1
|
Nagler J, Schriever SC, Romanov A, Vogt-Weisenhorn D, Wurst W, Pfluger PT, Schramm KW. Determination of morphine and norlaudanosoline in murine brain regions by dispersive liquid-liquid micro-extraction and liquid chromatograpy-electrochemical detection. Neurochem Int 2021; 150:105174. [PMID: 34474098 DOI: 10.1016/j.neuint.2021.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022]
Abstract
Morphine can be synthesized endogenously by mammals from dopamine via the intermediate norlaudanosoline. Previously, both compounds have been detected separately in whole brains of mice and brain regions of rats, and in urine of humans. Here, we report a novel method for the analysis of both compounds in single murine brain regions. Initially, a variant of dispersive liquid-liquid microextraction was established by using methanol as an extractant, cyclohexane as solvent, and tributylphosphate as disperser. The extraction method was applied to murine brain regions homogenized with perchloric acid while the subsequent detection was carried out by HPLC with electrochemical detection. In the thalamus of C57Bl/6J mice (n = 3, male, age 4-8 months), morphine and norlaudanosoline could be detected at levels of 19 ± 3.9 and 7.2 ± 2.3 pg/mg, respectively. Overall, we provide a novel method for the simultaneous extraction and detection of both morphine and norlaudanosoline in single murine brain regions.
Collapse
Affiliation(s)
- Joachim Nagler
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstädter Landstr.1, 85764, Neuherberg, Germany.
| | - Sonja C Schriever
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Research Unit NeuroBioloy of Diabetes (NBD), Ingolstädter Landstr.1, 85764, Neuherberg, Germany
| | - Artem Romanov
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Institute of Developmental Genetics (IDG), Ingolstädter Landstr.1, 85764, Neuherberg, Germany
| | - Daniela Vogt-Weisenhorn
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Institute of Developmental Genetics (IDG), Ingolstädter Landstr.1, 85764, Neuherberg, Germany; Technichal University Munich Weihenstephan, Developmental Genetics c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg/Munich, Germany
| | - Wolfgang Wurst
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Institute of Developmental Genetics (IDG), Ingolstädter Landstr.1, 85764, Neuherberg, Germany; Technichal University Munich Weihenstephan, Developmental Genetics c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg/Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Paul T Pfluger
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Research Unit NeuroBioloy of Diabetes (NBD), Ingolstädter Landstr.1, 85764, Neuherberg, Germany
| | - Karl-Werner Schramm
- Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstädter Landstr.1, 85764, Neuherberg, Germany; Technichal University Munich, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Biowissenschaftliche Grundlagen, Weihenstephaner Steig 23, 85350, Freising, Germany
| |
Collapse
|
2
|
Peana AT, Bassareo V, Acquas E. Not Just from Ethanol. Tetrahydroisoquinolinic (TIQ) Derivatives: from Neurotoxicity to Neuroprotection. Neurotox Res 2019; 36:653-668. [DOI: 10.1007/s12640-019-00051-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/29/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022]
|
3
|
Laux-Biehlmann A, Mouheiche J, Vérièpe J, Goumon Y. Endogenous morphine and its metabolites in mammals: History, synthesis, localization and perspectives. Neuroscience 2013; 233:95-117. [DOI: 10.1016/j.neuroscience.2012.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
|
4
|
Correa M, Salamone JD, Segovia KN, Pardo M, Longoni R, Spina L, Peana AT, Vinci S, Acquas E. Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neurosci Biobehav Rev 2012; 36:404-30. [DOI: 10.1016/j.neubiorev.2011.07.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/14/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
|
5
|
Charron G, Doudnikoff E, Laux A, Berthet A, Porras G, Canron MH, Barroso-Chinea P, Li Q, Qin C, Nosten-Bertrand M, Giros B, Delalande F, Van Dorsselaer A, Vital A, Goumon Y, Bezard E. Endogenous morphine-like compound immunoreactivity increases in parkinsonism. Brain 2011; 134:2321-38. [PMID: 21742735 DOI: 10.1093/brain/awr166] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Morphine is endogenously synthesized in the central nervous system and endogenous dopamine is thought to be necessary for endogenous morphine formation. As Parkinson's disease results from the loss of dopamine and is associated with central pain, we considered how endogenous morphine is regulated in the untreated and l-DOPA-treated parkinsonian brain. However, as the cellular origin and overall distribution of endogenous morphine remains obscure in the pathological adult brain, we first characterized the distribution of endogenous morphine-like compound immunoreactive cells in the rat striatum. We then studied changes in the endogenous morphine-like compound immunoreactivity of medium spiny neurons in normal, Parkinson's disease-like and l-DOPA-treated Parkinson's disease-like conditions in experimental (rat and monkey) and human Parkinson's disease. Our results reveal an unexpected dramatic upregulation of neuronal endogenous morphine-like compound immunoreactivity and levels in experimental and human Parkinson's disease, only partially normalized by l-DOPA treatment. Our data suggest that endogenous morphine formation is more complex than originally proposed and that the parkinsonian brain experiences a dramatic upregulation of endogenous morphine immunoreactivity. The functional consequences of such endogenous morphine upregulation are as yet unknown, but based upon the current knowledge of morphine signalling, we hypothesize that it is involved in fatigue, depression and pain symptoms experienced by patients with Parkinson's disease.
Collapse
Affiliation(s)
- Giselle Charron
- University of Bordeaux, Institut des Maladies Neurodegeneratives, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Surh YJ, Kim HJ. Neurotoxic effects of tetrahydroisoquinolines and underlying mechanisms. Exp Neurobiol 2010; 19:63-70. [PMID: 22110343 PMCID: PMC3214777 DOI: 10.5607/en.2010.19.2.63] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/29/2010] [Indexed: 11/22/2022] Open
Abstract
Tetrahydropapaveroline (THP), a neurotoxic tetrahydroisoquinoline alkaloid formed by condensation between dopamine and dopaldehyde, has been speculated to cause Parkinson's disease and also to contribute to alcohol dependence. Having two catechol moieties, THP may readily undergo oxidation to form an o-quinone intermediate with concomitant production of reactive oxygen species, which can cause neuronal cell death and DNA damage. This review will deal with the current knowledge of neurotoxic effects of this endogenous alkaloid and underlying biochemical mechanisms.
Collapse
Affiliation(s)
- Young-Joon Surh
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | |
Collapse
|
7
|
Abstract
It has been firmly established that humans excrete a small but steady amount of the isoquinoline alkaloid morphine in their urine. It is unclear whether it is of dietary or endogenous origin. There is no doubt that a simple isoquinoline alkaloid, tetrahydropapaveroline (THP), is found in human and rodent brain as well as in human urine. This suggests a potential biogenetic relationship between both alkaloids. Unlabeled THP or [1,3,4-D(3)]-THP was injected intraperitoneally into mice and the urine was analyzed. This potential precursor was extensively metabolized (96%). Among the metabolites found was the phenol-coupled product salutaridine, the known morphine precursor in the opium poppy plant. Synthetic [7D]-salutaridinol, the biosynthetic reduction product of salutaridine, injected intraperitoneally into live animals led to the formation of [7D]-thebaine, which was excreted in urine. [N-CD(3)]-thebaine was also administered and yielded [N-CD(3)]-morphine and the congeners [N-CD(3)]-codeine and [N-CD(3)]-oripavine in urine. These results show for the first time that live animals have the biosynthetic capability to convert a normal constituent of rodents, THP, to morphine. Morphine and its precursors are normally not found in tissues or organs, presumably due to metabolic breakdown. Hence, only that portion of the isoquinoline alkaloids excreted in urine unmetabolized can be detected. Analysis of urine by high resolution-mass spectrometry proved to be a powerful method for tracking endogenous morphine and its biosynthetic precursors.
Collapse
|
8
|
Kim YM, Kim MN, Lee JJ, Lee MK. Inhibition of dopamine biosynthesis by tetrahydropapaveroline. Neurosci Lett 2005; 386:1-4. [PMID: 16026929 DOI: 10.1016/j.neulet.2005.04.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 03/15/2005] [Accepted: 04/12/2005] [Indexed: 11/29/2022]
Abstract
Tetrahydropapaveroline (THP) at 5-15 microM has been found to induce L-DOPA-induced oxidative apoptosis in PC12 cells. In this study, the inhibitory effects of THP on dopamine biosynthesis in PC12 cells and tyrosine hydroxylase (TH) activity in bovine adrenal were investigated. Treatment of PC12 cells with THP at 2.5-10 microM significantly decreased the intracellular dopamine content in a concentration-dependent manner (21.3% inhibition at THP 10 microM). The activity of TH was also inhibited by the treatment with THP at 2.5-10 microM (23.4% inhibition at 10 microM). In addition, THP had an inhibitory effect on bovine adrenal TH (IC50 value, 153.9 microM). THP exhibited uncompetitive inhibition on bovine adrenal TH with a substrate l-tyrosine with the Ki value with L-tyrosine of 0.30 mM. Treatment with L-DOPA at 20-50 microM increased the intracellular dopamine content in PC12 cells and the increase in dopamine content by L-DOPA was in part inhibited when L-DOPA (20 and 50 microM) was associated with THP at non-cytotoxic (5-10 microM) or cytotoxic (15 microM) concentration ranges. However, the reduction of dopamine content by THP (15 microM) or THP (15 microM) associated with L-DOPA (20 and 50 microM) in PC12 cells was inversed by the antioxidant N-acetyl-cysteine (0.1mM). These results indicate that THP at 5-10 microM decreases the basal dopamine content and reduces the increased dopamine content induced by L-DOPA in part by the inhibition of TH activity, and that THP at 15 microM does by oxidative stress in PC12 cells.
Collapse
Affiliation(s)
- Yu Mi Kim
- College of Pharmacy, and Research Center for Bioresource and Health, Chungbuk National University, 12, Kaeshin-Dong, Cheongju 361-763, South Korea
| | | | | | | |
Collapse
|
9
|
Quertemont E, Tambour S, Tirelli E. The role of acetaldehyde in the neurobehavioral effects of ethanol: A comprehensive review of animal studies. Prog Neurobiol 2005; 75:247-74. [PMID: 15882776 DOI: 10.1016/j.pneurobio.2005.03.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 03/24/2005] [Indexed: 01/18/2023]
Abstract
Acetaldehyde has long been suggested to be involved in a number of ethanol's pharmacological and behavioral effects, such as its reinforcing, aversive, sedative, amnesic and stimulant properties. However, the role of acetaldehyde in ethanol's effects has been an extremely controversial topic during the past two decades. Opinions ranged from those virtually denying any role for acetaldehyde in ethanol's effects to those who claimed that alcoholism is in fact "acetaldehydism". Considering the possible key role of acetaldehyde in alcohol addiction, it is critical to clarify the respective functions of acetaldehyde and ethanol molecules in the pharmacological and behavioral effects of alcohol consumption. In the present paper, we review the animal studies reporting evidence that acetaldehyde is involved in the pharmacological and behavioral effects of ethanol. A number of studies demonstrated that acetaldehyde administration induces a range of behavioral effects. Other pharmacological studies indicated that acetaldehyde might be critically involved in several effects of ethanol consumption, including its reinforcing consequences. However, conflicting evidence has also been published. Furthermore, it remains to be shown whether pharmacologically relevant concentrations of acetaldehyde are achieved in the brain after alcohol consumption in order to induce significant effects. Finally, we review current evidence about the central mechanisms of action of acetaldehyde.
Collapse
Affiliation(s)
- Etienne Quertemont
- Laboratoire de Neurosciences Comportementales, et Psychopharmacologie, Université de Liège, Boulevard du Rectorat 5/B32, 4000 Liège, Belgium.
| | | | | |
Collapse
|
10
|
Shin MH, Jang JH, Surh YJ. Potential roles of NF-kappaB and ERK1/2 in cytoprotection against oxidative cell death induced by tetrahydropapaveroline. Free Radic Biol Med 2004; 36:1185-94. [PMID: 15082072 DOI: 10.1016/j.freeradbiomed.2004.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 01/22/2004] [Accepted: 02/06/2004] [Indexed: 10/26/2022]
Abstract
Tetrahydropapaveroline (THP), a dopamine-derived tetrahydroisoquinoline catechol, has been suspected to be dopaminergic neurotoxin that elicits parkinsonism and neurobehavioral abnormalities associated with chronic alcoholism. THP has been detected in the brains of parkinsonian patients, and its urinary as well as brain level increases after l-3,4-dihydroxyphenylalanine treatment. Autoxidation or enzymatic oxidation of THP and subsequent generation of reactive oxygen species (ROS) may contribute to the degeneration of dopaminergic neurons induced by this tetrahydroisoquinoline alkaloid. In the present study, THP was found to elicit cytotoxicity in cultured rat pheochromocytoma (PC12) cells, which was completely blocked by reduced glutathione and N-acetyl-L-cysteine. THP-treated PC12 cells exhibited increased intracellular accumulation of ROS and underwent apoptosis as determined by poly(ADP-ribose)polymerase cleavage, an increased ratio of Bax to BclxL, terminal transferase-mediated dUTP nick end labeling, and nuclear fragmentation or condensation. THP treatment caused activation of the redox-sensitive transcription factor nuclear factor kappaB (NF-kappaB). Pretreatment of PC12 cells with NF-kappaB inhibitors, such as l-1-tosylamido-2-phenylethyl chloromethyl ketone and parthenolide, aggravated THP-induced cell death. THP treatment resulted in differential activation of mitogen-activated protein kinases as well as Akt/protein kinase B, thereby transmitting cell survival or death signals. In conclusion, THP induces apoptosis in PC12 cells by generating ROS. THP-mediated oxidative stress was accompanied by differential activation of intracellular signaling kinases and NF-kappaB.
Collapse
Affiliation(s)
- Mi-Hyun Shin
- Laboratory of Biochemistry and Molecular Toxicology, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | | | | |
Collapse
|
11
|
Lee JJ, Kim YM, Yin SY, Park HD, Kang MH, Hong JT, Lee MK. Aggravation of L-DOPA-induced neurotoxicity by tetrahydropapaveroline in PC12 cells. Biochem Pharmacol 2003; 66:1787-95. [PMID: 14563489 DOI: 10.1016/s0006-2952(03)00421-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tetrahydropapaveroline (THP) is formed in Parkinsonian patients receiving L-DOPA therapy and is detected in the plasma and urine of these patients. In this study, we have investigated the effects of THP on L-DOPA-induced neurotoxicity in cultured rat adrenal pheochromocytoma, PC12 cells. Exposure of PC12 cells up to 10 microM THP or 20 microM L-DOPA after 24 or 48 hr, neither affected the cell viability determined by MTT assay, nor induced apoptosis by flow cytometry and TUNEL staining. However, at concentrations higher than 15 microM, THP showed cytotoxicity through an apoptotic process. In addition, THP at 5-15 microM for both incubation time points significantly enhanced L-DOPA-induced neurotoxicity (L-DOPA concentration, 50 microM). Exposure of PC12 cells to THP, L-DOPA and THP plus L-DOPA for 48 hr resulted in a marked increase in the cell loss and percentage of apoptotic cells compared with exposure for 24hr. The enhancing effects of THP on L-DOPA-induced neurotoxicity were concentration- and treated-time-dependent. THP, L-DOPA and THP plus L-DOPA produced a significant increase in intracellular reactive oxygen species generation and decrease in ATP levels, supporting the involvement of oxidative stress in THP- and L-DOPA-induced apoptosis. The antioxidant N-acetyl-L-cysteine strongly inhibited changes in apoptosis, decreases in cell viability and ROS generation induced by THP associated with L-DOPA. These results suggest that THP aggravates L-DOPA-induced oxidative neurotoxic and apoptotic effects in PC12 cells. Therefore, Parkinsonian patients treated with L-DOPA for long-term need to be monitored for the relationship between plasma concentration of THP and the symptoms of neurotoxicity.
Collapse
Affiliation(s)
- Jae Joon Lee
- College of Pharmacy, and Research Center for Bioresource and Health, Chungbuk National University, San 48, Kaeshin-Dong, Heungduk-Ku, Cheongju 361-763, South Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Keung WM. Anti-dipsotropic isoflavones: the potential therapeutic agents for alcohol dependence. Med Res Rev 2003; 23:669-96. [PMID: 12939789 DOI: 10.1002/med.10049] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Daidzin is the active principle of Radix puerariae (RP), an herbal remedy that has been used apparently safely and effectively for the treatment of "alcohol addiction" in China for more than a millennium. It has been shown to reduce alcohol consumption in all animal models tested to date. A link between daidzin's capacity to reduce alcohol consumption and its ability to increase liver mitochondrial monoamine oxidase (MAO): aldehyde dehydrogenase (ALDH-2) activity ratio has been established. Daidzin analogs that potently inhibit ALDH-2 but not MAO are the most anti-dipsotropic, whereas those that also inhibit MAO are not. On the basis of these findings, it was proposed that the liver mitochondrial MAO-ALDH-2 pathway is the primary site of action of daidzin and that a biogenic aldehyde derived from the action of MAO mediates its anti-dipsotropic action. Therefore, to design and synthesize more potent anti-dipsotropic analogs, structural features that would enhance ALDH-2 inhibition and/or decrease MAO inhibition needed to be evaluated. Structure-activity-relationship (SAR) studies have revealed that a sufficient set of criteria for a potent anti-dipsotropic analog is an isoflavone with a free 4'-OH function and a straight-chain alkyl at the 7 position that has a terminal polar function such as -OH, -COOH, or -NH2. The preferable chain lengths for the 7-O-omega-carboxy, 7-O-omega-hydroxy, and 7-O-omega-amino substituents are 5 < or = n < or = 10, 2 < or = n < or = 6, and n > or = 4, respectively. Analogs that meet these criteria have increased potency for ALDH-2 inhibition and/or decreased potency for MAO inhibition and are, therefore, likely to be potent anti-dipsotropic agents.
Collapse
Affiliation(s)
- Wing Ming Keung
- Department of Psychiatry, Massachusetts Mental Health Center, and Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, One Kendall Square, Building 600, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
13
|
McCoy JG, Strawbridge C, McMurtrey KD, Kane VB, Ward CP. A re-evaluation of the role of tetrahydropapaveroline in ethanol consumption in rats. Brain Res Bull 2003; 60:59-65. [PMID: 12725893 DOI: 10.1016/s0361-9230(03)00018-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The role of tetrahydropapaveroline (THP), a condensation product of a dopaldehyde with dopamine, in the regulation of alcohol consumption was investigated. In the first experiment, rats received intraventricular injections of either racemic THP hydrobromide (0.65 or 1.3 microg/microl), R-(+)-THP (0.66 or 1.4 microg/microl), or an equal volume of vehicle. The lower doses of both (+/-)-THP and (+)-THP significantly increased volitional alcohol intake. For the racemic compound, the increase was significant at 7-13% concentrations. The R-(+)-enantiomer increased consumption at 4-11 and 15-20% concentrations of ethanol. The higher doses of both compounds did not significantly alter alcohol preference. A second experiment evaluated the chronic effect of THP delivered subcutaneously via osmotic minipump. Animals receiving THP (0.1, 0.5, 1.0, 2.0, and 4.0 mg/ml) did not differ in their alcohol intake, compared to vehicle-treated controls. Whether or not endogenously formed THP participates in the etiology of alcohol addiction remains unclear. Nonetheless, there are few known compounds that induce a preference for unsweetened alcohol solutions over water in laboratory animals.
Collapse
Affiliation(s)
- John G McCoy
- Department of Psychology, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | | | | | | | | |
Collapse
|
14
|
Kim EI, Yin S, Kang MH, Hong JT, Oh KW, Lee MK. Reduction of serotonin content by tetrahydropapaveroline in murine mastocytoma P815 cells. Neurosci Lett 2003; 339:131-4. [PMID: 12614912 DOI: 10.1016/s0304-3940(03)00004-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The inhibitory effects of tetrahydropapaveroline on serotonin biosynthesis in serotonin-producing murine mastocytoma P815 cells were investigated. Tetrahydropapaveroline decreased serotonin content in a concentration-dependent manner in P815 cells and showed 44.9% reduction of serotonin content at a concentration of 5.0 microM for 24 h. The value of 50% inhibitory concentration, IC(50), of tetrahydropapaveroline was 7.5 microM. Under these conditions, tryptophan hydroxylase (EC 1.14.16.4, TPH) was inhibited for 24-36 h after treatment with tetrahydropapaveroline in P815 cells (46.6% inhibition at 7.5 microM). In addition, tetrahydropapaveroline inhibited the activity of TPH, prepared from the P815 cells (P815-TPH), with the IC(50) value of 8.4 microM. Inhibition of P815-TPH by tetrahydropapaveroline was found to be non-competitive both with the substrate L-tryptophan and with the cofactor DL-6-methyl-5,6,7,8-tetrahydropterine. The K(i) value of tetrahydropapaveroline with L-tryptophan was 9.29 microM. These data indicate that tetrahydropapaveroline leads to a decrease in serotonin content by inhibiting TPH activity in P815 cells.
Collapse
Affiliation(s)
- Eung Il Kim
- College of Pharmacy, and Research Center for Bioresource and Health, Chungbuk National University, San 48, Gaeshin-Dong, Heungduk-Gu, Cheongju 361-763, South Korea
| | | | | | | | | | | |
Collapse
|
15
|
Cowen MS, Lawrence AJ. The role of opioid-dopamine interactions in the induction and maintenance of ethanol consumption. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23:1171-212. [PMID: 10581642 DOI: 10.1016/s0278-5846(99)00060-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. Alcohol is one of the most widely used recreational drugs, but also one of the most widely abused, causing vast economic, social and personal damage. 2. Several animal models are available to study the reinforcing mechanisms that are the basis of the abuse liability of ethanol. Innate differences in opioid or dopamine neurotransmission may enhance the abuse liability of ethanol, as indicated by animal and human studies. 3. Opioid antagonists have been shown to be effective, both experimentally and clinically, in decreasing ethanol consumption, presumably since ethanol induces the release of endogenous opioid peptides in vivo. However, ethanol may also stimulate the formation of opiate-like compounds, which could interact with opioid (or dopamine) receptors. Ethanol may cause changes in neurotransmission mediated via opioid receptors that determines whether alcohol abuse is more or less likely. 4. Ethanol appears to facilitate dopamine release by increasing opioidergic activity, disinhibiting dopaminergic neurons (by inhibition of GABAergic neurotransmission) via mu-opioid receptors in the ventral tegmental area (VTA) and delta-opioid receptors in the nucleus accumbens (NAcc). The effects of ethanol would be antagonised by presynaptic kappa-opioid receptors present on dopaminergic terminals in the NAcc. 5. Mesolimbic dopamine release induced by ethanol consumption seems to indicate ethanol-related stimuli are important, focussing attention on and enabling learning of the stimuli. However, studies indicate that there are redundant pathways, and neural pathways 'downstream' of the mesolimbic dopamine system, which also enable the reinforcing properties of ethanol to be mediated.
Collapse
Affiliation(s)
- M S Cowen
- Dept. of Pharmacology, Monash University, Clayton, Vic., Australia
| | | |
Collapse
|
16
|
Surh Y. Tetrahydropapaveroline, a dopamine-derived isoquinoline alkaloid, undergoes oxidation: implications for DNA damage and neuronal cell death. Eur J Clin Invest 1999; 29:650-1. [PMID: 10411673 DOI: 10.1046/j.1365-2362.1999.00511.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Myers RD, Robinson DE. Mmu and D2 receptor antisense oligonucleotides injected in nucleus accumbens suppress high alcohol intake in genetic drinking HEP rats. Alcohol 1999; 18:225-33. [PMID: 10456575 DOI: 10.1016/s0741-8329(99)00015-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous pharmacological and other studies have implicated both Mmu and dopamine receptor subtypes in alcohol consumption. In the genetic drinking rat as well as those chemically induced to drink, evidence has accrued that the abnormal intake of alcohol is underpined by these receptors in the brain. The purpose of this investigation was to demonstrate unequivocally that a biological impairment by antisense oligodeoxynucleotide (ODN) targeted specifically to these two receptor subtypes would disrupt ongoing alcohol drinking. In this project, a new strain of female and male high-ethanol preferring (HEP) rats was used that had free access to preferred concentrations of alcohol over water in a two choice paradigm. A guide cannula for a microinjection needle was first implanted bilaterally above the nucleus accumbens (NAC) of each rat. Following recovery, a dose of either 250 or 500 ng of the Mmu ODN or 500 ng D2ODN was microinjected into the NAC of the rat in a volume of 0.8-1.0 microl. A standard temporal sequence was used in which microinjections were given four times at successive 12-h intervals over a 2-day interval. The control mismatch ODNs corresponding to both the Mmu or D2 receptor antisense were microinjected identically at homologous sites in the NAC. Following the experiments, the brain of each rat was removed and sectioned in the coronal plane for histological analysis so that each microinjection site was identified. The results showed that the Mmu receptor antisense caused a significant dose dependent fall in free access alcohol drinking within 12 to 24 h following the initial microinjection. This decline often persisted for 1 to 2 days in terms of both g/kg intake and proportion of alcohol to water consumed. Similarly, the D2 receptor ODN likewise induced an intense and significant decline in both g/kg and proportion measures of alcohol intake. Since the corresponding mismatch ODN for both Mmu and D2 receptors exerted no effect on either of these measures of alcohol consumption, the specificity of molecular action of the respective antisense molecules on drinking behavior of the HEP rats was confirmed. Thus, these results provide the first unequivocal evidence that the genes for D2 and Mmu receptors are fundamentally involved in abnormal alcohol drinking in the genetically predisposed individual. Finally, important new anatomical evidence is introduced for the critical role of the NAC in the genetic basis of aberrant drinking of alcohol.
Collapse
Affiliation(s)
- R D Myers
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
18
|
HABER H, DUMAUAL N, BARE DJ, MELZIG MF, McBRIDE WF, LUMENG L, LI TK. The quantitative determination of R- and S-salsolinol in the striatum and adrenal gland of rats selectively bred for disparate alcohol drinking. Addict Biol 1999; 4:181-9. [PMID: 20575784 DOI: 10.1080/13556219971687] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
To explore the hypothesis that endogenous 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol) might be involved in the etiology of alcoholism, its concentration was determined in the striatum and adrenal gland of rats bred selectively for disparate alcohol drinking. The alcohol-naive alcohol-preferring (P) and the high-alcohol-drinking (HAD) lines of rats demonstrated significantly lower striatal and adrenal salsolinol content when compared with the alcohol-non-preferring (NP) and the low-alcohol-drinking (LAD) lines. In the P-line of rats, 4 weeks of free-choice alcohol drinking had no significant effect on striatal salsolinol levels, although adrenal levels of salsolinol were significantly higher. The salsolinol assayed in the striatum of all lines of rats occurred as a racemic mixture of enantiomers that was unchanged following 4 weeks of alcohol exposure. Unlike striatal tissue, the adrenals of alcohol naive P-rats contained significantly more S- than R-salsolinol (ratio S/R = 83/17) and alcohol consumption resulted in the formation of a nearly racemic mixture of enantiomers. These results suggest a role for genetic factors in the formation of endogenous salsolinol and its potential regulation by short-term alcohol intake.
Collapse
|
19
|
West MW, Biggs TA, Tavares E, Lankford MF, Myers RD. Drinking patterns in genetic low-alcohol-drinking (LAD) rats after systemic cyanamide and cerebral injections of THP or 6-OHDA. Alcohol 1998; 15:239-47. [PMID: 9539382 DOI: 10.1016/s0741-8329(97)00126-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A key question related to the role of acetaldehyde and aldehyde adducts in alcoholism concerns their relationship to the genetic mechanisms underlying drinking. Experimentally, the low-alcohol-drinking (LAD) rat represents a standard rodent model having a strong aversion to alcohol. In these experiments, preferences for water vs. alcohol, offered in concentrations from 3% to 30%, were determined over 10 days in adult LAD rats (N = 6 per group). Then a saline vehicle or either 10 or 20 mg/kg of the aldehyde dehydrogenase (AIDH) inhibitor, cyanamide, was injected s.c. twice daily for 3 days. Secondly, either 0.5 or 1.0 microg of tetrahydropapaveroline (THP) was infused i.c.v. twice daily for 3 days in LAD rats (N = 8) and, as a genetic control, THP also was infused identically in Sprague-Dawley (SD) rats (N = 8). The results showed that the lower and higher doses of cyanamide augmented alcohol intakes in 33% and 50% of the LAD rats, respectively, with the patterns of drinking resembling that of genetic high-alcohol-drinking HAD or P rats. Although i.c.v. infusions of THP had little effect on alcohol preference of LAD rats, alcohol drinking was enhanced significantly in the SD rats. In a supplementary study, 200 microg of 6-hydroxydopamine (6-OHDA) also was infused i.c.v. in LAD rats (N = 7) on two consecutive days; no change occurred in the characteristic aversion to alcohol. These findings suggest that in certain individuals, a perturbation in the synthesis of AIDH can modify the genetically based aversion to alcohol, thus precipitating the liability for alcoholism. In that neither THP nor 6-OHDA lesioning exerted any effect on the genetic nondrinking LAD animal suggests that an unknown endogenous factor in the brain must underlie the cyanamide-induced shift to alcohol preference. We conclude that the genetic elements that normally prevent the progression to addictive drinking in most individuals appear to be invariant and irreversible.
Collapse
Affiliation(s)
- M W West
- Department of Pharmacology and Center for Alcohol and Drug Abuse Studies, School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | |
Collapse
|
20
|
Okada T, Shimada S, Sato K, Kotake Y, Kawai H, Ohta S, Tohyama M, Nishimura T. Tetrahydropapaveroline and its derivatives inhibit dopamine uptake through dopamine transporter expressed in HEK293 cells. Neurosci Res 1998; 30:87-90. [PMID: 9572583 DOI: 10.1016/s0168-0102(97)00121-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tetrahydropapaveroline (THP), an isoquinoline alkaloid, has been detected in brain and urine of Parkinsonian patients on L-dopa medication, and in the urine and brain of rats after L-dopa or acute ethanol administration. Since THP is considered to be synthesized from dopamine, it may affect dopaminergic neurons through the reuptake system, i.e. dopamine transporter (DAT). To determine whether THP has affinity for DAT, we generated a cell line which stably expresses DAT and examined whether THP and its derivatives could inhibit [3H]DA uptake in these cells. Ki of THP and three derivatives (1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ), 1-(3',4'-dibydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline (3',4' DHBnTIQ) and 6,7-dihydroxy-1-benzyl-1,2,3,4-tetrahydroisoquinoline (6,7 DHBnTIQ)) for inhibition of [3H]DA uptake were about 41, 35, 23 and 93 microM, respectively, which were similar to the Ki of 1-methyl-4-phenylpyridinium ion (MPP+) (28 microM). These results suggest that THP and its derivatives might be uptaken through DAT and be involved in Parkinson's disease and/or alcohol addiction.
Collapse
Affiliation(s)
- T Okada
- Division of Tracer Kinetics, Biomedical Research Center, Osaka University Medical School, Suita, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hegde VR, Dai P, Ladislaw C, Patel MG, Puar MS, Pachter JA. D4 dopamine receptor-selective compounds from the Chinese plant Phoebe chekiangensis. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00194-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|