1
|
Notarangelo FM, Pocivavsek A. Elevated kynurenine pathway metabolism during neurodevelopment: Implications for brain and behavior. Neuropharmacology 2017; 112:275-285. [PMID: 26944732 PMCID: PMC5010529 DOI: 10.1016/j.neuropharm.2016.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/20/2022]
Abstract
The kynurenine pathway (KP) of tryptophan degradation contains several neuroactive metabolites that may influence brain function in health and disease. Mounting focus has been dedicated to investigating the role of these metabolites during neurodevelopment and elucidating their involvement in the pathophysiology of psychiatric disorders with a developmental component, such as schizophrenia. In this review, we describe the changes in KP metabolism in the brain from gestation until adulthood and illustrate how environmental and genetic factors affect the KP during development. With a particular focus on kynurenic acid, the antagonist of α7 nicotinic acetylcholine (α7nACh) and N-methyl-d-aspartate (NMDA) receptors, both implicated in modulating brain development, we review animal models designed to ascertain the role of perinatal KP elevation on long-lasting biochemical, neuropathological, and behavioral deficits later in life. We present new data demonstrating that combining perinatal choline-supplementation, to potentially increase activation of α7nACh receptors during development, with embryonic kynurenine manipulation is effective in attenuating cognitive impairments in adult rat offspring. With these findings in mind, we conclude the review by discussing the advancement of therapeutic interventions that would target not only symptoms, but potentially the root cause of central nervous system diseases that manifest from a perinatal KP insult. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.
Collapse
Affiliation(s)
- Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Age dependent nicotinic influences over dopamine neuron synaptic plasticity. Biochem Pharmacol 2009; 78:686-92. [PMID: 19464268 DOI: 10.1016/j.bcp.2009.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/07/2009] [Accepted: 05/11/2009] [Indexed: 11/21/2022]
Abstract
The dopamine (DA) system of the ventral midbrain plays a critical role as mammals learn adaptive behaviors driven by environmental salience and reward. Addictive drugs, including nicotine, exert powerful influences over the mesolimbic DA system by activating and desensitizing nicotinic acetylcholine receptors (nAChRs) in a subtype-dependent manner. Nicotine induces synaptic plasticity at excitatory synapses onto DA neurons, thereby sending elevated DA signals that participate during the reinforcement of addictive behaviors. While humans and animals of any developmental age are potentially vulnerable to these drug-induced effects, evidence from clinical and epidemiological studies indicates that adolescents have an increased risk of addiction. Although this risk arises from a complex set of variables including societal and psychosocial influences, a contributing factor involves age dependent sensitivity to addictive drugs. One aspect of that sensitivity is drug-induced synaptic plasticity at excitatory synapses onto the dopamine neurons in the ventral midbrain. A single, acute exposure to addictive drugs, including nicotine, produces long-term potentiation (LTP) that can be quantified by measuring the shift in the subtypes of ionotropic glutamate receptors mediating evoked synaptic transmission. This change in glutamatergic transmission is expressed as an increased ratio of AMPA receptors to NMDA receptors at glutamatergic synapses. Age-related differences in the excitability and the nicotine sensitivity within the midbrain dopamine system may contribute to the greater risk of nicotine addiction in adolescent animals and humans.
Collapse
|
3
|
Abstract
Preclinical studies, using primarily rodent models, have shown acetylcholine to have a critical role in brain maturation via activation of nicotinic acetylcholine receptors (nAChRs), a structurally diverse family of ligand-gated ion channels. nAChRs are widely expressed in fetal central nervous system, with transient upregulation in numerous brain regions during critical developmental periods. Activation of nAChRs can have varied developmental influences that are dependent on the pharmacologic properties and localization of the receptor. These include regulation of transmitter release, gene expression, neurite outgrowth, cell survival, and synapse formation and maturation. Aberrant exposure of fetal and neonatal brain to nicotine, through maternal smoking or nicotine replacement therapy (NRT), has been shown to have detrimental effects on cholinergic modulation of brain development. These include alterations in sexual differentiation of the brain, and in cell survival and synaptogenesis. Long-term alterations in the functional status and pharmacologic properties of nAChRs may also occur, which result in modifications of specific neural circuitry such as the brainstem cardiorespiratory network and sensory thalamocortical gating. Such alterations in brain structure and function may contribute to clinically characterized deficits that result from maternal smoking, such as sudden infant death syndrome and auditory-cognitive dysfunction. Although not the only constituent of tobacco smoke, there is now abundant evidence that nicotine is a neural teratogen. Thus, alternatives to NRT should be sought as tobacco cessation treatments in pregnant women.
Collapse
Affiliation(s)
- Jennifer B Dwyer
- Department of Pharmacology, University of California, Irvine, California 92697, USA.
| | | | | |
Collapse
|
4
|
Slotkin TA, Southard MC, Adam SJ, Cousins MM, Seidler FJ. Alpha7 nicotinic acetylcholine receptors targeted by cholinergic developmental neurotoxicants: nicotine and chlorpyrifos. Brain Res Bull 2005; 64:227-35. [PMID: 15464859 DOI: 10.1016/j.brainresbull.2004.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 06/27/2004] [Accepted: 07/19/2004] [Indexed: 11/29/2022]
Abstract
Alpha7 nicotinic acetylcholine receptors (nAChRs) play a role in axonogenesis, synaptogenesis and synaptic plasticity, and are therefore potential targets for developmental neurotoxicants. We administered nicotine to neonatal rats during discrete periods spanning the onset and peak of axonogenesis/synaptogenesis, focusing on three brain regions with disparate distributions of cell bodies and neural projections: brainstem, forebrain and cerebellum. Nicotine treatment on postnatal days (PN) 1-4 had little or no effect on alpha7 nAChRs but treatment during the second (PN11-14) or third (PN21-24) weeks elicited significant decrements in receptor expression in brainstem and cerebellum, regions containing cell bodies that project to the forebrain. Exposure to chlorpyrifos, a neurotoxicant pesticide that acts partially through cholinergic mechanisms, also elicited deficits in alpha7 nAChRs during the second postnatal week but not the first week. For both nicotine and chlorpyrifos, the effects on alpha7 nAChRs were distinct from those on the alpha4beta2 subtype. Continuous prenatal nicotine exposure, which elicits subsequent, postnatal deficits in axonogenesis and synaptogenesis, also produced delayed-onset changes in alpha7 nAChRs, characterized by reductions in the forebrain and upregulation in the brainstem and cerebellum, a pattern consistent with impaired axonogenesis/synaptogenesis and reactive sprouting. Males were more sensitive to the persistent effects of prenatal nicotine exposure on alpha7 nAChRs, a pattern that mimics neurobehavioral deficits resulting from this treatment. The present findings reinforce the mechanistic involvement of alpha7 nAChRs in the actions of developmental neurotoxicants, and its biomarker potential for neuroteratogens that target neuritic outgrowth.
Collapse
Affiliation(s)
- Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813 DUMC, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
5
|
Collins SL, Wade D, Ledon J, Izenwasser S. Neurochemical alterations produced by daily nicotine exposure in periadolescent vs. adult male rats. Eur J Pharmacol 2005; 502:75-85. [PMID: 15464092 DOI: 10.1016/j.ejphar.2004.08.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/17/2004] [Accepted: 08/20/2004] [Indexed: 12/01/2022]
Abstract
Chronic treatment with nicotine differentially alters behavior in adolescent rats compared to adult rats. It is not known, however, whether the effects of nicotine on the neurochemical pathways with which it interacts differ in adolescents vs. adults. In the current study, the effects of a 7-day treatment with nicotine on nicotinic, dopaminergic, and serotonergic neurochemistry were examined in the caudate putamen and nucleus accumbens in periadolescent vs. adult male rats. Nicotine treatment increased dopamine transporter densities and decreased serotonin transporter densities in periadolescent rats. There was no change in nicotinic acetylcholine receptor densities or dopamine D1 or D2 receptor densities in nicotine-pretreated periadolescent rats. In adult rats pretreated with nicotine, there was an increase in nicotinic acetylcholine densities, but no change in dopamine transporter, dopamine D1 or D2 receptor, or serotonin transporter densities. Overall, these findings show that periadolescent rats have neurochemical adaptations to nicotine different from adult rats. These alterations may explain, at least in part, the differential behavioral effects of chronic nicotine in adult and adolescent male rats.
Collapse
Affiliation(s)
- Stephanie L Collins
- Department of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, 1400 NW 10th Avenue, Suite 704A (D-80), Miami, FL 33136, USA
| | | | | | | |
Collapse
|
6
|
Collins SL, Montano R, Izenwasser S. Nicotine treatment produces persistent increases in amphetamine-stimulated locomotor activity in periadolescent male but not female or adult male rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:175-87. [PMID: 15527885 DOI: 10.1016/j.devbrainres.2004.08.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2004] [Indexed: 10/26/2022]
Abstract
Nicotine is a popular addictive drug used among the adolescent population, and it has long been questioned whether nicotine use in adolescence may lead to the use of other psychostimulant drugs. It is not fully understood, however, how nicotine alters behavior and brain neurochemistry in the adolescent age cohort and how this may affect subsequent illicit drug use. In the current study, periadolescent and adult male and female rats were treated with nicotine for 7 days. One day or 30 days after this treatment, the effects of amphetamine on locomotor activity were studied. Sensitization to nicotine occurred in periadolescent female and adult male and female rats, but not in periadolescent male rats over the course of the 7-day treatment period. On day 8 (1 day after treatment with nicotine ended) and on day 37 (30 days after treatment with nicotine ended), nicotine-pretreated periadolescent male rats were sensitized to the locomotor-activating effects of amphetamine. The response to amphetamine of periadolescent female and adult male and female rats was unchanged at either time point after nicotine pretreatment. Thus, adolescent males are more sensitive than adults or females to the stimulant effects of amphetamine after exposure to nicotine, and this effect is long-lasting. These data suggest that nicotine use during adolescence may carry a greater risk than during adulthood and that male adolescent smokers may be particularly vulnerable to the risk of stimulant abuse.
Collapse
Affiliation(s)
- Stephanie L Collins
- Department of Psychiatry and Behavioral Sciences, Research Division, University of Miami School of Medicine, 1400 NW 10th Avenue, Suite 704A (D80), Miami FL 33136, USA
| | | | | |
Collapse
|
7
|
Adams CE. Comparison of alpha7 nicotinic acetylcholine receptor development in the hippocampal formation of C3H and DBA/2 mice. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:137-49. [PMID: 12855185 DOI: 10.1016/s0165-3806(03)00106-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A strain-specific restriction fragment length polymorphism in the alpha7 receptor gene locus has been reported to significantly affect the expression of the alpha7 subtype of nicotinic receptor in adult mouse hippocampus. The goal of the present study was to characterize the development of the alpha7 receptor in hippocampus from two mouse strains (C3H and DBA/2) with different alleles of the alpha7 receptor gene locus by using alpha-bungarotoxin (alpha-BTX) autoradiography. Binding of alpha-BTX was initially detected in fetal C3H mice on embryonic day 13 (E13) in the dorsal portion of the hippocampal anlage. In contrast, alpha-BTX binding was initially detected primarily in hippocampal area CA3 in the DBA/2 strain on E16. Binding of alpha-BTX was absent from the neuroepithelium in both strains. A marked increase in alpha-BTX binding was observed in hippocampal area CA1 and to a lesser extent in area CA3 between E18 and postnatal day 5 (P5) in neonatal C3H mice, an increase that was not observed in the DBA/2 mice. By the end of the first postnatal month, hippocampal alpha-BTX binding appeared adult-like in each strain. These data suggest that variations in the alpha7 receptor gene locus differentially influence the developmental expression of the alpha7 receptor in murine hippocampus. Therefore, the potential influence of the alpha7 receptor on developmental processes such as cell migration, dendritic elaboration and/or axonal connectivity may exhibit strain-selective differences because of the dissimilar time courses of alpha7 receptor expression in C3H and DBA/2 mice.
Collapse
Affiliation(s)
- Catherine E Adams
- Department of Psychiatry, Veterans Administration Medical Center and University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
8
|
O'Leary KT, Leslie FM. Developmental regulation of nicotinic acetylcholine receptor-mediated [3H]norepinephrine release from rat cerebellum. J Neurochem 2003; 84:952-9. [PMID: 12603820 DOI: 10.1046/j.1471-4159.2003.01575.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Presynaptic modulation of synaptic transmission is the primary function of central nicotinic acetylcholine receptors (nAChRs) in developing and adult brain. nAChR activation regulates release of various neurotransmitters, including norepinephrine (NA). Given evidence that NA may serve a critical functional role in cerebellar development, we have undertaken studies to determine whether nAChRs modulate NA release in developing cerebellum. In vitro experiments using cerebellar slices examined the effects of nAChR stimulation on release of radiolabeled NA ([3H]NA). Our data indicate the presence of functional nAChRs on NA terminals in immature cerebellum and subsequent developmental regulation of receptor properties. During postnatal week one, the maximally effective dose of nicotine released 35.0 +/- 1.2% of cerebellar [3H]NA stores. There was a subsequent decline in maximal nicotine-stimulated NA release until postnatal day 30, when Emax values were statistically indistinguishable from adult. Although the efficacy of nicotine changed substantially throughout development, EC50 values did not differ significantly (EC50 = 4.4-12.0 micro m). Pharmacological analysis indicated that this developmental shift in maximum nicotine effect reflects a change in the properties of the nAChRs. These data support recent findings of a possible functional role of nAChRs in regulating cerebellar ontogeny, and provides further support for the role of NA as a neurotrophic factor during development.
Collapse
Affiliation(s)
- K T O'Leary
- Department of Anatomy and Neurobiology, College of Medicine, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
9
|
Adams CE, Broide RS, Chen Y, Winzer-Serhan UH, Henderson TA, Leslie FM, Freedman R. Development of the alpha7 nicotinic cholinergic receptor in rat hippocampal formation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:175-87. [PMID: 12480132 DOI: 10.1016/s0165-3806(02)00547-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The alpha7 nicotinic receptor has been implicated in the regulation of a variety of developmental processes. The goal of the present study was to assess whether the alpha7 receptor might participate in the regulation of hippocampal ontogeny by describing the spatiotemporal development of alpha7 mRNA and alpha-bungarotoxin binding in rat hippocampal formation. Message for the alpha7 receptor was initially observed in the hippocampal neuroepithelium at embryonic day 13 and in the anlage of the hippocampal formation on embryonic day 14. Binding of alpha-bungarotoxin was initially seen on embryonic day 15 in the dorsal portion of the anlage of stratum oriens and stratum radiatum-lacunosum moleculare, but was never observed in the neuroepithelium. Dramatic elevations in both alpha7 mRNA and alpha-bungarotoxin binding were observed in most regions of the hippocampal formation neonatally. The levels of both alpha7 message and protein gradually decreased during the first three postnatal weeks to adult levels in most regions. The lack of alpha-bungarotoxin binding in the neuroepithelium suggests that the alpha7 receptor does not influence neurogenesis. The early appearance and complex, prolonged pattern of development of the alpha7 receptor suggest that it may influence processes as diverse as cell migration, dendritic elaboration and apoptosis during hippocampal maturation.
Collapse
Affiliation(s)
- Catherine E Adams
- VAMC Department of Psychiatry, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Box C268-71, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang L, Warren RA. Muscarinic and nicotinic presynaptic modulation of EPSCs in the nucleus accumbens during postnatal development. J Neurophysiol 2002; 88:3315-30. [PMID: 12466449 DOI: 10.1152/jn.01025.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have studied the modulatory effects of cholinergic agonists on excitatory postsynaptic currents (EPSCs) in nucleus accumbens (nAcb) neurons during postnatal development. Recordings were obtained in slices from postnatal day 1 (P1) to P27 rats using the whole cell patch-clamp technique. EPSCs were evoked by local electrical stimulation, and all experiments were conducted in the presence of bicuculline methchloride in the bathing medium and with QX-314 in the recording pipette. Under these conditions, postsynaptic currents consisted of glutamatergic EPSCs typically consisting of two components mediated by AMPA/kainate (KA) and N-methyl-D-aspartate (NMDA) receptors. The addition of acetylcholine (ACh) or carbachol (CCh) to the superfusing medium resulted in a decrease of 30-60% of both AMPA/KA- and NMDA-mediated EPSCs. In contrast, ACh produced an increase ( approximately 35%) in both AMPA/KA and NMDA receptor-mediated EPSCs when administered in the presence of the muscarinic antagonist atropine. These excitatory effects were mimicked by the nicotinic receptor agonist 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) and blocked by the nicotinic receptor antagonist mecamylamine, showing the presence of a cholinergic modulation mediated by nicotinic receptors in the nAcb. The antagonistic effects of atropine were mimicked by pirenzepine, suggesting that the muscarinic depression of the EPSCs was mediated by M(1)/M(4) receptors. In addition, the inhibitory effects of ACh on NMDA but not on AMPA/KA receptor-mediated EPSC significantly increased during the first two postnatal weeks. We found that, under our experimental conditions, cholinergic agonists produced no changes on membrane holding currents, on the decay time of the AMPA/KA EPSC, or on responses evoked by exogenous application of glutamate in the presence of tetrodotoxin, but they produced significant changes in paired pulse ratio, suggesting that their action was mediated by presynaptic mechanisms. In contrast, CCh produced consistent changes in the membrane and firing properties of medium spiny (MS) neurons when QX-314 was omitted from the recording pipette solution, suggesting that this substance actually blocked postsynaptic cholinergic modulation. Together, these results suggest that ACh can decrease or increase glutamatergic neurotransmission in the nAcb by, respectively, acting on muscarinic and nicotinic receptors located on excitatory terminals. The cholinergic modulation of AMPA/KA and NMDA receptor-mediated neurotransmission in the nAcb during postnatal development could play an important role in activity-dependent developmental processes in refining the excitatory drive on MS neurons by gating specific inputs.
Collapse
Affiliation(s)
- Liming Zhang
- Centre de Recherche Fernand-Seguin, University of Montréal, Montreal, Quebec H1N 3V2, Canada
| | | |
Collapse
|
11
|
Torrão AS, Carmona FM, Lindstrom J, Britto LR. Expression of cholinergic system molecules during development of the chick nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 124:81-92. [PMID: 11113515 DOI: 10.1016/s0165-3806(00)00113-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are suggestions of the participation of nicotinic acetylcholine receptors (nAChRs), the acetylcholine degradation enzyme, acetylcholinesterase (AChE), and the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), in the development of the nervous system. In this study, we aimed at comparing the development of some subunits of the nAChRs, AChE, and ChAT in the chick nervous system by standard immunohistochemical methods. The expression of all molecules investigated here appeared very early in ganglia (embryonic day 3.5-4), persisting into posthatching, except for ChAT, which is not detected after hatching in ganglia. A differential development was observed for nAChR subunits, with these receptors appearing around embryonic day 6 in some sites. The time-course of development of different nAChR subunits revealed several instances of transient expression (such as in the cerebellum), increasing expression (such as in the nucleus spiriformis lateralis), and diminishing expression into posthatching stages (such as in the oculomotor and throclear nuclei). Expression of AChE and ChAT also starts around embryonic day 6 in some structures and follows mainly increasing time-courses in the chick brain. The results of this study reveal a developmentally regulated expression of cholinergic system-related molecules in the chick nervous system and characterize differential time-courses of expression for nAChR subunits, AChE, and ChAT during development.
Collapse
Affiliation(s)
- A S Torrão
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, 05508-900 -SP, São Paulo, Brazil
| | | | | | | |
Collapse
|
12
|
Claudio L, Kwa WC, Russell AL, Wallinga D. Testing methods for developmental neurotoxicity of environmental chemicals. Toxicol Appl Pharmacol 2000; 164:1-14. [PMID: 10739739 DOI: 10.1006/taap.2000.8890] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human brain development is slow and delicate, involving many unique, though interrelated, cellular events. The fetus and child are often more susceptible to chemical toxins that alter the structure and/or function of the brain, although susceptibility varies for individual neurotoxicants. Early exposure to neurotoxins has been implicated in neurological diseases and mental retardation. Pesticide exposures pose a particular concern since many are designed to be neurotoxic to pests and can also affect humans. Acknowledging the potential for vulnerability of the developing brain, EPA recently began to "call in" data on developmental neurotoxicity (DNT) from manufacturers of pesticides already registered and considered to be neurotoxic-around 140 pesticides. Chemicals are to be tested following the DNT testing guideline (OPPTS 870.6300). This paper assesses whether tests performed according to this guideline can effectively identify developmental neurotoxicants. We found the testing guideline deficient in several respects, including: It is not always triggered appropriately within the current tiered system for testing; It does not expose developing animals during all critical periods of vulnerability; It does not assess effects that may become evident later in life; It does not include methodology for consideration of pharmacokinetic variables; Methodology for assessment of neurobehavioral, neuropathological, and morphometry is highly variable; Testing of neurochemical changes is limited and not always required. We propose modifications to the EPA testing guideline that would improve its adequacy for assessing and predicting risks to infants and children. This paper emphasizes that deficiencies in the testing methodology for developmental neurotoxicants represent a significant gap and increase the uncertainty in the establishment of safe levels of exposure to developing individuals.
Collapse
Affiliation(s)
- L Claudio
- Mount Sinai School of Medicine, Division of Environmental and Occupational Medicine, One Gustave Levy Place, New York, New York 10029, USA
| | | | | | | |
Collapse
|
13
|
Abstract
A growing body of evidence indicates that neuronal nicotinic acetylcholine receptors (nAChRs), in addition to promoting fast cholinergic transmission, may modulate other neuronal activities within the central nervous system (CNS). In particular, the alpha7 nAChR is highly permeable to Ca2+ and may serve a distinct role in regulating neuronal plasticity. By elevating intracellular Ca2+ levels in discrete neuronal locations, these ligand-gated ion channels may influence numerous physiological processes in developing and adult CNS. In this article, we review evidence that both pre- and postsynaptic alpha7 nAChRs modulate transmitter release in the brain and periphery through Ca2+-dependent mechanisms. The possible role of alpha7 nAChRs in regulating neuronal growth and differentiation in developing CNS is also evaluated. We consider an interaction between cholinergic and glutamatergic transmission and propose a hypothesis on the possible coregulation of intracellular Ca2+ by N-methyl-D-aspartate (NMDA) receptors and alpha7 nAChRs. Finally, the clinical significance of alterations in the normal function of alpha7 nAChRs is discussed as it pertains to prenatal nicotine exposure, schizophrenia, and epilepsy.
Collapse
Affiliation(s)
- R S Broide
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
14
|
Zhang X, Liu C, Miao H, Gong ZH, Nordberg A. Postnatal changes of nicotinic acetylcholine receptor alpha 2, alpha 3, alpha 4, alpha 7 and beta 2 subunits genes expression in rat brain. Int J Dev Neurosci 1998; 16:507-18. [PMID: 9881299 DOI: 10.1016/s0736-5748(98)00044-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Postnatal changes of nicotinic acetylcholine receptor (nAChR) alpha 2, alpha 3, alpha 4, alpha 7 and beta 2 subunits mRNAs were investigated in rat brain using ribonuclease protection assay. Multiple developmental patterns were observed: (1) transient expression during the first few postnatal weeks; alpha 2 in the hippocampus and brain stem, alpha 3 in the striatum, cerebellum and cortex, alpha 4 in the hippocampus, striatum and cerebellum, alpha 7 in the cerebellum and beta 2 in the striatum. (2) Constant expression across development; alpha 2 and alpha 3 in the thalamus, alpha 4 in the cortex, thalamus and brain stem, alpha 7 in the thalamus and brain stem and beta 2 in all brain regions except striatum. (3) Non-detection across development; alpha 2 in the cortex, striatum and cerebellum. (4) Increase with age; alpha 7 in the cortex and hippocampus. (5) Bell-shaped development; alpha 7 in the striatum. Postnatal changes of nAChR isoforms in different brain regions of rat were investigated by receptor binding assays. The developmental patterns of [3H]epibatidine and (-)-[3H]nicotine binding sites were similar to each other in each brain region, but different from that of [3H] alpha-bungarotoxin binding sites. No obvious correlation was observed between the developmental patterns of [3H] alpha-bungarotoxin, [3H]epibatidine and (-)-[3H]nicotine binding sites and corresponding subunits mRNAs. These results indicate that multiple mechanisms are involved in changes of gene expression of nAChRs subunits in the brain of developing rats.
Collapse
Affiliation(s)
- X Zhang
- Department of Clinical Neuroscience and Family Medicine, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | | | |
Collapse
|
15
|
Distribution of the α7 nicotinic acetylcholine receptor subunit in the developing chick cerebellum. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0165-3806(97)00160-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Gattu M, Terry AV, Pauly JR, Buccafusco JJ. Cognitive impairment in spontaneously hypertensive rats: role of central nicotinic receptors. Part II. Brain Res 1997; 771:104-14. [PMID: 9383013 DOI: 10.1016/s0006-8993(97)00794-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The adult spontaneously hypertensive rat (SHR) has been shown to exhibit a decrease in the expression and nicotine-stimulated function of brain nicotinic acetylcholine receptors, factors that could play a role in the impaired ability of this strain in the performance of learning and memory-related tasks. The purpose of this study was to determine whether either or both the impaired task performance and the loss of nicotinic receptors is directly related to the presence of the hypertensive state. To address this issue, two experimental approaches were taken. In the first series, 4-week-old pre-hypertensive SHR were tested in two phases of a water maze (spatial memory) task, and their performance was compared with that of two age-matched normotensive strains, Wistar Kyoto (WKY) and Wistar rats. During phase 1, SHR and WKY rats were not different in their ability to learn the task. In contrast, during phase 2 (subsequent series of trials after a 4 day inter-phase period), where rats were required to find a new platform location, SHR exhibited significantly impaired performance compared to both WKY and Wistar normotensive controls. In a single trial passive avoidance paradigm, SHR again displayed significantly reduced avoidance behavior as compared with both WKY and Wistar rats. In consecutive coronal sections the density of [3H]cytisine binding sites was decreased in pre-hypertensive SHR by up to 18% in about 40% of the brain regions examined, with the deficits particularly apparent in frontal cortex (layers 4-6), posterior subiculum, several thalamic regions, and the interpeduncular nucleus. In the second series, age-matched SHR and WKY were treated with the antihypertensive agent hydralazine administered in the drinking water beginning at 4 weeks of age. Hydralazine prevented the development of hypertension in adult SHR, but did not forestall the reduced expression of brain nicotinic receptors, nor the impairment in learning- and memory-related tasks normally observed in untreated adults with established hypertension. Moreover, the magnitude of nicotine-stimulated rubidium efflux from cortical and striatal synaptosomes in vitro was significantly reduced in samples derived from hydralazine-treated SHR as compared with those from hydralazine-treated, or untreated WKY. These results support the contention that the hypertensive state does not directly contribute to the reduced expression of nicotinic receptors in SHR. Therefore, the SHR may provide an important genetic model for the study of the role of central nicotinic receptors in cognitive and learning abnormalities.
Collapse
Affiliation(s)
- M Gattu
- Department of Pharmacology and Toxicology / Alzheimer's Research Center, Medical College of Georgia, Veterans Affairs Medical Center, Augusta 30912-2300, USA
| | | | | | | |
Collapse
|
17
|
Court JA, Lloyd S, Johnson M, Griffiths M, Birdsall NJ, Piggott MA, Oakley AE, Ince PG, Perry EK, Perry RH. Nicotinic and muscarinic cholinergic receptor binding in the human hippocampal formation during development and aging. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 101:93-105. [PMID: 9263584 DOI: 10.1016/s0165-3806(97)00052-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High-affinity nicotine, alpha-bungarotoxin (alpha BT) and muscarinic receptor binding was measured in the human hippocampal formation in a series of 57 cases aged between 24 weeks gestation and 100 years. Changes in nicotine receptor binding during development and aging were more striking than differences in alpha BT and muscarinic binding. Nicotine binding was higher at the late foetal stage than at any other subsequent time in all areas investigated. In the hippocampus a fall in binding then occurred within the first six months of life, with little or no subsequent fall during aging, whereas in the entorhinal cortex and the presubiculum the major loss of nicotine binding occurred after the fourth decade. alpha BT binding was significantly elevated in the CA 1 region, but in no other region of the hippocampus, in the late foetus, and there was also a fall in alpha BT binding in the entorhinal cortex during aging from the second decade. The modest changes in total muscarinic binding, which appeared to reflect those in M1 and M3 + 4 rather than M2 binding, were a rise in the entorhinal cortex between the foetal stage and childhood and a tendency for receptors to fall with age in the hippocampus and subicular complex. These findings implicate mechanisms controlling the expression of nicotinic receptors to a greater extent than muscarinic receptors in postnatal development and aging in the human hippocampus.
Collapse
Affiliation(s)
- J A Court
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Domínguez del Toro E, Juíz JM, Smillie FI, Lindstrom J, Criado M. Expression of alpha 7 neuronal nicotinic receptors during postnatal development of the rate cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 98:125-33. [PMID: 9027411 DOI: 10.1016/s0165-3806(96)00185-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Several lines of evidence suggest that alpha-bungarotoxin-sensitive neuronal nicotinic acetylcholine receptors may play a developmental role by modulating plasticity in neuronal circuits. The alpha 7 subunit, a main component of these receptors, is expressed in most regions of the brain, including the cerebellum, where it is present almost exclusively in Purkinje cells and deep cerebellar nuclei. Purkinje cells constitute the only efferent pathway of the cerebellum and their development involves complex interactions, which have been extensively studied. They therefore provide a potentially useful model for analysis of development plasticity which could be influenced by alpha 7 neuronal nicotinic receptors. In the present study a previously characterized monoclonal antibody (mAb 307) has been used to determine the temporal pattern of expression of the alpha 7 subunit in the developing rat cerebellum. No detectable alpha 7 immunoreactivity is found between P0 and P2. Between P3 and P5, however, the Purkinje cell layer shows moderate immunolabeling. alpha 7 expression in this layer increases rapidly between P8 and P15. This increase in alpha 7 staining, which overlaps in time with important developmental and synaptogenic events, is not uniform throughout the cerebellar cortex. Thus, between P3 and P5 all Purkinje cells are weakly labeled, while at later stages (P8-P15) immunolabeling becomes more intense, but at the same time, disappears from Purkinje cells in rostral lobules. In addition, a very well defined pattern for discontinuous or columnar labeling is detected in regions of the Purkinje cell layer where alpha 7 subunits were being expressed. Finally, at P20, alpha 7 subunit labeling is found again in all Purkinje cells, although with lower intensity. These results suggest that alpha 7 receptor expression is developmentally regulated, with a time course that parallels the final differentiation of Purkinje cells. In addition, the heterogeneous spatial distribution of alpha 7-containing nicotinic receptors indicates that, during cerebellar maturation, these cells may receive different signals that modulate receptor gene expression in a very specific way.
Collapse
|
19
|
Le Jeune H, Aubert I, Jourdan F, Quirion R. Developmental profiles of various cholinergic markers in the rat main olfactory bulb using quantitative autoradiography. J Comp Neurol 1996; 373:433-50. [PMID: 8889937 DOI: 10.1002/(sici)1096-9861(19960923)373:3<433::aid-cne8>3.0.co;2-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The existence of possible relationships among the developmental profile of various cholinergic markers in the main olfactory bulb (OB) was assessed by using in vitro quantitative autoradiography. Muscarinic receptors were visualized with [3H]pirenzepine (muscarinic M1-like sites) and [3H]AF-DX 384 (muscarinic M2-like sites); nicotinic receptors by using [3H]cytisine (nicotinic 42-like subtype) and [125I] alpha-bungarotoxin (nicotinic 7-like subtype); cholinergic nerve terminals by using [3H]vesamicol (vesicular acetylcholine transport sites) and [3H]hemicholinium-3 (high-affinity choline uptake sites). These various cholinergic markers exhibited their lowest levels at birth and reached adult values by the end of the 4-5 postnatal weeks. However, the density of presynaptic cholinergic markers and nicotinic receptors at postnatal day 2 represented a large proportion of the levels observed in adulthood, and displays a transient overexpression around postnatal day 20. In contrast, the postnatal development of cholinergic muscarinic M1-like and M2-like receptors is apparently regulated independently of the presynaptic cholinergic markers and nicotinic receptors. Two neurochemically and anatomically separate olfactory glomeruli subsets were observed in the posterior OB of the developing rat. These atypical glomeruli expressed large amounts of [3H]vesamicol-and [3H]hemicholinium binding sites without significant amounts of muscarinic M1, M2, or nicotinic alpha 4 beta 2 receptor binding sites. A significant density of [125I] alpha-bungarotoxin binding sites could be detected only at early postnatal ages. A few olfactory glomeruli specifically restricted to the dorsal posterior OB expressed a high density of [3H]cytisine binding sites but lacked significant binding of the two presynaptic cholinergic markers used here, suggesting their noncholinergic but cholinoceptive nature.
Collapse
Affiliation(s)
- H Le Jeune
- Douglas Hospital Research Centre, Verdun, Québec, Canada
| | | | | | | |
Collapse
|
20
|
Court JA, Perry EK, Spurden D, Griffiths M, Kerwin JM, Morris CM, Johnson M, Oakley AE, Birdsall NJ, Clementi F. The role of the cholinergic system in the development of the human cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 90:159-67. [PMID: 8719339 DOI: 10.1016/0165-3806(96)83496-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
High affinity (-)nicotine ([3H]nicotine), alpha-bungarotoxin ([125I]alpha-bungarotoxin) and muscarinic binding ([3H]N-methyl scopolamine) in the human cerebellum were compared between the foetal period (23-39 weeks gestation) and young adulthood (14-34 years) in an autoradiographic study. To estimate proportions of muscarinic receptor subtypes variable wash times and displacement with pirenzepine were employed. [3H]Nicotine binding and total muscarinic binding in foetuses exceeded that in young adults by a factor of 6 and 2 respectively in the dentate nucleus, and by a factor of 3 in white matter. [3H]Nicotine and muscarinic binding was also higher in the foetal external granule cell layer than in the internal granule cell layer of adult, [125I]alpha-Bungarotoxin binding was raised in the dentate nucleus of the foetus compared with the adult. The M2 subtype appeared to be the predominant muscarinic receptor in the cerebellum, however it tended to represent a lower proportion of the muscarinic binding in the foetus than the adult. All 3 receptor types were highest in the foetal brainstem where the M3 + M4 muscarinic subtypes appeared to predominate. The p75 nerve growth factor receptor, measured by immunocytochemistry, in common with cholinergic receptors, paralleled choline acetyltransferase activity which has previously been reported to be high in the cerebellum during late foetal development and to fall in adulthood.
Collapse
Affiliation(s)
- J A Court
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Didier M, Bix G, Berman SA, Bursztajn S. Expression of the alpha 4 neuronal nicotinic acetylcholine receptor subunit in the developing mouse hippocampus. Int J Dev Neurosci 1995; 13:703-13. [PMID: 8787861 DOI: 10.1016/0736-5748(95)00062-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neurotransmitters such as acetylcholine can control neuritogenesis of hippocampal cells. The timing of its receptors expression consequently may influence synaptogenesis and neuronal activity in the developing hippocampus. We investigated the mRNA expression of the nicotinic acetylcholine-gated ion channel receptor (nAChR) alpha 4 subunit in the embryonic and postnatal hippocampal formation. Although its expression level is low in the adult hippocampus, this protein constitutes the major nAChR subunit in the central nervous system. We carried out in-situ hybridization experiments to determine whether or not the alpha 4 AChR subunit mRNA distributions show evidence of regional and developmental regulation during hippocampal maturation. Our studies reveal that alpha 4 AChR mRNA expression was low at the embryonic stage, but increased transiently during postnatal development reaching a maximum during the second week of life and decreasing thereafter, to a minimum at adulthood. In hippocampal regions, the peak values of alpha 4 AChR expression were between 400 and 800% of adult alpha 4 messenger levels. In the postnatal hippocampus, most of the cells from the pyramidal layer of the CA3 and CA2 areas displayed a strong hybridization signal for the alpha 4 AChR subunit. In the hilus and the CA1 regions, the localization of the alpha 4 transcripts seemed to be restricted to some interneurons and pyramidal cells, respectively. Moderate and uniform in-situ hybridization signals were observed in granular cells from the dentate gyrus. The transient profile of alpha 4 expression suggests that nAChRs may participate in the early postnatal maturation of hippocampal circuity.
Collapse
Affiliation(s)
- M Didier
- Laboratories for Molecular Neuroscience, Harvard Medical School/McLean Hospital, Belmont, MA 02178, USA
| | | | | | | |
Collapse
|
22
|
Cimino M, Marini P, Colombo S, Andena M, Cattabeni F, Fornasari D, Clementi F. Expression of neuronal acetylcholine nicotinic receptor alpha 4 and beta 2 subunits during postnatal development of the rat brain. J Neural Transm (Vienna) 1995; 100:77-92. [PMID: 8962687 DOI: 10.1007/bf01271531] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The expression of the alpha 4 and beta 2 subunits of neuronal nicotinic acetylcholine receptors (nAChRs) was studied in developing rat brain using in situ hybridization. The levels of both transcripts were already high at birth in cerebral cortex, medial habenula, CA1/CA3 regions of the hippocampus and several thalamic nuclei. In general, the beta 2 subunit showed a higher density of hybrids than the alpha 4. Beta 2 expression did not change with age in the medial habenula, medial geniculate nucleus or in the hippocampus whereas it decreased in the cortex. The developmental pattern of the hybridization signal for alpha 4 was different according to the brain area considered. The expression of the two transcripts showed a biphasic pattern in some thalamic nuclei: the lowest levels occurring during the first and second postnatal weeks respectively, and the highest levels during the second and fourth postnatal weeks. The ontogenetic profile of the expression of the alpha 4 subunit in the thalamic nuclei coincided with that of [3H]-L-nicotine binding sites. These findings suggest that the two subunits of nAChRs are independently regulated in most of the brain areas examined, and that in some regions, such as the thalamus, the ontogenetic variations reported for the alpha 4 subunit correlate with those observed for the [3H]-L-nicotine binding sites.
Collapse
Affiliation(s)
- M Cimino
- Institute of Pharmacology and Pharmacognosy, University of Urbino, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Didier M, Berman SA, Lindstrom J, Bursztajn S. Characterization of nicotinic acetylcholine receptors expressed in primary cultures of cerebellar granule cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 30:17-28. [PMID: 7609640 DOI: 10.1016/0169-328x(94)00266-h] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs), like other calcium permeable channel receptors, may play a crucial role during neuronal development. We have characterized nAChRs in developing mouse cerebellar granule cells in primary culture. L-[3H]Nicotine, [3H]cytisine and [125I]alpha-bungarotoxin binding experiments revealed the presence of a single class of saturable and specific high affinity binding sites for each ligand. The expression of these nicotinic binding sites followed a developmental pattern reaching a maximum during the establishment of excitatory amino acid synaptic contacts. Immunolabeling with monoclonal antibodies to nAChR subunits revealed the presence of alpha 4 and beta 2 subunits in most neurons. Moreover, some neuronal cells displayed a somatic as well as a neuritic localization for the alpha 7 subunit as shown by [125I]alpha-bungarotoxin autoradiography. The reverse transcription-polymerase chain reaction (RT-PCR) detected the presence of mRNAs for alpha 3, alpha 4, alpha 5, alpha 7, beta 2 and beta 4 nAChR subunits. Non-neuronal cells did not express nAChRs, as shown by [3H]nicotine and [125I]alpha-bungarotoxin binding, immunocytochemistry and PCR. Maximum Ca2+ influx elicited by nicotine, and partly sensitive to alpha-bungarotoxin, was observed around 10-14 days after plating. This correlated with the time period at which the highest number of nicotine binding sites was detected. Sensitivity to several NMDA receptor antagonists as well as to removal of endogenous glutamate by pyruvate transaminase treatment revealed a glutamatergic component in the nicotine stimulated calcium influx. The time-dependent specific nAChR expression and the potential association between nAChRs and NMDA receptor activation suggest that nAChRs may regulate glutamatergic activity during synaptogenesis in cerebellar granule cells.
Collapse
Affiliation(s)
- M Didier
- Department of Psychiatry, Harvard Medical School/McLean Hospital, Belmont, MA 02178, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Maternal smoking during pregnancy may affect development of the child, but little is known about potential mechanisms of these effects. Since chronic nicotine treatment alters brain nicotinic receptors in adults and also evokes tolerance which is regulated by genetic factors, pregnant mice of two inbred strains underwent chronic nicotine infusion to determine whether the developmental pattern of mouse brain nicotinic receptors would be altered. C3H/2ibg and C57BL/6ibg mice were infused SC with saline or 2.0 mg/kg/h nicotine during the last half of pregnancy. The developmental profiles of [3H]nicotine and alpha-[125I]bungarotoxin binding in seven brain regions obtained from the offspring were measured. Prenatal nicotine treatment increased levels of [3H]nicotine binding at birth in the C3H hypothalamus, hippocampus, and possibly the cortex, and in the C57BL cortex. At later ages (20-30 days), [3H]nicotine binding was elevated in the C3H hindbrain, hippocampus, striatum, midbrain, and possibly the cortex. The C57BL hindbrain, hippocampus, midbrain, and cortex also showed increased binding at 20-30 days. Little, if any, effect of prenatal nicotine treatment was observed on the development of the alpha-[125I]bungarotoxin binding site. Since upregulated [3H]nicotine binding returns to control levels in adult animals within seven days following termination of chronic nicotine infusion, it is unlikely that simple upregulation is responsible for the changes observed in 20-30-day-old mouse brains.
Collapse
Affiliation(s)
- J L van de Kamp
- Institute for Behavioral Genetics, University of Colorado, Boulder 80309
| | | |
Collapse
|
25
|
Zhang X, Nordberg A. The competition of (-)-[3H]nicotine binding by the enantiomers of nicotine, nornicotine and anatoxin-a in membranes and solubilized preparations of different brain regions of rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1993; 348:28-34. [PMID: 8377838 DOI: 10.1007/bf00168533] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In order to characterize the properties of nicotinic acetylcholine receptor (nAChR) subtypes in the CNS, the enantiomers of nicotine, nornicotine and anatoxin-a were studied for their ability to displace (-)-[3H]nicotine binding to membranes and solubilized preparations of different brain regions of rats. In hippocampal membranes, (-)-[3H]nicotine binding was stereoselectively displaced from two sites by (+)- and (-)-nicotine, as well as by (+)- and (-)-anatoxin-a. (-)-Nicotine displayed a larger proportion of high affinity binding sites than did (+)-nicotine, while the proportions of high and low affinity binding sites for (+)-anatoxin-a was the same as that for (-)-anatoxin-a. In cerebellar membranes, the (-)-[3H]nicotine binding was stereoselectively displaced from a single binding site by nicotine and anatoxin-a with Ki values that did not correspond with their KH and KL values observed in hippocampus. The (-)-[3H]-nicotine binding was displaced from a single site by both (+)- and (-)-nornicotine with similar Ki values in both hippocampal and cerebellar membranes. In Triton X-100 solubilized preparations, the (-)-[3H]nicotine binding was displaced from a single site by all of the drugs tested and the Ki values for each individual drug were similar in the cortex, hippocampus and cerebellum. These results provided further evidence for pharmacological heterogeneity of membrane bound nAChRs and clearly indicated that detergent solubilization changed the binding properties of nAChRs in rat brain.
Collapse
Affiliation(s)
- X Zhang
- Department of Pharmacology, Faculty of Pharmacy, Uppsala University, Sweden
| | | |
Collapse
|
26
|
Kumar A, Schliebs R. Postnatal laminar development of cholinergic receptors, protein kinase C and dihydropyridine-sensitive calcium antagonist binding in rat visual cortex. Effect of visual deprivation. Int J Dev Neurosci 1992; 10:491-504. [PMID: 1337645 DOI: 10.1016/0736-5748(92)90050-a] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The postnatal ontogeny of 3H-pirenzepine and 3H-oxotremorine-M binding to M1-and M2-muscarinic acetylcholine receptors, respectively, as well as 3H-nicotine binding to neuronal nicotinic acetylcholine receptors, 3H-phorbol-12,13-dibutyrate binding to protein kinase C and 3H-PN200-110 binding to dihydropyridine-sensitive calcium channels was studied in individual layers of the visual cortex in both normally raised and monocularly deprived rats (one eyelid sutured at the age of 11 days) using quantitative receptor autoradiography. Postnatal ontogeny of M1-muscarinic receptors is similar in each visual cortical layer reaching the highest receptor density at the age of 15 days, whereas M2-muscarinic binding sites increase gradually from day 7 up to day 34. Highest 3H-nicotine binding is reached in all visual cortical layers at postnatal day 15 followed by a considerable decrease in binding sites until day 25. Phorbol ester binding rises considerably from birth until the age of 15 days reaching nearly the adult value in the upper layers, whereas in layers V and VI a marked decrease in binding levels until adulthood can be observed. The developmental course of 3H-PN200-110 binding sites is similar in all visual cortical layers and exhibits a moderate rise in binding sites between postnatal days 7 and 15. Monocular deprivation results in permanent changes in the developmental profiles of phorbol ester as well as calcium antagonist binding sites, whereas the alterations in muscarinic and nicotinic cholinergic receptors following monocular deprivation are only of transient nature. The data presented suggest that acetylcholine plays a modulatory role during a certain period of early postnatal maturation of the visual cortex by affecting both cholinergic receptors and associated second messenger cascades.
Collapse
Affiliation(s)
- A Kumar
- University of Leipzig, Paul Flechsig Institute for Brain Research, Department of Neurochemistry, Germany
| | | |
Collapse
|
27
|
Naeff B, Schlumpf M, Lichtensteiger W. Pre- and postnatal development of high-affinity [3H]nicotine binding sites in rat brain regions: an autoradiographic study. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 68:163-74. [PMID: 1394965 DOI: 10.1016/0165-3806(92)90058-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ontogeny of high affinity nicotinic cholinergic binding sites was studied in Long-Evans rat brain by in vitro autoradiography, using [3H]nicotine (10 nM) and cold (-)nicotine bitartrate to assess specificity. The first binding sites become detectable in spinal cord and caudal medulla oblongata at gestational day (GD) 12. Until GD 14, labelling spreads throughout lower brainstem, mesencephalon and parts of diencephalon, with higher densities in ventral areas (including the area of developing mesencephalic dopamine neurons). Matrix zones remain unlabelled. Receptor sites appear in the cerebellar anlage by GD 15, and in caudal caudate-putamen by GD 16. During development from late gestational to early postnatal stages, labelling is reduced in many lower brainstem areas and increases in forebrain, in particular in neocortex. Receptor density remains high in thalamus. In neocortex, nicotinic receptor sites are first seen in the subplate layer by GD 20. Labelling of this zone remains prominent until PN 14, when an additional band of increased receptor density is seen in cortical layers III/IV which contain high receptor levels in adulthood. At PN 27, the pattern has become similar to the adult one. The development of [3H]nicotine-binding sites in individual brain regions, with a general caudo-rostral gradient, accompanies cell differentiation and early synapse formation, e.g., in neocortex. The ontogenetic pattern differs in detail from that of muscarinic-cholinergic binding sites. The early presence of binding sites provides a basis for specific actions of nicotine on the fetal brain. As a consequence of the ontogenetic changes, different brain structures become targets for the action of this drug at different stages of development.
Collapse
Affiliation(s)
- B Naeff
- Institute of Pharmacology, University of Zürich, Switzerland
| | | | | |
Collapse
|
28
|
Afar R, Clarke PB, Goldstein G, Quik M. Thymopoietin, a polypeptide ligand for the alpha-bungarotoxin binding site in brain: an autoradiographic study. Neuroscience 1992; 48:641-53. [PMID: 1603334 DOI: 10.1016/0306-4522(92)90408-t] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Thymopoietin, a 48-49-amino acid polypeptide present in the thymus gland, was investigated as a potential ligand for the neuronal nicotinic alpha-bungarotoxin binding site in rat brain. Binding of [125I]alpha-bungarotoxin to whole rat brain sections was inhibited by thymopoietin in a concentration-dependent manner with an IC50 of 30.0 +/- 8.2 nM as compared to 1.1 +/- 0.3 nM for alpha-bungarotoxin. However, at concentrations of thymopoietin of up to 1 microM, [3H]nicotine binding to high affinity sites was not inhibited. Thysplenin, a polypeptide with considerable homology to thymopoietin did not affect [125I]alpha-bungarotoxin binding. These results suggest that thymopoietin selectively interacts with the nicotinic alpha-bungarotoxin binding site labelled by [125I]alpha-bungarotoxin rather than the neuronal nicotinic receptor(s) labelled by [3H]nicotine. Autoradiographic studies revealed that 1 microM thymopoietin almost completely inhibited [125I]alpha-bungarotoxin binding in all brain regions. Computer-assisted image analysis of displacement curves was performed on various brain areas rich in alpha-bungarotoxin binding, such as the dorsal endopiriform nucleus, fields 1 and 2 of Ammon's horn, the polymorph cell layer of the dentate gyrus and cortical layers 4 and 5. Thymopoietin inhibited [125I]alpha-bungarotoxin binding with similar potency in all these regions, suggesting that it interacted at the same site in the different brain areas. The IC50 values averaged over the six regions were 24.6 +/- 2.8 nM for thymopoietin and 1.2 +/- 0.2 nM for alpha-bungarotoxin. These results show that thymopoietin specifically interacted with the alpha-bungarotoxin site with a similar potency in different brain regions. It is suggested that thymopoietin represents a selective ligand for alpha-bungarotoxin binding sites in brain.
Collapse
Affiliation(s)
- R Afar
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
29
|
Quik M. Thymopoietin, a thymic polypeptide, potently interacts at muscle and neuronal nicotinic alpha-bungarotoxin receptors. Mol Neurobiol 1992; 6:19-40. [PMID: 1463587 DOI: 10.1007/bf02935565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Current studies suggest that several distinct populations of nicotinic acetylcholine (ACh) receptors exist. One of these is the muscle-type nicotinic receptors with which neuromuscular nicotinic receptor ligands and the snake toxin alpha-bungarotoxin interact. alpha-Bungarotoxin potently binds to these nicotinic receptors and blocks their function, two characteristics that have made the alpha-toxin a very useful probe for the characterization of these sites. In neuronal tissues, several populations of nicotinic receptors have been identified which, although they share a nicotinic pharmacology, have unique characteristics. The alpha-bungarotoxin-insensitive neuronal nicotinic receptors, which may be involved in mediating neuronal excitability, bind nicotinic agonists with high affinity but do not interact with alpha-bungarotoxin. Subtypes of these alpha-toxin-insensitive receptors appear to exist, as evidenced by findings that some are inhibited by neuronal bungarotoxin whereas others are not. In addition to the alpha-bungarotoxin-insensitive sites, alpha-bungarotoxin-sensitive neuronal nicotinic receptors are also present in neuronal tissues. These latter receptors bind alpha-bungarotoxin with high affinity and nicotinic agonists with an affinity in the microM range. The function of the nicotinic alpha-bungarotoxin receptors are as yet uncertain. Thymopoietin, a polypeptide linked to immune function, appears to interact specifically with nicotinic receptor populations that bind alpha-bungarotoxin. Thus, in muscle tissue where alpha-bungarotoxin both binds to the receptor and blocks activity, thymopoietin also potently binds to the receptor and inhibits nicotinic receptors-mediated function. In neuronal tissues, thymopoietin interacts only with the nicotinic alpha-bungarotoxin site and not the alpha-bungarotoxin-insensitive neuronal nicotinic receptor population. These observations that thymopoietin potently and specifically interacts with nicotinic alpha-bungarotoxin-sensitive receptors in neuronal and muscle tissue, together with findings that thymopoietin is an endogenously occurring agent, could suggest that this immune-related polypeptide represents a ligand for the alpha-bungarotoxin receptors. The function of thymopoietin at the alpha-bungarotoxin receptor is as yet uncertain; however, a potential trophic, as well as other roles are suggested.
Collapse
Affiliation(s)
- M Quik
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Lukas RJ, Bencherif M. Heterogeneity and regulation of nicotinic acetylcholine receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1992; 34:25-131. [PMID: 1587717 DOI: 10.1016/s0074-7742(08)60097-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R J Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013
| | | |
Collapse
|