1
|
Singhal R, Prata IO, Bonnell VA, Llinás M. Unraveling the complexities of ApiAP2 regulation in Plasmodium falciparum. Trends Parasitol 2024; 40:987-999. [PMID: 39419713 DOI: 10.1016/j.pt.2024.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
The regulation of gene expression in Plasmodium spp., the causative agents of malaria, relies on precise transcriptional control. Malaria parasites encode a limited repertoire of sequence-specific transcriptional regulators dominated by the apicomplexan APETALA 2 (ApiAP2) protein family. ApiAP2 DNA-binding proteins play critical roles at all stages of the parasite life cycle. Recent studies have provided mechanistic insight into the functional roles of many ApiAP2 proteins. Two major areas that have advanced significantly are the identification of ApiAP2-containing protein complexes and the role of ApiAP2 proteins in malaria parasite sexual development. In this review, we present recent advances on the functional biology of ApiAP2 proteins and their role in regulating gene expression across the blood stages of the parasite life cycle.
Collapse
Affiliation(s)
- Ritwik Singhal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Isadora O Prata
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Victoria A Bonnell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Nag S, Banerjee C, Goyal M, Siddiqui AA, Saha D, Mazumder S, Debsharma S, Pramanik S, Saha SJ, De R, Bandyopadhyay U. Plasmodium falciparum Alba6 exhibits DNase activity and participates in stress response. iScience 2024; 27:109467. [PMID: 38558939 PMCID: PMC10981135 DOI: 10.1016/j.isci.2024.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/12/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Alba domain proteins, owing to their functional plasticity, play a significant role in organisms. Here, we report an intrinsic DNase activity of PfAlba6 from Plasmodium falciparum, an etiological agent responsible for human malignant malaria. We identified that tyrosine28 plays a critical role in the Mg2+ driven 5'-3' DNase activity of PfAlba6. PfAlba6 cleaves both dsDNA as well as ssDNA. We also characterized PfAlba6-DNA interaction and observed concentration-dependent oligomerization in the presence of DNA, which is evident from size exclusion chromatography and single molecule AFM-imaging. PfAlba6 mRNA expression level is up-regulated several folds following heat stress and treatment with artemisinin, indicating a possible role in stress response. PfAlba6 has no human orthologs and is expressed in all intra-erythrocytic stages; thus, this protein can potentially be a new anti-malarial drug target.
Collapse
Affiliation(s)
- Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Manish Goyal
- Department of Molecular & Cell Biology, School of Dental Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal 712258, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, West Bengal 700135, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Division of Molecular Medicine, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, West Bengal 700091, India
| |
Collapse
|
3
|
Parra-Marín O, López-Pacheco K, Hernández R, López-Villaseñor I. The highly diverse TATA box-binding proteins among protists: A review. Mol Biochem Parasitol 2020; 239:111312. [PMID: 32771681 DOI: 10.1016/j.molbiopara.2020.111312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/28/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Transcription is the first step of gene expression regulation and is a fundamental mechanism for establishing the viability and development of a cell. The TATA box-binding protein (TBP) interaction with a TATA box in a promoter is one of the best studied mechanisms in transcription initiation. TBP is a transcription factor that is highly conserved from archaea to humans and is essential for the transcription initiated by each of the three RNA polymerases. In addition, the discovery of TBP-related factor 1 (TRF1) and other factors related to TBP shed light on the variability among transcription initiation complexes, thus demonstrating that the compositions of these complexes are, in fact, more complicated than originally believed. Despite these facts, the majority of studies on transcription have been performed on animal, plant and fungal cells, which serve as canonical models, and information regarding protist cells is relatively scarce. The aim of this work is to review the diversity of the TBPs that have been documented in protists and describe some of the specific features that differentiate them from their counterparts in higher eukaryotes.
Collapse
Affiliation(s)
- Olivia Parra-Marín
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Karla López-Pacheco
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Imelda López-Villaseñor
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Santiago Á, Razo-Hernández RS, Pastor N. The TATA-binding Protein DNA-binding domain of eukaryotic parasites is a potentially druggable target. Chem Biol Drug Des 2019; 95:130-149. [PMID: 31569300 DOI: 10.1111/cbdd.13630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/14/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022]
Abstract
The TATA-binding protein (TBP) is a central transcription factor in eukaryotes that interacts with a large number of different transcription factors; thus, affecting these interactions will be lethal for any living being. In this work, we present the first structural and dynamic computational study of the surface properties of the TBP DNA-binding domain for a set of parasites involved in diseases of worldwide interest. The sequence and structural differences of these TBPs, as compared with human TBP, were proposed to select representative ensembles generated from molecular dynamics simulations and to evaluate their druggability by molecular ensemble-based docking of drug-like molecules. We found that potential druggable sites correspond to the NC2-binding site, N-terminal tail, H2 helix, and the interdomain region, with good selectivity for Plasmodium falciparum, Necator americanus, Entamoeba histolytica, Candida albicans, and Taenia solium TBPs. The best hit compounds share structural similarity among themselves and have predicted dissociation constants ranging from nM to μM. These can be proposed as initial scaffolds for experimental testing and further optimization. In light of the obtained results, we propose TBP as an attractive therapeutic target for treatment of parasitic diseases.
Collapse
Affiliation(s)
- Ángel Santiago
- Centro de Investigación en Dinámica Celular - IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.,Doctorado en Ciencias, CIDC-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular - IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular - IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
5
|
Nuclear Factor Y (NF-Y) Modulates Encystation in Entamoeba via Stage-Specific Expression of the NF-YB and NF-YC Subunits. mBio 2019; 10:mBio.00737-19. [PMID: 31213550 PMCID: PMC6581852 DOI: 10.1128/mbio.00737-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human parasite Entamoeba histolytica is an important pathogen with significant global impact and is a leading cause of parasitic death in humans. Since only the cyst form can be transmitted, blocking encystation would prevent new infections, making the encystation pathway an attractive target for the development of new drugs. Identification of the genetic signals and transcriptional regulatory networks that control encystation would be an important advance in understanding the developmental cascade. We show that the Entamoeba NF-Y complex plays a crucial role in regulating the encystation process in Entamoeba. Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor composed of three subunits, namely, NF-YA, NF-YB, and NF-YC, which are conserved throughout evolution. In higher eukaryotes, NF-Y plays important roles in several cellular processes (development, cell cycle regulation, apoptosis, and response to growth, stress, and DNA damage) by controlling gene expression through binding to a CCAAT promoter motif. We demonstrated that NF-Y subunits in the protist Entamoeba, while significantly divergent from those of higher eukaryotes, have well-conserved domains important for subunit interactions and DNA binding and that NF-YB and NF-YC are developmentally expressed during encystation. Electrophoretic mobility shift assays confirmed that the NF-Y protein(s) from Entamoeba cysts binds to a CCAAT motif. Consistent with a role as a transcription factor, the NF-Y proteins show nuclear localization during development. Additionally, we demonstrated that NF-YC localizes to the chromatoid body (an RNA processing center) during development, indicating that it may have a role in RNA processing. Finally, silencing of the NF-YC subunit resulted in reduced stability of the NF-Y complex and decreased encystation efficiency. We demonstrated that the NF-Y complex functions at a time point subsequent to the NAD+ flux and expression of the transcription factor encystation regulatory motif-binding protein, both of which are early regulators of Entamoeba development. Taken together, our results demonstrate that the NF-Y complex plays an important role in regulating encystation in Entamoeba and add to our understanding of the transcriptional networks and signals that control this essential developmental pathway in an important human pathogen.
Collapse
|
6
|
Transcription and Maturation of mRNA in Dinoflagellates. Microorganisms 2013; 1:71-99. [PMID: 27694765 PMCID: PMC5029490 DOI: 10.3390/microorganisms1010071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 10/14/2013] [Indexed: 01/17/2023] Open
Abstract
Dinoflagellates are of great importance to the marine ecosystem, yet scant details of how gene expression is regulated at the transcriptional level are available. Transcription is of interest in the context of the chromatin structure in the dinoflagellates as it shows many differences from more typical eukaryotic cells. Here we canvas recent transcriptome profiles to identify the molecular building blocks available for the construction of the transcriptional machinery and contrast these with those used by other systems. Dinoflagellates display a clear paucity of specific transcription factors, although surprisingly, the rest of the basic transcriptional machinery is not markedly different from what is found in the close relatives to the dinoflagellates.
Collapse
|
7
|
Goyal M, Alam A, Iqbal MS, Dey S, Bindu S, Pal C, Banerjee A, Chakrabarti S, Bandyopadhyay U. Identification and molecular characterization of an Alba-family protein from human malaria parasite Plasmodium falciparum. Nucleic Acids Res 2011; 40:1174-90. [PMID: 22006844 PMCID: PMC3273813 DOI: 10.1093/nar/gkr821] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have investigated the DNA-binding nature as well as the function of a putative Alba (Acetylation lowers binding affinity) family protein (PfAlba3) from Plasmodium falciparum. PfAlba3 possesses DNA-binding property like Alba family proteins. PfAlba3 binds to DNA sequence non-specifically at the minor groove and acetylation lowers its DNA-binding affinity. The protein is ubiquitously expressed in all the erythrocytic stages of P. falciparum and it exists predominantly in the acetylated form. PfAlba3 inhibits transcription in vitro by binding to DNA. Plasmodium falciparum Sir2 (PfSir2A), a nuclear localized deacetylase interacts with PfAlba3 and deacetylates the lysine residue of N-terminal peptide of PfAlba3 specific for DNA binding. PfAlba3 is localized with PfSir2A in the periphery of the nucleus. Fluorescence in situ hybridization studies revealed the presence of PfAlba3 in the telomeric and subtelomeric regions. ChIP and ChIP ReChIP analyses further confirmed that PfAlba3 binds to the telomeric and subtelomeric regions as well as to var gene promoter.
Collapse
Affiliation(s)
- Manish Goyal
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wong EH, Hasenkamp S, Horrocks P. Analysis of the molecular mechanisms governing the stage-specific expression of a prototypical housekeeping gene during intraerythrocytic development of P. falciparum. J Mol Biol 2011; 408:205-21. [PMID: 21354176 PMCID: PMC3081073 DOI: 10.1016/j.jmb.2011.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/10/2011] [Accepted: 02/17/2011] [Indexed: 01/22/2023]
Abstract
Gene expression during the intraerythrocytic development cycle of the human malarial parasite Plasmodium falciparum is subject to tight temporal control, resulting in a cascade of gene expression to meet the physiological demands of growth, replication, and reinvasion. The roles of the different molecular mechanisms that drive this temporal program of gene expression are poorly understood. Here we report the use of the bxb1 integrase system to reconstitute all aspects of the absolute and temporal control of the prototypical housekeeping gene encoding the proliferating cell nuclear antigen (Pfpcna) around an integrated luciferase reporter cassette. A quantitative analysis of the effect of the serial deletion of 5′ and 3′ genetic elements and sublethal doses of histone deacetylase inhibitors demonstrates that while the absolute control of gene expression could be perturbed, no effect on the temporal control of gene expression was observed. These data provide support for a novel model for the temporal control of potentially hundreds of genes during the intraerythrocytic development of this important human pathogen.
Collapse
Affiliation(s)
- Eleanor H. Wong
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Sandra Hasenkamp
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
- Corresponding author. Institute for Science and Technology in Medicine, Keele University, Huxley Building, Staffordshire ST5 5BG, UK.
| |
Collapse
|
9
|
Identification and characterization of a liver stage-specific promoter region of the malaria parasite Plasmodium. PLoS One 2010; 5:e13653. [PMID: 21048918 PMCID: PMC2965107 DOI: 10.1371/journal.pone.0013653] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/30/2010] [Indexed: 12/30/2022] Open
Abstract
During the blood meal of a Plasmodium-infected mosquito, 10 to 100 parasites are inoculated into the skin and a proportion of these migrate via the bloodstream to the liver where they infect hepatocytes. The Plasmodium liver stage, despite its clinical silence, represents a highly promising target for antimalarial drug and vaccine approaches. Successfully invaded parasites undergo a massive proliferation in hepatocytes, producing thousands of merozoites that are transported into a blood vessel to infect red blood cells. To successfully develop from the liver stage into infective merozoites, a tight regulation of gene expression is needed. Although this is a very interesting aspect in the biology of Plasmodium, little is known about gene regulation in Plasmodium parasites in general and in the liver stage in particular. We have functionally analyzed a novel promoter region of the rodent parasite Plasmodium berghei that is exclusively active during the liver stage of the parasite. To prove stage-specific activity of the promoter, GFP and luciferase reporter assays have been successfully established, allowing both qualitative and accurate quantitative analysis. To further characterize the promoter region, the transcription start site was mapped by rapid amplification of cDNA ends (5'-RACE). Using promoter truncation experiments and site-directed mutagenesis within potential transcription factor binding sites, we suggest that the minimal promoter contains more than one binding site for the recently identified parasite-specific ApiAP2 transcription factors. The identification of a liver stage-specific promoter in P. berghei confirms that the parasite is able to tightly regulate gene expression during its life cycle. The identified promoter region might now be used to study the biology of the Plasmodium liver stage, which has thus far proven problematic on a molecular level. Stage-specific expression of dominant-negative mutant proteins and overexpression of proteins normally active in other life cycle stages will help to understand the function of the proteins investigated.
Collapse
|
10
|
Regulation of gene expression in protozoa parasites. J Biomed Biotechnol 2010; 2010:726045. [PMID: 20204171 PMCID: PMC2830571 DOI: 10.1155/2010/726045] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/10/2009] [Accepted: 01/08/2010] [Indexed: 12/25/2022] Open
Abstract
Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.
Collapse
|
11
|
Bischoff E, Vaquero C. In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum. BMC Genomics 2010; 11:34. [PMID: 20078850 PMCID: PMC2821373 DOI: 10.1186/1471-2164-11-34] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/15/2010] [Indexed: 11/12/2022] Open
Abstract
Background Malaria is the most important parasitic disease in the world with approximately two million people dying every year, mostly due to Plasmodium falciparum infection. During its complex life cycle in the Anopheles vector and human host, the parasite requires the coordinated and modulated expression of diverse sets of genes involved in epigenetic, transcriptional and post-transcriptional regulation. However, despite the availability of the complete sequence of the Plasmodium falciparum genome, we are still quite ignorant about Plasmodium mechanisms of transcriptional gene regulation. This is due to the poor prediction of nuclear proteins, cognate DNA motifs and structures involved in transcription. Results A comprehensive directory of proteins reported to be potentially involved in Plasmodium transcriptional machinery was built from all in silico reports and databanks. The transcription-associated proteins were clustered in three main sets of factors: general transcription factors, chromatin-related proteins (structuring, remodelling and histone modifying enzymes), and specific transcription factors. Only a few of these factors have been molecularly analysed. Furthermore, from transcriptome and proteome data we modelled expression patterns of transcripts and corresponding proteins during the intra-erythrocytic cycle. Finally, an interactome of these proteins based either on in silico or on 2-yeast-hybrid experimental approaches is discussed. Conclusion This is the first attempt to build a comprehensive directory of potential transcription-associated proteins in Plasmodium. In addition, all complete transcriptome, proteome and interactome raw data were re-analysed, compared and discussed for a better comprehension of the complex biological processes of Plasmodium falciparum transcriptional regulation during the erythrocytic development.
Collapse
Affiliation(s)
- Emmanuel Bischoff
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, CNRS URA 2581, 25-28 rue du Dr Roux, 75724, Paris cedex 15, France.
| | | |
Collapse
|
12
|
Horrocks P, Wong E, Russell K, Emes RD. Control of gene expression in Plasmodium falciparum - ten years on. Mol Biochem Parasitol 2008; 164:9-25. [PMID: 19110008 DOI: 10.1016/j.molbiopara.2008.11.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/24/2023]
Abstract
Ten years ago this journal published a review with an almost identical title detailing how the then recent introduction of transfection technology had advanced our understanding of the molecular control of transcriptional processes in Plasmodium falciparum, particularly in terms of promoter structure and function. In the succeeding years, sequencing of several Plasmodium spp. genomes and application of high throughput global postgenomic technologies have proven as significant, if not more, as has the ability to genetically manipulate these parasites in dissecting the molecular control of gene expression. Here we aim to review our current understanding of the control of gene expression in P. falciparum, including evidence available from other Plasmodium spp. and apicomplexan parasites. Specifically, however, we will address the current polarised debate regarding the level at which control is mediated, and attempt to identify some of the challenges this field faces in the next 10 years.
Collapse
Affiliation(s)
- Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
13
|
Gopalakrishnan AM, Nyindodo LA, Ross Fergus M, López-Estraño C. Plasmodium falciparum: Preinitiation complex occupancy of active and inactive promoters during erythrocytic stage. Exp Parasitol 2008; 121:46-54. [PMID: 18951895 DOI: 10.1016/j.exppara.2008.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 07/22/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
Abstract
Over 80% of Plasmodium falciparum genes are developmentally regulated during the parasite's life cycle with most genes expressed in a "just in time" fashion. However, the molecular mechanisms of gene regulation are still poorly understood. Analysis of P. falciparum genome shows that the parasite appears to encode relatively few transcription factors homologous to those in other eukaryotes. We used Chromatin immunoprecipitation (ChIP) to study interaction of PfTBP and PfTFIIE with stage specific Plasmodium promoters. Our results indicate that PfTBP and PfTFIIE are bound to their cognate sequence in active and inactive erythrocytic-expressed promoters. In addition, TF occupancy appears to extend beyond the promoter regions, since PfTBP interaction with the coding and 3' end regions was also detected. No PfTBP or PfTFIIE interaction was detected on csp and pfs25 genes which are not active during the erythrocytic asexual stage. Furthermore, PfTBP and PfTFIIE binding did not appear to correlate with histone 3 and/or 4 acetylation, suggesting that histone acetylation may not be a prerequisite for PfTBP or PfTFIIE promoter interaction. Based on our observations we concluded that the PfTBP/PfTFIIE-containing preinitiation complex (PIC) would be preassembled on promoters of all erythrocytic-expressed genes in a fashion independent of histone acetylation, providing support for the "poised" model. Contrary to the classical model of eukaryotic gene regulation, PIC interaction with Plasmodium promoters occurred independent of transcriptional activity and to the notion that chromatin acetylation leads to PIC assembly.
Collapse
Affiliation(s)
- Anusha M Gopalakrishnan
- Department of Biology, Life Sciences Building, Room 409B, The University of Memphis, 3774 Walker Avenue, Memphis, TN 38152, USA
| | | | | | | |
Collapse
|
14
|
Kumar K, Singal A, Rizvi MMA, Chauhan VS. High mobility group box (HMGB) proteins of Plasmodium falciparum: DNA binding proteins with pro-inflammatory activity. Parasitol Int 2007; 57:150-7. [PMID: 18234548 DOI: 10.1016/j.parint.2007.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 11/21/2007] [Accepted: 11/23/2007] [Indexed: 11/17/2022]
Abstract
High mobility group box chromosomal protein 1 (HMGB1), known as an abundant, non-histone architectural chromosomal protein, is highly conserved across different species. Homologues of HMGB1 were identified and cloned from malaria parasite, Plasmodium falciparum. Sequence analyses showed that the P. falciparum HMGB1 (PfHMGB1) exhibits 45, 23 and 18%, while PfHMGB2 shares 42, 21 and 17% homology with Saccharomyces cerevisiae, human and mouse HMG box proteins respectively. Parasite PfHMGB1and PfHMGB2 proteins contain one HMG Box domain similar to B-Box of mammalian HMGB1. Electrophoretic Mobility Shift Assay (EMSA) showed that recombinant PfHMGB1 and PfHMGB2 bind to DNA. Immunofluorescence Assay using specific antibodies revealed that these proteins are expressed abundantly in the ring stage nuclei. Significant levels of PfHMGB1 and PfHMGB2 were also present in the parasite cytosol at trophozoite and schizont stages. Both, PfHMGB1 and PfHMGB2 were found to be potent inducers of pro-inflammatory cytokines such as TNFalpha from mouse peritoneal macrophages as analyzed by both reverse transcription PCR and by ELISA. These results suggest that secreted PfHMGB1 and PfHMGB2 may be responsible for eliciting/ triggering host inflammatory immune responses associated with malaria infection.
Collapse
Affiliation(s)
- Krishan Kumar
- International Centre of Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | |
Collapse
|
15
|
Zhang J, Gu Q, Hou X, Zhou H, Cong H, Li Y, Zhao Q, Li S. Identification of a necessary element for Toxoplasma gondii SAG1 gene expression. Exp Parasitol 2007; 116:175-81. [PMID: 17258203 DOI: 10.1016/j.exppara.2006.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 11/26/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
SAG1 codes for the stage-specific major surface antigen P30 of Toxoplasma gondii (T. gondii) tachyzoites. Six tandemly repeated, conserved 27 bp cassettes in the region from -231 to -70 bp were previously confirmed to be essential for high-level expression of SAG1 and serve as a positioning element directing the initiation of transcription. We demonstrate here that an element located between +19 and +28 bp is necessary for SAG1 gene expression by using deletion mutagenesis analysis and electrophoresis mobility shift assay (EMSA). This will provide an insight into the regulatory mechanisms of SAG1 gene expression.
Collapse
Affiliation(s)
- Jiaqin Zhang
- Department of Parasitology, School of Medicine, Shandong University, and Nephrology Department, The Second Hospital of Shandong University, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ruvalcaba-Salazar OK, Romero-Ramírez H, Santos-Argumedo L, Vargas M, Hernández-Rivas R. Preparation and characterization of a monoclonal antibody specific to Plasmodium falciparum TATA binding protein. Hybridoma (Larchmt) 2007; 25:367-71. [PMID: 17203999 DOI: 10.1089/hyb.2006.25.367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PfTBP is a transcriptional factor required by all three types of RNA polymerases in eukaryotic cells. In order to obtain a specific monoclonal antibody (MAb) against PfTBP, a DNA fragment of 684 base pairs (bp) that contained the complete PfTBP gene was amplified by polymerase chain reaction (PCR) and inserted into the pGEX prokaryotic expression vector. The recombinant protein (GST-PfTBP) was expressed in Escherichia coli, purified, and used as antigen to immunize mice. MAbs against PfTBP were obtained and hybridomas were screened by enzyme-linked immunosorbent assay (ELISA). Western blotting and immunofluorescence assays showed that MAb Pf.r1 recognized the PfTBP protein in nuclear extracts from Plasmodium falciparum as well as a native protein in the nuclei of this parasite. This MAb will be a helpful tool for the identification of the TBP associated factors (TAFs), which are apparently highly divergent with other eukaryotes. This information could help to identify new candidate gene products to develop novel drugs or vaccines.
Collapse
|
17
|
Watanabe J, Wakaguri H, Sasaki M, Suzuki Y, Sugano S. Comparasite: a database for comparative study of transcriptomes of parasites defined by full-length cDNAs. Nucleic Acids Res 2006; 35:D431-8. [PMID: 17151081 PMCID: PMC1781114 DOI: 10.1093/nar/gkl1039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Comparasite is a database for comparative studies of transcriptomes of parasites. In this database, each data is defined by the full-length cDNAs from various apicomplexan parasites. It integrates seven individual databases, Full-Parasites, consisting of numerous full-length cDNA clones that we have produced and sequenced: 12 484 cDNA sequences from Plasmodium falciparum, 11 262 from Plasmodium yoelii, 9633 from Plasmodium vivax, 1518 from Plasmodium berghei, 7400 from Toxoplasma gondii, 5921 from Cryptosporidium parvum and 10 966 from the tapeworm Echinococcus multilocularis. Putatively counterpart gene groups are clustered and comparative analysis of any combination of six apicomplexa species is implemented, such as interspecies comparisons regarding protein motifs (InterPro), predicted subcellular localization signals (PSORT), transmembrane regions (SOSUI) or upstream promoter elements. By specifying keywords and other search conditions, Comparasite retrieves putative counterpart gene groups containing a given feature in common or in a species-specific manner. By enabling multi-faceted comparative analyses of genes of apicomplexa protozoa, monophyletic organisms that have evolved to diversify to parasitize various hosts by adopting complex life cycles, Comparasite should help elucidate the mechanism behind parasitism. Our full-length cDNA databases and Comparasite are accessible from .
Collapse
Affiliation(s)
- Junichi Watanabe
- Department of Parasitology, Institute of Medical Science, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1, Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| | | | | | | | | |
Collapse
|
18
|
Briquet S, Boschet C, Gissot M, Tissandié E, Sevilla E, Franetich JF, Thiery I, Hamid Z, Bourgouin C, Vaquero C. High-mobility-group box nuclear factors of Plasmodium falciparum. EUKARYOTIC CELL 2006; 5:672-82. [PMID: 16607015 PMCID: PMC1459676 DOI: 10.1128/ec.5.4.672-682.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In eukaryotes, the high-mobility-group (HMG) nuclear factors are highly conserved throughout evolution and are divided into three families, including HGMB, characterized by an HMG box domain. Some HMGB factors are DNA structure specific and preferentially interact with distorted DNA sequences, trigger DNA bending, and hence facilitate the binding of nucleoprotein complexes that in turn activate or repress transcription. In Plasmodium falciparum, two HMGB factors were predicted: PfHMGB1 and PfHMGB2. They are small proteins, under 100 amino acids long, encompassing a characteristic HMG box domain closely related to box B of metazoan factors, which comprises two HMG box domains, A and B, in tandem. Computational analyses supported the conclusion that the Plasmodium proteins were genuine architectural HMGB factors, and in vitro analyses performed with both recombinant proteins established that they were able to interact with distorted DNA structures and bend linear DNA with different affinities. These proteins were detected in both asexual- and gametocyte-stage cells in Western blotting experiments and mainly in the parasite nuclei. PfHMGB1 is preferentially expressed in asexual erythrocytic stages and PfHMGB2 in gametocytes, in good correlation with transcript levels of expression. Finally, immunofluorescence studies revealed differential subcellular localizations: both factors were observed in the nucleus of asexual- and sexual-stage cells, and PfHMGB2 was also detected in the cytoplasm of gametocytes. In conclusion, in light of differences in their levels of expression, subcellular localizations, and capacities for binding and bending DNA, these factors are likely to play nonredundant roles in transcriptional regulation of Plasmodium development in erythrocytes.
Collapse
Affiliation(s)
- Sylvie Briquet
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
- Corresponding author. Mailing address: INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013 Paris, France. Phone: 33 (0) 1 40 77 81 14. Fax: 33 (0) 1 45 83 88 58. E-mail for Sylvie Briquet: . E-mail for Catherine Vaquero:
| | - Charlotte Boschet
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Mathieu Gissot
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Emilie Tissandié
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Elisa Sevilla
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Jean-François Franetich
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Isabelle Thiery
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Zuhal Hamid
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Catherine Bourgouin
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
| | - Catherine Vaquero
- INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, Paris, France, Biologie et Génétique du Paludisme, CEPIA (Centre de Production et d'Infection des Anophèles), Institut Pasteur, Paris, France
- Corresponding author. Mailing address: INSERM, U511, Université Pierre et Marie Curie, Paris VI, Centre Hospitalo-Universitaire de la Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013 Paris, France. Phone: 33 (0) 1 40 77 81 14. Fax: 33 (0) 1 45 83 88 58. E-mail for Sylvie Briquet: . E-mail for Catherine Vaquero:
| |
Collapse
|
19
|
Callebaut I, Prat K, Meurice E, Mornon JP, Tomavo S. Prediction of the general transcription factors associated with RNA polymerase II in Plasmodium falciparum: conserved features and differences relative to other eukaryotes. BMC Genomics 2005; 6:100. [PMID: 16042788 PMCID: PMC1199594 DOI: 10.1186/1471-2164-6-100] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Accepted: 07/23/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To date, only a few transcription factors have been identified in the genome of the parasite Plasmodium falciparum, the causative agent of malaria. Moreover, no detailed molecular analysis of its basal transcription machinery, which is otherwise well-conserved in the crown group of eukaryotes, has yet been reported. In this study, we have used a combination of sensitive sequence analysis methods to predict the existence of several parasite encoded general transcription factors associated with RNA polymerase II. RESULTS Several orthologs of general transcription factors associated with RNA polymerase II can be predicted among the hypothetical proteins of the P. falciparum genome using the two-dimensional Hydrophobic Cluster Analysis (HCA) together with profile-based search methods (PSI-BLAST). These predicted orthologous genes encoding putative transcription factors include the large subunit of TFIIA and two candidates for its small subunit, the TFIIE beta-subunit, which would associate with the previously known TFIIE alpha-subunit, the TFIIF beta-subunit, as well as the p62/TFB1 subunit of the TFIIH core. Within TFIID, the putative orthologs of TAF1, TAF2, TAF7 and TAF10 were also predicted. However, no candidates for TAFs with classical histone fold domain (HFD) were found, suggesting an unusual architecture of TFIID complex of RNA polymerase II in the parasite. CONCLUSION Taken together, these results suggest that more general transcription factors may be present in the P. falciparum proteome than initially thought. The prediction of these orthologous general transcription factors opens the way for further studies dealing with transcriptional regulation in P. falciparum. These alternative and sensitive sequence analysis methods can help to identify candidates for other transcriptional regulatory factors in P. falciparum. They will also facilitate the prediction of biological functions for several orphan proteins from other apicomplexan parasites such as Toxoplasma gondii, Cryptosporidium parvum and Eimeria.
Collapse
Affiliation(s)
- Isabelle Callebaut
- Centre National de la Recherche Scientifique CNRS UMR7590, Universités Paris 6 et Paris 7, Département de Biologie Structurale, IMPMC, case 115, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Karine Prat
- Centre National de la Recherche Scientifique CNRS UMR7590, Universités Paris 6 et Paris 7, Département de Biologie Structurale, IMPMC, case 115, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Edwige Meurice
- Centre National de la Recherche Scientifique CNRS UMR 8576, Université des Sciences et Technologies de Lille, Equipe de Parasitologie Moléculaire, Laboratoire de Chimie Biologique, UGSF, Bâtiment C9, 59655 Villeneuve d'Ascq, France
| | - Jean-Paul Mornon
- Centre National de la Recherche Scientifique CNRS UMR7590, Universités Paris 6 et Paris 7, Département de Biologie Structurale, IMPMC, case 115, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Stanislas Tomavo
- Centre National de la Recherche Scientifique CNRS UMR 8576, Université des Sciences et Technologies de Lille, Equipe de Parasitologie Moléculaire, Laboratoire de Chimie Biologique, UGSF, Bâtiment C9, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
20
|
Ruvalcaba-Salazar OK, del Carmen Ramírez-Estudillo M, Montiel-Condado D, Recillas-Targa F, Vargas M, Hernández-Rivas R. Recombinant and native Plasmodium falciparum TATA-binding-protein binds to a specific TATA box element in promoter regions. Mol Biochem Parasitol 2005; 140:183-96. [PMID: 15760658 DOI: 10.1016/j.molbiopara.2005.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/05/2005] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
RNA polymerase II promoters in Plasmodium spp., like in most eukaryotes, have a bipartite structure. However, the identification of a functional TATA box located within the Plasmodium spp. core promoters has been difficult, mainly because of its high A+T content. Only few putative trans-acting elements have been identified in the malaria parasite genome such as a gene orthologous to the TATA box binding protein (PfTBP). In this study, we demonstrate that PfTBP is part of the DNA-protein complexes formed in the kahrp and gbp-130 gene promoter regions. Supershift and footprinting assays performed with a GST-PfTBP fusion protein showed that PfTBP associates with a consensus TATA box sequence located 81 base pairs upstream of the transcription start site in the kahrp promoter region and with a TATA box-like (TGTAA) sequence at position -186 of the gbp-130 gene promoter region. Chromatin immunoprecipitation assays confirmed that native PfTBP is able to associate in vivo with both TATA box elements. This is the first study that reports the identification of cis-acting sequences (TATAA and TGTAA) and their corresponding trans-acting (PfTBP) factor in P. falciparum.
Collapse
Affiliation(s)
- Omar K Ruvalcaba-Salazar
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Apartado Postal 14-740, 07360 México
| | | | | | | | | | | |
Collapse
|
21
|
Buendía-Orozco J, Guerrero A, Pastor N. Model of the TBP–TFIIB Complex from Plasmodium falciparum: Interface Analysis and Perspectives as a New Target for Antimalarial Design. Arch Med Res 2005; 36:317-30. [PMID: 15950069 DOI: 10.1016/j.arcmed.2005.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 01/24/2005] [Indexed: 01/21/2023]
Abstract
BACKGROUND Malaria affects 200-300 million individuals per year worldwide. Plasmodium falciparum is the causative agent of the most severe and mortal type of malaria. The need for new antimalarials comes from the widespread resistance to those in current use. New antimalarial targets are required to increase chemical diversity and effectiveness of the drugs. The research for such new targets and drug chemotypes is aided by structure-based drug design. We present a model of the TBP-TFIIB complex from P. falciparum (pfTBP-pfTFIIB) and a detailed study of the interactions at the TBP-TFIIB interface. METHODS The model was built using standard methodology, optimized energetically and evaluated structurally. We carried out an analysis of the interface considering its evolution, available experimental data on TBP and TFIIB mutants, and the main conserved and non-conserved interactions. To support the perspective of using this complex as a new target for rational antimalarial design, we present the comparison of the pfTBP-pfTFIIB interface with its human homolog. RESULTS Despite the high residue conservation at the interface, we identified a potential region, composed of species-specific residues that can be used for rational antimalarial design. CONCLUSIONS Currently there are no antimalarial drugs targeted to stop the nuclear transcription process, a vital event for all replication stages of P. falciparum. Due to its absolute requirement in transcription initiation, we consider the pfTBP-pfTFIIB interface as a new potential target for novel antimalarial chemotypes.
Collapse
Affiliation(s)
- Jacob Buendía-Orozco
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Morelos, Mexico
| | | | | |
Collapse
|
22
|
Matrajt M, Platt CD, Sagar AD, Lindsay A, Moulton C, Roos DS. Transcript initiation, polyadenylation, and functional promoter mapping for the dihydrofolate reductase-thymidylate synthase gene of Toxoplasma gondii. Mol Biochem Parasitol 2005; 137:229-38. [PMID: 15383293 DOI: 10.1016/j.molbiopara.2003.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 11/03/2003] [Accepted: 12/19/2003] [Indexed: 01/21/2023]
Abstract
The fused dihydrofolate reductase/thymidylate synthase gene of Toxoplasma gondii contains ten exons spanning approximately 8 kb of genomic DNA. We have examined the ends of DHFR-TS transcripts within this gene, and find a complex pattern including two discrete 5' termini and multiple polyadenylation sites. No TATAA box or other classical promoter motif is evident in 1.4 kb of genomic DNA upstream of the coding region, but transcript mapping by RNase protection and primer extension reveals two prominent 5' ends at positions -369 and -341 nt relative to the ATG initiation codon. Upstream genomic sequences include GC-rich regions and the (opposite strand) WGAGACG motif previously identified in other T. gondii promoters. Mutagenesis of recombinant reporter plasmids demonstrates that this region is essential for efficient transgene expression. Sequencing the 3' ends from multiple independent mRNA clones demonstrates numerous polyadenylation sites, distributed over >650 nt of genomic sequence beginning approximately 250 nt downstream of the stop codon. Within this region, certain sites seem to be preferred: 14 different positions were found among the 32 polyadenylated transcripts examined, but approximately 40% of the transcripts map to two loci. The 3' noncoding region is rich in A and T nucleotides, and contains an imperfect 50 nt direct repeat, but no obvious poly(A) addition signal was identified.
Collapse
Affiliation(s)
- Mariana Matrajt
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104-6018, USA
| | | | | | | | | | | |
Collapse
|
23
|
Polson HEJ, Blackman MJ. A role for poly(dA)poly(dT) tracts in directing activity of the Plasmodium falciparum calmodulin gene promoter. Mol Biochem Parasitol 2005; 141:179-89. [PMID: 15850701 DOI: 10.1016/j.molbiopara.2005.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 02/08/2005] [Accepted: 02/13/2005] [Indexed: 11/30/2022]
Abstract
Expression of the Plasmodium falciparum calmodulin gene (pfcam) is developmentally regulated throughout the blood-stage cycle. The promoter lies within approximately 1 kb of intergenic sequence that separates the pfcam open reading frame (ORF) from an upstream inverted ORF encoding a product homologous to the co-chaperone STI1. Using the oligo-capping method, which selectively reverse-transcribes cDNA from only full-length, capped transcript, we have mapped multiple transcription-initiation sites for both genes. Transcription of the pfSTI1 gene initiates over a 150 bp region centred approximately 350 bp upstream of the ORF. The pfcam transcription start sites cluster into four approximately 30 bp regions lying within 180 bp upstream of the pfcam ORF, generating transcripts with 5' untranslated regions (UTR) of 3-173 nucleotides in length. Remarkably, splicing was found to be related to UTR length, with apparent preferential splicing of longer transcripts. Activity of the pfcam promoter diminished in a linear fashion to undetectable levels upon step-wise removal of sequence between 625 and 230 bp upstream of the start ATG. Electromobility-shift assays demonstrated nuclear factor binding to eight oligonucleotide probes spanning 657 bp of the pfcam ORF proximal upstream sequence. The degree of binding correlated with the density of poly(dA)poly(dT) tracts within the probes, and in all cases could be inhibited by excess synthetic poly(dA)poly(dT), but not by poly(dAdT)poly(dAdT). The multiple transcription-initiation sites of both pfSTI1 and pfcam genes lie just downstream of 25 bp-long poly(dA)poly(dT) tracts, and the intergenic region contains over 20 poly(dA)poly(dT) tracts of 4 bp or more. Our results suggest that the basal pfcam promoter is situated between approximately -300 and -230 bp upstream of the pfcam ORF and that the P. falciparum transcription-initiation complex has a low degree of sequence-specificity for the sites of initiation but preferentially acts downstream of long poly(dA)poly(dT) tracts.
Collapse
Affiliation(s)
- Hannah E J Polson
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
24
|
Gissot M, Briquet S, Refour P, Boschet C, Vaquero C. PfMyb1, a Plasmodium falciparum transcription factor, is required for intra-erythrocytic growth and controls key genes for cell cycle regulation. J Mol Biol 2004; 346:29-42. [PMID: 15663925 DOI: 10.1016/j.jmb.2004.11.045] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 11/18/2004] [Accepted: 11/18/2004] [Indexed: 11/23/2022]
Abstract
During the complex life cycle of Plasmodium falciparum, divided between mosquito and human hosts, the regulation of morphologic changes implies a fine control of transcriptional regulation. Transcriptional control, however, and in particular its molecular actors, transcription factors and regulatory motifs, are as yet poorly described in Plasmodium. In order to decipher the molecular mechanisms implicated in transcriptional regulation, a transcription factor belonging to the tryptophan cluster family was studied. In a previous work, the PfMyb1 protein, contained in nuclear extracts, was shown to have DNA binding activity and to interact specifically with myb regulatory elements. We used long pfmyb1 double-stranded RNA (dsRNA) to interfere with the cognate messenger expression. Parasite cultures treated with pfmyb1 dsRNA exhibited a 40% growth inhibition when compared with either untreated cultures or cultures treated with unrelated dsRNA, and parasite mortality occurred during trophozoite to schizont transition. In addition, the pfmyb1 transcript and protein decreased by as much as 80% in treated trophozoite cultures at the time of their maximum expression. The global effect of this partial loss of transcript and protein was investigated using a thematic DNA microarray encompassing genes involved in signal transduction, cell cycle and transcriptional regulation. SAM software enabled us to identify several genes that were differentially expressed and probably directly or indirectly under the control of PfMyb1. Using chromatin immuno-precipitation, we demonstrated that PfMyb1 binds, within the parasite nuclei, to several promoters and therefore participates directly in the transcriptional regulation of the corresponding genes. This study provides the first evidence of a regulation network involving a Plasmodium transcription factor.
Collapse
Affiliation(s)
- Mathieu Gissot
- INSERM U511, CHU Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | |
Collapse
|
25
|
Kumar N, Cha G, Pineda F, Maciel J, Haddad D, Bhattacharyya M, Nagayasu E. Molecular complexity of sexual development and gene regulation in Plasmodium falciparum. Int J Parasitol 2004; 34:1451-8. [PMID: 15582522 DOI: 10.1016/j.ijpara.2004.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 10/19/2004] [Accepted: 10/19/2004] [Indexed: 11/28/2022]
Abstract
The malaria parasite, Plasmodium falciparum, has a complex life cycle which alternates between the vertebrate host and the invertebrate vector. Various morphological changes as well as stage-specific transcripts and gene expression profiles that accompany parasite's asexual and sexual life cycle suggest that gene regulation is crucial for the parasite's continual adaptations to survive the changing environments as well as for pathogenesis. Development of sexual stages is crucial for malaria transmission and relatively little is known about the role of specific gene products during asexual to sexual differentiation and further development. Therefore, in order to have a full understanding of the biology of the malaria parasite, gene regulation on a genome-wide global level must be understood, an area remaining to be elucidated in P. falciparum. Parasite features, such as A-T bias, difficulties in cloning, labor-intensive culture and purification of specific stages of the parasite, all contribute to the difficulties to investigate many aspects of parasite biology. However, despite these challenges, limited studies have revealed a number of parallelisms with eukaryotic transcription. For example, the parasite's genes are organised in a similar fashion, contain promoter elements and upstream activation sequences, as shown by structural searches and functional assays, and some of the basal machinery and general transcription factors have been found in Plasmodium. The completion of the full genome sequence of P. falciparum and other species of Plasmodium has resulted in the search for specific transcription factors through genome mining. Although genome mining may identify some of the factors, search for these factors solely by primary sequence homology would result in a non-comprehensive list for transcription factors present in the genome. Here, we present further discussion on putative transcription factors like activities detected in the asexual and sexual stages of P. falciparum.
Collapse
Affiliation(s)
- Nirbhay Kumar
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins Malaria Research Institute, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Chow CS, Wirth DF. Linker scanning mutagenesis of the Plasmodium gallinaceum sexual stage specific gene pgs28 reveals a novel downstream cis-control element. Mol Biochem Parasitol 2003; 129:199-208. [PMID: 12850264 DOI: 10.1016/s0166-6851(03)00101-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protozoan parasites undergo complex life cycles that depend on regulated gene expression. However, limited studies on gene regulation in these parasites have repeatedly shown characteristics different from other eukaryotes. Within the Apicomplexa family, little is known about the mechanism of gene expression and regulation in Plasmodium spp. We have been investigating the cis-elements that control basal expression of a sexual stage specific gene in Plasmodium gallinaceum. Previously, we identified by 5' deletion analysis of a reporter construct that the 333bp upstream of the translational start site of pgs28 is sufficient for basal expression, and that the sequence between -333 and 316bp is necessary for such expression. In this report, we identified by linker scanning mutagenesis an 8-bp sequence that is essential for pgs28 transgene expression. This sequence is a target of sequence-specific nuclear factors. Primer extension studies demonstrate that, interestingly, the endogenous pgs28 transcript has two 5' ends, at -65 and +1. We suggest that this 8-bp sequence, CAGACAGC that is situated at +24 to +31 (with respect to the proximal start site), is a novel downstream promoter element in P. gallinaceum that appears to function independently of a TATA box or an Inr element.
Collapse
Affiliation(s)
- Connie S Chow
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Buratowski RM, Downs J, Buratowski S. Interdependent interactions between TFIIB, TATA binding protein, and DNA. Mol Cell Biol 2002; 22:8735-43. [PMID: 12446790 PMCID: PMC139873 DOI: 10.1128/mcb.22.24.8735-8743.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2002] [Revised: 07/18/2002] [Accepted: 09/24/2002] [Indexed: 11/20/2022] Open
Abstract
Temperature-sensitive mutants of TFIIB that are defective for essential interactions were isolated. One mutation (G204D) results in disruption of a protein-protein contact between TFIIB and TATA binding protein (TBP), while the other (K272I) disrupts an interaction between TFIIB and DNA. The TBP gene was mutagenized, and alleles that suppress the slow-growth phenotypes of the TFIIB mutants were isolated. TFIIB with the G204D mutation [TFIIB(G204D)] was suppressed by hydrophobic substitutions at lysine 239 of TBP. These changes led to increased affinity between TBP and TFIIB. TFIIB(K272I) was weakly suppressed by TBP mutants in which K239 was changed to hydrophobic residues. However, this mutant TFIIB was strongly suppressed by conservative substitutions in the DNA binding surface of TBP. Biochemical characterization showed that these TBP mutants had increased affinity for a TATA element. The TBPs with increased affinity could not suppress TFIIB(G204D), leading us to propose a two-step model for the interaction between TFIIB and the TBP-DNA complex.
Collapse
Affiliation(s)
- Robin M Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
28
|
Guillebault D, Sasorith S, Derelle E, Wurtz JM, Lozano JC, Bingham S, Tora L, Moreau H. A new class of transcription initiation factors, intermediate between TATA box-binding proteins (TBPs) and TBP-like factors (TLFs), is present in the marine unicellular organism, the dinoflagellate Crypthecodinium cohnii. J Biol Chem 2002; 277:40881-6. [PMID: 12154093 DOI: 10.1074/jbc.m205624200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dinoflagellates are marine unicellular eukaryotes that exhibit unique features including a very low level of basic proteins bound to the chromatin and the complete absence of histones and nucleosomal structure. A cDNA encoding a protein with a strong homology to the TATA box-binding proteins (TBP) has been isolated from an expressed sequence tag library of the dinoflagellate Crypthecodinium cohnii. The typical TBP repeat signature and the amino acid motives involved in TFIIA and TFIIB interactions were conserved in this new TBP-like protein. However, the four phenylalanines known to interact with the TATA box were substituted with hydrophilic residues (His(77), Arg(94), Tyr(171), Thr(188)) as has been described for TBP-like factors (TLF)/TBP-related proteins (TRP). A phylogenetic analysis showed that cTBP is intermediate between TBP and TLF/TRP protein families, and the structural similarity of cTBP with TLF was confirmed by low affinity binding to a consensus' TATA box in an equivalent manner to that usually observed for TLFs. Six 5'-upstream gene regions of dinoflagellate genes have been analyzed and neither a TATA box nor a consensus-promoting element could be found within these different sequences. Our results showed that cTBP could bind stronger to a TTTT box sequence than to the canonical TATA box, especially at high salt concentration. Same binding results were obtained with a mutated cTBP (mcTBP), in which the four phenylalanines were restored. To our knowledge, this is the first description of a TBP-like protein in a unicellular organism, which also appears as the major form of TBP present in C. cohnii.
Collapse
Affiliation(s)
- Delphine Guillebault
- Observatoire océanologique, laboratoire Arago, UMR 7628 CNRS-Université Paris VI, BP 44, F-66651 Banyuls-sur-mer cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Watanabe J, Sasaki M, Suzuki Y, Sugano S. Analysis of transcriptomes of human malaria parasite Plasmodium falciparum using full-length enriched library: identification of novel genes and diverse transcription start sites of messenger RNAs. Gene 2002; 291:105-13. [PMID: 12095684 DOI: 10.1016/s0378-1119(02)00552-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Now that the sequencing of the complete genome of the human malaria parasite Plasmodium falciparum is now underway, importance of analyses of complementary DNAs (cDNAs) is looming up. We constructed a full-length-enriched cDNA library from erythrocytic stage P. falciparum using the 'oligo-capping' method (Nucleic Acids Res. 29 (2001) 70). In this report we describe the novel genes identified using this library and detailed characterization of transcriptional start site of knob-associated histidine rich protein gene. Contrary to the previous report we conclude all the transcripts of plasmodium genes have diverse start sites. Sequence comparisons between the cDNAs and the complete sequences of chromosomes 2 identified three novel genes that had been missed by computational predictions. Moreover, analysis of transcriptional start sites revealed that the average length of the 5' untranslated region was 346 nt, which is much longer than that in humans. The transcriptional start sites of all the genes studied were far more diverse than those of human genes. These observations may reflect unique mechanism(s) of gene expression in this organism, which has an extremely AT-rich genome.
Collapse
Affiliation(s)
- Junichi Watanabe
- Department of Parasitology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo 108-8639, Japan.
| | | | | | | |
Collapse
|
30
|
Sullivan WJ, Smith CK. Cloning and characterization of a novel histone acetyltransferase homologue from the protozoan parasite Toxoplasma gondii reveals a distinct GCN5 family member. Gene 2000; 242:193-200. [PMID: 10721712 DOI: 10.1016/s0378-1119(99)00526-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In an effort to identify gene products involved in transcriptional regulation in apicomplexan parasites, the Toxoplasma gondii expressed sequence tag (EST) database was examined for sequences containing similarity to known transcriptional components. One EST (dbEST ID #466792) exhibited strong similarity to yeast GCN5 and other histone acetyltransferases (HATs). Primers were designed based on the EST sequence and used to amplify an 850 bp fragment (containing an intron) from T. gondii genomic DNA which was used to identify four cDNA clones from a tachyzoite cDNA library. The complete open reading frame (ORF) of 3.5 kb was elucidated using 5' RACE and genomic sequence. The deduced amino acid sequence of the coding region shows that the C-terminal domain possesses unequivocal similarity to GCN5 family members. However, unlike other lower eukaryotes, T. gondii GCN5 has an extended N-terminal domain similar in length, but not in composition, to metazoan HAT proteins. These features distinguish T. gondii GCN5 as a novel member of the GCN5 family. A portion of the cDNA sequence was used as a probe to isolate three overlapping clones from a T. gondii genomic library, generating a approximately 7.5 kb map of the GCN5 locus which contains seven exons separated by six introns. Southern analysis verifies the predicted map and suggests that a similar locus may be present elsewhere in the genome.
Collapse
Affiliation(s)
- W J Sullivan
- Animal Science Discovery Research, Elanco Animal Health, Greenfield, IN 46140, USA.
| | | |
Collapse
|
31
|
Zhu G, Marchewka MJ, Keithly JS. Cryptosporidium parvum possesses a short-type replication protein A large subunit that differs from its host. FEMS Microbiol Lett 1999; 176:367-72. [PMID: 10427719 DOI: 10.1111/j.1574-6968.1999.tb13685.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Replication protein A (RPA) consisting of three subunits is a eukaryotic single-stranded DNA (ssDNA)-binding protein involved in DNA replication, repair and recombination. We report here the identification and characterization of a RPA large subunit (CpRPA1) gene from the apicomplexan Cryptosporidium parvum. The CpRPA1 gene encodes a 53.9-kDa peptide that is remarkably smaller than that from other eukaryotes (i.e. approximately 70 kDa) and is actively expressed in both free sporozoites and parasite intracellular stages. This short-type RPA large subunit has also been characterized from one other protist, Crithidia fasciculata. Three distinct domains have been identified in the RPA large subunit of humans and yeasts: an N-terminal protein interaction domain, a central ssDNA-binding area, and a C-terminal subunit-interacting region. Sequence analysis reveals that the short-type RPA large subunit differs from that of other eukaryotes in that only the domains required for ssDNA binding and heterotrimer formation are present. It lacks the N-terminal domain necessary for the binding of proteins mainly involved in DNA repair and recombination. This major structural difference suggests that the mechanism for DNA repair and recombination in some protists differs from that of other eukaryotes. Since replication proteins play an essential role in the cell cycle, the fact that RPA proteins of C. parvum differ from those of its host suggests that RPA be explored as a potential chemotherapeutic target for controlling cryptosporidiosis and/or diseases caused by other apicomplexans.
Collapse
Affiliation(s)
- G Zhu
- Wadsworth Center, New York State Department of Health, Albany 12201-2002, USA.
| | | | | |
Collapse
|
32
|
van Spaendonk RM, McConkey GA, Ramesar J, Gabrielian A, McCutchan TF, Janse CJ, Waters AP. Identification of the transcription initiation site of the asexually expressed rRNA genes of the malaria parasite Plasmodium berghei. Mol Biochem Parasitol 1999; 99:193-205. [PMID: 10340484 DOI: 10.1016/s0166-6851(99)00016-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The start site of the A-type ribosomal RNA transcription units of the rodent malaria parasite, Plasmodium berghei, has been identified. The two A-type units cannot be distinguished within the transcription unit, yet exist as single copies on different chromosomes. Gene transcription initiates 820 bp upstream of the A-type small subunit (SSU) ribosomal gene and two major processing sites were mapped 610 and 611 nucleotides upstream of the SSU in the external transcribed spacer region. Surprisingly the nucleotide sequence of the DNA region containing the putative ribosomal promoter lacked repetitive DNA sequences typical of ribosomal promoters. This region was further analysed by computer using programs designed to reveal sequence-dependent structural features. Comparison of DNA curvature, duplex stability and pattern of twist angle variation revealed a striking degree of conservation between the ribosomal promoters from Plasmodium and other eukaryotes.
Collapse
|
33
|
Horrocks P, Lanzer M. Mutational analysis identifies a five base pair cis-acting sequence essential for GBP130 promoter activity in Plasmodium falciparum. Mol Biochem Parasitol 1999; 99:77-87. [PMID: 10215026 DOI: 10.1016/s0166-6851(98)00182-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Here we describe the functional characterization of a Plasmodium falciparum promoter region, identifying a discrete five base pair sequence element that is responsible for efficient promoter activity. This sequence element binds nuclear factors in a sequence-specific manner. It shares no homology with any known eukaryotic transcription factor binding site, supporting the notion that the protozoan parasite P. falciparum has evolved a transcriptional machinery distinct from that of its human and mosquito hosts. This report represents the first description of a minimal and necessary cis-acting sequence element for efficient promoter activity in P. falciparum.
Collapse
Affiliation(s)
- P Horrocks
- Zentrum für Infektionsforschung der Universität Würzburg, Germany
| | | |
Collapse
|
34
|
Minotto L, Tutticci EA, Bagnara AS, Schofield PJ, Edwards MR. Characterisation and expression of the carbamate kinase gene from Giardia intestinalis. Mol Biochem Parasitol 1999; 98:43-51. [PMID: 10029308 DOI: 10.1016/s0166-6851(98)00141-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The arginine dihydrolase pathway in Giardia intestinalis produces energy via the carbamate kinase (CBK, ATP:carbamate phosphotransferase, EC 2.7.2.2) reaction. Characterisation of the CBK gene from the Portland 1 strain indicated that it is located on either chromosome 3 or 4, does not appear to contain introns and is expressed in both the trophozoite and early cyst stages. Heterologous expression of CBK in Escherichia coli, using the pQE-30 expression system (QIAGEN), enabled a one-step purification of the recombinant enzyme via affinity chromatography. The expressed protein was identified by enzyme assay and mass spectrometry. The native and recombinant forms of the enzyme have similar physical properties and the recombinant enzyme appears to be active as the homodimer.
Collapse
Affiliation(s)
- L Minotto
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
35
|
Singh U, Rogers JB. The novel core promoter element GAAC in the hgl5 gene of Entamoeba histolytica is able to direct a transcription start site independent of TATA or initiator regions. J Biol Chem 1998; 273:21663-8. [PMID: 9705300 DOI: 10.1074/jbc.273.34.21663] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Entamoeba histolytica, an enteric protozoa, is the third leading parasitic cause of death worldwide. Investigation of the transcriptional machinery of this eukaryotic pathogen has revealed an unusual core promoter structure that consists of nonconsensus TATA and initiator regions and a novel third conserved core promoter sequence, the GAAC element. Mutation of this region in the hgl5 promoter decreases reporter gene expression and alters the transcription start site. Using positional analysis of this element, we have now demonstrated that it is able to direct a new transcription start site, 2-7 bases downstream of itself, independent of TATA and Inr regions. The GAAC region was also shown to control the rate of transcription via nuclear run on analysis and an amebic nuclear protein was demonstrated to specifically interact with this sequence. This is the first description in the eukaryotic literature of a third conserved core promoter element, distinct from TATA or initiator regions, that is able to direct a transcription start site. We have formulated two models for the role of the GAAC region: (i) the GAAC-binding protein is a part of the TFIID complex and (ii) the GAAC-binding protein functions to "tether" TATA-binding protein to the TATA box.
Collapse
Affiliation(s)
- U Singh
- Department of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
36
|
Carlton J, Mackinnon M, Walliker D. A chloroquine resistance locus in the rodent malaria parasite Plasmodium chabaudi. Mol Biochem Parasitol 1998; 93:57-72. [PMID: 9662028 DOI: 10.1016/s0166-6851(98)00021-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have located a possible chloroquine resistance locus in the genome of the rodent malaria parasite Plasmodium chabaudi. Two genetically distinct clones of the parasite were grown in vivo and allowed to undergo genetic crossing. The clones differed from each other in their susceptibility to chloroquine; AS(3CQ) had been selected for a low level of resistance to the drug whereas AJ is chloroquine-sensitive. Independent recombinant progeny (20) were cloned from the products of two crosses, phenotyped for their susceptibility to chloroquine, and genotyped for their inheritance of 46 chromosome-specific markers. No association was found between chloroquine susceptibility and the inheritance of pcmdr1, the P. chabaudi homologue of the pfmdr1 multi-drug resistance gene of P. falciparum. Also, there was no association between chloroquine susceptibility and the inheritance of a marker linked to a putative chloroquine resistance locus in a P. falciparum cross. However, 16 of the progeny clones showed co-segregation of four linked markers on chromosome 11 with their resistance phenotype. This result suggests that a locus for chloroquine resistance exists on this chromosome in P. chabaudi.
Collapse
Affiliation(s)
- J Carlton
- Institute of Cell, Animal and Population Biology, University of Edinburgh, UK.
| | | | | |
Collapse
|
37
|
Soppa J, Link TA. The TATA-box-binding protein (TBP) of Halobacterium salinarum. Cloning of the tbp gene, heterologous production of TBP and folding of TBP into a native conformation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:318-24. [PMID: 9363785 DOI: 10.1111/j.1432-1033.1997.t01-1-00318.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The TATA-box binding protein (TBP) is a basal transcription factor involved in transcription initiation in Eucarya and Archaea. Using a tbp-specific probe, a 4.5-kbp genomic fragment from Halobacterium salinarum was cloned and sequenced. It contained the tbp gene and the 5'-ends of two additional open reading frames, but surprisingly, 70% of the cloned fragment (3.2 kbp) was devoid of coding capacity or similarity to database sequences. The deduced halobacterial TBP exhibits sequence similarities to other archaeal (41-43%) as well as to eucaryal (27-38%) TBP. A comparative analysis showed that the archaeal and eucaryal TBP form two related monophylic protein families, and the archaeal TBP possess features which separate them from eucaryal TBP. Compared with the other TBP, the halobacterial TBP is unique in having a high excess of negatively charged residues. A histidine-tagged version of the halobacterial TBP was produced in Escherichia coli in a denatured conformation and purified by means of Ni-chelating chromatography. CD spectroscopy was used to monitor TBP secondary structure and the conditions necessary for folding it into a native conformation. In the absence of denaturating agents, the folded as well as the unfolded state were found to be stable over a wide range of salt concentrations. Properly folded TBP was shown to bind to a halobacterial TATA-box-containing DNA fragment, indicating that the fusion protein can be used to characterize DNA recognition by the halobacterial TBP.
Collapse
Affiliation(s)
- J Soppa
- Max-Planck-Institut für Biochemie, Martinsried, Germany.
| | | |
Collapse
|
38
|
Ji DD, Arnot DE. A Plasmodium falciparum homologue of the ATPase subunit of a multi-protein complex involved in chromatin remodelling for transcription. Mol Biochem Parasitol 1997; 88:151-62. [PMID: 9274876 DOI: 10.1016/s0166-6851(97)00089-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A Plasmodium falciparum homologue of one of the components of a chromatin-remodelling complex which controls binding of transcription factors to nucleosome core particles has been cloned and characterised. The gene encodes 1422 amino acids with an estimated molecular mass of 167 kDa. The protein, SNF2L, shares 60% amino acid identity in its conserved DNA-dependent ATPase domain with yeast transcription factors originally identified by characterising mating type switch mutants. It also contains sequences related to the so-called SWI3, ADA2, N-CoR and TFIIIB B" or SANT DNA binding domains which are characteristic of these transcriptional activation factors. The SNF2L gene has two short introns in the 3' region of the coding sequence of the gene and is transcribed into a single approximately 6.5 kb messenger RNA species which is present throughout the asexual stages of the cell cycle. Southern blotting and pulsed field gel electrophoresis experiments show that SNF2L is a single copy gene. located on P. falciparum chromosome 11.
Collapse
Affiliation(s)
- D D Ji
- Institute of Cell, Animal and Population Biology, Ashworth Laboratory, University of Edinburgh, UK
| | | |
Collapse
|
39
|
Singh U, Rogers JB, Mann BJ, Petri WA. Transcription initiation is controlled by three core promoter elements in the hgl5 gene of the protozoan parasite Entamoeba histolytica. Proc Natl Acad Sci U S A 1997; 94:8812-7. [PMID: 9238060 PMCID: PMC23142 DOI: 10.1073/pnas.94.16.8812] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Entamoeba histolytica is a single cell eukaryote that is the etiologic agent of amoebic colitis. Core promoter elements of E. histolytica protein encoding genes include a TATA-like sequence (GTATTTAAAG/C) at -30, a novel element designated GAAC (GAACT) that has a variable location between TATA and the site of transcription initiation, and a putative initiator (Inr) element (AAAAATTCA) overlying the site of transcription initiation. The presence of three separate conserved sequences in a eukaryotic core promoter is unprecedented and prompted examination of their roles in regulating transcription initiation. Alterations of all three regions in the hgl5 gene decreased reporter gene activity with the greatest effect seen by mutation of the GAAC element. Positional analysis of the TATA box demonstrated that transcription initiated consistently 30-31 bases downstream of the TATA region. Mutation of either the TATA or GAAC elements resulted in the appearance of new transcription start sites upstream of +1 in the promoter of the hgl5 gene. Mutation of the Inr element resulted in no change in the site of transcription initiation; however, in the presence of a mutated TATA and GAAC regions, the Inr element controlled the site of transcription initiation. We conclude that all three elements play a role in determining the site of transcription initiation. The variable position of the GAAC element relative to the site of transcription initiation, and the multiple transcription initiations that resulted from its mutation, indicate that the GAAC element has an important and apparently novel role in transcriptional control in E. histolytica.
Collapse
Affiliation(s)
- U Singh
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Over the past few years, several reports have been published about the characterization of Plasmodium genes that are thought, on the basis of sequence homology with eukaryotic genes of known function, to be involved in the regulation of growth and differentiation of the parasite. Taken together with phenomenological observations on the regulation of developmental stages in the malaria life cycle, these data form the basis of an informative, albeit incomplete, picture of signal transtruction in Plasmodium. Christian Doerig here reviews Plasmodium elements that are presumably part of major regulatory pathways conserved in eukaryotes, and addresses the problem of how to pursue such studies beyond the stage of gene identification.
Collapse
Affiliation(s)
- C D Doerig
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 313. Centre Hospitalier Universitaire Pitié-Salpêtrière, 91 Boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
41
|
Crabb BS, Cowman AF. Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum. Proc Natl Acad Sci U S A 1996; 93:7289-94. [PMID: 8692985 PMCID: PMC38976 DOI: 10.1073/pnas.93.14.7289] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genetic studies of the protozoan parasite Plasmodium falciparum have been severely limited by the inability to introduce or modify genes. In this paper we describe a system of stable transfection of P. falciparum using a Toxoplasma gondii dihydrofolate reductase-thymidylate synthase gene, modified to confer resistance to pyrimethamine, as a selectable marker. This gene was placed under the transcriptional control of the P. falciparum calmodulin gene flanking sequences. Transfected parasites generally maintained plasmids episomally while under selection; however, parasite clones containing integrated forms of the plasmid were obtained. Integration occurred by both homologous and nonhomologous recombination. In addition to the flanking sequence of the P. falciparum calmodulin gene, the 5' sequences of the P. falciparum and P. chabaudi dihydrofolate reductase-thymidylate synthase genes were also shown to be transcriptionally active in P. falciparum. The minimal 5' sequence that possessed significant transcriptional activity was determined for each gene and short sequences containing important transcriptional control elements were identified. These sequences will provide considerable flexibility in the future construction of plasmid vectors to be used for the expression of foreign genes or for the deletion or modification of P. falciparum genes of interest.
Collapse
Affiliation(s)
- B S Crabb
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | |
Collapse
|
42
|
Rojas MO, De-Castro J, Mariño G, Wasserman M. Detection of Genomic Polymorphism in Plasmodium falciparum using an arbitrarily primed PCR assay. J Eukaryot Microbiol 1996; 43:323-6. [PMID: 8768436 DOI: 10.1111/j.1550-7408.1996.tb03995.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modifications of the arbitrarily primed polymerase chain reaction assay (i.e. a low annealing temperature and a very slow increase in the temperature during the elongation steps during the amplification cycles) allowed it to be used with the AT-rich Plasmodium falciparum DNA. The analysis of the products by polyacrylamide-urea gels, after silver staining, resulted in high resolution and sensitivity. Eighteen single and six combined pairs of arbitrary primers were tested. Two produced polymorphic patterns complex enough to differentiate between close Colombian isolates in a single assay. This method may be useful in studying the distribution and migration of strains in endemic areas, and for identifying intralaboratory cross-contamination of cultures.
Collapse
Affiliation(s)
- M O Rojas
- Faculty of Sciences Universidad Nacional, Instituto Nacional de Salud, Bogotá, Colombia
| | | | | | | |
Collapse
|
43
|
Purdy JE, Pho LT, Mann BJ, Petri WA. Upstream regulatory elements controlling expression of the Entamoeba histolytica lectin. Mol Biochem Parasitol 1996; 78:91-103. [PMID: 8813680 DOI: 10.1016/s0166-6851(96)02614-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Entamoeba histolytica genomic organization and putative promoter elements appear to be distinct from both metazoan and better characterized protozoan organisms. The recent development of DNA-mediated transfection for E. histolytica enabled characterization of cis-acting promoter elements required for gene expression. A deletion and replacement analysis was conducted on the promoter of an E. histolytica gene encoding the heavy subunit of the N-acetyl-beta-D-galactosamine-specific adhesin (hgl5). Deletion of the DNA from -1000 bases to -272 bases upstream from the start of transcription of hgl5 did not decrease reporter gene expression. Subsequent nested deletions and 10-bp replacement mutagenesis identified four positive upstream regulatory elements between bases -219 to -200, -189 to -160, -69 to -60, and -49 to -40. A negative upstream regulatory element between bases -89 to -80 was conserved upstream of three other E. histolytica genes. Mutation of the previously unidentified 'GAAC' element conserved within the putative core promoter decreased reporter gene expression by 75%. Site directed mutagenesis of the putative TATA element decreased reporter gene expression by greater than 50%, while mutation of the putative initiator element resulted in a more modest decrease. This analysis suggests that E. histolytica promoters are unlike other protozoan promoters, with AT-rich upstream regulatory elements, a non-consensus TATA element, the "GAAC' element, and an unusual initiator element.
Collapse
Affiliation(s)
- J E Purdy
- Department of Medicine, University of Virginia, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Part of the topoisomerase I (TopoI)-encoding gene from Plasmodium falciparum (Pf) was isolated by PCR from cDNA using oligodeoxyribonucleotides modelled on the highly conserved regions of sequence from other species. The entire TopoI gene was obtained by screening a Pf K1 HindIII-EcoRI genomic library in lambda NM1149 with a random-labeled heterologous probe from the Saccharomyces cerevisiae TopoI gene. DNA sequence analysis revealed an open reading frame of 2520 nt encoding a deduced protein of 839 amino acids (aa) with no detectable introns. The Pf TopoI aa sequence has about 40% identity with most eukaryotic TopoI homologues. The gene is located as a single copy on chromosome 5 and Northern analysis identified a transcript of 3.8 kb.
Collapse
Affiliation(s)
- K Tosh
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | |
Collapse
|
45
|
Soldati D, Boothroyd JC. A selector of transcription initiation in the protozoan parasite Toxoplasma gondii. Mol Cell Biol 1995; 15:87-93. [PMID: 7799972 PMCID: PMC231911 DOI: 10.1128/mcb.15.1.87] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The recent development of an efficient transfection system for the apicomplexan Toxoplasma gondii allows a comprehensive dissection of the elements involved in gene transcription in this obligate intracellular parasite. We demonstrate here that for the SAG1 gene, a stretch of six repeated sequences in the region 35 to 190 bp upstream of the first of two transcription start sites is essential for efficient and accurate transcription initiation. This repeat element shows characteristics of a selector in determining the position of the transcription start sites.
Collapse
Affiliation(s)
- D Soldati
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305-5402
| | | |
Collapse
|
46
|
Fox BA, Bzik DJ. Analysis of stage-specific transcripts of the Plasmodium falciparum serine repeat antigen (SERA) gene and transcription from the SERA locus. Mol Biochem Parasitol 1994; 68:133-44. [PMID: 7891737 DOI: 10.1016/0166-6851(94)00162-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We evaluated the stage-specific transcription and processing of serine repeat antigen (SERA) messenger RNA to further examine mechanisms regulating gene expression in Plasmodium falciparum. SERA mRNA was expressed exclusively in trophozoite and schizont stages. Transcription from the SERA gene was first detected between 24 and 29 h following erythrocyte invasion. The transcript mapping data revealed heterogeneity of the SERA mRNA 5' and 3' ends. RNA sequencing revealed that SERA transcripts were not generated by a trans-splicing mechanism. A new SERA gene, SERA3, was identified 1.8 kb upstream of SERA. The direction of transcription of the SERA locus genes, SERA3, SERA, and SERA2, was mapped relative to the location of other chromosome 2 genetic markers. The SERA locus and the closely linked MSA2 locus were found to be transcriptionally regulated in a coordinate fashion. Collectively, the results of these experiments show that parallel and coordinately controlled transcription units reside on chromosome 2. These results implicate a novel mechanism of transcriptional control in Plasmodium.
Collapse
Affiliation(s)
- B A Fox
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03755
| | | |
Collapse
|
47
|
Schroeder SC, Wang CK, Weil PA. Identification of the cis-acting DNA sequence elements regulating the transcription of the Saccharomyces cerevisiae gene encoding TBP, the TATA box binding protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46933-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Nikolov DB, Burley SK. 2.1 A resolution refined structure of a TATA box-binding protein (TBP). NATURE STRUCTURAL BIOLOGY 1994; 1:621-37. [PMID: 7634102 DOI: 10.1038/nsb0994-621] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The three-dimensional structure of a TATA box-binding protein (TBP2) from Arabidopsis thaliana has been refined at 2.1 A resolution. TBPs are general eukaryotic transcription factors that participate in initiation of RNA synthesis by all three eukaryotic RNA polymerases. The carboxy-terminal portion of TBP is a unique DNA-binding motif/protein fold, adopting a highly symmetric alpha/beta structure that resembles a molecular saddle with two stirrup-like loops. A ten-stranded, antiparallel beta-sheet provides a concave surface for recognizing class II nuclear gene promoters, while the four amphipathic alpha-helices on the convex surface are available for interaction with other transcription factors. The myriad interactions of TBP2 with components of the transcription machinery are discussed.
Collapse
Affiliation(s)
- D B Nikolov
- Laboratory of Molecular Biophysics, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
49
|
Chakrabarti D, Reddy GR, Dame JB, Almira EC, Laipis PJ, Ferl RJ, Yang TP, Rowe TC, Schuster SM. Analysis of expressed sequence tags from Plasmodium falciparum. Mol Biochem Parasitol 1994; 66:97-104. [PMID: 7984191 DOI: 10.1016/0166-6851(94)90039-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An initiative was undertaken to sequence all genes of the human malaria parasite Plasmodium falciparum in an effort to gain a better understanding at the molecular level of the parasite that inflicts much suffering in the developing world. 550 random complimentary DNA clones were partially sequenced from the intraerythrocytic form of the parasite as one of the approaches to analyze the transcribed sequences of its genome. The sequences, after editing, generated 389 expressed sequence tag sites and over 105 kb of DNA sequences. About 32% of these clones showed significant homology with other genes in the database. These clones represent 340 new Plasmodium falciparum expressed sequence tags.
Collapse
Affiliation(s)
- D Chakrabarti
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville 32611-0880
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rowlands T, Baumann P, Jackson SP. The TATA-binding protein: a general transcription factor in eukaryotes and archaebacteria. Science 1994; 264:1326-9. [PMID: 8191287 DOI: 10.1126/science.8191287] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The TATA-binding protein TBP appears to be essential for all transcription in eukaryotic cell nuclei, which suggests that its function was established early in evolution. Archaebacteria constitute a kingdom of organisms distinct from eukaryotes and eubacteria. Archaebacterial gene regulatory sequences often map to TATA box-like motifs. Here it is shown that the archaebacterium Pyrococcus woesei expresses a protein with structural and functional similarity to eukaryotic TBP molecules. This suggests that TBP's role in transcription was established before the archaebacterial and eukaryotic lineages diverged and that the transcription systems of archaebacteria and eukaryotes are fundamentally homologous.
Collapse
|