1
|
Zhu G, Huang Y, Zhang L, Yan K, Qiu C, He Y, Liu Q, Zhu C, Morín M, Moreno‐Pelayo MÁ, Zhu M, Cao X, Zhou H, Qian X, Xu Z, Chen J, Gao X, Wan G. Cingulin regulates hair cell cuticular plate morphology and is required for hearing in human and mouse. EMBO Mol Med 2023; 15:e17611. [PMID: 37691516 PMCID: PMC10630877 DOI: 10.15252/emmm.202317611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Cingulin (CGN) is a cytoskeleton-associated protein localized at the apical junctions of epithelial cells. CGN interacts with major cytoskeletal filaments and regulates RhoA activity. However, physiological roles of CGN in development and human diseases are currently unknown. Here, we report a multi-generation family presenting with autosomal dominant non-syndromic hearing loss (ADNSHL) that co-segregates with a CGN heterozygous truncating variant, c.3330delG (p.Leu1110Leufs*17). CGN is normally expressed at the apical cell junctions of the organ of Corti, with enriched localization at hair cell cuticular plates and circumferential belts. In mice, the putative disease-causing mutation results in reduced expression and abnormal subcellular localization of the CGN protein, abolishes its actin polymerization activity, and impairs the normal morphology of hair cell cuticular plates and hair bundles. Hair cell-specific Cgn knockout leads to high-frequency hearing loss. Importantly, Cgn mutation knockin mice display noise-sensitive, progressive hearing loss and outer hair cell degeneration. In summary, we identify CGN c.3330delG as a pathogenic variant for ADNSHL and reveal essential roles of CGN in the maintenance of cochlear hair cell structures and auditory function.
Collapse
Affiliation(s)
- Guang‐Jie Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Yuhang Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Linqing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Keji Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Cui Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Yihan He
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Qing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Chengwen Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Matías Morín
- Servicio de GenéticaHospital Universitario Ramón y Cajal, IRYCISMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos III (CB06/07/0048; CIBERER‐ISCIII)MadridSpain
| | - Miguel Ángel Moreno‐Pelayo
- Servicio de GenéticaHospital Universitario Ramón y Cajal, IRYCISMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades RarasInstituto de Salud Carlos III (CB06/07/0048; CIBERER‐ISCIII)MadridSpain
| | - Min‐Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical ScienceNanjing Medical UniversityNanjingChina
| | - Han Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xiaoyun Qian
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life SciencesShandong UniversityQingdaoChina
| | - Jie Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xia Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Guoqiang Wan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| |
Collapse
|
2
|
Impaired tectorial membrane and ribbon synapse maturation in the cochlea of mice with congenital hypothyroidism. Biochem Biophys Res Commun 2023; 655:68-74. [PMID: 36933309 DOI: 10.1016/j.bbrc.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Thyroid hormone deficiency can lead to abnormal auditory development of varying severity. Retardation of morphological development, including delays in degeneration of Kölliker's organ and subsequent delayed formation of the inner sulcus, along with delayed opening of the tunnel of Corti and malformation of the tectorial membrane, was consistently observed in an antithyroid drug-induced congenital hypothyroidism rodent model. Abnormal morphological development could partly explain impaired adult auditory function. However, whether the development of inner hair cell ribbon synapses is influenced by hypothyroidism remains unclear. In the present study, we characterize the normal degeneration pattern of Kölliker's organ along the basal-to-apical axis. Then, we verified the retardation of morphological development in congenital hypothyroid mice. Using this model, we found that twisted collagen is present in the major tectorial membrane and delayed separation from supporting cells affects the minor tectorial membrane. Finally, we found that the number of synaptic ribbons was not significantly altered but the ribbon synapse maturation process was significantly impaired in congenital hypothyroid mice. We conclude that thyroid hormone is involved in structural development of the tectorial membrane and the ribbon synapse maturation process.
Collapse
|
3
|
Bieniussa L, Jain I, Bosch Grau M, Juergens L, Hagen R, Janke C, Rak K. Microtubule and auditory function - an underestimated connection. Semin Cell Dev Biol 2022; 137:74-86. [PMID: 35144861 DOI: 10.1016/j.semcdb.2022.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
Abstract
The organ of Corti, located in the cochlea within the inner ear is the receptor organ for hearing. It converts auditory signals into neuronal action potentials that are transmitted to the brain for further processing. The mature organ of Corti consists of a variety of highly differentiated sensory cells that fulfil unique tasks in the processing of auditory signals. The actin and microtubule cytoskeleton play essential function in hearing, however so far, more attention has been paid to the role of actin. Microtubules play important roles in maintaining cellular structure and intracellular transport in virtually all eukaryotic cells. Their functions are controlled by interactions with a large variety of microtubule-associated proteins (MAPs) and molecular motors. Current advances show that tubulin posttranslational modifications, as well as tubulin isotypes could play key roles in modulating microtubule properties and functions in cells. These mechanisms could have various effects on the stability and functions of microtubules in the highly specialised cells of the cochlea. Here, we review the current understanding of the role of microtubule-regulating mechanisms in the function of the cochlea and their implications for hearing, which highlights the importance of microtubules in the field of hearing research.
Collapse
Affiliation(s)
- Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Germany
| | - Ipsa Jain
- Institute of Stem cell Biology and Regenerative Medicine, Bangalore, India
| | - Montserrat Bosch Grau
- Genetics and Physiology of Hearing Laboratory, Institute Pasteur, 75015 Paris, France
| | - Lukas Juergens
- Department of Ophthalmology, University of Duesseldorf, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Germany
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Germany.
| |
Collapse
|
4
|
Berger J, Rubinstein J. A flexible anatomical set of mechanical models for the organ of Corti. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210016. [PMID: 34540242 PMCID: PMC8441134 DOI: 10.1098/rsos.210016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
We build a flexible platform to study the mechanical operation of the organ of Corti (OoC) in the transduction of basilar membrane (BM) vibrations to oscillations of an inner hair cell bundle (IHB). The anatomical components that we consider are the outer hair cells (OHCs), the outer hair cell bundles, Deiters cells, Hensen cells, the IHB and various sections of the reticular lamina. In each of the components we apply Newton's equations of motion. The components are coupled to each other and are further coupled to the endolymph fluid motion in the subtectorial gap. This allows us to obtain the forces acting on the IHB, and thus study its motion as a function of the parameters of the different components. Some of the components include a nonlinear mechanical response. We find that slight bending of the apical ends of the OHCs can have a significant impact on the passage of motion from the BM to the IHB, including critical oscillator behaviour. In particular, our model implies that the components of the OoC could cooperate to enhance frequency selectivity, amplitude compression and signal to noise ratio in the passage from the BM to the IHB. Since the model is modular, it is easy to modify the assumptions and parameters for each component.
Collapse
Affiliation(s)
- Jorge Berger
- Department of Physics and Optical Engineering, Ort Braude College, Karmiel, Israel
| | | |
Collapse
|
5
|
Juergens L, Bieniussa L, Voelker J, Hagen R, Rak K. Spatio-temporal distribution of tubulin-binding cofactors and posttranslational modifications of tubulin in the cochlea of mice. Histochem Cell Biol 2020; 154:671-681. [PMID: 32712744 PMCID: PMC7723944 DOI: 10.1007/s00418-020-01905-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
The five tubulin-binding cofactors (TBC) are involved in tubulin synthesis and the formation of microtubules. Their importance is highlighted by various diseases and syndromes caused by dysfunction or mutation of these proteins. Posttranslational modifications (PTMs) of tubulin promote different characteristics, including stability-creating subpopulations of tubulin. Cell- and time-specific distribution of PTMs has only been investigated in the organ of Corti in gerbils. The aim of the presented study was to investigate the cell type-specific and time-specific expression patterns of TBC proteins and PTMs for the first time in murine cochleae over several developmental stages. For this, murine cochleae were investigated at the postnatal (P) age P1, P7 and P14 by immunofluorescence analysis. The investigations revealed several profound interspecies differences in the distribution of PTMs between gerbil and mouse. Furthermore, this is the first study to describe the spatio-temporal distribution of TBCs in any tissue ever showing a volatile pattern of expression. The expression analysis of TBC proteins and PTMs of tubulin reveals that these proteins play a role in the physiological development of the cochlea and might be essential for hearing.
Collapse
Affiliation(s)
- Lukas Juergens
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
- Department of Ophthalmology, University of Duesseldorf, Duesseldorf, Germany
| | - Linda Bieniussa
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, The Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany.
| |
Collapse
|
6
|
Tapia R, Perez-Yepez EA, Carlino MJ, Karandikar UC, Kralicek SE, Estes MK, Hecht GA. Sperm Flagellar 1 Binds Actin in Intestinal Epithelial Cells and Contributes to Formation of Filopodia and Lamellipodia. Gastroenterology 2019; 157:1544-1555.e3. [PMID: 31473225 PMCID: PMC7016487 DOI: 10.1053/j.gastro.2019.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Sperm flagellar 1 (also called CLAMP) is a microtubule-associated protein that regulates microtubule dynamics and planar cell polarity in multi-ciliated cells. We investigated the localization and function of sperm flagellar 1, or CLAMP, in human intestinal epithelia cells (IECs). METHODS We performed studies with SKCO-15 and human intestinal enteroids established from biopsies from different intestinal segments (duodenal, jejunum, ileal, and colon) of a single donor. Enteroids were induced to differentiation after incubation with growth factors. The distribution of endogenous CLAMP in IECs was analyzed by immunofluorescence microscopy using total internal reflection fluorescence-ground state depletion and confocal microscopy. CLAMP localization was followed during the course of intestinal epithelial cell polarization as cells progressed from flat to compact, confluent monolayers. Protein interactions with endogenous CLAMP were determined in SKCO-15 cells using proximity ligation assays and co-immunoprecipitation. CLAMP was knocked down in SKCO-15 monolayers using small hairpin RNAs and cells were analyzed by immunoblot and immunofluorescence microscopy. The impact of CLAMP knock-down in migrating SKCO-15 cells was assessed using scratch-wound assays. RESULTS CLAMP bound to actin and apical junctional complex proteins but not microtubules in IECs. In silico analysis predicted the calponin-homology domain of CLAMP to contain conserved amino acids required for actin binding. During IEC polarization, CLAMP distribution changed from primarily basal stress fibers and cytoplasm in undifferentiated cells to apical membranes and microvilli in differentiated monolayers. CLAMP accumulated in lamellipodia and filopodia at the leading edge of migrating cells in association with actin. CLAMP knock-down reduced the number of filopodia, perturbed filopodia polarity, and altered the organization of actin filaments within lamellipodia. CONCLUSIONS CLAMP is an actin-binding protein, rather than a microtubule-binding protein, in IECs. CLAMP distribution changes during intestinal epithelial cell polarization, regulates the formation of filopodia, and appears to assist in the organization of actin bundles within lamellipodia of migrating IECs. Studies are needed to define the CLAMP domains that interact with actin and whether its loss from IECs affects intestinal function.
Collapse
Affiliation(s)
- Rocio Tapia
- Department of Medicine, Division of Gastroenterology and Nutrition
| | | | | | | | | | - Mary K. Estes
- Department of Molecular Virology and Microbiology,Department of Medicine - Gastroenterology and Hepatology and Infectious Diseases, Baylor College of Medicine, Houston, Texas
| | - Gail A. Hecht
- Department of Medicine, Division of Gastroenterology and Nutrition,Department of Microbiology and Immunology, Loyola University Chicago,Edward Hines Jr. VA Hospital, Hines, Illinois
| |
Collapse
|
7
|
Ladrech S, Eybalin M, Puel JL, Lenoir M. Epithelial-mesenchymal transition, and collective and individual cell migration regulate epithelial changes in the amikacin-damaged organ of Corti. Histochem Cell Biol 2017; 148:129-142. [PMID: 28365859 DOI: 10.1007/s00418-017-1548-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2017] [Indexed: 12/23/2022]
Abstract
Characterizing the microenvironment of a damaged organ of Corti and identifying the basic mechanisms involved in subsequent epithelial reorganization are critical for improving the outcome of clinical therapies. In this context, we studied the expression of a variety of cell markers related to cell shape, cell adhesion and cell plasticity in the rat organ of Corti poisoned with amikacin. Our results indicate that, after severe outer hair cell losses, the cytoarchitectural reorganization of the organ of Corti implicates epithelial-mesenchymal transition mechanisms and involves both collective and individual cell migratory processes. The results also suggest that both root cells and infiltrated fibroblasts participate in the homeostasis of the damaged epithelium, and that the flat epithelium that may emerge offers biological opportunities for late regenerative therapies.
Collapse
Affiliation(s)
- Sabine Ladrech
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, 80 rue Augustin Fliche, 34091, Montpellier Cedex 5, France.,University of Montpellier, Montpellier, France
| | - Michel Eybalin
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, 80 rue Augustin Fliche, 34091, Montpellier Cedex 5, France.,University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, 80 rue Augustin Fliche, 34091, Montpellier Cedex 5, France.,University of Montpellier, Montpellier, France
| | - Marc Lenoir
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, 80 rue Augustin Fliche, 34091, Montpellier Cedex 5, France. .,University of Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Pollock LM, Gupta N, Chen X, Luna EJ, McDermott BM. Supervillin Is a Component of the Hair Cell's Cuticular Plate and the Head Plates of Organ of Corti Supporting Cells. PLoS One 2016; 11:e0158349. [PMID: 27415442 PMCID: PMC4944918 DOI: 10.1371/journal.pone.0158349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 06/14/2016] [Indexed: 11/23/2022] Open
Abstract
The organ of Corti has evolved a panoply of cells with extraordinary morphological specializations to harness, direct, and transduce mechanical energy into electrical signals. Among the cells with prominent apical specializations are hair cells and nearby supporting cells. At the apical surface of each hair cell is a mechanosensitive hair bundle of filamentous actin (F-actin)-based stereocilia, which insert rootlets into the F-actin meshwork of the underlying cuticular plate, a rigid organelle considered to hold the stereocilia in place. Little is known about the protein composition and development of the cuticular plate or the apicolateral specializations of organ of Corti supporting cells. We show that supervillin, an F-actin cross-linking protein, localizes to cuticular plates in hair cells of the mouse cochlea and vestibule and zebrafish sensory epithelia. Moreover, supervillin localizes near the apicolateral margins within the head plates of Deiters’ cells and outer pillar cells, and proximal to the apicolateral margins of inner phalangeal cells, adjacent to the junctions with neighboring hair cells. Overall, supervillin localization suggests this protein may shape the surface structure of the organ of Corti.
Collapse
Affiliation(s)
- Lana M Pollock
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Nilay Gupta
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Xi Chen
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Elizabeth J Luna
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605, United States of America
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America.,Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, 44016, United States of America
| |
Collapse
|
9
|
Pollock LM, McDermott BM. The cuticular plate: A riddle, wrapped in a mystery, inside a hair cell. ACTA ACUST UNITED AC 2015; 105:126-39. [DOI: 10.1002/bdrc.21098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Lana M. Pollock
- Department of Otolaryngology-Head and Neck Surgery; Case Western Reserve University; Cleveland Ohio
- Department of Genetics and Genome Sciences; Case Western Reserve University; Cleveland Ohio
| | - Brian M. McDermott
- Department of Otolaryngology-Head and Neck Surgery; Case Western Reserve University; Cleveland Ohio
- Department of Genetics and Genome Sciences; Case Western Reserve University; Cleveland Ohio
- Department of Biology; Case Western Reserve University; Cleveland Ohio
- Department of Neurosciences; Case Western Reserve University; Cleveland Ohio
| |
Collapse
|
10
|
Wang J, Li X, Zhang Z, Wang H, Li J. Expression of prestin in OHCs is reduced in Spag6 gene knockout mice. Neurosci Lett 2015; 592:42-7. [PMID: 25748314 DOI: 10.1016/j.neulet.2015.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 01/21/2023]
Abstract
Sperm-associated antigen 6 (Spag6) gene, which encodes an axonemal protein (SPAG6), ubiquitously expresses in tissue and organs containing ciliated cells. The present work was to investigate whether SPAG6 expressed in cochlear hair cells and, if so, to explore the presumable correlations between prestin and SPAG6. The distribution of SPAG6 in organ of Corti and the morphological features of hair cells in basilar membrane were investigated by immunofluorescent staining. The amount of prestin in Spag6 mutant mice was measured by Western blotting and real-time PCR, respectively. Additionally, co-immunoprecipitation tests were performed to confirm the presumed interaction between prestin and SPAG6. We observed that SPAG6 expressed in the cuticular plate in outer hair cells (OHCs) and prestin in the lateral wall of OHCs that located along with SPAG6 at this site. In comparison to Spag6 +/+ mice, Spag6 -/- mice showed apparent morphological abnormity of OHCs and lower intensity of prestin fluorescence. The expression of prestin in Spag6 -/- mice reduced significantly at both protein and mRNA levels. Moreover, co-immunoprecipitation tests demonstrated the interaction between prestin and SPAG6. Taken together, these data indicate that SPAG6 is indispensible for the stability of OHCs by maintaining the normal expression of prestin, which implies that Spag6 gene is essential for mechanosensory function of OHCs.
Collapse
Affiliation(s)
- Jinghan Wang
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, PR China
| | - Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, PR China; Shandong Provincial Key Laboratory of Otology, Ji'nan 250021, PR China
| | - Zhibing Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Ji'nan 250021, PR China; Shandong Provincial Key Laboratory of Otology, Ji'nan 250021, PR China.
| | - Jianfeng Li
- Department of Pathology and Pathophysiology, School of Medicine, Shandong University, Ji'nan 250012, PR China; Shandong Provincial Key Laboratory of Otology, Ji'nan 250021, PR China.
| |
Collapse
|
11
|
ACF7 is a hair-bundle antecedent, positioned to integrate cuticular plate actin and somatic tubulin. J Neurosci 2014; 34:305-12. [PMID: 24381291 DOI: 10.1523/jneurosci.1880-13.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The precise morphology of the mechanosensitive hair bundle requires seamless integration of actin and microtubule networks. Here, we identify Acf7a (actin crosslinking family protein 7a) as a protein positioned to bridge these distinct cytoskeletal networks in hair cells. By imaging Acf7a-Citrine fusion protein in zebrafish and immunolabeling of vestibular and cochlear mouse hair cells, we show that Acf7a and ACF7 circumscribe, underlie, and are interwoven into the cuticular plate (CP), and they also encircle the basal body of the kinocilium. In cochlear hair cells, ACF7 localization is graded, with the highest concentration near each fonticulus--an area free of F-actin in the region of the CP that contains the basal body. During hair-cell development and regeneration, Acf7a precedes formation of the hair bundle and CP. Finally, electron tomography demonstrates that the ends of microtubules insert into the CP and are decorated with filamentous linkers connecting microtubules to the CP. These observations are consistent with ACF7 being a linker protein, which may shape the cytoskeleton of the hair cell early during hair-bundle genesis.
Collapse
|
12
|
Burns JC, Collado MS, Oliver ER, Corwin JT. Specializations of intercellular junctions are associated with the presence and absence of hair cell regeneration in ears from six vertebrate classes. J Comp Neurol 2013; 521:1430-48. [PMID: 23124808 DOI: 10.1002/cne.23250] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/10/2012] [Accepted: 10/25/2012] [Indexed: 01/12/2023]
Abstract
Sensory hair cell losses lead to hearing and balance deficits that are permanent for mammals, but temporary for nonmammals because supporting cells in their ears give rise to replacement hair cells. In mice and humans, vestibular supporting cells grow exceptionally large circumferential F-actin belts and their junctions express E-cadherin in patterns that strongly correlate with postnatal declines in regeneration capacity. In contrast, chicken supporting cells retain thin F-actin belts throughout life and express little E-cadherin. To determine whether the junctions in chicken ears might be representative of other ears that also regenerate hair cells, we investigated inner ears from dogfish sharks, zebrafish, bullfrogs, Xenopus, turtles, and the lizard, Anolis. As in chickens, the supporting cells in adult zebrafish, Xenopus, and turtle ears retained thin circumferential F-actin belts and expressed little E-cadherin. Supporting cells in adult sharks and bullfrogs also retained thin belts, but were not tested for E-cadherin. Supporting cells in adult Anolis exhibited wide, but porous webs of F-actin and strong E-cadherin expression. Anolis supporting cells also showed some cell cycle reentry when cultured. The results reveal that the association between thin F-actin belts and low E-cadherin is shared by supporting cells in anamniotes, turtles, and birds, which all can regenerate hair cells. Divergent junctional specializations in supporting cells appear to have arisen independently in Anolis and mammals. The presence of webs of F-actin at the junctions in Anolis appears compatible with supporting cell proliferation, but the solid reinforcement of the F-actin belts in mammals is associated with its absence.
Collapse
Affiliation(s)
- Joseph C Burns
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
13
|
Szarama KB, Gavara N, Petralia RS, Chadwick RS, Kelley MW. Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of corti. BMC DEVELOPMENTAL BIOLOGY 2013; 13:6. [PMID: 23394545 PMCID: PMC3598248 DOI: 10.1186/1471-213x-13-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/29/2013] [Indexed: 01/13/2023]
Abstract
Background Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. Results In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. Conclusions These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties.
Collapse
Affiliation(s)
- Katherine B Szarama
- Section on Developmental Neuroscience, Laboratory of Cochlear Development, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
14
|
Szarama KB, Gavara N, Petralia RS, Kelley MW, Chadwick RS. Cytoskeletal changes in actin and microtubules underlie the developing surface mechanical properties of sensory and supporting cells in the mouse cochlea. Development 2012; 139:2187-97. [PMID: 22573615 DOI: 10.1242/dev.073734] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Correct patterning of the inner ear sensory epithelium is essential for the conversion of sound waves into auditory stimuli. Although much is known about the impact of the developing cytoskeleton on cellular growth and cell shape, considerably less is known about the role of cytoskeletal structures on cell surface mechanical properties. In this study, atomic force microscopy (AFM) was combined with fluorescence imaging to show that developing inner ear hair cells and supporting cells have different cell surface mechanical properties with different developmental time courses. We also explored the cytoskeletal organization of developing sensory and non-sensory cells, and used pharmacological modulation of cytoskeletal elements to show that the developmental increase of hair cell stiffness is a direct result of actin filaments, whereas the development of supporting cell surface mechanical properties depends on the extent of microtubule acetylation. Finally, this study found that the fibroblast growth factor signaling pathway is necessary for the developmental time course of cell surface mechanical properties, in part owing to the effects on microtubule structure.
Collapse
Affiliation(s)
- Katherine B Szarama
- Section on Auditory Mechanics, Laboratory of Cellular Biology, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
15
|
Auditory and vestibular hair cell stereocilia: relationship between functionality and inner ear disease. The Journal of Laryngology & Otology 2011; 125:991-1003. [PMID: 21774850 DOI: 10.1017/s0022215111001459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The stereocilia of the inner ear are unique cellular structures which correlate anatomically with distinct cochlear functions, including mechanoelectrical transduction, cochlear amplification, adaptation, frequency selectivity and tuning. Their function is impaired by inner ear stressors, by various types of hereditary deafness, syndromic hearing loss and inner ear disease (e.g. Ménière's disease). The anatomical and physiological characteristics of stereocilia are discussed in relation to inner ear malfunctions.
Collapse
|
16
|
Abstract
Mammals have an astonishing ability to sense and discriminate sounds of different frequencies and intensities. Fundamental for this process are mechanosensory hair cells in the inner ear that convert sound-induced vibrations into electrical signals. The study of genes that are linked to deafness has provided insights into the cell biological mechanisms that control hair cell development and their function as mechanosensors.
Collapse
Affiliation(s)
- Martin Schwander
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
17
|
Burns JC, Burns J, Christophel JJ, Collado MS, Magnus C, Carfrae M, Corwin JT. Reinforcement of cell junctions correlates with the absence of hair cell regeneration in mammals and its occurrence in birds. J Comp Neurol 2008; 511:396-414. [PMID: 18803241 DOI: 10.1002/cne.21849] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Debilitating hearing and balance deficits often arise through damage to the inner ear's hair cells. For humans and other mammals, such deficits are permanent, but nonmammalian vertebrates can quickly recover hearing and balance through their innate capacity to regenerate hair cells. The biological basis for this difference has remained unknown, but recent investigations in wounded balance epithelia have shown that proliferation follows cellular spreading at sites of injury. As mammalian ears mature during the first weeks after birth, the capacity for spreading and proliferation declines sharply. In seeking the basis for those declines, we investigated the circumferential bands of F-actin that bracket the apical junctions between supporting cells in the gravity-sensitive utricle. We found that those bands grow much thicker as mice and humans mature postnatally, whereas their counterparts in chickens remain thin from hatching through adulthood. When we cultured utricular epithelia from chickens, we found that cellular spreading and proliferation both continued at high levels, even in the epithelia from adults. In contrast, the substantial reinforcement of the circumferential F-actin bands in mammals coincides with the steep declines in cell spreading and production established in earlier experiments. We propose that the presence of thin F-actin bands at the junctions between avian supporting cells may contribute to the lifelong persistence of their capacity for shape change, cell proliferation, and hair cell replacement and that the postnatal reinforcement of the F-actin bands in maturing humans and other mammals may have an important role in limiting hair cell regeneration.
Collapse
Affiliation(s)
- Joseph C Burns
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Science, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Su MC, Yang JJ, Chou MY, Hsin CH, Su CC, Li SY. Expression and localization of Tmie in adult rat cochlea. Histochem Cell Biol 2008; 130:119-26. [PMID: 18327602 DOI: 10.1007/s00418-008-0385-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2008] [Indexed: 11/29/2022]
Abstract
Loss-of function mutations in transmembrane inner ear expressed (Tmie/TMIE) gene have been shown to cause deafness in mice and humans (DFNB6). However, the functional roles of TMIE in the cochlea remain unclear. A primary step toward the understanding of the role of TMIE in hearing and its dysfunction is the documentation of its cellular and sub-cellular location within the cochlea, the auditory organ. In this study, we located and determined the cellular expression of Tmie within the rat cochlea using a polyclonal anti-Tmie antibody. The anti-Tmie antibody identified a specific band of 17 kDa in a variety of rat tissues by using Western blot analyses. The expression products of Tmie were also detected in the spiral limbus, spiral ligament, organ of Corti, and stria vascularis by immunohistochemistry analysis and RT-PCR. Our results point out the presence and localization of Tmie products in the cochlea of rat. Knowledge of spatial distribution of Tmie will provide important insight into the mechanisms that lead to deafness due to mutations in the TMIE gene.
Collapse
Affiliation(s)
- Mao-Chang Su
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Adams ME, Hurd EA, Beyer LA, Swiderski DL, Raphael Y, Martin DM. Defects in vestibular sensory epithelia and innervation in mice with loss of Chd7 function: implications for human CHARGE syndrome. J Comp Neurol 2007; 504:519-32. [PMID: 17701983 DOI: 10.1002/cne.21460] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CHD7 is a chromodomain gene mutated in CHARGE syndrome, a multiple anomaly condition characterized by ocular coloboma, heart defects, atresia of the choanae, retarded growth and development, genital hypoplasia, and ear defects including deafness and semicircular canal dysgenesis. Mice with heterozygous Chd7 deficiency have circling behavior and semicircular canal defects and are an excellent animal model for exploring the pathogenesis of CHARGE features. Inner ear vestibular defects have been characterized in heterozygous Chd7-deficient embryos and early postnatal mice, but it is not known whether vestibular defects persist throughout adulthood in Chd7-deficient mice or whether the vestibular sensory epithelia and their associated innervation and function are intact. Here we describe a detailed analysis of inner ear vestibular structures in mature mice that are heterozygous for a Chd7-deficient, gene-trapped allele (Chd7(Gt/+)). Chd7(Gt/+) mice display variable asymmetric lateral and posterior semicircular canal malformations, as well as defects in vestibular sensory epithelial innervation despite the presence of intact hair cells in the target organs. These observations have important functional implications for understanding the clinical manifestations of CHD7 mutations in humans and for designing therapies to treat inner ear vestibular dysfunction.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Animals
- Choanal Atresia/complications
- Choanal Atresia/genetics
- Choanal Atresia/pathology
- DNA-Binding Proteins/deficiency
- Denervation
- Disease Models, Animal
- Epithelium/pathology
- Eye Abnormalities/complications
- Eye Abnormalities/genetics
- Eye Abnormalities/pathology
- Heart Defects, Congenital/complications
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Scanning/methods
- Mutation
- Semicircular Canals/pathology
- Semicircular Canals/ultrastructure
- Stereotyped Behavior
- Syndrome
- Vestibule, Labyrinth/pathology
- Vestibule, Labyrinth/ultrastructure
Collapse
Affiliation(s)
- Meredith E Adams
- Department of Otolaryngology, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
20
|
Wanner SJ, Miller JR. Regulation of otic vesicle and hair cell stereocilia morphogenesis by Ena/VASP-like (Evl) in Xenopus. J Cell Sci 2007; 120:2641-51. [PMID: 17635997 DOI: 10.1242/jcs.004556] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The inner ear is derived from a thickening in the embryonic ectoderm, called the otic placode. This structure undergoes extensive morphogenetic movements throughout its development and gives rise to all components of the inner ear. Ena/VASP-like (Evl) is an actin binding protein involved in the regulation of cytoskeletal dynamics and organization. We have examined the role of Evl during the morphogenesis of the Xenopus inner ear. Evl (hereafter referred to as Xevl) is expressed throughout otic vesicle formation and is enriched in the neuroblasts that delaminate to form the vestibulocochlear ganglion and in hair cells that possess mechanosensory stereocilia. Knockdown of Xevl perturbs epithelial morphology and intercellular adhesion in the otic vesicle and disrupts formation of the vestibulocochlear ganglion, evidenced by reduction of ganglion size, disorganization of the ganglion, and defects in neurite outgrowth. Later in embryogenesis, Xevl is required for development of mechanosensory hair cells. In Xevl knockdown embryos, hair cells of the ventromedial sensory epithelium display multiple abnormalities including disruption of the cuticular plate at the base of stereocilia and disorganization of the normal staircase appearance of stereocilia. Based on these data, we propose that Xevl plays an integral role in regulating morphogenesis of the inner ear epithelium and the subsequent development of the vestibulocochlear ganglion and mechanosensory hair cells.
Collapse
Affiliation(s)
- Sarah J Wanner
- Department of Genetics, Cell Biology and Development and Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
21
|
Wang J, Pignol B, Chabrier PE, Saido T, Lloyd R, Tang Y, Lenoir M, Puel JL. A novel dual inhibitor of calpains and lipid peroxidation (BN82270) rescues the cochlea from sound trauma. Neuropharmacology 2007; 52:1426-37. [PMID: 17449343 DOI: 10.1016/j.neuropharm.2007.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 01/24/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
Free radical and calcium buffering mechanisms are implicated in cochlear cell damage that has been induced by sound trauma. Thus in this study we evaluated the therapeutic effect of a novel dual inhibitor of calpains and of lipid peroxidation (BN 82270) on the permanent hearing and hair cell loss induced by sound trauma. Perfusion of BN 82270 into the scala tympani of the guinea pig cochlea prevented the formation of calpain-cleaved fodrin, translocation of cytochrome c, DNA fragmentation and hair cell degeneration caused by sound trauma. This was confirmed by functional tests in vivo, showing a clear dose-dependent reduction of permanent hearing loss (ED50 = 4.07 microM) with almost complete protection at 100 microM. Furthermore, BN82270 still remained effective even when applied onto the round window membrane after sound trauma had occurred, within a therapeutic window of 24 h. This indicates that BN 82270 may be of potential therapeutic value in treating the cochlea after sound trauma.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Apoptosis/drug effects
- Calpain/antagonists & inhibitors
- Carrier Proteins/metabolism
- Cochlea/enzymology
- Cochlea/injuries
- Cochlea/pathology
- Cysteine Proteinase Inhibitors/pharmacology
- Cytochromes c/metabolism
- DNA Fragmentation/drug effects
- Dipeptides/pharmacology
- Electrophysiology
- Female
- Guinea Pigs
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/pathology
- Hair Cells, Auditory/physiology
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/prevention & control
- Immunohistochemistry
- Lipid Peroxidation/drug effects
- Microfilament Proteins/metabolism
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Round Window, Ear/pathology
- Tympanic Membrane/drug effects
Collapse
Affiliation(s)
- Jing Wang
- INSERM U583, Laboratoire de Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Spector AA, Deo N, Grosh K, Ratnanather JT, Raphael RM. Electromechanical models of the outer hair cell composite membrane. J Membr Biol 2006; 209:135-52. [PMID: 16773498 DOI: 10.1007/s00232-005-0843-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Indexed: 10/24/2022]
Abstract
The outer hair cell (OHC) is an extremely specialized cell and its proper functioning is essential for normal mammalian hearing. This article reviews recent developments in theoretical modeling that have increased our knowledge of the operation of this fascinating cell. The earliest models aimed at capturing experimental observations on voltage-induced cellular length changes and capacitance were based on isotropic elasticity and a two-state Boltzmann function. Recent advances in modeling based on the thermodynamics of orthotropic electroelastic materials better capture the cell's voltage-dependent stiffness, capacitance, interaction with its environment and ability to generate force at high frequencies. While complete models are crucial, simpler continuum models can be derived that retain fidelity over small changes in transmembrane voltage and strains occurring in vivo. By its function in the cochlea, the OHC behaves like a piezoelectric-like actuator, and the main cellular features can be described by piezoelectric models. However, a finer characterization of the cell's composite wall requires understanding the local mechanical and electrical fields. One of the key questions is the relative contribution of the in-plane and bending modes of electromechanical strains and forces (moments). The latter mode is associated with the flexoelectric effect in curved membranes. New data, including a novel experiment with tethers pulled from the cell membrane, can help in estimating the role of different modes of electromechanical coupling. Despite considerable progress, many problems still confound modelers. Thus, this article will conclude with a discussion of unanswered questions and highlight directions for future research.
Collapse
Affiliation(s)
- A A Spector
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
23
|
Kanzaki S, Beyer LA, Swiderski DL, Izumikawa M, Stöver T, Kawamoto K, Raphael Y. p27Kip1 deficiency causes organ of Corti pathology and hearing loss. Hear Res 2006; 214:28-36. [PMID: 16513305 DOI: 10.1016/j.heares.2006.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 12/30/2005] [Accepted: 01/18/2006] [Indexed: 11/21/2022]
Abstract
p27(Kip1) (p27) has been shown to inhibit several cyclin-dependent kinase molecules and to play a central role in regulating entry into the cell cycle. Once hair cells in the cochlea are formed, p27 is expressed in non-sensory cells of the organ of Corti and prevents their re-entry into the cell cycle. In one line of p27 deficient mice (p27(-/-)), cell division in the organ of Corti continues past its normal embryonic time, leading to continual production of cells in the organ of Corti. Here we report on the structure and function of the inner ear in another line of p27 deficient mice originating from the Memorial Sloan-Kettering Cancer Center. The deficiency in p27 expression of these mice is incomplete, as they retain expression of amino acids 52-197. We determined that mice homozygote for this mutation had severe hearing loss and their organ of Corti exhibited an increase in the number of inner and outer hair cells. There also was a marked increase in the number of supporting cells, with severe pathologies in pillar cells. These data show similarities between this p27(Kip1) mutation and another, previously reported null allele of this gene, and suggest that reducing the inhibition on the cell cycle in the organ of Corti leads to pathology and dysfunction. Manipulations to regulate the time and place of p27 inhibition will be necessary for inducing functionally useful hair cell regeneration.
Collapse
Affiliation(s)
- Sho Kanzaki
- Kresge Hearing Research Institute, The University of Michigan Medical School, MSRB III Room-9303, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0648, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kanzaki S, Beyer L, Karolyi IJ, Dolan DF, Fang Q, Probst FJ, Camper SA, Raphael Y. Transgene correction maintains normal cochlear structure and function in 6-month-old Myo15a mutant mice. Hear Res 2006; 214:37-44. [PMID: 16580798 DOI: 10.1016/j.heares.2006.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 01/13/2006] [Accepted: 01/30/2006] [Indexed: 11/19/2022]
Abstract
The shaker2 (sh2) mouse is a murine model for human non-syndromic deafness DFNB3. The mice have abnormal circling behavior suggesting a balanced disorder, and profound deafness. The insertion of a bacterial artificial chromosome (BAC) transgene containing the Myo15a gene into sh2/sh2 zygotes confers hearing capability and abolishes the circling behavior in 1-month-old transgenic animals. In this study, we investigated both the hearing and the morphology of the cochlea in Myo15a mutants carrying this BAC transgene at two, four, or six months of age. The hearing threshold of these mice is normal, with no physiologically significant differences compared to age-matched heterozygous sh2J mice (with or without the BAC transgene). In six-month-old transgenic mice with the BAC, the morphology of hair cells in the apical and upper basal turns of the cochlea is normal. Hair cells of lower basal turn, however, were missing in some mutant animals. This study demonstrates that BAC transgene correction cannot only maintain normal morphology but also confer stable hearing function in Myo15a mutant mice for as long as 6 months. In addition, excess Myo15a expression has no physiologically significant protective or deleterious effects on hearing of normal mice, suggesting that the dosage of Myo15a may not be problematic for gene therapy.
Collapse
Affiliation(s)
- Sho Kanzaki
- Kresge Hearing Research Institute, University of Michigan, MSRB III Room-9303, Ann Arbor, MI 48109-0648, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dougherty GW, Adler HJ, Rzadzinska A, Gimona M, Tomita Y, Lattig MC, Merritt RC, Kachar B. CLAMP, a novel microtubule-associated protein with EB-type calponin homology. CELL MOTILITY AND THE CYTOSKELETON 2005; 62:141-56. [PMID: 16206169 DOI: 10.1002/cm.20093] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microtubules (MTs) are polymers of alpha and beta tubulin dimers that mediate many cellular functions, including the establishment and maintenance of cell shape. The dynamic properties of MTs may be influenced by tubulin isotype, posttranslational modifications of tubulin, and interaction with microtubule-associated proteins (MAPs). End-binding (EB) family proteins affect MT dynamics by stabilizing MTs, and are the only MAPs reported that bind MTs via a calponin-homology (CH) domain (J Biol Chem 278 (2003) 49721-49731; J Cell Biol 149 (2000) 761-766). Here, we describe a novel 27 kDa protein identified from an inner ear organ of Corti library. Structural homology modeling demonstrates a CH domain in this protein similar to EB proteins. Northern and Western blottings confirmed expression of this gene in other tissues, including brain, lung, and testis. In the organ of Corti, this protein localized throughout distinctively large and well-ordered MT bundles that support the elongated body of mechanically stiff pillar cells of the auditory sensory epithelium. When ectopically expressed in Cos-7 cells, this protein localized along cytoplasmic MTs, promoted MT bundling, and efficiently stabilized MTs against depolymerization in response to high concentration of nocodazole and cold temperature. We propose that this protein, designated CLAMP, is a novel MAP and represents a new member of the CH domain protein family.
Collapse
Affiliation(s)
- Gerard W Dougherty
- Section on Structural Cell Biology, NIDCD, NIH, Bethesda, Maryland 20892-8027, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ladrech S, Guitton M, Saido T, Lenoir M. Calpain activity in the amikacin-damaged rat cochlea. J Comp Neurol 2004; 477:149-60. [PMID: 15300786 DOI: 10.1002/cne.20252] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The principal aim of this study was to investigate the involvement of calpain in the degeneration of hair cells and ganglion neurons in the amikacin-poisoned rat cochlea. An antibody designed against fodrin-breakdown products (FBDP), which result exclusively from cleavage by calpain, was used. In addition, the involvement of both caspases and protein kinase C (PKC) was studied using, respectively, antibodies against activated caspase 3 and PKCgamma. The results demonstrate the accumulation of FBDP in the degenerating hair cells, in some supporting cells such as Deiters cells, and, later, in the affected ganglion neurons that had been deprived of their sensory targets. Activated caspase 3 was evidenced in a few dying hair cells and ganglion neurons. PKCgamma was highly expressed in all ganglion neurons, sometimes after the loss of hair cells. We conclude that calpain plays a role in the degradation of both the sensory cells and neurons after amikacin ototoxicity. In the poisoned hair cells, calpain and caspase 3 may have synergistic effects in the process of apoptosis. In the ganglion neurons deprived of their sensory elements, calpain may have a prominent role in cell degradation. By contrast, in these ganglion neurons PKCgamma may be implicated in a survival process. Finally, we suggest that calpain is involved in the remodeling of Deiters cells during the scarring process that follows hair cell loss.
Collapse
Affiliation(s)
- Sabine Ladrech
- Institut National de la Santé et de la Recherche Médicale U583 et Université Montpellier I, Laboratoire de Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs, 34295 Montpellier, France
| | | | | | | |
Collapse
|
27
|
Battaglia A, Pak K, Brors D, Bodmer D, Frangos JA, Ryan AF. Involvement of ras activation in toxic hair cell damage of the mammalian cochlea. Neuroscience 2004; 122:1025-35. [PMID: 14643769 DOI: 10.1016/j.neuroscience.2003.08.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To identify possible intracellular mediators of hair cell (HC) death due to ototoxins, we treated basal-turn, neonatal, rat HCs in vitro with several intracellular signaling inhibitors, prior to and during gentamicin exposure. The general guanine nucleotide-binding protein (G-protein) inhibitor, GDP-betaS (1 mM), provided potent HC protection, suggesting involvement of G-proteins in the intracellular pathway linking gentamicin exposure to HC death. ADP-betaS had minimal effect, indicating that the protection is specific to guanosine diphosphate (GDP)-binding, rather than a general reaction to nucleotides. Azido-GTP(32) photolabeling and gel electrophoresis indicated activation of an approximately 21 kDa G-protein in HCs after exposure to gentamicin. Spectroscopic analysis of peptide fragments from this band matched its sequence with H-Ras. The Ras inhibitors B581 (50 microM) and FTI-277 (10 microM) provided potent protection against damage and reduced c-Jun activation in HC nuclei, suggesting that activation of Ras is functionally involved in damage to these cells due to gentamicin.
Collapse
Affiliation(s)
- A Battaglia
- Department of Surgery, University of California, San Diego, School of Medicine, 9500 Gilman Drive 0666, La Jolla, CA 92093-0666, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The role of the cochlea is to transduce complex sound waves into electrical neural activity in the auditory nerve. Hair cells of the organ of Corti are the sensory cells of hearing. The inner hair cells perform the transduction and initiate the depolarization of the spiral ganglion neurons. The outer hair cells are accessory sensory cells that enhance the sensitivity and selectivity of the cochlea. Neural feedback loops that bring efferent signals to the outer hair cells assist in sharpening and amplifying the signals. The stria vascularis generates the endocochlear potential and maintains the ionic composition of the endolymph, the fluid in which the apical surface of the hair cells is bathed. The mechanical characteristics of the basilar membrane and its related structures further enhance the frequency selectivity of the auditory transduction mechanism. The tectorial membrane is an extracellular matrix, which provides mass loading on top of the organ of Corti, facilitating deflection of the stereocilia. This review deals with the structure of the normal mature mammalian cochlea and includes recent data on the molecular organization of the main cell types within the cochlea.
Collapse
Affiliation(s)
- Yehoash Raphael
- Kresge Hearing Research Institute, The University of Michigan, MSRB 3, Rm 9303, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0648, USA.
| | | |
Collapse
|
29
|
Teranishi MA, Nakashima T. Effects of trolox, locally applied on round windows, on cisplatin-induced ototoxicity in guinea pigs. Int J Pediatr Otorhinolaryngol 2003; 67:133-9. [PMID: 12623149 DOI: 10.1016/s0165-5876(02)00353-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Cisplatin (CDDP), an antitumor agent widely used in the treatment of pediatric solid tumors, has dose-limiting side effects such as ototoxicity and nephrotoxicity. Recently, evidence has been accumulated to demonstrate that these side effects are closely related to oxidative stress. In the present study, we attempted to suppress CDDP-induced ototoxicity in guinea pigs by administering trolox, a water-soluble analogue of alpha-tocopherol which is a natural lipid-soluble antioxidant, locally on round windows. METHODS Hartley albino guinea pigs (250-300 g) were treated with CDDP (0.3 mg/ml) in the presence or absence of a combined treatment of trolox (5 mM). Both drugs were administered locally on round windows. RESULTS The combined treatment of trolox distinctly improved the ototoxic side effects induced by CDDP. These were: elevation of auditory brain stem response threshold at 4, 8 and 16 kHz and substantial losses of outer hair cells with the base-to-apex gradient. CONCLUSION Trolox, locally applied on round windows, showed a suppression on CDDP-ototoxicity. The results obtained in the present study suggest that a local application of trolox in the tympanic cavity can be a promising candidate to prevent the CDDP-ototoxicity in the future.
Collapse
Affiliation(s)
- Masa-aki Teranishi
- Department of Otorhinolaryngology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | |
Collapse
|
30
|
Kanzaki S, Ogawa K, Camper SA, Raphael Y. Transgene expression in neonatal mouse inner ear explants mediated by first and advanced generation adenovirus vectors. Hear Res 2002; 169:112-20. [PMID: 12121744 DOI: 10.1016/s0378-5955(02)00347-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mouse serves as a valuable model for treatment leading to the prevention and therapy of inner ear disease. Transgenic correction of genetic inner ear disease in mice may help develop treatment for human genetic inner ear disease. In mutations involving hair cells (HCs) or supporting cells (SCs), it is necessary to insert the wild-type transgenes directly into these cells. We used inner ear explants to characterize the transgenic expression using adenovirus-mediated reporter genes (bacterial lacZ). The variable parameters were the age of the explants (P1-P5), the type of vector (first and advanced generation adenovirus) and the genotype of the mouse (wild-type versus shaker-2 mutant). Transduction of cochlear HCs was detected at P1 and in some of the P3 cochleae. Low efficiency transduction of SCs was observed in P1 explants, but the efficiency increased with age and reached high levels at P5. The pattern of transduction was similar regardless of the genotype and the type of vector used. The data demonstrate that differentiating HCs and SCs in mouse explants can be transduced by adenovirus vectors, suggesting that cultures of mouse ears are a valuable model for developing inner ear gene therapy protocols.
Collapse
Affiliation(s)
- Sho Kanzaki
- Kresge Hearing Research Institute, The University of Michigan, MSRB 3, Room 9303, Ann Arbor, MI 48109-0648, USA
| | | | | | | |
Collapse
|
31
|
Brownell WE, Spector AA, Raphael RM, Popel AS. Micro- and nanomechanics of the cochlear outer hair cell. Annu Rev Biomed Eng 2002; 3:169-94. [PMID: 11447061 DOI: 10.1146/annurev.bioeng.3.1.169] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Outer hair cell electromotility is crucial for the amplification, sharp frequency selectivity, and nonlinearities of the mammalian cochlea. Current modeling efforts based on morphological, physiological, and biophysical observations reveal transmembrane potential gradients and membrane tension as key independent variables controlling the passive and active mechanics of the cell. The cell's mechanics has been modeled on the microscale using a continuum approach formulated in terms of effective (cellular level) mechanical and electric properties. Another modeling approach is nanostructural and is based on the molecular organization of the cell's membranes and cytoskeleton. It considers interactions between the components of the composite cell wall and the molecular elements within each of its components. The methods and techniques utilized to increase our understanding of the central role outer hair cell mechanics plays in hearing are also relevant to broader research questions in cell mechanics, cell motility, and cell transduction.
Collapse
Affiliation(s)
- W E Brownell
- Bobby R. Alford Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine and Department of Bioengineering, Rice University, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Hair cells of the vertebrate inner ear are mechanosensors that detect sound, gravity and acceleration. They have a specialized cytoskeleton optimized for the transmission of mechanical force. Hair cell defects are a major cause of deafness. The cloning of disease genes and studies of model organisms have provided insights into the mechanisms that regulate the differentiation of hair cells and their cytoskeleton. The studies have also provided new insights into the function of receptors such as integrins and protocadherins, and cytoplasmic proteins such as Rho-type GTPases and unconventional myosins, in organizing the actin cytoskeleton.
Collapse
Affiliation(s)
- U Müller
- Friedrich Miescher Institute, Maulbeerstr. 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
33
|
Abstract
Cisplatin (CDDP), an antitumor agent widely used in the treatment of head and neck cancers, has dose-limiting side effects such as ototoxicity and nephrotoxicity. Recently, evidence has been accumulated to demonstrate that these side effects are closely related to oxidative stress. In the present study, we attempted to suppress CDDP-induced ototoxicity and nephrotoxicity in guinea pigs by administering alpha-tocopherol, a naturally occurring antioxidant. Hartley albino guinea pigs (250 approximately 300 g) were treated with CDDP (4 mg/kg intraperitoneally (I.P.)) for 3 days in the presence and absence of alpha-tocopherol (50 mg/kg I.P.) injection for 6 days. The combined treatment of animals with alpha-tocopherol distinctly improved the CDDP-induced side effects. These were: loss of Preyer's reflex at high frequencies; distinct elevation of auditory brain stem response threshold at 16 kHz; increased lipid peroxidation in the cochlea determined by the malondialdehyde-thiobarbituric acid method; substantial losses of outer hair cells in the basal and second turns of the cochlea; fragmentation of nuclear DNA detected by the TUNEL method in cochlear hair cells and cells in the stria vascularis; and increases in serum BUN and Cr. These results strongly suggest that alpha-tocopherol suppresses CDDP-induced ototoxicity and nephrotoxicity via the suppression of the increased production of reactive oxygen species.
Collapse
Affiliation(s)
- M Teranishi
- Department of Otolaryngology, Nagoya University School of Medicine, Japan.
| | | | | |
Collapse
|
34
|
Abstract
Tubulin, the principal component of microtubules, exists as two polypeptides, termed alpha and beta. Seven isotypes of beta tubulin are known to exist in mammals. The distributions of four beta tubulin isotypes, beta(I), beta(II), beta(III), and beta(IV), have been examined in the adult cochlea by indirect immunofluorescence using isotype-specific antibodies. In the organ of Corti, outer hair cells contained only beta(I) and beta(IV), while inner hair cells contained only beta(I) and beta(II). Inner and outer pillar cells contained beta(II) and beta(IV), but Deiters cells contained those isotypes plus beta(I). Fine fibers in the inner spiral bundle, tunnel crossing fibers, and outer spiral fibers, probably efferent in character, contained beta(I), beta(II), and beta(III), but not beta(IV). In the spiral ganglion, the somas and axons of neurons contained all four isotypes, and the myelination of ganglion cells also contained beta(I). Fibers of the intraganglionic spiral bundle contained beta(I), beta(II), and beta(III). No antibody labeled the dendritic processes of spiral ganglion neurons. The differences in isotype distribution in organ of Corti and neurons described here are consistent with and support the multi-tubulin hypothesis, which states that tubulin isotypes are expressed specifically in different cell types and may therefore have different functions.
Collapse
Affiliation(s)
- R Hallworth
- Department of Otolarynology-Head and Neck Surgery, University of Texas Health Science Center, San Antonio, 78229-3900, USA.
| | | |
Collapse
|
35
|
Kalinec F, Zhang M, Urrutia R, Kalinec G. Rho GTPases mediate the regulation of cochlear outer hair cell motility by acetylcholine. J Biol Chem 2000; 275:28000-5. [PMID: 10862776 DOI: 10.1074/jbc.m004917200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Outer hair cells are the mechanical effectors of the cochlear amplifier, an active process that improves the sensitivity and frequency discrimination of the mammalian ear. In vivo, the gain of the cochlear amplifier is regulated by the efferent neurotransmitter acetylcholine through the modulation of outer hair cell motility. Little is known, however, regarding the molecular mechanisms activated by acetylcholine. In this study, intracellular signaling pathways involving the small GTPases RhoA, Rac1, and Cdc42 have been identified as regulators of outer hair cell motility. Changes in cell length (slow motility) and in the amplitude of electrically induced movement (fast motility) were measured in isolated outer hair cells patch clamped in whole-cell mode, internally perfused through the patch pipette with different inhibitors and activators of these small GTPases while being externally stimulated with acetylcholine. We found that acetylcholine induces outer hair cell shortening and a simultaneous increase in the amplitude of fast motility through Rac1 and Cdc42 activation. In contrast, a RhoA- and Rac1-mediated signaling pathway induces outer hair cell elongation and decreases fast motility amplitude. These two opposing processes provide the basis for a regulatory mechanism of outer hair cell motility.
Collapse
Affiliation(s)
- F Kalinec
- Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California 90057, USA.
| | | | | | | |
Collapse
|
36
|
Tannenbaum J, Slepecky NB. Localization of microtubules containing posttranslationally modified tubulin in cochlear epithelial cells during development. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:146-62. [PMID: 9331219 DOI: 10.1002/(sici)1097-0169(1997)38:2<146::aid-cm4>3.0.co;2-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the adult gerbil inner ear, hair cell microtubules contain predominantly tyrosinated tubulin while supporting cell microtubules contain almost exclusively other isoforms. This cell-type specific segregation of tubulin isoforms is unusual, and in this respect the sensory and supporting cells in this sensory organ differ from other cells observed both in vivo and in vitro. Thus, we hypothesized there must be a shift in the presence and location of tubulin isoforms during development, directly associated with the onset of specialized functions of the cells. We describe the appearance and/or disappearance of tubulin isoforms in sensory hair cells and five different supporting cells (inner and outer pillar cells, Deiters cells, cells of Kölliker's organ, and cells of the tympanic covering layer) during development of the gerbil organ of Corti from birth to 14 days after birth. Tyrosinated tubulin was initially present in all cells and remained predominant in cells that decrease in number (Kölliker's organ and tympanic covering layer) and exhibit active processes such as secretion and motility (sensory cells). Posttranslational modifications occurred in the supporting cells in a time-dependent manner as the number and length of microtubules increased and development proceeded, but the establishment of elongated cell shape and polarity occurred prior to the appearance of acetylation, detyrosination, and polyglutamylation of tubulin. In the pillar and Deiters cells, posttranslational modifications progressed from cell apex to base in the same direction as microtubule elongation. In the pillar cells, posttranslational modifications occurred first at the apical surfaces. In the pillar cells, the appearance of acetylated tubulin was rapidly followed by the appearance of detyrosinated tubulin. In Deiters cells, the appearance of acetylated tubulin preceded the appearance of detyrosinated tubulin by one or more days. At onset of cochlear function, detyrosinated tubulin and acetylated tubulin had achieved their adult-like pattern, but polyglutamylated tubulin had not.
Collapse
Affiliation(s)
- J Tannenbaum
- Department of Bioengineering and Neuroscience, Institute for Sensory Research, Syracuse University, New York 13244-5290, USA
| | | |
Collapse
|
37
|
Abstract
In the late stages of inner ear development, the relatively undifferentiated cells of Kollicker's organ are transformed into the elaborately specialized cell types of the organ of Corti. Microtubules are prominent features of adult cells in the organ of Corti, particularly supporting cells. To test the possible role of microtubules in organ of Corti development, the microtubule organization in the organ of Corti has been examined using indirect immunofluorescence to beta-tubulin in the developing gerbil cochlea. Tubulin first appears at post-natal day 0 (P0) as filamentous asters in inner hair cells and by P2, asters are also seen in outer hair cells. Tubulin appears at P3 in inner pillar cells in a tooth crown-like figure. By P6, tubulin expression is also evident in outer pillar cells and by P9, it is seen in Deiters cells. Elaboration of microtubules in pillar cells was observed to proceed from the reticular lamina towards the basilar membrane. The pattern of tubulin expression in the apical organ of Corti lags the base by about 3 days until P6, but by P9, apical and basal organ of Corti appear substantially the same.
Collapse
Affiliation(s)
- R Hallworth
- Department of Otolaryngology, Head and Neck Surgery, University of Texas Health Science Center, San Antonio, TX 229-3900, USA.
| | | | | |
Collapse
|
38
|
Abstract
The inner ear can be permanently damaged by overexposure to high-level noise; however, damage can be decreased by previous exposure to moderate level, nontraumatic noise (). The mechanism of this "protective" effect is unclear, but a role for heat shock proteins has been suggested. The aim of the present study was to directly test protective effects of heat stress in the ear. For physiological experiments, CBA/CaJ mice were exposed to an intense octave band of noise (8-16 kHz) at 100 dB SPL for 2 hr, either with or without previous whole-body heat stress (rectal temperature to 41. 5 degrees C for 15 min). The interval between heat stress and sound exposure varied in different groups from 6 to 96 hr. One week later, inner ear function was assessed in each animal via comparison of compound action potential thresholds to mean values from unexposed controls. Permanent threshold shifts (PTSs) were approximately 40 dB in the group sound-exposed without previous heat stress. Heat-stressed animals were protected from acoustic injury: mean PTS in the group with 6 hr heat-stress-trauma interval was reduced to approximately 10 dB. This heat stress protection disappeared when the treatment-trauma interval surpassed 24 hr. A parallel set of quantitative PCR experiments measured heat-shock protein mRNA in the cochlea and showed 100- to 200-fold increase over control 30 min after heat treatment, with levels returning to baseline at 6 hr after treatment. Results are consistent with the idea that upregulation of heat shock proteins protects the ear from acoustic injury.
Collapse
|
39
|
Leonova EV, Raphael Y. Application of a platinum replica method to the study of the cytoskeleton of isolated hair cells, supporting cells and whole mounts of the organ of Corti. Hear Res 1999; 130:137-54. [PMID: 10320105 DOI: 10.1016/s0378-5955(99)00004-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We adapted a method of platinum replica to study the cytoskeleton of isolated cells of the guinea pig organ of Corti. This technique combined high image resolution with the ability to visualize the three-dimensional organization of the cytoskeleton of a whole cell. The procedure includes: isolation of hair cells and supporting cells using collagenase digestion, attachment of the cells to a coverslip, detergent extraction, chemical fixation, critical point drying, platinum/carbon coating, and transmission electron microscopy analysis. By using the method of platinum replica, we confirmed the existence of structural domains in the cortical lattice of outer hair cells. Based on the analysis of the partly destroyed cortical lattice, we propose that circumferential filaments are underlined with a thin flexible network. In addition, we established that the base of each stereocilium had a cone-like expansion of actin filaments and was surrounded by a thin bundle of filaments. We also produced replicas of the protrusion of the cuticular plate into the cytoplasm (infracuticular network) and the reticular lamina cytoskeleton. Our data indicated that the platinum replica method is useful for studying structural interactions among different cytoskeletal elements in the reticular lamina, as well as the cortex of outer hair cells and the cytoskeleton of supporting cells.
Collapse
Affiliation(s)
- E V Leonova
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor 48109-0506, USA.
| | | |
Collapse
|
40
|
Mahendrasingam S, Furness DN, Hackney CM. Ultrastructural localisation of spectrin in sensory and supporting cells of guinea-pig organ of Corti. Hear Res 1998; 126:151-60. [PMID: 9872143 DOI: 10.1016/s0378-5955(98)00164-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spectrin is a cytoskeletal protein found in the cortex of many cell types. It is known to occur in cochlear outer hair cells (OHCs) with previous immunoelectron microscopical studies showing that it is located in the cuticular plate and the cortical lattice. The latter is a network of filaments associated with the lateral plasma membrane that is thought to play a role in OHC motility. Spectrin has also been found in inner hair cells (IHCs) and supporting cells using immunofluorescent techniques, but its ultrastructural distribution in these cells has not yet been described. This has, therefore, been investigated using a monoclonal antibody to alpha-spectrin in conjunction with pre- and post-embedding immunogold labelling for transmission electron microscopy. Labelling was found in a meshwork of filaments beneath the plasma membranes of both IHCs and supporting cells and, in pillar cells, close to microtubule/microfilament arrays. It was also found in association with the stereocilia of OHCs and IHCs and, as expected, in the cortical lattice and cuticular plate of OHCs. Thus, spectrin is a general component of cytoskeletal structures involved in maintaining the specialised cell shapes in the organ of Corti and may contribute to the mechanical properties of all the cell types examined.
Collapse
Affiliation(s)
- S Mahendrasingam
- Department of Communication and Neuroscience, Keele University, Staffs, UK.
| | | | | |
Collapse
|
41
|
Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y, Morell RJ, Touchman JW, Lyons RH, Noben-Trauth K, Friedman TB, Camper SA. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 1998; 280:1444-7. [PMID: 9603735 DOI: 10.1126/science.280.5368.1444] [Citation(s) in RCA: 331] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The shaker-2 mouse mutation, the homolog of human DFNB3, causes deafness and circling behavior. A bacterial artificial chromosome (BAC) transgene from the shaker-2 critical region corrected the vestibular defects, deafness, and inner ear morphology of shaker-2 mice. An unconventional myosin gene, Myo15, was discovered by DNA sequencing of this BAC. Shaker-2 mice were found to have an amino acid substitution at a highly conserved position within the motor domain of this myosin. Auditory hair cells of shaker-2 mice have very short stereocilia and a long actin-containing protrusion extending from their basal end. This histopathology suggests that Myo15 is necessary for actin organization in the hair cells of the cochlea.
Collapse
Affiliation(s)
- F J Probst
- Department of Human Genetics, 4701 MSRB III, University of Michigan, 1500 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Outer hair cell (OHC) electromotility appears to be central to mammalian hearing and originates within its lateral wall. The OHC lateral wall is a unique trilaminate structure consisting of the plasma membrane (PM), the cortical lattice (CL), and the subsurface cisternae (SSC). We selectively labeled and imaged the lateral wall components in the isolated guinea pig OHC under confocal microscopy. The PM was labeled with a voltage-sensitive dye, di-8-ANEPPS; the SSC was labeled with the sphingomyelin precursor, NBD-C6-ceramide; and F-actin in the CL was labeled with conjugates of phalloidin. Interactions among the three layers were evaluated with the micropipette aspiration technique. The PM was tethered to the CL and SSC until, at a critical deformation pressure, the PM separated, allowing visualization of the extracisternal space, and ultimately formed a vesicle. After detaching, the stiffness parameter of the PM was 22% of that of the intact lateral wall. We conclude that the lateral wall PM is more compliant than the CL/SSC complex. The data clarify the structural basis for electromotile force coupling in the OHC lateral wall.
Collapse
|
43
|
Dazert S, Baird A, Ryan AF. Receptor-targeted delivery of an intracellular toxin to outer hair cells by fibroblast growth factor. Hear Res 1998; 115:143-8. [PMID: 9472743 DOI: 10.1016/s0378-5955(97)00188-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The presence and distribution of functional, high-affinity receptors for fibroblast growth factors (FGFs) in the neonatal organ of Corti were probed using the intracellular toxin saporin conjugated to basic FGF (FGF-2). FGFs that bind to high-affinity FGF receptors are internalized as part of the normal process of receptor inactivation. The receptor can thus be used for the targeted delivery of molecules conjugated to FGF into the cytoplasm. Incubation of postnatal day 5 (P5) rat organ of Corti cultures with FGF-saporin caused a dose dependent destruction of outer hair cells, Deiters cells and outer pillar cells. Inner hair cells and other cells were unaffected. Organ of Corti cultures at P0 and P10 showed much less damage than at P5. The results suggest that outer hair cells and adjacent supporting cells in the organ of Corti transiently express high-affinity FGF receptors, and that these receptors can mediate the intracellular delivery of bioactive molecules.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cytoplasm/drug effects
- Cytoplasm/metabolism
- Drug Carriers
- Fibroblast Growth Factor 2/chemistry
- Fibroblast Growth Factor 2/toxicity
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/pathology
- Immunotoxins/toxicity
- N-Glycosyl Hydrolases
- Organ Culture Techniques
- Organ of Corti/growth & development
- Organ of Corti/metabolism
- Plant Proteins/chemistry
- Plant Proteins/toxicity
- Rats
- Rats, Sprague-Dawley
- Receptor Protein-Tyrosine Kinases/drug effects
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/drug effects
- Ribosome Inactivating Proteins, Type 1
- Saporins
- Vestibular Nucleus, Lateral/drug effects
- Vestibular Nucleus, Lateral/pathology
Collapse
Affiliation(s)
- S Dazert
- Department of Surgery/Otolaryngology, UCSD School of Medicine and Veterans Administration Medical Center, La Jolla, CA 92093-0666, USA
| | | | | |
Collapse
|
44
|
Leonova EV, Raphael Y. Organization of cell junctions and cytoskeleton in the reticular lamina in normal and ototoxically damaged organ of Corti. Hear Res 1997; 113:14-28. [PMID: 9387983 DOI: 10.1016/s0378-5955(97)00130-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reticular lamina creates an ion barrier, withstands mechanical stress in the organ of Corti and is able to maintain its integrity during and after severe hair cell loss. Tight junctions maintain the ionic gradient whereas adherens junctions and the cytoskeleton are responsible for the integrity and mechanical resistance of tissues. In this study we used immunofluorescence and electron microscopy to examine the distribution of proteins of tight junctions (cingulin), adherens junctions (E-cadherin, alpha- and beta-catenin) and the cytoskeleton (actin, cytokeratin and tubulin) in whole-mounts of the normal and ototoxically damaged organ of Corti. In normal ears the proteins of adherens junctions were found in all cell types of the reticular lamina. We now demonstrate that all cells forming the reticular lamina partially overlap each other organizing extensive cell contacts with a complex three-dimensional shape. During scar formation, the tight junctions as well as adherens junctions between hair and supporting cells appeared in two distinct focal planes, which could help to preserve the ionic barrier and tissue integrity during hair cell degeneration. During scar formation all cytoskeletal structures in the reticular lamina were reorganized in a specific spatio-temporal pattern. We present a three-dimensional model of cell contact organization in the reticular lamina of normal ears and during scar formation.
Collapse
Affiliation(s)
- E V Leonova
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor 48109-0648, USA.
| | | |
Collapse
|
45
|
Zine A, Schweitzer L. Localization of proteins associated with the outer hair cell plasma membrane in the gerbil cochlea. Neuroscience 1997; 80:1247-54. [PMID: 9284074 DOI: 10.1016/s0306-4522(97)00163-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is substantial evidence that the motility of mammalian outer hair cells is generated close to or within the plasma membrane. Several analogies between the outer hair cell cortical lattice and the membrane-related cytoskeleton of erythrocytes have been noted. In erythrocytes a member of the anion exchanger protein family, AE1, also known as Band 3, is involved in membrane-cytoskeleton linkage via Protein 4.1. In the following paper, the presence of these two proteins in gerbilline outer hair cells is confirmed by western blot. Furthermore, co-localization of these two proteins was detected in the lateral wall of outer hair cells by immunofluorescence and postembedding electron immunohistochemistry. Band 3 is restricted to this region, whereas Protein 4.1 has a somewhat more dispersed distribution. Thus, the structure of these sensory receptor cells may result from an adaptation of a strategy used by other motile cells. The proteins investigated likely have a support function and may comprise "pillars" seen between the lateral plasma membrane and the cytoskeleton in micrographs of outer hair cells. The possibility that Band 3 comprises "protein particles" seen in the lateral plasma membrane, or maybe directly involved in the voltage-dependent force generation in outer hair cells, is also discussed.
Collapse
Affiliation(s)
- A Zine
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Kentucky, U.S.A
| | | |
Collapse
|
46
|
Hu BH, Henderson D. Changes in F-actin labeling in the outer hair cell and the Deiters cell in the chinchilla cochlea following noise exposure. Hear Res 1997; 110:209-18. [PMID: 9282903 DOI: 10.1016/s0378-5955(97)00075-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been found that 'conditioning' noise exposures can render the inner ear more resistant to traumatic noise exposures. To explore the possible mechanisms underlying this phenomenon, filamentous actin (F-actin), labeled by rhodamine-phalloidin, was examined in the chinchilla cochlea using confocal fluorescence microscopy. The conditioning noise was 0.5 kHz octave band noise (OBN) at 90 dB SPL for 6 h/day and the high-level noise was the same noise but at 105 dB SPL for 4 h. A variety of pathological changes were found in the chinchilla cochlea after exposure to noise. Subjects exposed to conditioning noise (1 day or 10 days) and only high-level noise showed an increase in F-actin labeling than unexposed controls. By contrast, subjects who had 5 days quiet after the 10-day conditioning exposure exhibited a decrease in F-actin labeling. Interestingly, subjects exposed to high-level noise with prior 10-day conditioning exposure also showed a decrease in F-actin labeling in the cuticular plate and the stereocilia. The F-actin decreases in the stereocilia and the cuticular plates may decrease the mechanical rigidity of the organ of Corti. A more pliable organ of Corti may have reduced the possibility of fracture or ripping of cell junctions during the motion of the basilar membrane induced by acoustic overstimulation.
Collapse
Affiliation(s)
- B H Hu
- Department of Communicative Disorders and Sciences, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|
47
|
Abstract
Through thin-section and freeze-fracture electron microscopy, we identify structural correlates of an intense vesicular traffic in a narrow band of cytoplasm around the cuticular plate of the bullfrog vestibular hair cells. Myriads of coated and uncoated vesicles associated with longitudinally oriented microtubules populate the narrow cytoplasmic region between the cuticular plate and the actin network of the apical junctional belt. If microtubules in the sensory hair cells, like those in axons, are pathways for organelle transport, then the characteristic distribution of microtubules around the cuticular plate represents transport pathways across the apical region of the hair cells. This compartmentalized membrane traffic system appears to support an intense vesicular release and uptake along a band of apical plasma membrane near the cell border. Functions of this transport system may include membrane recycling as well as exocytotic and endocytotic exchange between the hair cell cytoplasm and the endolymphatic compartment.
Collapse
Affiliation(s)
- B Kachar
- Section on Structural Cell Biology, National Institute on Deafness and other Communication Disorders (NIDCD), Bethesda, MD 20892, USA
| | | | | |
Collapse
|
48
|
Kuhn B, Vater M. The early postnatal development of F-actin patterns in the organ of Corti of the gerbil (Meriones unguiculatus) and the horseshoe bat (Rhinolophus rouxi). Hear Res 1996; 99:47-70. [PMID: 8970813 DOI: 10.1016/s0378-5955(96)00087-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The arrangements of F-actin in hair cells and non-sensory cells were studied in paraformaldehyde-fixed cochleae of horseshoe bats and gerbils in several postnatal stages and in the adult. Phallotoxin-labeled midmodiolar cryostat sections of the organ of Corti were analyzed with confocal fluorescence microscopy. In both species, the arrangement of F-actin in the adult organ of Corti was essentially similar to that described in other mammals; however, both species showed their own species-typical specializations in staining of the Deiters cells. In the gerbil, a distinct baso-apical gradient in morphology and staining properties was found in the upper compartment of the Deiters cells. In the bat, F-actin label within the Deiters cups was most pronounced in the basal cochlear turn and less abundant in the apical turns. During the first postnatal week, the sensory epithelium of the gerbil lacked the tunnel of Corti and the spaces of Nuel. Only the reticular lamina and the surface of the greater epithelial ridge were intensely labeled for F-actin. At 9 days after birth (DAB), when the tunnel of Corti and the inner spiral sulcus were formed, the footplates of Deiters and pillar cells and the apices of pillar cells began to show intense F-actin label. At 12 DAB, corresponding to onset of hearing, F-actin staining was found throughout the supporting cell bodies, but was less intense than in the adult. The specialized upper compartment of the Deiters cells differentiated around 15-20 DAB. In the neonate bat, gross-morphology of the organ of Corti was almost adult-like, but only the reticular lamina and the head- and footplates of pillar cells showed intense F-actin staining. The F-actin cytoskeleton of the Deiters cells bodies was poorly developed. At the onset of hearing (between 3rd and 5th DAB), supporting cells showed only a slight increase of F-actin mainly at mechanically important cell regions, namely the Deiters cups, the contact zone of pillar headplates and the footplates of supporting cells. The most intense increase of F-actin occurred between onset of hearing and 16 DAB. At 16 DAB, the F-actin distribution within the supporting cells was similar to the adult. In both species, there were no clear baso-apical gradients in development of F-actin patterns. It is proposed that F-actin insertion in supporting cells after the onset of hearing contributes to maturation of cochlear function.
Collapse
Affiliation(s)
- B Kuhn
- Universität Regensburg, Institut für Zoologie, Germany
| | | |
Collapse
|
49
|
Low W, Dazert S, Baird A, Ryan AF. Basic fibroblast growth factor (FGF-2) protects rat cochlear hair cells in organotypical culture from aminoglycoside injury. J Cell Physiol 1996; 167:443-50. [PMID: 8655598 DOI: 10.1002/(sici)1097-4652(199606)167:3<443::aid-jcp8>3.0.co;2-p] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Given the evidence that basic fibroblast growth factor (FGF-2) can protect neural and retinal cells from degeneration, we evaluated the potential of this growth factor to protect sensory cells in the inner ear. When sensory cells of the organ of Corti are exposed to aminoglycoside antibiotics such as neomycin either in vivo or in vitro, significant ototoxicity is observed. The in vitro cytotoxic effects of neomycin are dose and time dependent. In neonatal rat organ of Corti cultures, complete inner and outer hair cell destruction is observed at high (mM) concentrations of neomycin while inner hair cell survival and severely damaged outer hair cells are noted at moderate (microM) concentrations, with a maximal effect observed after 2 days of culture. Approximately 50% of cochlear outer hair cells are lost at a dose of 35 microM neomycin, and most surviving cells show disorganized stereocilia. Inner hair cells show primarily disorganization of their stereocilia. A significant protective effect is observed when the organ of Corti is pre-treated with FGF-2 (500 ng/ml) for 48 hours, and then FGF-2 is included with neomycin in the culture medium. A greater extent of outer hair cell survival and a significant decrease in stereociliary damage are noted with FGF-2. However, disorganization of inner hair cell stereocilia is unaffected by FGF-2. The protective effect of FGF-2 is specific, since interleukin-1B, nerve growth factor, tumor necrosis factor, and epidermal growth factor are ineffective, while retinoic acid and transforming growth factor alpha show only a moderate protective effect. These results confirm the potential of molecules like FGF-2 for preventing cell death due to a variety of causes.
Collapse
Affiliation(s)
- W Low
- Department of Surgery/Otolaryngology, University of California, USA
| | | | | | | |
Collapse
|
50
|
Pack AK, Slepecky NB. Cytoskeletal and calcium-binding proteins in the mammalian organ of Corti: cell type-specific proteins displaying longitudinal and radial gradients. Hear Res 1995; 91:119-35. [PMID: 8647714 DOI: 10.1016/0378-5955(95)00173-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Whole mounts and tissue sections of the organ of Corti from two representative mammalian species, the Mongolian gerbil (Meriones unguiculatus) and the guinea pig (Cavea porcellus) were probed with antibodies to cytoskeletal and calcium-binding proteins (actin, tubulin, including post-translational modifications, spectrin, fimbrin, calmodulin, parvalbumin, calbindin, S-100 and calretinin). All of the proteins tested were expressed in both species. New findings include the following. Actin is present in large accumulations in cell bodies of the Deiters cells under the outer hair cells (OHC), as well as in the filament networks previously described. These accumulations are more prominent in the apical turns. Tubulin is present in sensory cells in the tyrosinated (more dynamic) form, while tubulin in the supporting cells is post-translationally modified, indicating greater stability. Fimbrin, present in the stereocilia of both IHCs and OHCs, is similar to the isoform of fimbrin found in the epithelial cells of the intestine (fimbrin-I), which implies that actin bundling by fimbrin is reduced in the presence of increased calcium. Parvalbumin appears to be an IHC-specific calcium-binding protein in the gerbil as well as in the guinea pig; labeling displays a longitudinal gradient, with hair cells at the apex staining intensely and hair cells at the base staining weakly. Calbindin displays a similar longitudinal gradient, with staining intense in the IHCs and OHCs at the apex and weak to absent in the base. In the middle turns of the guinea pig cochlea, OHCs in the first row near the pillar cells lose immunoreactivity to calbindin before those in the second and third rows. Calmodulin is found throughout the whole cochlea in the IHCs and OHCs in the stereocilia, cuticular plate, and cell body. Calretinin is present in IHCs and Deiters cells in both species, as well as the tectal cell (modified Hensen cell) in the gerbil. S-100 is a supporting cell-specific calcium-binding protein which has not been localized in the sensory cells of these two species. The supporting cells containing S-100 include the inner border, inner phalangeal, pillar, Deiters, tectal (in gerbil) and Hensen cells, where labeling displays a longitudinal gradient decreasing in intensity towards the apex (opposite to what has been seen with labeling for other proteins in the cochlea).
Collapse
Affiliation(s)
- A K Pack
- Department of Bioengineering and Neuroscience, Syracuse University, NY 13244-5290, USA
| | | |
Collapse
|