1
|
Sanz-Gálvez R, Falardeau D, Kolta A, Inglebert Y. The role of astrocytes from synaptic to non-synaptic plasticity. Front Cell Neurosci 2024; 18:1477985. [PMID: 39493508 PMCID: PMC11527691 DOI: 10.3389/fncel.2024.1477985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Information storage and transfer in the brain require a high computational power. Neuronal network display various local or global mechanisms to allow information storage and transfer in the brain. From synaptic to intrinsic plasticity, the rules of input-output function modulation have been well characterized in neurons. In the past years, astrocytes have been suggested to increase the computational power of the brain and we are only just starting to uncover their role in information processing. Astrocytes maintain a close bidirectional communication with neurons to modify neuronal network excitability, transmission, axonal conduction, and plasticity through various mechanisms including the release of gliotransmitters or local ion homeostasis. Astrocytes have been significantly studied in the context of long-term or short-term synaptic plasticity, but this is not the only mechanism involved in memory formation. Plasticity of intrinsic neuronal excitability also participates in memory storage through regulation of voltage-gated ion channels or axonal morphological changes. Yet, the contribution of astrocytes to these other forms of non-synaptic plasticity remains to be investigated. In this review, we summarized the recent advances on the role of astrocytes in different forms of plasticity and discuss new directions and ideas to be explored regarding astrocytes-neuronal communication and regulation of plasticity.
Collapse
Affiliation(s)
- Rafael Sanz-Gálvez
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| | - Dominic Falardeau
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| | - Arlette Kolta
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
- Department of Stomatology, Université de Montréal, Montréal, QC, Canada
| | - Yanis Inglebert
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| |
Collapse
|
2
|
Del Franco AP, Newman EA. Astrocyte β-Adrenergic Receptor Activity Regulates NMDA Receptor Signaling of Medial Prefrontal Cortex Pyramidal Neurons. J Neurosci 2024; 44:e0990232023. [PMID: 37989594 PMCID: PMC10860478 DOI: 10.1523/jneurosci.0990-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
Glutamate spillover from the synapse is tightly regulated by astrocytes, limiting the activation of extrasynaptically located NMDA receptors (NMDAR). The processes of astrocytes are dynamic and can modulate synaptic physiology. Though norepinephrine (NE) and β-adrenergic receptor (β-AR) activity can modify astrocyte volume, this has yet to be confirmed outside of sensory cortical areas, nor has the effect of noradrenergic signaling on glutamate spillover and neuronal NMDAR activity been explored. We monitored changes to astrocyte process volume in response to noradrenergic agonists in the medial prefrontal cortex of male and female mice. Both NE and the β-AR agonist isoproterenol (ISO) increased process volume by ∼20%, significantly higher than changes seen when astrocytes had G-protein signaling blocked by GDPβS. We measured the effect of β-AR signaling on evoked NMDAR currents. While ISO did not affect single stimulus excitatory currents of Layer 5 pyramidal neurons, ISO reduced NMDAR currents evoked by 10 stimuli at 50 Hz, which elicits glutamate spillover, by 18%. After isolating extrasynaptic NMDARs by blocking synaptic NMDARs with the activity-dependent NMDAR blocker MK-801, ISO similarly reduced extrasynaptic NMDAR currents in response to 10 stimuli by 18%. Finally, blocking β-AR signaling in the astrocyte network by loading them with GDPβS reversed the ISO effect on 10 stimuli-evoked NMDAR currents. These results demonstrate that astrocyte β-AR activity reduces extrasynaptic NMDAR recruitment, suggesting that glutamate spillover is reduced.
Collapse
Affiliation(s)
- Armani P Del Franco
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, Minnesota
| | - Eric A Newman
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, Minnesota
| |
Collapse
|
3
|
Cruz-Mendoza F, Luquin S, García-Estrada J, Fernández-Quezada D, Jauregui-Huerta F. Acoustic Stress Induces Opposite Proliferative/Transformative Effects in Hippocampal Glia. Int J Mol Sci 2023; 24:ijms24065520. [PMID: 36982594 PMCID: PMC10058072 DOI: 10.3390/ijms24065520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The hippocampus is a brain region crucially involved in regulating stress responses and highly sensitive to environmental changes, with elevated proliferative and adaptive activity of neurons and glial cells. Despite the prevalence of environmental noise as a stressor, its effects on hippocampal cytoarchitecture remain largely unknown. In this study, we aimed to investigate the impact of acoustic stress on hippocampal proliferation and glial cytoarchitecture in adult male rats, using environmental noise as a stress model. After 21 days of noise exposure, our results showed abnormal cellular proliferation in the hippocampus, with an inverse effect on the proliferation ratios of astrocytes and microglia. Both cell lineages also displayed atrophic morphologies with fewer processes and lower densities in the noise-stressed animals. Our findings suggest that, stress not only affects neurogenesis and neuronal death in the hippocampus, but also the proliferation ratio, cell density, and morphology of glial cells, potentially triggering an inflammatory-like response that compromises their homeostatic and repair functions.
Collapse
|
4
|
Wahis J, Holt MG. Astrocytes, Noradrenaline, α1-Adrenoreceptors, and Neuromodulation: Evidence and Unanswered Questions. Front Cell Neurosci 2021; 15:645691. [PMID: 33716677 PMCID: PMC7947346 DOI: 10.3389/fncel.2021.645691] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Noradrenaline is a major neuromodulator in the central nervous system (CNS). It is released from varicosities on neuronal efferents, which originate principally from the main noradrenergic nuclei of the brain - the locus coeruleus - and spread throughout the parenchyma. Noradrenaline is released in response to various stimuli and has complex physiological effects, in large part due to the wide diversity of noradrenergic receptors expressed in the brain, which trigger diverse signaling pathways. In general, however, its main effect on CNS function appears to be to increase arousal state. Although the effects of noradrenaline have been researched extensively, the majority of studies have assumed that noradrenaline exerts its effects by acting directly on neurons. However, neurons are not the only cells in the CNS expressing noradrenaline receptors. Astrocytes are responsive to a range of neuromodulators - including noradrenaline. In fact, noradrenaline evokes robust calcium transients in astrocytes across brain regions, through activation of α1-adrenoreceptors. Crucially, astrocytes ensheath neurons at synapses and are known to modulate synaptic activity. Hence, astrocytes are in a key position to relay, or amplify, the effects of noradrenaline on neurons, most notably by modulating inhibitory transmission. Based on a critical appraisal of the current literature, we use this review to argue that a better understanding of astrocyte-mediated noradrenaline signaling is therefore essential, if we are ever to fully understand CNS function. We discuss the emerging concept of astrocyte heterogeneity and speculate on how this might impact the noradrenergic modulation of neuronal circuits. Finally, we outline possible experimental strategies to clearly delineate the role(s) of astrocytes in noradrenergic signaling, and neuromodulation in general, highlighting the urgent need for more specific and flexible experimental tools.
Collapse
Affiliation(s)
- Jérôme Wahis
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Matthew G. Holt
- Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
5
|
Kurita M, Matsuoka Y, Nakatsuka K, Ono D, Muto N, Kaku R, Morimatsu H. Norepinephrine-induced downregulation of GLT-1 mRNA in rat astrocytes. Biochem Biophys Res Commun 2018; 504:103-108. [PMID: 30170732 DOI: 10.1016/j.bbrc.2018.08.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 01/30/2023]
Abstract
AIM OF THE RESEARCH Glutamate transporter-1 (GLT-1; also known as excitatory amino acid transporter 2) plays an important role in the maintenance of glutamate homeostasis in the synaptic cleft. Downregulation of GLT-1 in the spinal cord has been reported in chronic pain models, which suggests that GLT-1 is involved in the development of chronic pain. However, the mechanism by which GLT-1 is downregulated in the spinal cord is still unknown. We hypothesized that norepinephrine is involved in the regulation of GLT-1. The aim of this study was to investigate the effect of norepinephrine on GLT-1 expression in cultured astrocytes. METHODS This study involved both in vivo and in vitro experiments. We first validated changes in GLT-1 mRNA expression in the spinal cord of rats with spared nerve injury (SNI) using real-time RT-PCR. Next, cultured primary astrocytes from the rat spinal cord were stimulated with norepinephrine, and GLT-1 mRNA was subsequently quantitated. RNB cells, an astrocytic cell line, were also stimulated with norepinephrine and other α-adrenoceptor agonists. RESULTS SNI resulted in bilateral downregulation of GLT-1 in rat spinal cord. The in vitro study showed that norepinephrine and phenylephrine dose-dependently downregulated GLT-1 in primary astrocytes and RNB cells. Furthermore, the effect of norepinephrine was reversed by an α-adrenoceptor antagonist. CONCLUSION Norepinephrine downregulates GLT-1 mRNA expression in astrocytes via the α1-adrenoceptor. Our results provide new insight into the mechanisms involved in downregulation of GLT-1 in the chronic pain models.
Collapse
Affiliation(s)
- Masako Kurita
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan
| | - Yoshikazu Matsuoka
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan.
| | - Kosuke Nakatsuka
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan
| | - Daisuke Ono
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan
| | - Noriko Muto
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan
| | - Ryuji Kaku
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8558, Japan
| |
Collapse
|
6
|
Abstract
Normal neuronal function and neuronal survival require that brain extracellular glutamate concentrations be maintained at low micromolar levels. This is accomplished by a family of Na+-dependent glutamate transporters. These transporters are expressed on both glia and neurons, but uptake by glia seems to predominate. Several transporter subtypes have been identified that differ in anatomical distribution, cell type of expression, and electrophysiological properties. Activity of the transporters can be influenced by changes in the uptake driving forces (thermodynamic forces) and by phosphorylation and other modulations that alter their kinetic properties. An understanding of the modulatory mech anisms and signal transduction systems that govern glutamate transport is now beginning to take shape. NEUROSCIENTIST 5:280-282, 1999
Collapse
|
7
|
Huang Y, Thathiah A. Regulation of neuronal communication by G protein-coupled receptors. FEBS Lett 2015; 589:1607-19. [PMID: 25980603 DOI: 10.1016/j.febslet.2015.05.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
Neuronal communication plays an essential role in the propagation of information in the brain and requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mechanism through which neurons communicate with each other. It is a strictly regulated process which involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the function of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in regulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of astrocytic GPCRs in the regulation of neuronal communication.
Collapse
Affiliation(s)
- Yunhong Huang
- VIB Center for the Biology of Disease, Leuven, Belgium; Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium.
| | - Amantha Thathiah
- VIB Center for the Biology of Disease, Leuven, Belgium; Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium.
| |
Collapse
|
8
|
Chandley MJ, Szebeni K, Szebeni A, Crawford J, Stockmeier CA, Turecki G, Miguel-Hidalgo JJ, Ordway GA. Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder. J Psychiatry Neurosci 2013; 38:276-84. [PMID: 23415275 PMCID: PMC3692725 DOI: 10.1503/jpn.120110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Norepinephrine and glutamate are among several neurotransmitters implicated in the neuropathology of major depressive disorder (MDD). Glia deficits have also been demonstrated in people with MDD, and glia are critical modulators of central glutamatergic transmission. We studied glia in men with MDD in the region of the brain (locus coeruleus; LC) where noradrenergic neuronal cell bodies reside and receive glutamatergic input. METHODS The expression of 3 glutamate-related genes (SLC1A3, SLC1A2, GLUL) concentrated in glia and a glia gene (GFAP) were measured in postmortem tissues from men with MDD and from paired psychiatrically healthy controls. Initial gene expression analysis of RNA isolated from homogenized tissue (n = 9-10 pairs) containing the LC were followed by detailed analysis of gene expressions in astrocytes and oligodendrocytes (n = 6-7 pairs) laser captured from the LC region. We assessed protein changes in GFAP using immunohistochemistry and immunoblotting (n = 7-14 pairs). RESULTS Astrocytes, but not oligodendrocytes, demonstrated robust reductions in the expression of SLC1A3 and SLC1A2, whereas GLUL expression was unchanged. GFAP expression was lower in astrocytes, and we confirmed reduced GFAP protein in the LC using immunostaining methods. LIMITATIONS Reduced expression of protein products of SLC1A3 and SLC1A2 could not be confirmed because of insufficient amounts of LC tissue for these assays. Whether gene expression abnormalities were associated with only MDD and not with suicide could not be confirmed because most of the decedents who had MDD died by suicide. CONCLUSION Major depressive disorder is associated with unhealthy astrocytes in the noradrenergic LC, characterized here by a reduction in astrocyte glutamate transporter expression. These findings suggest that increased glutamatergic activity in the LC occurs in men with MDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gregory A. Ordway
- Correspondence to: G.A. Ordway, Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City TN 37614;
| |
Collapse
|
9
|
Chandley M, Ordway G. Noradrenergic Dysfunction in Depression and Suicide. THE NEUROBIOLOGICAL BASIS OF SUICIDE 2012. [DOI: 10.1201/b12215-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Laureys G, Clinckers R, Gerlo S, Spooren A, Wilczak N, Kooijman R, Smolders I, Michotte Y, De Keyser J. Astrocytic beta(2)-adrenergic receptors: from physiology to pathology. Prog Neurobiol 2010; 91:189-99. [PMID: 20138112 DOI: 10.1016/j.pneurobio.2010.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 12/07/2009] [Accepted: 01/27/2010] [Indexed: 12/24/2022]
Abstract
Evidence accumulates for a key role of the beta(2)-adrenergic receptors in the many homeostatic and neuroprotective functions of astrocytes, including glycogen metabolism, regulation of immune responses, release of neurotrophic factors, and the astrogliosis that occurs in response to neuronal injury. A dysregulation of the astrocytic beta(2)-adrenergic-pathway is suspected to contribute to the physiopathology of a number of prevalent and devastating neurological conditions such as multiple sclerosis, Alzheimer's disease, human immunodeficiency virus encephalitis, stroke and hepatic encephalopathy. In this review we focus on the physiological functions of astrocytic beta(2)-adrenergic receptors, and their possible impact in disease states.
Collapse
Affiliation(s)
- Guy Laureys
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit Brussel, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vieira-Coelho MA, Serrão MP, Afonso J, Pinto CE, Moura E. Catecholamine synthesis and metabolism in the central nervous system of mice lacking alpha-adrenoceptor subtypes. Br J Pharmacol 2009; 158:726-37. [PMID: 19703163 DOI: 10.1111/j.1476-5381.2009.00375.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE This study investigates the role of alpha(2)-adrenoceptor subtypes, alpha(2A), alpha(2B) and alpha(2C), on catecholamine synthesis and catabolism in the central nervous system of mice. EXPERIMENTAL APPROACH Activities of the main catecholamine synthetic and catabolic enzymes were determined in whole brains obtained from alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptor knockout (KO) and C56Bl\7 wild-type (WT) mice. KEY RESULTS Although no significant differences were found in tyrosine hydroxylase activity and expression, brain tissue levels of 3,4-dihydroxyphenylalanine were threefold higher in alpha(2A)- and alpha(2C)-adrenoceptor KO mice. Brain tissue levels of dopamine and noradrenaline were significantly higher in alpha(2A) and alpha(2C)KOs compared with WT [WT: 2.8 +/- 0.5, 1.1 +/- 0.1; alpha(2A)KO: 6.9 +/- 0.7, 1.9 +/- 0.1; alpha(2B)KO: 2.3 +/- 0.2, 1.0 +/- 0.1; alpha(2C)KO: 4.6 +/- 0.8, 1.5 +/- 0.2 nmol.(g tissue)(-1), for dopamine and noradrenaline respectively]. Aromatic L-amino acid decarboxylase activity was significantly higher in alpha(2A) and alpha(2C)KO [WT: 40 +/- 1; alpha(2A): 77 +/- 2; alpha(2B): 40 +/- 1; alpha(2C): 50 +/- 1, maximum velocity (V(max)) in nmol.(mg protein)(-1).h(-1)], but no significant differences were found in dopamine beta-hydroxylase. Of the catabolic enzymes, catechol-O-methyltransferase enzyme activity was significantly higher in all three alpha(2)KO mice [WT: 2.0 +/- 0.0; alpha(2A): 2.4 +/- 0.1; alpha(2B): 2.2 +/- 0.0; alpha(2C): 2.2 +/- 0.0 nmol.(mg protein)(-1).h(-1)], but no significant differences were found in monoamine oxidase activity between all alpha(2)KOs and WT mice. CONCLUSIONS AND IMPLICATIONS In mouse brain, deletion of alpha(2A)- or alpha(2C)-adrenoceptors increased cerebral aromatic L-amino acid decarboxylase activity and catecholamine tissue levels. Deletion of any alpha(2)-adrenoceptor subtypes resulted in increased activity of catechol-O-methyltransferase. Higher 3,4-dihydroxyphenylalanine tissue levels in alpha(2A) and alpha(2C)KO mice could be explained by increased 3,4-dihydroxyphenylalanine transport.
Collapse
Affiliation(s)
- M A Vieira-Coelho
- Institute of Pharmacology and Therapeutics, University of Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
12
|
Chesik D, Glazenburg L, De Keyser J, Wilczak N. Enhanced proliferation of astrocytes from beta(2)-adrenergic receptor knockout mice is influenced by the IGF system. J Neurochem 2007; 100:1555-64. [PMID: 17348863 DOI: 10.1111/j.1471-4159.2006.04289.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we investigated the IGF system in neonatal astrocytes derived from mice with a targeted disruption of the beta-2 adrenergic receptor (beta(2)AR). beta(2)AR knockout astrocytes demonstrated higher proliferation rates and increased expression of the astrogliotic marker GFAP, as compared with wild-type cells. beta(2)AR deletion also regulated molecules of the IGF system. Although IGF-1 levels remained unaltered, IGF-2 and type 1 IGF receptor expression was increased in beta(2)AR knockout cells. Furthermore, conditioned medium from knockout astrocytes contained lower levels of IGF binding protein-2 and -4. Our data suggest a deficit of beta(2)AR on astrocytes, as previously reported in multiple sclerosis, may have implications on proliferative status of astrocytes, a feature that might be attributed to regulation of IGF mitogenic actions.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/chemistry
- Astrocytes/drug effects
- Astrocytes/physiology
- Cell Count
- Cell Proliferation/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Culture Media, Conditioned/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression Regulation/genetics
- Insulin-Like Growth Factor Binding Protein 1/metabolism
- Insulin-Like Growth Factor Binding Protein 4/metabolism
- Insulin-Like Growth Factor Binding Protein 4/pharmacology
- Mice
- Mice, Knockout
- RNA, Messenger/biosynthesis
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 2/metabolism
- Receptors, Adrenergic, beta-2/deficiency
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Daniel Chesik
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands.
| | | | | | | |
Collapse
|
13
|
Abstract
It is a major recent finding that astrocytes can influence synaptic activity by release of glutamate, but many other glutamate-mediated activities are also controlled by astrocytes. Even the most obvious neuronal function of glutamate - its release as a transmitter - is regulated by astrocytes; these cells are needed for formation of precursors for glutamate synthesis, for reuptake of released transmitter, and for disposal of excess glutamate. Without astrocytic involvement, normal function of glutamatergic neurons is not possible, as exemplified by almost instantaneous abrogation of normal vision and learning upon inhibition of astrocyte-specific metabolic pathways. In addition, astrocytes are essential for production of the neuroprotectant glutathione, yet they can also contribute to neuronal death during ischemia by maintaining glutamine synthesis, enabling neuronal formation of neurotoxic glutamate.
Collapse
Affiliation(s)
- Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, P.R. China.
| | | |
Collapse
|
14
|
Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. ACTA ACUST UNITED AC 2004; 45:38-78. [PMID: 15063099 DOI: 10.1016/j.brainresrev.2004.02.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/26/2022]
Abstract
A deficiency in the noradrenergic system of the brain, originating largely from cells in the locus coeruleus (LC), is theorized to play a critical role in the progression of a family of neurodegenerative disorders that includes Parkinson's disease (PD) and Alzheimer's disease (AD). Consideration is given here to evidence that several neurodegenerative diseases and syndromes share common elements, including profound LC cell loss, and may in fact be different manifestations of a common pathophysiological process. Findings in animal models of PD indicate that the modification of LC-noradrenergic activity alters electrophysiological, neurochemical and behavioral indices of neurotransmission in the nigrostriatal dopaminergic system, and influences the response of this system to experimental lesions. In models related to AD, noradrenergic mechanisms appear to play important roles in modulating the activity of the basalocortical cholinergic system and its response to injury, and to modify cognitive functions including memory and attention. Mechanisms by which noradrenaline may protect or promote recovery from neural damage are reviewed, including effects on neuroplasticity, neurotrophic factors, neurogenesis, inflammation, cellular energy metabolism and excitotoxicity, and oxidative stress. Based on evidence for facilitatory effects on transmitter release, motor function, memory, neuroprotection and recovery of function after brain injury, a rationale for the potential of noradrenergic-based approaches, specifically alpha2-adrenoceptor antagonists, in the treatment of central neurodegenerative diseases is presented.
Collapse
Affiliation(s)
- Marc R Marien
- Centre de Recherche Pierre Fabre, Neurobiology I, 17 Avenue Jean Moulin, 81106 Castres Cedex, France.
| | | | | |
Collapse
|
15
|
Affiliation(s)
- Leif Hertz
- Hong Kong DNA Chips, Ltd., Kowloon, Hong Kong, China
| | | |
Collapse
|
16
|
Kroppenstedt SN, Sakowitz OW, Thomale UW, Unterberg AW, Stover JF. Influence of norepinephrine and dopamine on cortical perfusion, EEG activity, extracellular glutamate, and brain edema in rats after controlled cortical impact injury. J Neurotrauma 2002; 19:1421-32. [PMID: 12490007 DOI: 10.1089/089771502320914651] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Following traumatic brain injury, catecholamines given to ameliorate cerebral perfusion may induce brain damage via cerebral arteriolar constriction and increased neuronal excitation. In the present study the acute effects of norepinephrine and dopamine on pericontusional cortical perfusion (rCBF), electroencephalographic (EEG) activity, extracellular glutamate, and brain edema were investigated in rats following controlled cortical impact injury (CCI). rCBF, cerebral perfusion pressure (CPP), EEG activity, and glutamate were determined before, during, and after infusing norepinephrine or dopamine, increasing MABP to 120 mm Hg for 90 min at 4 h after CCI. Control rats received physiological saline. At 8 h after CCI, hemispheric swelling and water content were determined gravimetrically. Following CCI, rCBF was significantly decreased. In parallel to elevating MABP and CPP, rCBF was significantly increased by norepinephrine and dopamine, being mostly pronounced with norepinephrine (+44% vs. +29%). In controls, rCBF remained diminished (-45%). EEG activity was significantly increased by norepinephrine and dopamine, while pericontusional glutamate was only elevated by norepinephrine (28 +/- 6 vs. 8 +/- 4 microM). Brain edema was not increased compared to control rats. Despite significantly increasing MABP and CPP to the same extent, norepinephrine and dopamine seem to differentially influence pericontusional cortical perfusion and glutamatergic transmission. In addition to the pressure-passive increase in CPP local cerebral effects seem to account for the sustained norepinephrine-induced increase in pericontusional cortical perfusion. The significantly elevated pericontusional glutamate concentrations in conjunction with the increased EEG activity suggest a sustained metabolically driven increase in cortical perfusion during norepinephrine infusion.
Collapse
|
17
|
Laming PR, Kimelberg H, Robinson S, Salm A, Hawrylak N, Müller C, Roots B, Ng K. Neuronal-glial interactions and behaviour. Neurosci Biobehav Rev 2000; 24:295-340. [PMID: 10781693 DOI: 10.1016/s0149-7634(99)00080-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Both neurons and glia interact dynamically to enable information processing and behaviour. They have had increasingly intimate, numerous and differentiated associations during brain evolution. Radial glia form a scaffold for neuronal developmental migration and astrocytes enable later synapse elimination. Functionally syncytial glial cells are depolarised by elevated potassium to generate slow potential shifts that are quantitatively related to arousal, levels of motivation and accompany learning. Potassium stimulates astrocytic glycogenolysis and neuronal oxidative metabolism, the former of which is necessary for passive avoidance learning in chicks. Neurons oxidatively metabolise lactate/pyruvate derived from astrocytic glycolysis as their major energy source, stimulated by elevated glutamate. In astrocytes, noradrenaline activates both glycogenolysis and oxidative metabolism. Neuronal glutamate depends crucially on the supply of astrocytically derived glutamine. Released glutamate depolarises astrocytes and their handling of potassium and induces waves of elevated intracellular calcium. Serotonin causes astrocytic hyperpolarisation. Astrocytes alter their physical relationships with neurons to regulate neuronal communication in the hypothalamus during lactation, parturition and dehydration and in response to steroid hormones. There is also structural plasticity of astrocytes during learning in cortex and cerebellum.
Collapse
Affiliation(s)
- P R Laming
- School of Biology and Biochemistry, Medical Biology Centre, 97 Lisburn Road, Belfast, UK.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Martel J, Chopin P, Colpaert F, Marien M. Neuroprotective effects of the alpha2-adrenoceptor antagonists, (+)-efaroxan and (+/-)-idazoxan, against quinolinic acid-induced lesions of the rat striatum. Exp Neurol 1998; 154:595-601. [PMID: 9878194 DOI: 10.1006/exnr.1998.6942] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A deficient control of neuronal repair mechanisms by noradrenergic projections originating from the locus coeruleus may be a critical factor in the progression of neurodegenerative diseases. Blockade of presynaptic inhibitory alpha2-adrenergic autoreceptors can disinhibit this system, facilitating noradrenaline release. In order to test the neuroprotective potential of this approach in a model involving excitotoxicity, the effects of treatments with the alpha2-adreneceptor antagonists, (+)-efaroxan (0.63 mg/kg i.p., thrice daily for 7 days) or (+/-)-idazoxan (2.5 mg/kg i.p., thrice daily for 7 days), were evaluated in rats which received a quinolinic acid-induced lesion of the left striatum. Both drug treatments resulted in a reduced ipsiversive circling response to apomorphine and a reduced choline acetyltransferase deficit in the lesioned striatum. The mechanisms underlying this effect are not known for certain, but may include noradrenergic receptor modulation of glial cell function, growth factor synthesis and release, activity of glutamatergic corticostriatal afferents, and/or events initiated by NMDA receptor activation. These results suggest a therapeutic potential of alpha2-adrenoceptor antagonists in neurodegenerative disorders where excitotoxicity has been implicated.
Collapse
Affiliation(s)
- J Martel
- Centre de Recherche Pierre Fabre, 17 Avenue Jean Moulin, Castres Cédex, 81106, France
| | | | | | | |
Collapse
|
19
|
Aoki C. Differential timing for the appearance of neuronal and astrocytic beta-adrenergic receptors in the developing rat visual cortex as revealed by light and electron-microscopic immunocytochemistry. Vis Neurosci 1997; 14:1129-42. [PMID: 9447693 DOI: 10.1017/s0952523800011822] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The developing cerebral cortex is likely to exhibit synaptic circuitries differing from those in adulthood, due to the asynchronous maturation of the various neurotransmitter systems. Two antisera directed against mammalian beta-adrenergic receptors (beta AR), beta AR248 and beta AR404, were used to characterize the laminar, cellular, and subcellular distributions of beta AR in postnatally developing visual cortex of rats. The antigenic sites were the receptor's third intracellular loop for beta AR248 and the C-terminus for beta AR404. During week 1, most of the beta AR404- and beta AR248-immunoreactive sites were dendritic. Morphologically identifiable synapses were rare, even in layer 1: yet, semiquantitative analysis revealed that beta AR404-immunoreactive synapses comprise half of those in layer 1. During week 2, the two antisera began to diverge in their immunoreactivity patterns. With beta AR248, there was an overall decline in immunoreactivity, while with beta AR404, there was an increase in immunoreactive sites, primarily due to labeled astrocytic processes that increased 200-fold in areal density by week 3. In contrast, the areal density of synaptic labeling by beta AR404 barely doubled, in spite of the 30-fold increase in areal density of synapses. These results suggest that beta AR undergo conformational changes during early postnatal periods, causing alterations in their relative antigenicity to the two antisera. Furthermore, the first 2 weeks appear to be characterized by modulation of earliest-formed synapses, and the subsequent phase is marked by addition of astrocytic responses that would be more diffuse temporally and spatially. Activation of beta AR is recognized to increase visually evoked activity relative to spontaneous activity. Moreover, astrocytic beta AR are documented to regulate extracellular concentrations of glutamate, ATP, and neurotrophic factors important for the formation of binocular connections. Thus, neuronal and astrocytic responses may, together and in tandem, facilitate strengthening of intracortical synaptic circuitry during early life.
Collapse
Affiliation(s)
- C Aoki
- Center for Neural Science and Biology, New York University, New York 10003, USA
| |
Collapse
|
20
|
Alexander GM, Grothusen JR, Gordon SW, Schwartzman RJ. Intracerebral microdialysis study of glutamate reuptake in awake, behaving rats. Brain Res 1997; 766:1-10. [PMID: 9359581 DOI: 10.1016/s0006-8993(97)00519-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The central nervous system has high-affinity uptake systems for the clearance of amino acid transmitters. These systems are found in both neurons and astrocytes. Previous studies have shown that the uptake of amino acid transmitters by astrocytes in culture can be modulated by adrenergic agents. The objectives of this study were to develop a methodology that evaluates the brain's reuptake capacity for glutamate in awake, behaving animals and to determine whether glutamate reuptake is under alpha-adrenergic regulation in the intact central nervous system. Male Sprague-Dawley rats weighing 250-450 g were used in this study. The extraction fraction of L-[3H]glutamate with [14C]mannitol as a reference was measured. The cortical extraction fraction of L-[3H]glutamate corrected for [14C]mannitol (EL-glu) reaches steady state rapidly and is both stable and repeatable. EL-glu is a measure of L-glutamate reuptake and not metabolism. EL-glu is decreased in a dose-dependent manner by the addition of the glutamate reuptake blocker D,L-threo-beta-hydroxyaspartic acid or unlabeled L- glutamate. In addition, EL-glu is increased in a dose-dependent manner by the alpha1-adrenergic agonist phenylephrine, and this increase is blocked by the alpha-adrenergic antagonist phentolamine.
Collapse
Affiliation(s)
- G M Alexander
- Department of Neurology, Allegheny University of the Health Sciences, Philadelphia, PA 19102, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
In the brain, astrocytes are associated intimately with neurons and surround synapses. Due to their close proximity to synaptic clefts, astrocytes are in a prime location for receiving synaptic information from released neurotransmitters. Cultured astrocytes express a wide range of neurotransmitter receptors, but do astrocytes in vivo also express neurotransmitter receptors and, if so, are the receptors activated by synaptically released neurotransmitters? In recent years, considerable efforts has gone into addressing these issues. The experimental results of this effort have been compiled and are presented in this review. Although there are many different receptors which have not been identified on astrocytes in situ, it is clear that astrocytes in situ express a number of different receptors. There is evidence of glutamatergic, GABAergic, adrenergic, purinergic, serotonergic, muscarinic, and peptidergic receptors on protoplasmic, fibrous, or specialized (Bergmann glia, pituicytes, Müller glia) astrocytes in situ and in vivo. These receptors are functionally coupled to changes in membrane potential or to intracellular signaling pathways such as activation of phospholipase C or adenylate cyclase. The expression of neurotransmitter receptors by astrocytes in situ exhibits regional and intraregional heterogeneity and changes during development and in response to injury. There is also evidence that receptors on astrocytes in situ can be activated by neurotransmitter(s) released from synaptic terminals. Given the evidence of extra-synaptic signaling and the expression of neurotransmitter receptors by astrocytes in situ, direct communication between neurons and astrocytes via neurotransmitters could be a widespread form of communication in the brain which may affect many different aspects of brain function, such as glutamate uptake and the modulation of extracellular space.
Collapse
Affiliation(s)
- J T Porter
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | |
Collapse
|
22
|
Streich S, Brüss M, Bönisch H. Expression of the extraneuronal monoamine transporter (uptake2) in human glioma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1996; 353:328-33. [PMID: 8692289 DOI: 10.1007/bf00168636] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tritiated methylphenylpyridinium ([3H]MPP+), a substrate of the neuronal and extraneuronal noradrenaline transporter (uptake1 and uptake2, respectively) and of the organic cation transporter (OCT1), was used to characterize the amine transport system of the established human glioma cell line SK-MG-1. Uptake of [3H]MPP+ (25 nM) into SK-MG-1 cells increased linearly with time for up to 15 min. Selective uptake1 inhibitors (e.g. (+)oxaprotiline) or omission of Na+ or Cl-ions did not affect [3H]MPP+ uptake, whereas uptake2 inhibitors such as O-methyl-isoprenaline (OMI) or corticosterone as well as depolarizing concentrations of K+ or Ba2+ strongly reduced [3H]MPP+ uptake. Initial rates of OMI(100 microM)-sensitive [3H]MPP+ uptake were saturable, with a K(m) of about 17 microM and a maximal rate of about 50 pmol/(min x mg protein). IC50 (or Ki) values for inhibition of [3H]MPP+ uptake by substrates and inhibitors of uptake2 or OCT1 were highly significantly correlated with published IC50 values for inhibition of uptake2 but not with corresponding values for inhibition of OCT1. The results presented here clearly demonstrate that human glioma cells express an uptake2 transporter. Thus, glial cells in the human central nervous system endowed with this transporter are likely to contribute to the inactivation of neuronally released noradrenaline.
Collapse
Affiliation(s)
- S Streich
- Institut für Pharmakologie und Toxikologie, Universität Bonn, Germany
| | | | | |
Collapse
|
23
|
Pickel VM, van Bockstaele EJ, Chan J, Cestari DM. Amygdala efferents form inhibitory-type synapses with a subpopulation of catecholaminergic neurons in the rat Nucleus tractus solitarius. J Comp Neurol 1995; 362:510-23. [PMID: 8636464 DOI: 10.1002/cne.903620406] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The central nucleus of the amygdala (CNA) integrates visceral responses to stress partially through efferent projections to portions of the medial nuclei of the solitary tracts (mNTS) containing catecholaminergic neurons. To determine anatomical sites for CNA modulation of these neurons, immunoperoxidase detection of anterogradely transported Phaseolus vulgaris-leucoagglutinin (PHA-L) or biotinylated dextran amine (BDA) was combined with immunogold-silver labeling of the catecholamine-synthesizing enzyme, tyrosine hydroxylase, in adult rat mNTS. From 350 anterogradely labeled terminals identified within the intermediate mNTS, 30% formed symmetric, inhibitory-type synapses and the remainder lacked recognized junctions as seen within a single plane of section. Of the terminals forming symmetric synapses, 16% were presynaptic to tyrosine hydroxylase immunoreactive dendrites and the remainder to unlabeled dendrites. The level of tyrosine hydroxylase immunoreactivity as assessed by density of gold-silver particles was significantly lower in dendrites receiving synaptic input from CNA efferents as compared with dendrites of the same sizes (2.0 microns 2 in mean area) which received synapses from unlabeled terminals or lacked recognizable synaptic inputs. When separately examined without regard to afferent input, the medium- and larger-sized dendrites having mean cross-sectional areas of 1-3 microns 2 also contained significantly less tyrosine hydroxylase immunoreactivity than small (< 1 micron 2) dendrites. These results suggest that CNA efferents to the mNTS inhibit non-catecholamine-containing neurons and a subpopulation of catecholaminergic neurons distinguished by their low levels of tyrosine hydroxylase. The findings also indicate that small, presumably more distal, dendrites in the intermediate mNTS may synthesize and/or release catecholamines.
Collapse
Affiliation(s)
- V M Pickel
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
24
|
Köster G. Glial alpha 2-receptors probably inhibit the high-affinity uptake of noradrenaline into astrocytes in the rat brain in vivo. Neurochem Res 1995; 20:291-7. [PMID: 7609828 DOI: 10.1007/bf00969545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of alpha 2-receptor blockage on the extraneuronal turnover of noradrenaline (NA) has been studied in the intact rat brain. Tropolone and yohimbine, along with reserpine or desmethylimipramine, were given 30 min after intracerebroventricular injection of [7-3H]NA, i.e. after the tracer had been stored or inactivated. Tropolone given alone did not change the fractions of 3H-activity recovered as [3H]NA from hypothalamus, septum, striatum and pons-medulla, but in the presence of yohimbine improved the [3H]NA recovery in all areas except pons-medulla. The maximum effect was seen in the hypothalamus of reserpine-treated rats. Since the alpha 2-autoreceptors were blocked, the increased [3H]NA recovery does not reflect a down-regulated neuronal NA turnover. Instead it seems to show that a fraction greater than normal of neuronally released NA had been taken up into astrocytes and remained unmetabolized if catechol-O-methyltransferase was inactive. It is assumed that yohimbine enabled the protective tropolone effect by blocking astrocytic alpha 2-receptors that otherwise, either by itself or by antagonizing beta-receptor-induced hyperpolarization or cAMP formation, had impaired parameters that stimulate the high-affinity NA Uptake 1 of astrocytes (e.g. membrane potential, Na+,K(+)-ATPase) or control the gap junction permeability in the glial syncytium.
Collapse
Affiliation(s)
- G Köster
- Institut für Klinische Biochemie, Universität, Bonn, Germany
| |
Collapse
|
25
|
Touret M, Sallanon-Moulin M, Fages C, Roudier V, Didier-Bazes M, Roussel B, Tardy M, Jouvet M. Effects of modafinil-induced wakefulness on glutamine synthetase regulation in the rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 26:123-8. [PMID: 7854038 DOI: 10.1016/0169-328x(94)90082-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Changes in the level of glutamine synthetase (GS), an enzyme chiefly found in glial cells, were investigated in the brains of rats treated with modafinil, an awakening drug interfering with central catecholamine function. Two hours (waking period) and 7 h (recovery period) after intra-peritoneal injection of 128 mg/kg modafinil, a significant increase in the level of GS protein was observed by immunotitration in both the locus coeruleus (+30%) and in the frontoparietal cortex (+50%). No changes were observed with 64 mg/kg of modafinil. GS mRNA was quantified in the entire cortex by Northern blot hybridization using an oligonucleotidic GS cDNA probe. A significant increase in the GS-mRNA level (+70%) was observed in the CX of rats 2 h after injection of 128 mg/kg modafinil; the level tended to return to control values 7 h later during the recovery period. The level of glial acid fibrillary protein (GFAP), an astroglial marker, was unchanged after modafinil treatment. These changes in GS levels after modafinil treatment are discussed in terms of neuron-glia interactions in the regulation of brain metabolism during pharmacologically induced wakefulness, excluding possible stress effects.
Collapse
Affiliation(s)
- M Touret
- Department of Experimental Medicine, Claude Bernard University, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pickel VM, Chan J. Met5-enkephalin is localized within axon terminals in the subfornical organ: vascular contacts and interactions with neurons containing gamma-aminobutyric acid. J Neurosci Res 1994; 37:735-49. [PMID: 8046774 DOI: 10.1002/jnr.490370608] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Met5-enkephalin inhibits sodium and water excretion and antagonizes the central actions of angiotensin II in subfornical organ of rat brain. We examined the ultrastructural basis for enkephalin modulation in this circumventricular region. Additionally, we examined the possibility that there might be cellular sites for functional interactions involving Met5-enkephalin and gamma-aminobutyric acid (GABA), a known inhibitory transmitter throughout the central nervous system. Met5-enkephalin and GABA were identified in single coronal sections through the subfornical organ using immunoperoxidase and silver-enhanced immunogold labeling methods, respectively. Enkephalin-like immunoreactivity was most prominently localized within axon terminals. These were distributed primarily in the central, highly vascular, regions of the subfornical organ. Enkephalin-labeled terminals were apposed to the basement membranes of fenestrated capillaries and also formed symmetric, inhibitory type synapses with neurons. In terminals associated with either blood vessels or neurons, the enkephalin immunoreactivity was enriched in large (80-150 nm) dense core vesicles. The immunoreactive vesicles were usually located within portions of the axon in close proximity to astrocytic processes. In contrast, smaller vesicles in the same terminals were more often aggregated near the basement membrane of the capillaries and the active zone of the synapse. The targets of enkephalin-immunoreactive terminals were either unlabeled or GABA-labeled dendrites of local neurons. Enkephalin was also co-localized with GABA in perikarya and in axon terminals. Terminals containing only GABA were far more abundant than those containing enkephalin or enkephalin and GABA. GABA-immunoreactive terminals formed symmetric synapses on unlabeled dendrites some of which also received convergent input from terminals containing enkephalin. Additionally, the enkephalin-immunoreactive terminals were closely apposed to GABA-labeled and unlabeled terminals. These results suggest sites for nonsynaptic release of Met5-enkephalin from dense core vesicles in contact with astrocytes near blood vessels and synaptic complexes in the rat subfornical organ. Moreover, the observed dual localization and pre- and postsynaptic associations between neurons containing Met5-enkephalin and GABA indicate that inhibitory effects of opioids in the subfornical organ may be mediated or potentiated by GABA.
Collapse
Affiliation(s)
- V M Pickel
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021
| | | |
Collapse
|
27
|
Aoki C, Lubin M, Fenstemaker S. Columnar activity regulates astrocytic beta-adrenergic receptor-like immunoreactivity in V1 of adult monkeys. Vis Neurosci 1994; 11:179-87. [PMID: 8011579 PMCID: PMC2839236 DOI: 10.1017/s0952523800011214] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent results indicate that astrocytic beta-adrenergic receptors (beta AR) participate in noradrenergic modulation of synaptic activity. In this study, we sought to examine whether neural activity can, in turn, regulate astrocytic beta AR. To address this question, an antiserum that recognizes beta-adrenergic receptors (beta AR) specifically in astrocytes was used to assess the distribution of the receptors across ocular dominance columns in V1 of two monocular and four visually intact adult monkeys. Cytochrome oxidase histochemistry (CO) was used to identify the position of the cortical laminae and of the ocular dominance columns receiving visual inputs from the intact and enucleated eyes. This stain revealed the expected pattern within V1 of monocular monkeys--i.e. darker and lighter bands of equal widths (ca. 500 microns) spanning laminae 4-6, each associated with larger and smaller blobs, respectively, in lamina 2/3. Alignment of CO sections with adjacent sections stained for astrocytic beta AR by the immunoperoxidase method revealed intense beta AR-like immunoreactivity (beta AR-li) in the superficial laminae, a slightly weaker staining in the infragranular laminae and weakest staining in lamina 4C. Within lamina 4C, a prominent striped pattern was evident. The darker bands of the stripe closely matched widths and positions of the lighter CO columns associated with the enucleated eye. On the other hand, immunocytochemical staining for the astrocytic intermediate filament protein, GFAP, within V1 of monocular monkeys revealed no inter-columnar difference in the density of astrocytic cell bodies or processes. Nissl stain also revealed no overt inter-columnar differences in cell density.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Aoki
- Biology Dept., New York University, New York
| | | | | |
Collapse
|
28
|
Aoki C, Pickel VM. Ultrastructural relations between beta-adrenergic receptors and catecholaminergic neurons. Brain Res Bull 1992; 29:257-63. [PMID: 1327418 DOI: 10.1016/0361-9230(92)90055-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We performed dual electron microscopic immunocytochemistry to determine the precise cellular relations between beta-adrenergic receptors (beta AR) and catecholaminergic terminals within adult rat brains. An antibody, beta AR404, against a peptide corresponding to the C-terminus of the hamster lung beta AR (beta 2 subtype) together with an anti-tyrosine hydroxylase (TH), a catecholaminergic marker, were used. Results show predominant labeling for beta AR404 within small astrocytic processes (beta-A). This is in sharp contrast to earlier results which showed neuronal labeling when using antibodies against the third intracellular loop of the receptor and of neurons-plus-astrocytes labeled using antibodies against the whole beta AR molecule. beta-A within visual cortex and nuclei of the solitary tracts frequently contacted blood vessel basement membrane and TH-immunoreactive terminals. TH-immunoreactive axons forming axo-axonic juxtapositions with non-TH terminals were also noted to be surrounded by beta-A. In the area postrema, a brain region lacking a blood-brain barrier, few beta-A occurred adjacent to TH-immunoreactive terminals or elsewhere. Thus, 1) catecholamines may act beyond morphologically identifiable synapses; 2) beta-A may mediate interactions between catecholamines and other transmitters; 3) there may be substantial heterogeneity in the structure or the conformation of the beta AR protein between neurons and glia or across CNS regions.
Collapse
Affiliation(s)
- C Aoki
- Center for Neural Science and Biology, New York University, New York 10003
| | | |
Collapse
|
29
|
Rönnbäck L, Hansson E. Chronic encephalopathies induced by mercury or lead: aspects of underlying cellular and molecular mechanisms. BRITISH JOURNAL OF INDUSTRIAL MEDICINE 1992; 49:233-240. [PMID: 1571293 PMCID: PMC1012104 DOI: 10.1136/oem.49.4.233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Long term exposure to low doses of mercury or lead can induce neurasthenic symptoms with slight cognitive deficits, lability, fatigue, decreased stress tolerance, and decreased simultaneous capacity. After exposure to higher concentrations permanent neuropsychological deficits can be seen. The present paper gives a new idea of possible molecular mechanisms underlying the symptoms. Impairments of astrocyte function are probably important, especially due to their capacity to regulate the ionic and amino acid concentration in the extracellular micromilieu, brain energy metabolism, and cell volume. Recent results have shown that these functions are under monoaminergic control. Aspects of therapy are outlined.
Collapse
Affiliation(s)
- L Rönnbäck
- Department of Neurology, University of Göteborg, Sweden
| | | |
Collapse
|