive (ChAT-ir) cell bodies and fibers in the brain of the gymnophionan Dermophis mexicanus. This distribution showed particular features of gymnophionans such as the existence of a particularly large cholinergic population in the striatum, the presence of ChAT-ir cells in the mesencephalic tectum, and the organization of the cranial nerve motor nuclei. These peculiarities probably reflect major adaptations of gymnophionans to a fossorial habit. Comparison of our results with those in other vertebrates, including a segmental approach to correlate cell populations across species, shows that the general pattern of organization of cholinergic systems in vertebrates can be modified in certain species in response to adaptative processes that lead to morphological and behavioral modifications of members of a given class of vertebrates, as shown for gymnophionans.
Collapse
Affiliation(s)
- Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
11
|
Savci V, Goktalay G, Ulus IH. Intracerebroventricular choline increases plasma vasopressin and augments plasma vasopressin response to osmotic stimulation and hemorrhage. Brain Res 2002; 942:58-70. [PMID: 12031853 DOI: 10.1016/s0006-8993(02)02692-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intracerebroventricular (i.c.v.) injection of choline (50-150 microg), a precursor of the neurotransmitter acetylcholine, produced a time-and dose-dependent increase in plasma vasopressin levels in conscious, freely moving rats. The increase in plasma vasopressin in response to i.c.v. choline (150 microg) was inhibited by pretreatment with the nicotinic receptor antagonist, mecamylamine (50 microg; i.c.v.), but not by the muscarinic receptor antagonist, atropine (10 microg; i.c.v). The choline-induced rise in plasma vasopressin levels was greatly attenuated by hemicholinium-3 (HC-3; 20 microg; i.c.v.), a neuronal choline uptake inhibitor. Choline (50 or 150 microg; i.c.v.) produced a much greater increase in plasma vasopressin levels in osmotically stimulated or hemorrhaged rats than in normal rats. Choline (150 microg; i.c.v.) also enhanced plasma vasopressin response to graded hemorrhage; the enhancing effect of choline was also attenuated by HC-3 (20 microg; i.c.v.). Choline and acetylcholine concentrations in hypothalamic dialysates increased significantly following i.c.v. injection of choline (150 microg). It is concluded that choline increases plasma vasopressin levels by stimulating central nicotinic receptors indirectly, through the enhancement of acetylcholine synthesis and release, and augments the ability of osmotic stimulations or hemorrhage to stimulate vasopressin release.
Collapse
Affiliation(s)
- Vahide Savci
- Department of Pharmacology and Clinical Pharmacology, Uludag University Medical School, Bursa, Turkey
| | | | | |
Collapse
|
12
|
Abstract
Brain slice preparations preserving projections from nearby forebrain cholinergic neurons to the supraoptic nucleus (SON) were used to study synaptic potentials mediated by nicotinic acetylcholine receptors (nAChRs) in the hypothalamus. Paired-pulse electrical stimulation in an area anterior to the SON that was rich in cholinergic cells confirmed the monosynaptic nature of the connections to putative oxytocin and vasopressin SON neurons. With ionotropic glutamate and GABA(A) transmission blocked, this stimulation evoked fast, atropine-insensitive EPSPs that were sensitive to nAChR antagonists. Evoked EPSPs were blocked by methyllycaconitine and alpha-bungarotoxin, antagonists that are selective for nAChRs containing the alpha7 subunit, but not by dihydro-beta-erythroidine at concentrations known to antagonize alpha4beta2 nAChRs. Although anatomical evidence exists for postsynaptic alpha4beta2 nAChRs in the SON, these results indicate that postsynaptic alpha7 nAChRs are primarily responsible for the cholinergically mediated EPSPs. Repetitive stimulation suggested partial desensitization of the receptors. With ionotropic glutamate transmission blocked, inhibition of AChE increased spontaneous EPSP frequency and amplitude, suggesting spontaneous ACh release. ACh, nicotine, and choline (a selective alpha7 nAChR agonist) were effective in evoking action potentials and repetitive firing with synaptic transmission blocked by low Ca2+, high Mg2+ medium. These agonists were also effective in evoking the type of phasic bursts characteristic of vasopressin neurons, long thought to be completely dependent on activation of NMDA receptors (NMDARs). Because phasic bursting is Ca2+-dependent, the functional equivalence of alpha7 nAChR and NMDAR activation in this regard is likely attributable to their large Ca2+ fluxing capacities. This is the first demonstration that synaptically released ACh results in fast, alpha7 nAChR-mediated EPSPs in hypothalamic neurons.
Collapse
|
13
|
Manger PR, Fahringer HM, Pettigrew JD, Siegel JM. The distribution and morphological characteristics of cholinergic cells in the brain of monotremes as revealed by ChAT immunohistochemistry. BRAIN, BEHAVIOR AND EVOLUTION 2002; 60:275-97. [PMID: 12476054 PMCID: PMC8792980 DOI: 10.1159/000067195] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Ornithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes.
Collapse
Affiliation(s)
- P R Manger
- Department of Psychiatry, University of California, Los Angeles, Neurobiology Research 151A3, Sepulveda VAMC, North Hills, Calif., USA.
| | | | | | | |
Collapse
|
14
|
Takahashi A, Ishimaru H, Ikarashi Y, Kishi E, Maruyama Y. Hypothalamic cholinergic regulation of body temperature and water intake in rats. Auton Neurosci 2001; 94:74-83. [PMID: 11775710 DOI: 10.1016/s1566-0702(01)00347-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Without disturbing the behavior of unanesthetized rats, the perfusion of neostigmine through microdialysis probe into the anterior hypothalamus (AH), paraventricular nucleus (PVN) and lateral ventricle (LV) decreased body temperature and increased water intake. On the other hand, the perfusion into the supraoptic nucleus (SON) increased the body temperature. The perfusion of neostigmine increased the extracellular concentration of acetylcholine in the perfusion sites except LV. Changes, both decrease and increase, in body temperature and increase in water intake were correlated with increases in c-fos-like immunoreactivity (Fos-IR) in the hypothalamus, pons and medulla. Distinct Fos-IR was found in the PVN, SON, median preoptic nucleus (MnPO), locus coeruleus (LC), area postrema and nucleus of the solitary tract (NTS). Co-administration of atropine with neostigmine completely suppressed the changes in the body temperature, water intake and Fos-IR, all of which were induced by the neostigmine perfusion into AH, PVN and SON. In the LV-perfused rats, on the other hand, co-administration of atropine and neostigmine only partially prevented body temperature reduction and still induced significant hypothermia. These results suggest that muscarinic receptor activation in specific regions of the hypothalamus and the activation of LC and NTS are implicated in the regulation of body temperature and water intake. Other receptor processes are involved in the LV-induced changes.
Collapse
Affiliation(s)
- A Takahashi
- Department of Neuropsychopharmacology (Tsumura), Gunma University School of Medicine, Maebashi, Japan.
| | | | | | | | | |
Collapse
|
15
|
Li DP, Pan YZ, Pan HL. Acetylcholine attenuates synaptic GABA release to supraoptic neurons through presynaptic nicotinic receptors. Brain Res 2001; 920:151-8. [PMID: 11716821 DOI: 10.1016/s0006-8993(01)03055-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both inhibitory GABAergic and excitatory glutamatergic inputs to supraoptic nucleus (SON) neurons can influence the release of vasopressin and oxytocin. Acetylcholine is known to excite SON neurons and to increase vasopressin release. The functional significance of cholinergic receptors, located at the presynaptic nerve terminals, in the regulation of the excitability of SON neurons is not fully known. In this study, we determined the role of presynaptic cholinergic receptors in regulation of the inhibitory GABAergic inputs to the SON neurons. The magnocellular neurons in the rat hypothalamic slice were identified microscopically, and the spontaneous miniature inhibitory postsynaptic currents (mIPSCs) were recorded using the whole-cell voltage-clamp technique. The mIPSCs were abolished by the GABA(A) receptor antagonist, bicuculline (10 microM). Acetylcholine (100 microM) significantly reduced the frequency of mIPSCs of SON neurons from 3.59+/-0.36 to 1.62+/-0.20 Hz (n=37), but did not alter the amplitude and the decay time constant of mIPSCs. Furthermore, the nicotinic receptor antagonist, mecamylamine (10 microM, n=13), eliminated the inhibitory effect of acetylcholine on mIPSCs of SON neurons. The muscarinic receptor antagonist, atropine (100 microM), did not alter significantly the effect of acetylcholine on mIPSCs in most of the 17 SON neurons studied. These results suggest that the excitatory effect of acetylcholine on the SON neurons is mediated, at least in part, by inhibition of presynaptic GABA release. Activation of presynaptic nicotinic receptors located in the GABAergic terminals plays a major role in the cholinergic regulation of the inhibitory GABAergic input to SON neurons.
Collapse
Affiliation(s)
- D P Li
- Department of Anesthesiology, H187, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | | | | |
Collapse
|
16
|
Li DP, Pan HL. Potentiation of glutamatergic synaptic input to supraoptic neurons by presynaptic nicotinic receptors. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1105-13. [PMID: 11557616 DOI: 10.1152/ajpregu.2001.281.4.r1105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The release of vasopressin and oxytocin from the supraoptic nucleus (SON) neurons is tonically regulated by excitatory glutamatergic and inhibitory GABAergic synaptic inputs. Acetylcholine is known to excite SON neurons and to elicit vasopressin release. Cholinergic receptors are located pre- and postsynaptically in the SON, but their functional significance in the regulation of SON neurons is not fully understood. In this study, we determined the role of presynaptic cholinergic receptors in regulation of the excitatory glutamatergic inputs to the SON neurons. The magnocellular neurons in the rat hypothalamic slices were identified microscopically, and the spontaneous miniature excitatory postsynaptic currents (mEPSCs) were recorded using the whole cell voltage-clamp technique. The mEPSCs were abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM). Acetylcholine (100 microM) significantly increased the frequency of mEPSCs of 38 SON neurons from 1.87 +/- 0.36 to 3.42 +/- 0.54 Hz but did not alter the amplitude (from 19.61 +/- 0.90 to 19.34 +/- 0.84 pA) and the decay time constant of mEPSCs. Furthermore, the nicotinic receptor antagonist mecamylamine (10 microM, n = 16), but not the muscarinic receptor antagonist atropine (100 microM, n = 12), abolished the excitatory effect of acetylcholine on the frequency of mEPSCs. These data provide new information that the excitatory effect of acetylcholine on the SON neurons is mediated, at least in part, by its effect on presynaptic glutamate release. Activation of presynaptic nicotinic, but not muscarinic, receptors located in the glutamatergic terminals increases the excitatory synaptic input to the SON neurons of the hypothalamus.
Collapse
Affiliation(s)
- D P Li
- Department of Anesthesiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-0850, USA
| | | |
Collapse
|
17
|
Takahashi A, Ishimaru H, Ikarashi Y, Kishi E, Maruyama Y. Opposite regulation of body temperature by cholinergic input to the paraventricular nucleus and supraoptic nucleus in rats. Brain Res 2001; 909:102-11. [PMID: 11478926 DOI: 10.1016/s0006-8993(01)02642-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hypothalamic cholinergic system plays an important role in the regulation of body temperature and fluid balance. We have previously shown that cholinergic stimulation of the anterior hypothalamus and preoptic area was accompanied by a fall in body temperature, increased water intake, and increased Fos protein in the paraventricular nucleus (PVN) and supraoptic nucleus (SON). In the present study, to estimate the role played by cholinergic input to the PVN and SON in thermoregulation and water intake, we used microdialysis for cholinergic stimulation with neostigmine and analysis of the nucleus, and also investigated immunoreactivity for c-Fos protein in the brain. This stimulation increased extracellular concentration of acetylcholine in these nuclei. Stimulation of the PVN decreased body temperature and increased water intake. On the other hand, stimulation of the SON increased body temperature. Both in PVN-stimulated and SON-stimulated rats, c-Fos-like immunoreactivity (Fos-IR) was evident in the PVN, SON and certain regions including locus coeruleus (LC), area postrema and nucleus of the solitary tract (NTS). Addition of atropine to the dialysis medium attenuated the increase of Fos-IR and suppressed the cholinergic stimulation-induced responses in body temperature and water intake. These results suggest that cholinergic muscarinic mechanisms in PVN and SON play an opposite function in the regulation of body temperature. The same neuronal pathway including LC and NTS may participate in an advance both in hypothermia and in hyperthermia.
Collapse
Affiliation(s)
- A Takahashi
- Department of Neuropsychopharmacology (Tsumura), Gunma University School of Medicine, Maebashi, 371-8511, Gunma, Japan.
| | | | | | | | | |
Collapse
|
18
|
Adrio F, Anadón R, Rodríguez-Moldes I. Distribution of choline acetyltransferase (ChAT) immunoreactivity in the central nervous system of a chondrostean, the siberian sturgeon (Acipenser baeri). J Comp Neurol 2000; 426:602-21. [PMID: 11027402 DOI: 10.1002/1096-9861(20001030)426:4<602::aid-cne8>3.0.co;2-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All studies to date of cholinergic systems of bony fishes have been done in teleosts. To gain further insight into the evolution of the cholinergic systems of bony fishes, we have studied the brain of a chondrostean fish, the Siberian sturgeon (Acipenser baeri, Brandt), by using an antibody against choline acetyltransferase (ChAT). This study showed the presence of ChAT-immunoreactive (ChAT-ir) neurons in the preoptic region (parvocellular and magnocellular preoptic nuclei and suprachiasmatic nucleus), the periventricular and tuberal hypothalamus, the saccus vasculosus, the dorsal thalamus, and the habenula. The mesencephalic tegmentum contained ChAT-ir cells in the torus semicircularis and torus lateralis. The isthmus contained several cholinergic populations: the nucleus isthmi, the lateral nucleus of the valvula, the secondary visceral nucleus, and the dorsal tegmental nucleus. The motor neurons of the cranial nerves and the spinal motor column were strongly immunoreactive. The medial (sensory) trigeminal nucleus also contained a ChAT-ir neuronal population. The distribution of ChAT-ir neurons in the sturgeon brain showed some notable differences with that observed in teleosts, such as the absence of cholinergic cells in the telencephalon and the optic tectum. Several brain regions were richly innervated by ChAT-ir fibers, particularly the telencephalon, optic tectum, thalamus, posterior tubercle, and interpeduncular nucleus. The hypothalamo-hypophyseal tract, the tract of the saccus vasculosus, the fasciculus retroflexus, and an isthmo-mesencephalo-thalamic tract were the most conspicuous cholinergic bundles. Comparative analysis of these results suggests that teleosts have conserved most traits of the cholinergic system of the sturgeon, having acquired new cholinergic populations during evolution.
Collapse
Affiliation(s)
- F Adrio
- Department of Fundamental Biology, Faculty of Biology, University of Santiago de Compostela, 15706-Santiago de Compostela, Spain
| | | | | |
Collapse
|
19
|
Anadón R, Molist P, Rodríguez-Moldes I, López JM, Quintela I, Cerviño MC, Barja P, González A. Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). J Comp Neurol 2000; 420:139-70. [PMID: 10753304 DOI: 10.1002/(sici)1096-9861(20000501)420:2<139::aid-cne1>3.0.co;2-t] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the distribution of cholinergic cells is remarkably similar across the vertebrate species, no data are available on more primitive species, such as cartilaginous fishes. To extend the evolutionary analysis of the cholinergic systems, we studied the distribution of cholinergic neurons in the brain and rostral spinal cord of Scyliorhinus canicula by immunocytochemistry using an antibody against the enzyme choline acetyltransferase (ChAT). Western blot analysis of brain extracts of dogfish, sturgeon, trout, and rat showed that this antibody recognized similar bands in the four species. Putative cholinergic neurons were observed in most brain regions, including the telencephalon, diencephalon, cerebellum, and brainstem. In the retrobulbar region and superficial dorsal pallium of the telencephalon, numerous small pallial cells were ChAT-like immunoreactive. In addition, tufted cells of the olfactory bulb and some cells in the lateral pallium showed faint immunoreactivity. In the preoptic-hypothalamic region, ChAT-immunoreactive (ChAT-ir) cells were found in the preoptic nucleus, the vascular organ of the terminal lamina, and a small population in the caudal tuber. In the epithalamus, the pineal photoreceptors were intensely positive. Many cells of the habenula were faintly ChAT-ir, but the neuropil of the interpeduncular nucleus showed intense ChAT immunoreactivity. In the pretectal region, ChAT-ir cells were observed only in the superficial pretectal nucleus. In the brainstem, the somatomotor and branchiomotor nuclei, the octavolateral efferent nucleus, and a cell group just rostral to the Edinger-Westphal (EW) nucleus contained ChAT-ir neurons. In addition, the trigeminal mesencephalic nucleus, the nucleus G of the isthmus, some locus coeruleus cells, and some cell populations of the vestibular nuclei and of the electroreceptive nucleus of the octavolateral region exhibited ChAT immunoreactivity. In the reticular areas of the brainstem, the nucleus of the medial longitudinal fascicle, many reticular neurons of the rhombencephalon, and cells of the nucleus of the lateral funiculus were immunoreactive to this antibody. In the cerebellum, Golgi cells of the granule cell layer and some cells of the cerebellar nucleus were also ChAT-ir. In the rostral spinal cord, ChAT immunoreactivity was observed in cells of the motor column, the dorsal horn, the marginal nucleus (a putative stretch-receptor organ), and in interstitial cells of the ventral funiculus. These results demonstrate for the first time that cholinergic neurons are distributed widely in the central nervous system of elasmobranchs and that their cholinergic systems have evolved several characteristics that are unique to this group.
Collapse
Affiliation(s)
- R Anadón
- Department of Fundamental Biology, University of Santiago de Compostela, 15706-Santiago de Compostela, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Jourdain P, Dupouy B, Bonhomme R, Poulain DA, Israel JM, Theodosis DT. Visualization of local afferent inputs to magnocellular oxytocin neurons in vitro. Eur J Neurosci 1999; 11:1960-72. [PMID: 10336665 DOI: 10.1046/j.1460-9568.1999.00620.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We recently showed that oxytocin (OT) neurons in organotypic slice cultures obtained from postnatal rat hypothalamus display complex patterns of electrical activity, similar to those of adult magnocellular OT neurons in vivo. Here we used such cultures to investigate the identity and, in particular, the origin of afferent inputs responsible for this activity. Multiple immunostaining with light and confocal microscopy showed that the somata and dendrites of oxytocinergic neurons were contacted by numerous synapses, visualized by their reaction to the synaptic markers, synaptophysin or synapsin. Many were GABAergic, displaying immunoreactivities for glutamic acid decarboxylase or gamma-aminobutyric acid (GABA); others were enriched in glutamate immunoreactivity. Such afferents presumably arose from GABA- or glutamate-immunoreactive neurons, respectively, with distinct and characteristic morphologies and topographies. A few dopaminergic boutons (tyrosine hydroxylase- or dopamine-immunopositive) impinged on OT neurons; they arose from dopamine-positive neurons located along the third ventricle. No noradrenergic profiles were detected. Despite the presence of choline acetyl-transferase (ChAT)-immunoreactive neurons, there were no cholinergic contacts. Lastly, we found oxytocinergic synapses, identified by immunoreaction for OT-related neurophysin and synapsin, contacting OT somata and dendrites. Our observations thus demonstrate that inhibitory and excitatory inputs to OT neurons derive from local intrahypothalamic GABA and glutamate neurons, in close proximity to the neurons. They also reveal that OT neurons are innervated by hypothalamic dopaminergic neurons. Finally, they confirm the existence of homotypic OT synaptic contacts which derive from local OT neurons.
Collapse
Affiliation(s)
- P Jourdain
- INSERM U. 378 Neurobiologie Morphofonctionnelle, Institut F. Magendie, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
21
|
Leng G, Brown CH, Russell JA. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Prog Neurobiol 1999; 57:625-55. [PMID: 10221785 DOI: 10.1016/s0301-0082(98)00072-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Magnocellular oxytocin and vasopressin cells are among the most extensively studied neurons in the brain; their large size and high synthetic capacity, their discrete, homogeneous distribution and the anatomical separation of their terminals from their cell bodies, and the ability to determine their neuronal output readily by measurements of hormone concentration in the plasma, combine to make these systems amenable to a wide range of fundamental investigations. While vasopressin cells have intrinsic burst-generating properties, oxytocin cells are organized within local pattern-generating networks. In this review we consider the rôle played by particular afferent pathways in the regulation of the activity of oxytocin and vasopressin cells. For both cell types, the effects of changes in the activity of synaptic input can be complex.
Collapse
Affiliation(s)
- G Leng
- Department of Physiology, University Medical School, Edinburgh, UK.
| | | | | |
Collapse
|
22
|
Savci V, Ulus IH. Choline administration reverses hypotension in spinal cord transected rats: the involvement of vasopressin. Neurochem Res 1998; 23:733-41. [PMID: 9566613 DOI: 10.1023/a:1022407409727] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intracerebroventricular (i.c.v.) choline (50-150 microg) increased blood pressure and decreased heart rate in spinal cord transected, hypotensive rats. Choline administered intraperitoneally (60 mg/kg), also, increased blood pressure, but to a lesser extent. The pressor response to i.c.v. choline was associated with an increase in plasma vasopressin. Mecamylamine pretreatment (50 microg; i.c.v.) blocked the pressor, bradycardic and vasopressin responses to choline (150 microg). Atropine pretreatment (10 microg; i.c.v.) abolished the bradycardia but failed to alter pressor and vasopressin responses. Hemicholinium-3 [HC-3 (20 microg; i.c.v.)] pretreatment attenuated both bradycardia and pressor responses to choline. The vasopressin V1 receptor antagonist, (beta-mercapto-beta,beta-cyclopenta-methylenepropionyl1, O-Me-Tyr2, Arg8)-vasopressin (10 microg/kg) administered intravenously 5 min after choline abolished the pressor response and attenuated the bradycardia-induced by choline. These data show that choline restores hypotension effectively by activating central nicotinic receptors via presynaptic mechanisms, in spinal shock. Choline-induced bradycardia is mediated by central nicotinic and muscarinic receptors. Increase in plasma vasopressin is involved in cardiovascular effects of choline.
Collapse
Affiliation(s)
- V Savci
- Department of Pharmacology, Uludag University Medical Faculty, Bursa, Turkey.
| | | |
Collapse
|
23
|
Abstract
The cardiovascular effects of intracerebroventricular (i.c.v.) administration of choline were studied in endotoxin-treated rats. Intravenous (i.v.) endotoxin (20 mg/kg) caused a moderate hypotension and tachycardia within 10 min of treatment. Choline (50, 100, and 150 microg; i.c.v.) increased blood pressure and decreased heart rate in this condition in a dose-dependent manner. Mecamylamine (50 microg; i.c.v.) pretreatment prevented the pressor and bradycardic responses to choline, whereas atropine (10 microg; i.c.v.) failed to alter both responses. Atropine pretreatment, alone, inhibited endotoxin-induced hypotension. The pressor responses to choline in endotoxin-treated rats were attenuated by pretreatment with hemicholinium-3 (20 microg; i.c.v.), a high-affinity neuronal choline-uptake inhibitor. Plasma vasopressin levels of endotoxin-treated rats were severalfold higher than those of control animals, and choline (50-150 microg; i.c.v.) produced further increases in plasma vasopressin in this condition. Mecamylamine abolished vasopressin response to endotoxin as well as to choline. The vasopressin receptor antagonist, (beta-mercapto-beta,beta-cyclopentamethylene-propionyl(1)-O-Me-Tyr2,Arg8 )-vasopressin (10 microg/kg; i.v.) administered 5 min after choline decreased blood pressure from the increased level to the precholine levels but did not alter bradycardia. These results indicate that, in rats treated with endotoxin, choline increases blood pressure and decreases heart rate by a presynaptic mechanism leading to the activation of central nicotinic cholinergic pathways. An increase in plasma vasopressin levels seems to be involved in the pressor, but not in the bradycardic response, to choline.
Collapse
Affiliation(s)
- V Savci
- Department of Pharmacology, Uludag University Medical Faculty, Bursa, Turkey
| | | |
Collapse
|
24
|
Armstrong WE, Stern JE. Electrophysiological and morphological characteristics of neurons in perinuclear zone of supraoptic nucleus. J Neurophysiol 1997; 78:2427-37. [PMID: 9356394 DOI: 10.1152/jn.1997.78.5.2427] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Electrophysiological and morphological characteristics of neurons in perinuclear zone of supraoptic nucleus. J. Neurophysiol. 78: 2427-2437, 1997. Neurons in the perinuclear zone (PZ) of the supraoptic nucleus (SON) are thought to serve as interneurons and may mediate changes in neurohypophysial hormone release in response to physiological changes in blood pressure. However, the morphology and electrophysiological characteristics of PZ neurons are unknown. In the present study, PZ neurons from male and female rats were recorded intracellularly to determine some membrane properties, then filled with biocytin or biotinamide for morphological analysis. In general, PZ neurons had faster spikes than magnocellular SON neurons, and the great majority were characterized by a subthreshold depolarizing hump when depolarized from a hyperpolarized (less than -80 mV) membrane potential. In most neurons, this hump was similar to low-threshold spikes described in other CNS regions. Near-threshold, fast action potentials were clustered near the onset of these depolarizations. Conspicuously absent in all PZ neurons was the strong transient and subthreshold outward rectification characteristic of vasopressin and oxytocin neurons of the SON. These results suggest that PZ neurons are electrophysiologically distinct from neurosecretory neurons of the SON. No differences were found between male and female rats in any of the basic properties examined, including input resistance, membrane time constant, spike height, spike width, spike threshold, and the size of the spike afterhyperpolarization. Morphologically, PZ neurons were diverse but were divided into spiny and aspiny groups. Three spiny neurons and one aspiny neuron contributed an axonal projection to the SON characterized by varicosities suggestive of terminals. In the case of the three spiny neurons, the SON projection was clearly a minor collateral projection. The axon arborized in the PZ, but one or more branches were cut at the edge of the explant, indicating a longer projection. In the remaining neurons, no axonal projection to the SON was detected and several had axons leaving the explant. Some portion of the dendritic tree penetrated the SON in several neurons. The morphology of PZ neurons was thus heterogeneous and suggests that, for some cells at least, the projection to the SON may be a minor collateral component of a much wider axonal projection.
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
25
|
Marín O, Smeets WJ, González A. Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians. J Comp Neurol 1997; 382:499-534. [PMID: 9184996 DOI: 10.1002/(sici)1096-9861(19970616)382:4<499::aid-cne6>3.0.co;2-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Because our knowledge of cholinergic systems in the brains of amphibians is limited, the present study aimed to provide detailed information on the distribution of cholinergic cell bodies and fibers as revealed by immunohistochemistry with antibodies directed against the enzyme choline acetyltransferase (ChAT). To determine general and derived features of the cholinergic systems within the class of Amphibia, both anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians were studied. Distinct groups of ChAT-immunoreactive cell bodies were observed in the basal telencephalon, hypothalamus, habenula, isthmic nucleus, isthmic reticular formation, cranial nerve motor nuclei, and spinal cord. Prominent plexuses of cholinergic fibers were found in the olfactory bulb, pallium, basal telencephalon, ventral thalamus, tectum, and nucleus interpeduncularis. Comparison of these results with those obtained in other vertebrates, including a segmental approach to correlate cell populations, reveals that the cholinergic systems in amphibians share many features with amniotes. Thus, cholinergic pedunculopontine and laterodorsal tegmental nuclei could be identified in the amphibian brain. The finding of weakly immunoreactive cells in the striatum of Rana, which is in contrast with the condition found in Xenopus, Pleurodeles, and other anamniotes studied so far, has revived the notion that basal ganglia organization is more preserved during evolution than previously thought.
Collapse
Affiliation(s)
- O Marín
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
26
|
Savci V, Ulus IH. Central choline reverses hypotension caused by alpha-adrenoceptor or ganglion blockade in rats: the role of vasopressin. Eur J Pharmacol 1996; 311:153-61. [PMID: 8891595 DOI: 10.1016/0014-2999(96)00424-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of intracerebrovenricularly (i.c.v.) injected choline on blood pressure was investigated in rats made hypotensive by blocking peripheral alpha-adrenoceptors or autonomic ganglionic transmission. Choline (50-150 micrograms; i.c.v.) increased blood pressure in a dose-dependent manner and 150 micrograms of choline restored blood pressure to the resting level. The pressor response to choline was associated with an increase in plasma vasopressin levels. Pretreatment with mecamylamine (50 micrograms; i.c.v.), but not atropine (10 micrograms; i.c.v.), blocked both the pressor and vasopressin responses to i.c.v. choline. The vasopressin receptor antagonist, [beta-mercapto-beta,beta-cyclopenta-methylene-propionyl1,O-Me-T ry2,Arg8] vasopressin (10 micrograms/kg; i.v.), given 5 min after i.c.v. choline (150 micrograms), abolished the pressor effect of choline and blood pressure returned to the pre-choline levels. It is concluded that the precursor of acetylcholine, choline, can increase blood pressure and reverse hypotension in alpha-adrenoceptor or ganglionic transmission blocked rats, by increasing plasma vasopressin.
Collapse
Affiliation(s)
- V Savci
- Department of Pharmacology, Uludag University Medical Faculty, Bursa, Turkey
| | | |
Collapse
|
27
|
Savci V, Gürün MS, Ulus IH, Kiran BK. Effect of intracerebroventricularly injected choline on plasma ACTH and beta-endorphin levels in conscious rats. Eur J Pharmacol 1996; 309:275-80. [PMID: 8874151 DOI: 10.1016/0014-2999(96)00330-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study, we examined the effect of intracerebroventricularly injected choline on plasma ACTH (adrenocorticotrophin) and beta-endorphin levels in conscious rats. The intracerebroventricularly injection of choline (50-150 micrograms) elevated plasma ACTH levels in a dose-dependent manner. Plasma beta-endorphin levels were also significantly increased. Pretreatment of rats with mecamylamine (50 micrograms; intracerebroventricularly), the nicotinic receptor antagonist, completely inhibited the ACTH and beta-endorphin response to choline (150 micrograms; intracerebroventricularly). An antagonist of the muscarinic receptor, atropine (10 micrograms; intracerebroventricularly), failed to alter these effects. Pretreatment of rats with hemicholinium-3 (20 micrograms; intracerebroventricularly), a drug which inhibits the uptake of choline into cholinergic neurons, abolished the choline-induced increases in both plasma ACTH and beta-endorphin levels. These results indicate that choline can increase plasma concentrations of ACTH and beta-endorphin through the activation of central nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- V Savci
- Department of Pharmacology, Uludag University Medical Faculty, Bursa, Turkey
| | | | | | | |
Collapse
|
28
|
Savci V, Gürün S, Ulus IH, Kiran BK. Intracerebroventricular injection of choline increases plasma oxytocin levels in conscious rats. Brain Res 1996; 709:97-102. [PMID: 8869561 DOI: 10.1016/0006-8993(95)01308-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study, we examined the effect of intracerebroventricularly (i.c.v.) injected choline on both basal and stimulated oxytocin release in conscious rats. I.c.v. injection of choline (50-150 micrograms) caused time- and dose-dependent increases in plasma oxytocin levels under normal conditions. The increase in plasma oxytocin levels in response to i.c.v. choline (150 micrograms) was greatly attenuated by the pretreatment of rats with atropine (10 micrograms; i.c.v.), muscarinic receptor antagonist. Mecamylamine (50 micrograms; i.c.v.), a nicotinic receptor antagonist, failed to suppress the effect of 150 micrograms choline on oxytocin levels. Pretreatment of rats with 20 micrograms of hemicholinium-3 (HC-3), a specific inhibitor of choline uptake into nerve terminals, greatly attenuated the increase in plasma oxytocin levels in response to i.c.v. choline injection. Osmotic stimuli induced by either oral administration of 1 ml hypertonic saline (3 M) following 24-h dehydration of rats (type 1) or an i.c.v. injection of hypertonic saline (1 M) (type 2) increased plasma oxytocin levels significantly, but hemorrhage did not alter basal oxytocin concentrations. The i.c.v. injection of choline (50, 150 micrograms) under these conditions caused an additional and significant increase in plasma oxytocin concentrations beyond that produced by choline in normal conditions. These data show that choline can increase plasma oxytocin concentrations through the stimulation of central cholinergic muscarinic receptors by presynaptic mechanisms and enhance the stimulated oxytocin release.
Collapse
Affiliation(s)
- V Savci
- Department of Pharmacology, Uludag University Medical School, Bursa, Turkey
| | | | | | | |
Collapse
|
29
|
Bisset GW, Fairhall KM. Release of vasopressin and oxytocin by excitatory amino acid agonists and the effect of antagonists on release by muscarine and hypertonic saline, in the rat in vivo. Br J Pharmacol 1996; 117:309-14. [PMID: 8789384 PMCID: PMC1909267 DOI: 10.1111/j.1476-5381.1996.tb15192.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. It has been claimed that glutamate is the dominant excitatory neurotransmitter in neuroendocrine regulation. The evidence is derived mainly from in vitro experiments. 2. We have investigated in vivo a possible role of excitatory amino acids (EAAs) in the neural control of release of vasopressin (AVP) and oxytocin from the neurohypophysis. 3. In rats under ethanol anaesthesia in which a diuresis was maintained by a constant fluid load, the i.c.v. injection of glutamate and the synthetic agonists alpha-amino, 3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) produced an antidiuretic response (ADR) which was abolished by an AVP antagonist. For AMPA and NMDA it was shown that this ADR was accompanied by increased urinary excretion of AVP and oxytocin. 4. The selectivity of antagonists was tested in this system. D-2-Amino-5-phosphonopentanoate (D-AP5) blocked the responses to NMDA but not to AMPA; 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) blocked the responses to both agonists. 5. The ADR to muscarine and hypertonic saline i.c.v., and the increase in excretion of AVP and oxytocin in response to muscarine, were blocked by CNQX but not by D-AP5. 6. The results suggest that hypertonic saline releases AVP and muscarine releases both AVP and oxytocin, at least in part, by activating a glutaminergic input to the SON and PVN involving an AMPA receptor. This input could function as a terminal interneurone in afferent neural pathways to these nuclei.
Collapse
Affiliation(s)
- G W Bisset
- Division of Neurophysiology, National Institute for Medical Research, London
| | | |
Collapse
|
30
|
Armstrong WE. Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog Neurobiol 1995. [DOI: 10.1016/0301-0082(95)80005-s] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Shen E, Sun X. Endogenous acetylcholine-induced Fos expression in magnocellular neurosecretory neurons in the supraoptic nucleus of the rat hypothalamus. Neurosci Lett 1995; 195:191-4. [PMID: 8584207 DOI: 10.1016/0304-3940(95)11816-f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Induction of c-Fos expression in the supraoptic nucleus (SON) of the rat hypothalamus by endogenous acetylcholine was examined by microinfusion of neostigmine, a cholinesterase inhibitor, into the nucleus to locally accumulate the spontaneously released acetylcholine from the cholinergic terminals in the SON. Double staining of the neurosecretory neurons with antiserum to Fos, the protein product of c-Fos, and antiserum to vasopressin or oxytocin was performed. Fos-like immunoreactivity was manifested in both the vasopressin neurons and oxytocin neurons following the microinfusion of neostigmine. Microinfusion of nicotinic agonist, nicotine, to the SON also induced Fos expression, but mainly in the vasopressin neurons. Microinfusion of muscarinic agonist, carbachol, induced Fos expression as well, but mostly in the oxytocin neurons.
Collapse
Affiliation(s)
- E Shen
- Shanghai Brain Research Institute, China
| | | |
Collapse
|
32
|
Decavel C, Hatton GI. Taurine immunoreactivity in the rat supraoptic nucleus: prominent localization in glial cells. J Comp Neurol 1995; 354:13-26. [PMID: 7615871 DOI: 10.1002/cne.903540103] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Taurine is an inhibitory amino acid that hyperpolarizes magnocellular neurosecretory neurons. To determine which cell types in the rat supraoptic nucleus contain taurine, we used a monoclonal antibody raised against a taurine conjugate. Preembedding immunocytochemistry was carried out at the light and electron microscopic levels using diaminobenzidine and gold-substituted silver-intensified peroxidase as markers. We report the presence of taurine in all cellular compartments of the supraoptic nucleus, except axons, with variable labeling intensities among the different compartments. Few cell bodies of magnocellular neurons were immunoreactive, but many distal dendrites and some proximal ones showed weak-to-moderate levels of immunoreactivity. Strong immunoreactivity was found over glial cell bodies and their processes, in particular in the ventral glial lamina of the supraoptic nucleus. Large astrocytic processes labeled with the taurine antibody included the endfeet participating in the glial limitans around capillaries and at the ventral surface of the hypothalamus. Other types of immunoreactive astrocytic profiles were found scattered within the neuropil where these processes participated in different interactions with the neuronal elements of the supraoptic nucleus. Immunoreactive glial expansions, sometimes even the main process of the glial cell, engulfed axonal boutons. Other labeled glial processes were found between two magnocellular perikarya or closely apposed to the membrane of axonal boutons contacting the neuronal cell bodies. The frequent finding of closely apposed glial and dendritic elements bearing different levels of taurine-like immunoreactivity suggests that exchange of taurine between those two compartments may occur. We propose that taurine could be released from supraoptic glia by a small decrease in osmolarity or by receptor-mediated mechanisms during conditions of low hormonal (vasopressin and/or oxytocin) needs. Such released taurine could then act on presynaptic or postsynaptic sites, or both, to exert its neuromodulatory actions.
Collapse
Affiliation(s)
- C Decavel
- Department of Neuroscience, University of California, Riverside 92521, USA
| | | |
Collapse
|
33
|
Bachelard H, Gardiner SM, Kemp PA, Bennett T. Regional haemodynamic effects of carbachol injected into the hypothalamic paraventricular nuclei of conscious, unrestrained rats. Neuropharmacology 1994; 33:769-88. [PMID: 7936115 DOI: 10.1016/0028-3908(94)90117-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Carbachol was injected into the hypothalamic paraventricular nuclei (PVN) of conscious, unrestrained Long Evans rats, chronically instrumented with intravascular catheters and pulsed Doppler probes to assess changes in regional haemodynamics. Bilateral microinjections of carbachol (1 ng-1 microgram) produced increases in blood pressure, bradycardias and vasoconstrictions in renal, superior mesenteric and hindquarters vascular beds. In the presence of phentolamine, the bradycardic and hindquarters vasoconstrictor responses to carbachol were unchanged while the pressor response was smaller due to a reduction in the renal and the superior mesenteric vasoconstriction. In the presence of propranolol, the bradycardic response was reduced, but the pressor and renal vasoconstrictor responses were potentiated, whereas the superior mesenteric and hindquarter vasoconstrictions were not changed significantly. In the presence of phentolamine and propranolol, the heart rate and pressor responses, as well as the renal vasoconstriction, were unchanged, whereas the superior mesenteric vasoconstriction was reduced and the hindquarters vasoconstriction was potentiated. Together these results are consistent with an involvement of the sympathoadrenal system in the pressor response to carbachol injected into the PVN of untreated animals. They indicate that alpha-adrenoceptor-mediated vasoconstriction in the superior mesenteric vascular bed is a particularly important component in that regard. In the presence of the vasopressin antagonist, d(CH2)5(Tyr(Et))DAVP, alone or in combination with phentolamine and propranolol, the pressor response to carbachol was substantially reduced, while the renal and superior mesenteric vasoconstrictor effects were completely abolished; the bradycardia was not significantly affected by this treatment. These results indicate an important involvement of vasopressin in the cardiovascular responses to carbachol injected into the PVN of untreated animals. Moreover, in the presence of the vasopressin antagonist the hindquarters vascular bed showed a vasodilatation following PVN injection of carbachol; this effect was reversed to a vasoconstriction following combined i.v. pretreatment with the vasopressin antagonist, phentolamine and propranolol and hence was possibly due to circulating adrenaline acting on vasodilator beta 2-adrenoceptors. However, there was a residual hindquarters vasoconstriction raising the possibility that non-adrenergic, non-vasopressinergic vasoconstrictor mechanisms were influencing that vascular bed.
Collapse
Affiliation(s)
- H Bachelard
- Unité de Recherche sur l'Hypertension, Centre de Recherche du CHUL, Université Laval, Ste-Foy, P.Q., Canada
| | | | | | | |
Collapse
|
34
|
Larsen PJ, Hay-Schmidt A, Mikkelsen JD. Efferent connections from the lateral hypothalamic region and the lateral preoptic area to the hypothalamic paraventricular nucleus of the rat. J Comp Neurol 1994; 342:299-319. [PMID: 8201036 DOI: 10.1002/cne.903420211] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The lateral preoptic and lateral hypothalamic regions contain the majority of the cell groups embedded in the fibre trajectories of the medial forebrain bundle on its course through the hypothalamus. Recent studies have extended considerably the parcellation of the lateral hypothalamic region, and therefore, the need to emphasize new insights into the anatomical organisation of projections from the neurons of the lateral hypothalamic region. In the present study we describe the anatomical organisation of efferent projections from the lateral preoptic and lateral hypothalamic regions to the hypothalamic paraventricular nucleus (PVN) on the basis of retrograde- and anterograde-tracing techniques. Iontophoretic injections of the retrograde tracer, cholera toxin subunit B, into the PVN revealed that most hypothalamic nuclei project to the PVN. Within the lateral hypothalamic region, retrogradely labelled cells were concentrated in the intermediate hypothalamic area, the lateral hypothalamic area, and the perifornical nucleus, whereas fewer retrogradely labelled cells were found in the lateral preoptic area. To determine the distribution of terminating fibres in subnuclei of the heterogeneous PVN, iontophoretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin were delivered into distinct areas of the lateral hypothalamic region. Neurons of the intermediate hypothalamic area projected mainly to the PVN subnuclei, which contained parvicellular neuroendocrine cells. In contrast, neurons of the rostral and tuberal parts of the lateral hypothalamic area and the perifornical nucleus projected to the PVN subnuclei, which contained parvicellular neurons that send descending projections to preganglionic cell groups in the medulla and spinal cord. The perifornical nucleus was the only area within the lateral hypothalamic region that consistently innervated magnocellular perikarya of the PVN. Finally, all areas of the lateral hypothalamic region contributed substantially to fibres terminating in the perinuclear shell of the PVN. These results demonstrate that anatomically distinct areas of the lateral hypothalamic region have distinct projections to subnuclei of the PVN and further substantiate the view that the lateral hypothalamic region as well as the PVN constitute anatomically and functionally heterogeneous structures.
Collapse
Affiliation(s)
- P J Larsen
- Institute of Medical Anatomy, Department B, University of Copenhagen, Denmark
| | | | | |
Collapse
|
35
|
Roland BL, Sawchenko PE. Local origins of some GABAergic projections to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol 1993; 332:123-43. [PMID: 7685780 DOI: 10.1002/cne.903320109] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Axonal transport and immunohistochemical methods were used to characterize the organization of glutamic acid decarboxylase-immunoreactive (GAD-ir) projections to the paraventricular (PVH) and supraoptic (SO) nuclei of the hypothalamus in the rat. In line with prior reports, GAD-ir varicosities were found to be densely and quite uniformly distributed throughout the hypothalamus, including the PVH and the SO. Nonetheless, the periventricular part of the PVH was consistently found to contain a disproportionately high density of GAD-ir elements. Small crystalline implants of the retrograde tracer, true blue, into the PVH labeled GAD-ir cells in the anterior perifornical region, portions of the anterior hypothalamic area immediately ventral to the PVH, a region just dorsal to the rostral SO and extending caudomedially over the optic chiasm and tract, and within the anterior one-third of the PVH itself. Because possible uptake of retrograde tracer by local dendritic processes might have yielded false positive filling of nearby GAD-ir cells, anterograde transport, Phaseolus vulgaris-leucoagglutinin, and combined anterograde transport-immunohistochemical methods were used to attempt to confirm these four putative local sources of GAD-ir inputs. Tracer injections in each of the above mentioned regions labeled sparse to moderate axonal projections to the PVH, which ramified preferentially in the parvicellular division of the nucleus. Projections to the magnocellular division of the PVH and the SO were generally sparse and inconsistently observed in this material. A variable, and generally small, proportion of anterogradely labeled axons and terminals in the PVH also displayed GAD-ir. These results suggest that GABAergic projections to visceromotor cell types in the PVH and SO arise, at least in part, from several diffusely distributed local sources. The fact that these afferents were found to terminate preferentially in the parvicellular division of the PVH makes it likely that additional sources of GABAergic projections to the magnocellular neurosecretory system remain to be identified. Peri- and intranuclear GABAergic neurons could provide an intermediary by which documented (and generally inhibitory) limbic system influences on neuroendocrine function are exerted.
Collapse
Affiliation(s)
- B L Roland
- Salk Institute for Biological Studies, La Jolla, California
| | | |
Collapse
|
36
|
Bisset GW, Fairhall KM, Tsuji K. The effect of neosurugatoxin on the release of neurohypophysial hormones by nicotine, hypotension and an osmotic stimulus in the rat. Br J Pharmacol 1992; 106:685-92. [PMID: 1504751 PMCID: PMC1907556 DOI: 10.1111/j.1476-5381.1992.tb14395.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. Experiments were carried out to test whether neosurugatoxin (NSTX) which blocks autonomic ganglia also acts centrally, like hexamethonium, on nicotinic cholinoceptors involved in the neural control of release of vasopressin and oxytocin from the neurohypophysis. 2. In the water-loaded rat under ethanol anaesthesia, nicotine 100 micrograms i.v. produced a pressor and an antidiuretic response accompanied by an increase in the urinary excretion of vasopressin and of oxytocin-like radioimmunoreactivity (OLRI). This indicates release of both vasopressin and oxytocin. 3. Under conditions in which tachyphylaxis was avoided, NSTX, 80 ng i.c.v., caused a prolonged inhibition of the release of both hormones by nicotine. 4. NSTX i.c.v. caused some reduction in the pressor response to nicotine. It is suggested that this response involves both central and peripheral stimulation of the sympathetic nervous system and that the central component is blocked by neosurugatoxin. 5. Muscarine, 40 ng i.c.v., produced a pressor and an antidiuretic response with increased urinary excretion of vasopressin and OLRI. All these effects were blocked by atropine but were not inhibited by NSTX. 6. Sodium nitroprusside (SN), 200 micrograms i.v., and hypertonic saline (HS; 1.54 M NaCl solution) 4 microliters i.c.v., both produced antidiuretic responses accompanied by increased urinary excretion of vasopressin and OLRI. The ratio of the excretion of vasopressin to that of OLRI was 5.1 +/- 1.3 (mean +/- s.e.: n = 8) for SN and 1.2 +/- 0.24 (mean +/- s.e.: n = 6) for HS.NSTX 80 ng i.c.v., caused a significant reduction in the antidiuretic response to the hypotension induced with SN: the increased urinary excretion of vasopressin was also significantly reduced but not that of OLRI. NSTX had no effect on the response to HS.7. We conclude that NSTX acts centrally on nicotinic cholinoceptors to block the release of vasopressin and oxytocin by nicotine and the release of vasopressin, but not that of oxytocin, by hypotension. It does not inhibit the release of either hormone by a central osmotic stimulus.
Collapse
Affiliation(s)
- G W Bisset
- Division of Neurophysiology & Neuropharmacology, National Institute for Medical Research, Mill Hill, London
| | | | | |
Collapse
|
37
|
Staiger JF, Nürnberger F. The efferent connections of the lateral septal nucleus in the guinea pig: projections to the diencephalon and brainstem. Cell Tissue Res 1991; 264:391-413. [PMID: 1868517 DOI: 10.1007/bf00319031] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The anterograde Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing technique was used to determine the distribution of efferent fibers originating in the lateral septal nucleus of the guinea pig. For complementary detection of the chemical identity of the target neurons, double-labeling immunocytochemistry was performed with antibodies to PHA-L and to vasopressin, oxytocin, vasoactive intestinal polypeptide, serotonin or dopamine beta-hydroxylase, respectively. The hypothalamus received the majority of the PHA-L-stained septofugal fibers. Here, a specific topography was observed. (1) The medial and lateral preoptic area, (2) the anterior, lateral, dorsal, posterior hypothalamic and retrochiasmatic area, (3) the supraoptic, paraventricular, suprachiasmatic, dorsomedial, caudal ventromedial and arcuate nuclei, and (4) the tuberomammillary, medial and lateral supramammillary, dorsal and ventral premammillary nuclei always contained PHA-L-labeled fibers. The rostral portion of the ventromedial nucleus and the medial and lateral mammillary nucleus only occasionally showed weak terminal labeling. In other diencephalic areas, termination of PHA-L-labeled fibers was observed in the epithalamus and the nuclei of the midline region of the thalamus. In the mesencephalon, terminal varicosities occurred in the ventral tegmental area, interfascicular and interpeduncular nucleus, and periaqueductal gray. In addition, the dorsal and medial raphe nuclei of the metencephalon, together with the locus coeruleus and the dorsal tegmental nucleus, received lateral septal efferents.
Collapse
Affiliation(s)
- J F Staiger
- Institut für Anatomie und Zytobiologie, Justus-Liebig-Universität, Giessen, Federal Republic of Germany
| | | |
Collapse
|
38
|
Levine JD, Weiss ML, Rosenwasser AM, Miselis RR. Retinohypothalamic tract in the female albino rat: a study using horseradish peroxidase conjugated to cholera toxin. J Comp Neurol 1991; 306:344-60. [PMID: 1711060 DOI: 10.1002/cne.903060210] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There are several anatomically and functionally distinct retinofugal pathways, one of which is the retinohypothalamic tract (RHT). In this study, horseradish peroxidase conjugated to cholera toxin (CT-HRP), a sensitive neural tracer, was employed to describe the RHT in the female albino rat. Following uniocular injection of CT-HRP, both medial and lateral components of the RHT were evident. The medial component swept caudally into and through the suprachiasmatic nucleus (SCN) and dorsally to the subparaventricular zone. Terminal label was seen in the medial preoptic region, peri-SCN area, retrochiasmatic area, periventricular nucleus, anterior and central parts of the anterior hypothalamic area, and the subparaventricular zone. In contrast to the more focused and symmetrical medial component, the lateral component was diffuse with light terminal label in the lateral preoptic region, olfactory tubercle, lateral hypothalamus, supraoptic nucleus, and medial and posteroventral medial amygdaloid nuclei. The striking exception to this diffuse pattern of the lateral component was an extremely dense columnar terminal field over the dorsal border of the supraoptic nucleus. Whereas the intensity of label in terminal fields of the medial component was often similar on the sides ipsilateral and contralateral to the injection, the lateral component was consistently asymmetrical with greater labeling on the side contralateral to the injection. In addition, a light projection arrived at several thalamic nuclei by returning toward the thalamus from the tectal or pretectal areas via stria medullaris, and thus was not a part of the RHT. Implications for circadian as well as noncircadian photobiologic effects are discussed.
Collapse
Affiliation(s)
- J D Levine
- Department of Anatomy, University of Pennsylvania, Philadelphia 19104-6046
| | | | | | | |
Collapse
|
39
|
Renaud LP, Bourque CW. Neurophysiology and neuropharmacology of hypothalamic magnocellular neurons secreting vasopressin and oxytocin. Prog Neurobiol 1991; 36:131-69. [PMID: 1998074 DOI: 10.1016/0301-0082(91)90020-2] [Citation(s) in RCA: 292] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- L P Renaud
- Neurology Division, Ottawa Civic Hospital, Ontario, Canada
| | | |
Collapse
|
40
|
Bittencourt JC, Benoit R, Sawchenko PE. Distribution and origins of substance P-immunoreactive projections to the paraventricular and supraoptic nuclei: partial overlap with ascending catecholaminergic projections. J Chem Neuroanat 1991; 4:63-78. [PMID: 1707281 DOI: 10.1016/0891-0618(91)90032-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anatomical and pharmacological evidence suggests a role for substance P (SP) in the control of vasopressin secretion, but the origins of SP-immunoreactive (IR) projections to the paraventricular (PVH) and supraoptic (SO) nuclei of the hypothalamus have not yet been identified. Combined axonal transport, immunohistochemical, and ablation approaches were used to characterize the organization of SP-IR projections to the PVH. The results may be summarized as follows: (1) SP-IR projections are broadly and prominently distributed throughout the SO and both the magnocellular and parvicellular divisions of the PVH. The distribution within the PVH is quite uniform. (2) Combined retrograde transport-immunohistochemical analyses identified multiple potential sources of SP-IR inputs to the PVH. These included a number of hypothalamic cell groups, the laterodorsal and peduculopontine tegmental nuclei, and the rostral and caudal aspects of the ventrolateral medulla. Portions of the tegmental and medullary SP-IR neurons that were retrogradely labelled following tracer deposits in the PVH also stained positively for choline acetyltransferase or tyrosine hydroxylase, respectively. (3) To evaluate the distribution and prominence of medullary SP-IR projections to the PVH and SO, staining for SP and catecholamine-synthesizing enzymes was carried out in animals that had previously received knife cuts at the level of the pontomedullary border. Pronounced, and roughly parallel decrements in staining for peptide and amines were seen in the magnocellular division of the PVH and in the SO; less marked reductions in SP-IR varicosities are in a position to influence multiple visceral regulatory cell types in the PVH and SO. Inputs to the magnocellular neurosecretory system arise in large measure from medullary neurons in which SP coexists with catecholamines. SP-IR projections to the parvicellular division of the PVH appear to originate from a number of sources.
Collapse
Affiliation(s)
- J C Bittencourt
- Laboratory of Neuronal Structure and Function, Salk Institute for Biological Studies, La Jolla, CA
| | | | | |
Collapse
|
41
|
Abstract
Abstract Repetitive bursting (phasic firing) generated endogenously by magnocellular neuroendocrine cells (MNCs) in the rat facilitates systemic release of vasopressin from axon terminals in the neurophypophysis. However, little is known of how MNCs function in other mammals. Using coronal slices of hypothalamus we studied the firing behaviour and intrinsic membrane properties of homologous neurons in the cat supraoptic nucleus where vasopressinergic MNCs outnumber oxytocinergic cells. Less than 1% of units recorded in cat supraoptic nuclei (2 of 270) spontaneously fired in a phasic mode compared to 39% in the rat (90 of 230). A discrete level of steady current across the extracellular recording micropipette promoted phasic firing in 66 of 152 non-phasic units tested in rat supraoptic nuclei, but no phasic activity in 189 units from the cat. One or several stimuli applied dorsal to supraoptic nuclei triggered a single burst (afterdischarge) in 115 of 180 MNC units from the rat, whereas none of 173 MNC units tested in the cat fired an afterdischarge. Intracellular recordings from 56 feline MNCs revealed that unlike the rat, spike depolarizing afterpotentials were absent in all cells. This explains both the absence of phasic firing and the inability to trigger regenerative bursts in the intact cat. The possible Osmoresponsiveness of cat MNCs was examined using unit recording. These units reversibly increased their firing rate as osmolality was elevated with mannitol or NaCl (10 to 100 mOsm/kg), comparable to rat units. However, in no case did hyperosmotic conditions elicit phasic firing. We conclude that cat MNCs lack a regenerative burst capability but that unit Osmoresponsiveness is comparable to rat MNC units. We hypothesize that since the kidney of the cat normally functions at high efficiency in terms of water resorption, there may be little need for the rapid and pronounced elevation in vasopressin release evoked by phasic firing.
Collapse
Affiliation(s)
- M Fagan
- Department of Anatomy, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
42
|
Staiger JF, Wouterlood FG. Efferent projections from the lateral septal nucleus to the anterior hypothalamus in the rat: a study combining Phaseolus vulgaris-leucoagglutinin tracing with vasopressin immunocytochemistry. Cell Tissue Res 1990; 261:17-23. [PMID: 2383883 DOI: 10.1007/bf00329434] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected into the lateral septum of the rat at different rostrocaudal locations to study the efferent septal projections to the anterior hypothalamus. For spatial correlation of these septofugal elements with the vasopressinergic system a dual immunocytochemical technique was used (i) to demonstrate nerve fibers and their corresponding bouton-like structures labeled with the tracer, and (ii) to identify vasopressin in the same section. The hypothalamic paraventricular and supraoptic nuclei, the accessory hypothalamic magnocellular system, and the suprachiasmatic nucleus are recipients of PHA-L-labeled fibers from all parts of the lateral septum. Close appositions between (i) these axons and their varicosities, and (ii) vasopressin-immunoreactive perikarya and their processes, putatively indicating functional interrelationships, were observed in all these nuclear areas, especially in their neuropil formations.
Collapse
Affiliation(s)
- J F Staiger
- Institute of Anatomy and Cytobiology, Justus Liebig University, Giessen, Federal Republic of Germany
| | | |
Collapse
|
43
|
Abstract
Neurons projecting to the supraoptic nucleus (SON) have been identified following stereotaxic injections of either horseradish peroxidase or fast blue into the SON region of adult rats. The subfornical organ, median preoptic nucleus, organum vasculosum of the lamina terminalis and medial septal nucleus were the source of the largest numbers of supraoptic-projecting neurons. Several smaller projections also originate from the ipsilateral locus coeruleus, preoptic area, lateral parolfactorial area, dorsomedial nucleus of the hypothalamus, lateral parabrachial nucleus and ventrolateral medulla. Several other areas appeared to project only to the region immediately dorsal to the SON: lateral septal nucleus, diagonal band of Broca, ventral tegmental nucleus, and the supramamillary nucleus. These areas may influence SON neurosecretory function by way of interneurons found immediately dorsal to SON. Additional areas were identified with retrograde fluorescent label only, and these projected to the area immediately dorsal to SON and/or to SON itself.
Collapse
Affiliation(s)
- W A Anderson
- Department of Anatomy, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
44
|
Ruggiero DA, Giuliano R, Anwar M, Stornetta R, Reis DJ. Anatomical substrates of cholinergic-autonomic regulation in the rat. J Comp Neurol 1990; 292:1-53. [PMID: 2312784 DOI: 10.1002/cne.902920102] [Citation(s) in RCA: 171] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Acetylcholine (ACh) plays a major role in central autonomic regulation, including the control of arterial blood pressure (AP). Previously unknown neuroanatomic substrates of cholinergic-autonomic control were mapped in this study. Cholinergic perikarya and bouton-like varicosities were localized by an immunocytochemical method employing a monoclonal antiserum against choline acetyltransferase (ChAT), the enzyme synthesizing ACh. In the forebrain, bouton-like varicosities and/or perikarya were detected in the septum, bed nucleus of the stria terminalis, amygdala (in particular, autonomic projection areas AP1 and AP2 bordering the central subnucleus), hypothalamus (rostrolateral/innominata transitional area, perifornical, dorsal, incertal, caudolateral, posterior [PHN], subparafascicular, supramammillary and mammillary nuclei). Few or no punctate varicosities were labeled in the paraventricular (PVN) or supraoptic (SON) hypothalamic nuclei. In the mid- and hindbrain, immunoreactive cells and processes were present in the nucleus of Edinger-Westphal, periaqueductal gray, parabrachial complex (PBC), a periceruleal zone avoiding the locus ceruleus (LC), pontine micturition field, pontomedullary raphe, paramedian reticular formation and periventricular gray, A5 area, lateral tegmental field, nucleus tractus solitarii (NTS), nucleus commissuralis, nucleus reticularis rostroventrolateralis (RVL), and the ventral medullary surface (VMS). In the PBC, immunoreactive varicosities identified areas previously unexplored for cholinergic autonomic responsivity (superior, internal, dorsal, and central divisions of the lateral subnucleus, nucleus of Koelliker-Fuse and the medial subnucleus). In the NTS, previously undescribed ChAT-immunolabeled cells and processes were concentrated at intermediate and subpostremal levels and distributed viscerotopically in areas receiving primary cardiopulmonary afferents. In the nucleus RVL, cholinergic perikarya were in proximity to the VMS and medial to adrenergic cell bodies of the C1 area. Punctate varicosities of unknown origin and dendrites extending ventrally from the nucleus ambiguus overlapped the C1 area and immediate surround of RVL. IN CONCLUSION 1) Cholinergic perikarya and putative terminal fields, overlap structures that are rich in cholinoreceptors and express autonomic, neuroendocrine, or behavioral responsivity to central cholinergic stimulation (PHN, NTS, RVL). The role of ACh in most immunolabeled areas, however, has yet to be determined. Overall, these data support the concept that cholinergic agents act at multiple sites in the CNS and with topographic specificity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D A Ruggiero
- Department of Neurology, Cornell University Medical College, New York, New York 10021
| | | | | | | | | |
Collapse
|
45
|
Hatton GI. Emerging concepts of structure-function dynamics in adult brain: the hypothalamo-neurohypophysial system. Prog Neurobiol 1990; 34:437-504. [PMID: 2202017 DOI: 10.1016/0301-0082(90)90017-b] [Citation(s) in RCA: 371] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the first known of the mammalian brain's neuropeptide systems, the magnocellular hypothalamo-neurohypophysial system has become a model. A great deal is known about the stimulus conditions that activate or inactivate the elements of this system, as well as about many of the actions of its peptidergic outputs upon peripheral tissues. The well-characterized actions of two of its products, oxytocin and vasopressin, on mammary, uterine, kidney and vascular tissues have facilitated the integration of newly discovered, often initially puzzling, information into the existing body of knowledge of this important regulatory system. At the same time, new conceptions of the ways in which neuropeptidergic neurons, or groups of neurons, participate in information flow have emerged from studies of the hypothalamo-neurohypophysial system. Early views of the SON and PVN nuclei, the neurons of which make up approximately one-half of this system, did not even associate these interesting, darkly staining anterior hypothalamic cells with hormone secretion from the posterior pituitary. Secretion from this part of the pituitary, it was thought, was neurally evoked from the pituicytes that made the oxytocic and antidiuretic "principles" and then released them upon command. When these views were dispelled by the demonstration that the hormones released from the posterior pituitary were synthesized in the interesting cells of the hypothalamus, the era of mammalian central neural peptidergic systems was born. Progress in developing an ever more complete structural and functional picture of this system has been closely tied to advancements in technology, specifically in the areas of radioimmunoassay, immunocytochemistry, anatomical tracing methods at the light and electron microscopic levels, and sophisticated preparations for electrophysiological investigation. Through the judicious use of these techniques, much has been learned that has led to revision of the earlier held views of this system. In a larger context, much has been learned that is likely to be of general application in understanding the fundamental processes and principles by which the mammalian nervous system works.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G I Hatton
- Neuroscience Program, Michigan State University, East Lansing 48824-1117
| |
Collapse
|
46
|
Chowdrey HS, Lightman SL. Neuroendocrine control of blood tonicity and volume. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1989; 3:229-47. [PMID: 2576517 DOI: 10.1016/s0950-351x(89)80004-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The numerous studies cited in this chapter clearly show that very complex mechanisms are involved in the cardiovascular and osmotic regulation of AVP release. Information from peripheral receptors within the cardiovascular system and from central osmoreceptors is carried by multisynaptic neural inputs to the SON and PVN. This information is co-ordinated at one or more sites within the hypothalamus, the brain stem, or even the neurohypophysis itself, to ensure release of the appropriate amount of AVP. In many cases the origin of the pathway and the nature of the neurotransmitter is known, but further studies are needed to establish their physiological role in AVP release.
Collapse
|
47
|
Kordower JH, Bartus RT, Marciano FF, Gash DM. Telencephalic cholinergic system of the New World monkey (Cebus apella): morphological and cytoarchitectonic assessment and analysis of the projection to the amygdala. J Comp Neurol 1989; 279:528-45. [PMID: 2465322 DOI: 10.1002/cne.902790403] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While the cholinergic projection from the nucleus basalis to the cortical mantle has received considerable attention, a similar projection to the magnocellular basal nucleus of the amygdala has not been studied in such detail. The present study analyzed the cholinergic basal forebrain projection to the amygdala in the Cebus apella monkey by using combined tract-tracing and immunocytochemical techniques. As a foundation for this assessment, the morphological and cytoarchitectonic organization of the cholinergic telencephalic system of the New World C. apella monkey was examined by using choline acetyltransferase (ChAT) immunocytochemistry. Although there were minor differences, the telencephalic cholinergic system of Cebus monkeys is similar to that seen in Old World nonhuman primates. ChAT-immunoreactive neurons were observed throughout the Ch1-4 regions of the basal forebrain, with subdivisions of the Ch4 region similar to those previously described (Mesulam et al., '83a). Most cholinergic neurons were hyperchromic and magnocellular; however, some neurons were parvicellular. Like most species, cholinergic neurons were also observed throughout the striatum. However, unlike in rodents, cholinergic perikarya were not observed within the cortex or hippocampus. To analyze the cholinergic fiber projections from the basal forebrain to the amygdala, monkeys received an intraamygdaloid injection of the retrograde tracer horseradish peroxidase conjugated to wheat germ agglutinin. Retrogradely labeled neurons that colocalized ChAT or acetylcholinesterase (AChE) were found predominantly in the anterolateral portion of the CH4 region. Fewer double-labeled neurons were found in the anteromedial and intermediate portion of CH4 and in the CH3 region. Neurons that exhibited retrograde labeling were only occasionally discerned in the posterior portions of the CH4 region, in the medullary laminae of the globus pallidus, or lodged within the internal capsule. These data are discussed in terms of the putative role this cholinergic input might play in cognitive processing in primates.
Collapse
Affiliation(s)
- J H Kordower
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine, New York 14642
| | | | | | | |
Collapse
|
48
|
Salvaterra PM, Vaughn JE. Regulation of choline acetyltransferase. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1989; 31:81-143. [PMID: 2689382 DOI: 10.1016/s0074-7742(08)60278-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- P M Salvaterra
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | |
Collapse
|
49
|
Smithson KG, Weiss ML, Hatton GI. Supraoptic nucleus afferents from the main olfactory bulb--I. Anatomical evidence from anterograde and retrograde tracers in rat. Neuroscience 1989; 31:277-87. [PMID: 2477769 DOI: 10.1016/0306-4522(89)90373-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The morphological features of a putative connection between the main olfactory bulb and the supraoptic nucleus of the rat was studied using a combination of anatomical techniques. Immunocytochemistry of neurophysin-containing processes were employed to delineate morphological features of supraoptic dendrites. Main olfactory bulb efferents to the supraoptic nucleus were studied by injection of the anterogradely transported substances, wheatgerm agglutinin conjugated horseradish peroxidase or Phaseolus vulgaris leucoagglutinin, into the main olfactory bulb. To confirm the results of these studies, the distribution of retrogradely labeled cells within the main olfactory bulb was determined after injection of rhodamine-labeled latex microspheres or Fluoro-Gold into the supraoptic nucleus. Neurophysin immunocytochemistry revealed the supraoptic nucleus dendritic plexus which coursed anteroposteriorly beneath supraoptic somata. Additionally, a portion of this plexus also projected ventrolaterally into periamygdaloid areas, a feature of supraoptic architecture which is not generally appreciated. The anterograde tracers labeled main olfactory bulb efferents including a dense plexus of terminals and fibers ventrolateral to the ipsilateral supraoptic nucleus. The pattern of anterogradely labeled fibers and terminals appeared to overlap with the distribution of ventrolaterally projecting neurophysin-containing processes. Since the latter consists of dendritic processes of supraoptic origin, this suggests that the main olfactory bulb projects to the supraoptic nucleus. Injections of rhodamine-labeled latex microspheres or Fluoro-Gold resulted in retrogradely labeled mitral cells throughout the ipsilateral main olfactory bulb. Taken together, these anatomical studies demonstrate a direct projection from the main olfactory bulb to the supraoptic nucleus of the rat. A comparison electrophysiological study confirmed these results.
Collapse
Affiliation(s)
- K G Smithson
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing 48824-1117
| | | | | |
Collapse
|
50
|
Hatton GI, Yang QZ. Supraoptic nucleus afferents from the main olfactory bulb--II. Intracellularly recorded responses to lateral olfactory tract stimulation in rat brain slices. Neuroscience 1989; 31:289-97. [PMID: 2797438 DOI: 10.1016/0306-4522(89)90374-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To establish the functional nature of the anatomically demonstrated main olfactory bulb inputs to the supraoptic nucleus, electrophysiological responses of intracellularly recorded supraoptic neurons to lateral olfactory tract stimulation were recorded in horizontal slices of basal forebrain and hypothalamus. A total of 71 synaptically influenced neurons were studied in slices from adult rats of both sexes. Of these, 60 cells (84%) were monosynaptically activated by olfactory tract stimulation; seven cells (10%) were activated via polysynaptic pathways; and four cells (6%) were characterized by long latency inhibitory responses. Lucifer Yellow was injected into 64 cells and subsequent immunocytochemical identification of 44 of these neurons showed that both oxytocin and vasopressin cells, in approximately equal numbers, were excited by olfactory stimulation. Polysynaptically mediated excitation, however, was only associated with oxytocin cells (six of the six identified cells). These results corroborate anatomical tract tracing data showing main olfactory bulb efferents to both supraotic neurons and to neurons of the perinuclear zone. Also supported are earlier speculations of olfactory participation in release of oxytocin and vasopressin during various physiological states.
Collapse
Affiliation(s)
- G I Hatton
- Neuroscience Program, Michigan State University, East Lansing 48824-1117
| | | |
Collapse
|