1
|
Paul P, Choong C, Heinemann J, Al-Hallaf R, Agha Z, Ganatra S, Abdulrahman L, Sinha A, Kumar H, Nourbakhsh B, Hamad ARA. The Lasting Impact of IL-2: Approaching 50 Years of Advancing Immune Tolerance, Cancer Immunotherapies, and Autoimmune Diseases. Immunol Invest 2025:1-15. [PMID: 40094273 DOI: 10.1080/08820139.2025.2479609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BACKGROUND The discovery of interleukin-2 (IL-2) and its receptor (IL-2R) almost 50 years ago revolutionized immunology, marking a pivotal moment in understanding T cell biology and immune regulation. Initially identified as a T cell growth factor, IL-2 unveiled critical insights into cytokine-mediated immune cell proliferation and differentiation. METHODS This review highlighted the characterization of IL-2R as a multi-chain receptor complex set a precedent for decoding cytokine receptor signaling. The unique interplay between IL-2 and its high-affinity receptor component, IL-2Rα, epitomizes the principle of specificity and efficiency in cytokine signaling, enabling precise immune modulation. Regulatory T cells (Tregs) exploit IL-2Rα high affinity to outcompete effector T cells for IL-2, ensuring immune tolerance and preventing autoimmunity. RESULTS Despite its foundational role in immune homeostasis, leveraging IL-2 for therapeutic purposes has proven challenging. CONCLUSION IL-2-based therapies hold transformative potential in autoimmunity, cancer immunology, and transplantation, yet they remain elusive due to the complex balance between immunostimulatory and immunosuppressive effects. This review explores the milestones in IL-2 biology, its dualistic functions, and the ongoing quest to harness its therapeutic promise.
Collapse
Affiliation(s)
- Prajita Paul
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cherry Choong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Heinemann
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rafid Al-Hallaf
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zainab Agha
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shaan Ganatra
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lina Abdulrahman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Agastya Sinha
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harrsha Kumar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bardia Nourbakhsh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Kuo CY, Huang CY, Chen HM, Chen LC, Kuo ML. Antagonism of CD28 blocks allergic responses in the ovalbumin-induced asthmatic model mice. Int Immunopharmacol 2025; 148:114071. [PMID: 39842142 DOI: 10.1016/j.intimp.2025.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
Allergen-reactive T helper (Th) 2 cells play a pivotal role in initiating asthma pathogenesis. The absence or interruption of CD28 signaling causes significant consequences for T-cell activation, leading to reduced cell proliferation and interleukin (IL)-2 production. A novel compound, Cyn-1324, exhibits a higher binding affinity to CD28 than CD80. Thus, targeting the CD28-CD80 interaction emerges as a promising therapeutic approach for allergic asthma. However, the impact of CD28 antagonists on allergen-induced asthma remains unreported. In this study, we explored the effects of intranasally administered Cyn-1324 on airway inflammation in the ovalbumin (OVA)-induced murine allergic model. The results revealed a significant reduction in airway hyper-responsiveness (AHR), eosinophil recruitment, and cell infiltration in lung tissues, as well as decreased OVA-specific IgE in serum and Th2 cytokine levels in OVA-stimulated lymphocyte cultures. Additionally, we demonstrated the immunosuppressive effects of Cyn-1324 in vitro, including decreased T-cell proliferation and IL-2 secretion, together with increased p27kip1 expression via inhibiting the PI3K signaling pathway. Notably, Cyn-1324 not only inhibited the NF-κB pathway, but also appeared to suppress p38 activation, which is downstream of CD3 signaling, and reduced calcium-induced NFAT protein expression. These findings suggest that Cyn-1324 alleviates allergic responses by inhibiting the CD28-CD80 interaction and holds promise as an immunosuppressive agent for allergic patients.
Collapse
Affiliation(s)
- Chieh-Ying Kuo
- Department of Microbiology and Immunology Graduate Institute of Biomedical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
| | - Chih-Yu Huang
- Department of Microbiology and Immunology Graduate Institute of Biomedical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
| | - Hueih-Min Chen
- Taiwan Semiconductor Research Institute National Applied Research Laboratories Hsinchu Taiwan
| | - Li-Chen Chen
- Division of Allergy Asthma and Rheumatology Department of Pediatrics Chang Gung Memorial Hospital at Linkou Taoyuan Taiwan; Department of Pediatrics New Taipei Municipal TuCheng Hospital New Taipei Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology Graduate Institute of Biomedical Sciences College of Medicine Chang Gung University Taoyuan Taiwan; Division of Allergy Asthma and Rheumatology Department of Pediatrics Chang Gung Memorial Hospital at Linkou Taoyuan Taiwan; Department of Pediatrics New Taipei Municipal TuCheng Hospital New Taipei Taiwan; Research Center for Chinese Herbal Medicine College of Human Ecology Chang Gung University of Science and Technology Taoyuan Taiwan.
| |
Collapse
|
3
|
Toyofuku T, Ishikawa T, Nojima S, Kumanogoh A. Efficacy against Lung Cancer Is Augmented by Combining Aberrantly N-Glycosylated T Cells with a Chimeric Antigen Receptor Targeting Fragile X Mental Retardation 1 Neighbor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:917-927. [PMID: 38214607 PMCID: PMC10876419 DOI: 10.4049/jimmunol.2300618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024]
Abstract
The adaptive transfer of T cells redirected to cancer cells via chimeric Ag receptors (CARs) has produced clinical benefits for the treatment of hematologic diseases. To extend this approach to solid cancer, we screened CARs targeting surface Ags on human lung cancer cells using (to our knowledge) novel expression cloning based on the Ag receptor-induced transcriptional activation of IL-2. Isolated CARs were directed against fragile X mental retardation 1 neighbor (FMR1NB), a cancer-testis Ag that is expressed by malignant cells and adult testicular germ cells. Anti-FMR1NB CAR human T cells demonstrated target-specific cytotoxicity and successfully controlled tumor growth in mouse xenograft models of lung cancer. Furthermore, to protect CAR T cells from immune-inhibitory molecules, which are present in the tumor microenvironment, we introduced anti-FMR1NB CARs into 2-deoxy-glucose (2DG)-treated human T cells. These cells exhibited reduced binding affinity to immune-inhibitory molecules, and the suppressive effects of these molecules were resisted through blockade of the N-glycosylation of their receptors. Anti-FMR1NB CARs in 2DG-treated human T cells augmented target-specific cytotoxicity in vitro and in vivo. Thus, our findings demonstrated the feasibility of eradicating lung cancer cells using 2DG-treated human T cells, which are able to direct tumor-specific FMR1NB via CARs and survive in the suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Toshihiko Toyofuku
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, The Center of Medical Innovation and Translational Research, Osaka University, Suita, Osaka, Japan
| | - Takako Ishikawa
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, The Center of Medical Innovation and Translational Research, Osaka University, Suita, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Jiang Y, Liu J, Chen L, Qian Z, Zhang Y. A promising target for breast cancer: B7-H3. BMC Cancer 2024; 24:182. [PMID: 38326735 PMCID: PMC10848367 DOI: 10.1186/s12885-024-11933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Breast cancer (BC) is the second-leading factor of mortality for women globally and is brought on by a variety of genetic and environmental causes. The conventional treatments for this disease have limitations, making it difficult to improve the lifespan of breast cancer patients. As a result, extensive research has been conducted over the past decade to find innovative solutions to these challenges. Targeting of the antitumor immune response through the immunomodulatory checkpoint protein B7 family has revolutionized cancer treatment and led to intermittent patient responses. B7-H3 has recently received attention because of its significant demodulation and its immunomodulatory effects in many cancers. Uncontrolled B7-H3 expression and a bad outlook are strongly associated, according to a substantial body of cancer research. Numerous studies have shown that BC has significant B7-H3 expression, and B7-H3 induces an immune evasion phenotype, consequently enhancing the survival, proliferation, metastasis, and drug resistance of BC cells. Thus, an innovative target for immunotherapy against BC may be the B7-H3 checkpoint.In this review, we discuss the structure and regulation of B7-H3 and its double costimulatory/coinhibitory function within the framework of cancer and normal physiology. Then we expound the malignant behavior of B7-H3 in BC and its role in the tumor microenvironment (TME) and finally focus on targeted drugs against B7-H3 that have opened new therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China.
| |
Collapse
|
5
|
Salhotra A, Falk L, Park G, Sandhu K, Ali H, Modi B, Hui S, Nakamura R. A review of low dose interleukin-2 therapy in management of chronic graft-versus-host-disease. Expert Rev Clin Immunol 2024; 20:169-184. [PMID: 37921226 DOI: 10.1080/1744666x.2023.2279188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Patients with chronic graft versus host disease (cGVHD) have low circulating regulatory T cells (Tregs). Interleukin-2(IL-2) is a growth factor for Tregs, and clinical trials have explored its use in cGVHD patients. AREAS COVERED Here we will discuss the biology of IL-2, its rationale for use and results of clinical trials in cGVHD. We also describe its mechanisms of action and alteration in gene expression in T-cell subsets after treatment with low dose IL-2 and photopheresis. EXPERT OPINION Clinical trials using Low dose IL-2 have been done at single centers in small patient series. The majority of the clinical responses seen with IL-2 in cGVHD are classified as partial responses and efficacy as a single agent is limited. Compared to currently approved oral therapies, it has to be administered subcutaneously and requires specialized processing for compounding and storage limiting its widespread use. Its use is associated with constitutional symptoms and local injection site reactions. Local reactions can be easily managed by supportive care practices like rotation of injection sites and premeditations, constitutional symptoms resolve with, dose reduction (25-50%) allowing for continued therapy. Additional studies are needed to define optimal combination strategies with approved agents. Longer acting formulations of IL-2 that require less frequent dosing may also improve patient compliance.
Collapse
Affiliation(s)
- Amandeep Salhotra
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| | - Leah Falk
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| | - Gabriel Park
- Department of Pharmacy, City of Hope National Medical Center, Duarte, CA, USA
| | - Karamjeet Sandhu
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| | - Haris Ali
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| | - Badri Modi
- Department of Surgery, Division of Dermatology, City of Hope National Medical Center, Duarte, CA, USA
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, CA, USA
| | - Ryotaro Nakamura
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| |
Collapse
|
6
|
Miranda S, Vermeesen R, Radstake WE, Parisi A, Ivanova A, Baatout S, Tabury K, Baselet B. Lost in Space? Unmasking the T Cell Reaction to Simulated Space Stressors. Int J Mol Sci 2023; 24:16943. [PMID: 38069265 PMCID: PMC10707245 DOI: 10.3390/ijms242316943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The space environment will expose astronauts to stressors like ionizing radiation, altered gravity fields and elevated cortisol levels, which pose a health risk. Understanding how the interplay between these stressors changes T cells' response is important to better characterize space-related immune dysfunction. We have exposed stimulated Jurkat cells to simulated space stressors (1 Gy, carbon ions/1 Gy photons, 1 µM hydrocortisone (HC), Mars, moon, and microgravity) in a single or combined manner. Pro-inflammatory cytokine IL-2 was measured in the supernatant of Jurkat cells and at the mRNA level. Results show that alone, HC, Mars gravity and microgravity significantly decrease IL-2 presence in the supernatant. 1 Gy carbon ion irradiation showed a smaller impact on IL-2 levels than photon irradiation. Combining exposure to different simulated space stressors seems to have less immunosuppressive effects. Gene expression was less impacted at the time-point collected. These findings showcase a complex T cell response to different conditions and suggest the importance of elevated cortisol levels in the context of space flight, also highlighting the need to use simulated partial gravity technologies to better understand the immune system's response to the space environment.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
| | - Wilhelmina E. Radstake
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Alessio Parisi
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Anna Ivanova
- Data Science Institute (DSI), I-BioStat University of Hasselt, 3590 Hasselt, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
| |
Collapse
|
7
|
Matthe DM, Dinkel M, Schmid B, Vogler T, Neurath MF, Poeck H, Neufert C, Büttner-Herold M, Hildner K. Novel T cell/organoid culture system allows ex vivo modeling of intestinal graft-versus-host disease. Front Immunol 2023; 14:1253514. [PMID: 37705975 PMCID: PMC10495981 DOI: 10.3389/fimmu.2023.1253514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Acute graft-versus-host disease (GvHD) remains the biggest clinical challenge and prognosis-determining complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Donor T cells are acceptedly key mediators of alloreactivity against host tissues and here especially the gut. In support of previous studies, we found that the intestinal intra-epithelial lymphocyte (IEL) compartment was dynamically regulated in the course of MHC class I full mismatch allo-HSCT. However, while intestinal epithelial cell (IEC) damage endangers the integrity of the intestinal barrier and is a core signature of intestinal GvHD, the question whether and to what degree IELs are contributing to IEC dysregulation is poorly understood. To study lymphoepithelial interaction, we employed a novel ex vivo T cell/organoid co-culture model system. Here, allogeneic intra-epithelial T cells were superior in inducing IEC death compared to syngeneic IEL and allogeneic non-IEL T cells. The ability to induce IEC death was predominately confined to TCRβ+ T cells and was executed in a largely IFNγ-dependent manner. Alloreactivity required a diverse T cell receptor (TCR) repertoire since IELs genetically modified to express a TCR restricted to a single, non-endogenous antigen failed to mediate IEC pathology. Interestingly, minor histocompatibility antigen (miHA) mismatch was sufficient to elicit IEL-driven IEC damage. Finally, advanced live cell imaging analyses uncovered that alloreactive IELs patrolled smaller areas within intestinal organoids compared to syngeneic controls, indicating their unique migratory properties within allogeneic IECs. Together, we provide here experimental evidence for the utility of a co-culture system to model the cellular and molecular characteristics of the crosstalk between IELs and IEC in an allogeneic setting ex vivo. In the light of the emerging concept of dysregulated immune-epithelial homeostasis as a core aspect of intestinal GvHD, this approach represents a novel experimental system to e.g. screen therapeutic strategies for their potential to normalize T cell/IEC- interaction. Hence, analyses in pre-clinical in vivo allo-HSCT model systems may be restricted to hereby positively selected, promising approaches.
Collapse
Affiliation(s)
- Diana M. Matthe
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Martin Dinkel
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen (OICE), University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tina Vogler
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Hendrik Poeck
- Clinic and Polyclinic for Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Clemens Neufert
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and University Hospital, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Pham D, Silberger DJ, Nguyen KN, Gao M, Weaver CT, Hatton RD. Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J 2023; 42:e109803. [PMID: 36917143 PMCID: PMC10106990 DOI: 10.15252/embj.2021109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
Although the activator protein-1 (AP-1) factor Batf is required for Th17 cell development, its mechanisms of action to underpin the Th17 program are incompletely understood. Here, we find that Batf ensures Th17 cell identity in part by restricting alternative gene programs through its actions to restrain IL-2 expression and IL-2-induced Stat5 activation. This, in turn, limits Stat5-dependent recruitment of Ets1-Runx1 factors to Th1- and Treg-cell-specific gene loci. Thus, in addition to pioneering regulatory elements in Th17-specific loci, Batf acts indirectly to inhibit the assembly of a Stat5-Ets1-Runx1 complex that enhances the transcription of Th1- and Treg-cell-specific genes. These findings unveil an important role for Stat5-Ets1-Runx1 interactions in transcriptional networks that define alternate T cell fates and indicate that Batf plays an indispensable role in both inducing and maintaining the Th17 program through its actions to regulate the competing actions of Stat5-assembled enhanceosomes that promote Th1- and Treg-cell developmental programs.
Collapse
Affiliation(s)
- Duy Pham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel J Silberger
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kim N Nguyen
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Min Gao
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamALUSA
| | - Casey T Weaver
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Robin D Hatton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
9
|
Lee S, Khalil AS, Wong WW. Recent progress of gene circuit designs in immune cell therapies. Cell Syst 2022; 13:864-873. [PMID: 36395726 PMCID: PMC9681026 DOI: 10.1016/j.cels.2022.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
The success of chimeric antigen receptor (CAR) T cell therapy against hematological cancers has convincingly demonstrated the potential of using genetically engineered cells as therapeutic agents. Although much progress has been achieved in cell therapy, more beneficial capabilities have yet to be fully explored. One of the unique advantages afforded by cell therapies is the possibility to implement genetic control circuits, which enables diverse signal sensing and logical processing for optimal response in the complex tumor microenvironment. In this perspective, we will first outline design considerations for cell therapy control circuits that address clinical demands. We will compare and contrast key design features in some of the latest control circuits developments and conclude by discussing potential future directions.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - Wilson W Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Haq RIU, Parray OR, Nazir QUA, Bhat RA, Shah SA, Kawoosa MS, Rabaan AA, Aljeldah M, Al Shammari BR, Almogbel MS, Alharbi N, Alrashoudi R, Sabour AA, Alaeq RA, Alshiekheid MA, Alshamrani SA, Albutti A, Alwashmi AS, Dhama K, Yatoo MI. Immune and Oxidative Response against Sonicated Antigen of Mycoplasma capricolum subspecies capripneumonia-A Causative Agent of Contagious Caprine Pleuropneumonia. Microorganisms 2022; 10:microorganisms10081634. [PMID: 36014052 PMCID: PMC9414976 DOI: 10.3390/microorganisms10081634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccines are vital for prevention and control of mycoplasma diseases. The exploration of a vaccine candidate for the development of a vaccine is imperative. The present study envisages the evaluation of immune and oxidative response against an adjuvanted, sonicated antigen of Mycoplasma capricolum subsp. capripneumonia in male Angora rabbits (1 year old, 2 kg) divided in four groups, each having six animals. Group 1 was the healthy control and received 1 mL PBS via subcutaneous route. Group 2 was administered 1 mL of saponin-adjuvanted and -sonicated antigen, Group 3 was given 1 mL of montanide ISA 50-adjuvanted and-sonicated antigen, and Group 4 was given 1 mL of standard vaccine via subcutaneous route. Animals were evaluated for cellular and humoral immune response and oxidative parameters at 0, 7, 14, 21, and 28 days of the study. Total leukocytic, neutrophilic, and basophilic counts showed a significant (p < 0.05) increase in vaccinated groups compared to the healthy group on most of the intervals. TNF-α levels were significantly (p < 0.05) higher in the Group 2 than the Group 1 at all the time intervals and more comparable to Group 4 than Group 3. IL-10 levels were significantly (p < 0.05) higher in vaccinated groups compared to the healthy group on days 14, 21, and 28, but were lower in Group 3 than in Group 2 and Group 4. More hypersensitivity as inflammation and histopathological cellular infiltration in the ear was produced in Group 2 and Group 4 than in Group 3. IgG levels were significantly (p < 0.05) higher in Group 2 and Group 4 than in Group 3 on days 14 and 21. Antibody titers were comparatively higher in Group 4, followed by Group 2 and 3, than Group 1. Significantly (p < 0.05) higher oxidant and lower antioxidant values were noted in Group 2 and 4 compared to Group 3 and Group 1 on most of the intervals. The TLC and antibody titer showed increasing trend throughout the trial, whereas TNF-α, IgG, L, M and E started decreasing from day 14, and IL-10, N and B started decreasing from day 21. This study concludes that the saponin-adjuvanted and-sonicated antigen induces comparatively higher immune response than montanide but is associated with oxidative and inflammatory reactions.
Collapse
Affiliation(s)
- Rather Izhar Ul Haq
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
| | - Oveas Rafiq Parray
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
| | - Qurat Ul Ain Nazir
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
| | - Riyaz Ahmed Bhat
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
| | - Showkat Ahmad Shah
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
| | - Majid Shafi Kawoosa
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Mohammed S. Almogbel
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 4030, Saudi Arabia
| | - Nada Alharbi
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Reem Alrashoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11461, Saudi Arabia
| | - Amal A. Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rana A. Alaeq
- Department of Medical Laboratories Technology, Faculty of Applied Medical Science, Taibah University, Al Madinah Al Munawarh 42353, Saudi Arabia
| | - Maha A. Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S.S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Mohd. Iqbal Yatoo
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
- Correspondence: ; Tel.: +91-9419598775
| |
Collapse
|
11
|
Li H, Boulougoura A, Endo Y, Tsokos GC. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun 2022; 132:102870. [PMID: 35872102 DOI: 10.1016/j.jaut.2022.102870] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of immune tolerance and sustained production of autoantibodies. Multiple and profound T cell abnormalities in SLE are intertwined with disease expression. Both numerical and functional disturbances have been reported in main CD4+ T helper cell subsets including Th1, Th2, Th17, regulatory, and follicular helper cells. SLE CD4+ T cells are known to provide help to B cells, produce excessive IL-17 but insufficient IL-2, and infiltrate tissues. In the absence of sufficient amounts of IL-2, regulatory T cells, do not function properly to constrain inflammation. A complicated series of early signaling defects and aberrant activation of kinases and phosphatases result in complex cell phenotypes by altering the metabolic profile and the epigenetic landscape. All main metabolic pathways including glycolysis, glutaminolysis and oxidative phosphorylation are altered in T cells from lupus prone mice and patients with SLE. SLE CD8+ cytotoxic T cells display reduced cytolytic activity which accounts for higher rates of infection and the sustenance of autoimmunity. Further, CD8+ T cells in the context of rheumatic diseases lose the expression of CD8, acquire IL-17+CD4-CD8- double negative T (DNT) cell phenotype and infiltrate tissues. Herein we present an update on these T cell abnormalities along with underlying mechanisms and discuss how these advances can be exploited therapeutically. Novel strategies to correct these aberrations in T cells show promise for SLE treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Afroditi Boulougoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yushiro Endo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Li T, Tolksdorf F, Sung W, Sato H, Eppler FJ, Hotta M, Kolanus W, Takeoka S. Arginine-based cationic liposomes accelerate T cell activation and differentiation in vitro. Int J Pharm 2022; 623:121917. [PMID: 35714814 DOI: 10.1016/j.ijpharm.2022.121917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/22/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
Cationic liposomes are versatile lipid nanocarriers to improve the pharmacological properties of drug payloads. Recent advantages include the application of their intrinsic immunostimulatory effects to enhance immune activation. Herein, we report for the first time the structural effect of cationic lipids in promoting T cell activation and differentiation in vitro. Two types of cationic liposomes R3C14 and R5C14 were prepared from single type of lipids Arg-C3-Clu2C14 or Arg-C5-Clu2C14, which bear arginine head group and ditetradecyl tails but vary in the carbon number of the spacer in between. Murine CD8 or CD4 T cells were pretreated with 50 μM of each type of liposomes for 2 h, followed by stimulation with anti-CD3/CD28 antibodies for 24 h. In comparison to liposome-untreated T cells, R5C14-pretreatment induced a robust T cell activation (IL-2, CD25+) and differentiation into effector cells (CD44high, CD62Llow), whereas R3C14 did not show comparable effect. Furthermore, a weak activation of nuclear factor of activated T cells (NFAT) was detected in Jurkat-Lucia NFAT cells (InvivoGen), suggesting a potential signaling pathway for the liposomal effect. Although R5C14 liposomes did not activate T cells without subsequent CD3/CD28 stimulation, this study implied a recessive effect of some cationic adjuvant in priming T cells to enhance their responsiveness to antigens.
Collapse
Affiliation(s)
- Tianshu Li
- Institute for Advanced Research of Biosystem Dynamics, Research Institute for Science and Engineering, Waseda University, Tokyo, Japan.
| | - Felix Tolksdorf
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Wenhan Sung
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Hiroto Sato
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Felix J Eppler
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Morihiro Hotta
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Waldemar Kolanus
- Molecular Immunology and Cell Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Shinji Takeoka
- Institute for Advanced Research of Biosystem Dynamics, Research Institute for Science and Engineering, Waseda University, Tokyo, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan.
| |
Collapse
|
13
|
NFAT Factors Are Dispensable for the Development but Are Critical for the Maintenance of Foxp3+ Regulatory T Cells. Cells 2022; 11:cells11091397. [PMID: 35563702 PMCID: PMC9104130 DOI: 10.3390/cells11091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
The transcription factors of the nuclear factor of activated T cell (NFAT) family play a crucial role in multiple aspects of T cell function. It has recently been reported that NFATs play an important role in the suppressive function of CD4+CD25+Foxp3+ regulatory T (Treg) cells. In this study, we have investigated the role of NFATs in the thymic development of Treg cells in mice. We show that NFAT factors are dispensable for the development of Foxp3+ Treg cells in the thymus but are critical for the maintenance of both the phenotype and survival of Treg cells in the thymus as well as in peripheral lymphoid organs. Specifically, the homeostasis of CD4+CD25+Foxp3+ but not the CD4+CD25−Foxp3+ fraction is severely perturbed when NFAT signaling is blocked, leading to a strongly reduced Treg population. We underscored this intriguing effect of NFAT on CD4+CD25+Foxp3+ Treg cells to the disruption of survival signals provided by interleukin 2 (IL-2). Accordingly, blocking Treg cell death by abolishing the activity of pro-apoptotic Bcl-2 family member Bim, compensated for the survival defects induced due to a lack of NFAT-IL-2-IL-2R signaling. Inhibition of NFAT activity led to a strong reduction in the number of Foxp3+ Treg cells; however, it did not influence the level of Foxp3 expression on an individual cell basis. In addition, we show a differential effect of IL-2 and IL-7 signaling on Foxp3+ Treg versus CD4+CD25− T cell development, again underlining the dispensability of NFAT signaling in the development, but not in the maintenance of Foxp3+ Treg cells.
Collapse
|
14
|
Bruscoli S, Riccardi C, Ronchetti S. GILZ as a Regulator of Cell Fate and Inflammation. Cells 2021; 11:cells11010122. [PMID: 35011684 PMCID: PMC8750894 DOI: 10.3390/cells11010122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
One of the human body’s initial responses to stress is the adrenal response, involving the release of mediators that include adrenaline and glucocorticoids (GC). GC are involved in controlling the inflammatory and immune response mechanisms. Of these, the molecular mechanisms that contribute to anti-inflammatory effects warrant more investigation. Previously, we found that GC induced GILZ (glucocorticoid-induced leucine zipper) quickly and widely in thymocytes, T lymphocytes, and other leukocytes. GILZ regulates the activation of cells and is an essential mediator of endogenous GC and the majority of GC anti-inflammatory effects. Further research in this regard could lead to the development of an anti-inflammatory treatment that yields the therapeutic outcomes of GC but without their characteristic adverse effects. Here, we examine the mechanisms of GILZ in the context of GC. Specifically, we review its role in the proliferation and differentiation of cells and in apoptosis. We also examine its involvement in immune cells (macrophages, neutrophils, dendritic cells, T and B lymphocytes), and in non-immune cells, including cancer cells. In conclusion, GILZ is an anti-inflammatory molecule that could mediate the immunomodulatory activities of GC, with less adverse effects, and could be a target molecule for designing new therapies to treat inflammatory diseases.
Collapse
|
15
|
Hierarchy of signaling thresholds downstream of the T cell receptor and the Tec kinase ITK. Proc Natl Acad Sci U S A 2021; 118:2025825118. [PMID: 34452995 DOI: 10.1073/pnas.2025825118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The strength of peptide:MHC interactions with the T cell receptor (TCR) is correlated with the time to first cell division, the relative scale of the effector cell response, and the graded expression of activation-associated proteins like IRF4. To regulate T cell activation programming, the TCR and the TCR proximal interleukin-2-inducible T cell kinase (ITK) simultaneously trigger many biochemically separate signaling cascades. T cells lacking ITK exhibit selective impairments in effector T cell responses after activation, but under the strongest signaling conditions, ITK activity is dispensable. To gain insight into whether TCR signal strength and ITK activity tune observed graded gene expression through the unequal activation of distinct signaling pathways, we examined Erk1/2 phosphorylation or nuclear factor of activated T cells (NFAT) and nuclear factor (NF)-κB translocation in naïve OT-I CD8+ cell nuclei. We observed the consistent digital activation of NFAT1 and Erk1/2, but NF-κB displayed dynamic, graded activation in response to variation in TCR signal strength, tunable by treatment with an ITK inhibitor. Inhibitor-treated cells showed the dampened induction of AP-1 factors Fos and Fosb, NF-κB response gene transcripts, and survival factor Il2 transcripts. ATAC sequencing analysis also revealed that genomic regions most sensitive to ITK inhibition were enriched for NF-κB and AP-1 motifs. Specific inhibition of NF-κB during peptide stimulation tuned the expression of early gene products like c-Fos. Together, these data indicate a key role for ITK in orchestrating the optimal activation of separate TCR downstream pathways, specifically aiding NF-κB activation. More broadly, we revealed a mechanism by which variations in TCR signal strength can produce patterns of graded gene expression in activated T cells.
Collapse
|
16
|
Luo Y, Jiang N, May HI, Luo X, Ferdous A, Schiattarella GG, Chen G, Li Q, Li C, Rothermel BA, Jiang D, Lavandero S, Gillette TG, Hill JA. Cooperative Binding of ETS2 and NFAT Links Erk1/2 and Calcineurin Signaling in the Pathogenesis of Cardiac Hypertrophy. Circulation 2021; 144:34-51. [PMID: 33821668 PMCID: PMC8247545 DOI: 10.1161/circulationaha.120.052384] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac hypertrophy is an independent risk factor for heart failure, a leading cause of morbidity and mortality globally. The calcineurin/NFAT (nuclear factor of activated T cells) pathway and the MAPK (mitogen-activated protein kinase)/Erk (extracellular signal-regulated kinase) pathway contribute to the pathogenesis of cardiac hypertrophy as an interdependent network of signaling cascades. How these pathways interact remains unclear and few direct targets responsible for the prohypertrophic role of NFAT have been described. METHODS By engineering cardiomyocyte-specific ETS2 (a member of the E26 transformation-specific sequence [ETS] domain family) knockout mice, we investigated the role of ETS2 in cardiac hypertrophy. Primary cardiomyocytes were used to evaluate ETS2 function in cell growth. RESULTS ETS2 is phosphorylated and activated by Erk1/2 on hypertrophic stimulation in both mouse (n=3) and human heart samples (n=8 to 19). Conditional deletion of ETS2 in mouse cardiomyocytes protects against pressure overload-induced cardiac hypertrophy (n=6 to 11). Silencing of ETS2 in the hearts of calcineurin transgenic mice significantly attenuates hypertrophic growth and contractile dysfunction (n=8). As a transcription factor, ETS2 is capable of binding to the promoters of hypertrophic marker genes, such as ANP, BNP, and Rcan1.4 (n=4). We report that ETS2 forms a complex with NFAT to stimulate transcriptional activity through increased NFAT binding to the promoters of at least 2 hypertrophy-stimulated genes: Rcan1.4 and microRNA-223 (=n4 to 6). Suppression of microRNA-223 in cardiomyocytes inhibits calcineurin-mediated cardiac hypertrophy (n=6), revealing microRNA-223 as a novel prohypertrophic target of the calcineurin/NFAT and Erk1/2-ETS2 pathways. CONCLUSIONS Our findings point to a critical role for ETS2 in calcineurin/NFAT pathway-driven cardiac hypertrophy and unveil a previously unknown molecular connection between the Erk1/2 activation of ETS2 and expression of NFAT/ETS2 target genes.
Collapse
Affiliation(s)
- Yuxuan Luo
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Nan Jiang
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Herman I. May
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Xiang Luo
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (D.J.)
- Advanced Center for Chronic Diseases, Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile (S.L.)
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, Chile (S.L.)
| | - Anwarul Ferdous
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Gabriele G. Schiattarella
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Guihao Chen
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Qinfeng Li
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Chao Li
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Beverly A. Rothermel
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Dingsheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (D.J.)
| | - Sergio Lavandero
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Advanced Center for Chronic Diseases, Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile (S.L.)
- Corporacion Centro de Estudios Científicos de las Enfermedades Cronicas (CECEC), Santiago, Chile (S.L.)
| | - Thomas G. Gillette
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Joseph A. Hill
- Departments of Internal Medicine, Cardiology Division (Y.L., N.J., H.I.M., X.L., A.F., G.G.S., G.C., Q.L., C.L., B.A.R., S.L., T.G.G., J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
17
|
Rothenberg EV. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys J 2021; 120:4162-4181. [PMID: 33838137 PMCID: PMC8516641 DOI: 10.1016/j.bpj.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are the major agents that read the regulatory sequence information in the genome to initiate changes in expression of specific genes, both in development and in physiological activation responses. Their actions depend on site-specific DNA binding and are largely guided by their individual DNA target sequence specificities. However, their action is far more conditional in a real developmental context than would be expected for simple reading of local genomic DNA sequence, which is common to all cells in the organism. They are constrained by slow-changing chromatin states and by interactions with other transcription factors, which affect their occupancy patterns of potential sites across the genome. These mechanisms lead to emergent discontinuities in function even for transcription factors with minimally changing expression. This is well revealed by diverse lineages of blood cells developing throughout life from hematopoietic stem cells, which use overlapping combinations of transcription factors to drive strongly divergent gene regulation programs. Here, using development of T lymphocytes from hematopoietic multipotent progenitor cells as a focus, recent evidence is reviewed on how binding specificity and dynamics, transcription factor cooperativity, and chromatin state changes impact the effective regulatory functions of key transcription factors including PU.1, Runx1, Notch-RBPJ, and Bcl11b.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
18
|
A Functional Screening Strategy for Engineering Chimeric Antigen Receptors with Reduced On-Target, Off-Tumor Activation. Mol Ther 2020; 28:2564-2576. [PMID: 32827460 PMCID: PMC7704745 DOI: 10.1016/j.ymthe.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023] Open
Abstract
In recent years, chimeric antigen receptor (CAR) T cell cancer immunotherapies have advanced substantially in the clinic. However, challenges related to safety persist; one major concern occurs when CARs trigger a response to antigen present on healthy cells (on-target, off-tumor response). A strategy to ameliorate this relies on the complex relationship between receptor affinity and signaling, such that one can engineer a CAR that is only activated by tumor cells expressing high antigen levels. Here, we developed a CAR T cell display platform with stable genomic expression and rapid functional screening based on interleukin-2 signaling. Starting with a CAR with high affinity toward its target antigen, we combined CRISPR-Cas9 genome editing and deep mutational scanning to generate a library of antigen-binding domain variants. This library was subjected to multiple rounds of selection based on either antigen binding or cell signaling. Deep sequencing of the resulting libraries and a comparative analysis revealed the enrichment and depletion of specific variants from which we selected CARs that were selectively activated by tumor cells based on antigen expression levels. Our platform demonstrates how directed evolution based on functional screening and deep sequencing-guided selection can be combined to enhance the selectivity and safety of CARs.
Collapse
|
19
|
IMMUNOMEDIATOR GENE TRANSCRIPTION PROFILING IN BELUGA WHALE ( DELPHINAPTERUS LEUCAS) CLINICAL CASES. J Zoo Wildl Med 2020; 51:334-349. [PMID: 32549563 DOI: 10.1638/2018-0225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 11/21/2022] Open
Abstract
There is an unmet need for specific diagnostics of immune perturbations and inflammation in beluga whale (Delphinapterus leucas) clinical care. Quantitative real-time polymerase chain reaction (qPCR) has been used to measure immunomediator gene transcription in beluga whales. The study hypothesis was that a qPCR-based immunomediator assay would supplement routine clinical data with specific and sensitive information on immune status. Two beluga whale clinical cases provided an opportunity to test this hypothesis: a whale with a skin laceration and a whale with gastrointestinal inflammation. Mitogen-stimulated immunomediator gene transcription (MSIGT) was compared between the cases and healthy contact whales. In both case studies, mitogens increased transcription of IL1B, PTGS2 (Cox-2), TNF, HIF1A, and IL2 but decreased IL10 transcription in peripheral blood mononuclear cells (PBMC) from the abnormal whale over the control. Correlations were identified between most immunomediators tested and one or more standard blood clinical values. Considering all 15 immunomediators tested, the whale with gastrointestinal inflammation had a more unique MSIGT signature than the whale with a laceration. These results support further elucidation of beluga whale PBMC cytokine profiles for use as immune biomarkers.
Collapse
|
20
|
Aki A, Tanaka K, Nagaoka N, Kimura T, Baba D, Onodera Y, Wada T, Maeda H, Nakanishi T, Agatsuma T, Komai T. Anti-ORAI1 antibody DS-2741a, a specific CRAC channel blocker, shows ideal therapeutic profiles for allergic disease via suppression of aberrant T-cell and mast cell activation. FASEB Bioadv 2020; 2:478-488. [PMID: 32821879 PMCID: PMC7429349 DOI: 10.1096/fba.2020-00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/07/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
ORAI1 constitutes the pore-forming subunit of the calcium release-activated calcium (CRAC) channel, which is responsible for store-operated calcium entry into lymphocytes. It is known that ORAI1 is essential for the activation of T cells and mast cells and is considered to be a potent therapeutic target for autoimmune and allergic diseases. Here, we obtained a new humanized antibody, DS-2741a, that inhibits ORAI1 function. DS-2741a bound to human-ORAI1 with high affinity and without cross-reactivity to rodent Orai1. DS-2741a demonstrated suppression of CRAC-mediated human and mouse T-cell activation and mast cell degranulation in human ORAI1 knock-in mice. Furthermore, DS-2741a ameliorated house dust mite antigen-induced dermatitis in the human ORAI1 knock-in mouse. Taken together, DS-2741a inhibited T-cell and mast cell functions, thus improving skin inflammation in animal models of atopic dermatitis and reinforcing the need for investigation of DS-2741a for the treatment of allergic diseases in a clinical setting.
Collapse
Affiliation(s)
- Anri Aki
- R&D DivisionSpecialty Medicine Research Laboratories I, Research FunctionDaiichi Sankyo Co., Ltd.TokyoJapan
| | - Kento Tanaka
- Oncology FunctionR&D DivisionOncology Research Laboratories IDaiichi Sankyo Co., Ltd.TokyoJapan
| | - Nobumi Nagaoka
- Biologics DivisionModality Research LaboratoriesDaiichi Sankyo Co., Ltd.TokyoJapan
| | - Takako Kimura
- Structure‐Based Drug Design GroupOrganic Synthesis DepartmentDaiichi Sankyo RD Novare Co., Ltd.TokyoJapan
| | - Daichi Baba
- Quality & Safety Management DivisionPost‐Marketing Regulatory Affairs DepartmentDaiichi Sankyo Co., Ltd.TokyoJapan
| | - Yoshikuni Onodera
- Vaccine Research LaboratoriesBiologics DivisionDaiichi Sankyo Co., Ltd.TokyoJapan
| | - Teiji Wada
- Oncology FunctionR&D DivisionOncology Research Laboratories IDaiichi Sankyo Co., Ltd.TokyoJapan
| | - Hiroaki Maeda
- R&D DivisionR&D Planning & Management DepartmentDaiichi Sankyo Co., Ltd.TokyoJapan
| | - Toshiyuki Nakanishi
- R&D DivisionR&D Planning & Management DepartmentDaiichi Sankyo Co., Ltd.TokyoJapan
| | - Toshinori Agatsuma
- Oncology FunctionR&D DivisionOncology Research Laboratories IDaiichi Sankyo Co., Ltd.TokyoJapan
| | - Tomoaki Komai
- R&D DivisionR&D General Affairs & Human Resources DepartmentDaiichi Sankyo Co., Ltd.TokyoJapan
| |
Collapse
|
21
|
Pol JG, Caudana P, Paillet J, Piaggio E, Kroemer G. Effects of interleukin-2 in immunostimulation and immunosuppression. J Exp Med 2020; 217:jem.20191247. [PMID: 31611250 PMCID: PMC7037245 DOI: 10.1084/jem.20191247] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Distinctions in the nature and spatiotemporal expression of IL-2R subunits on conventional versus regulatory T cells are exploited to manipulate IL-2 immunomodulatory effects. Particularly, low-dose IL-2 and some recombinant derivatives are being evaluated to enhance/inhibit immune responses for therapeutic purposes. Historically, interleukin-2 (IL-2) was first described as an immunostimulatory factor that supports the expansion of activated effector T cells. A layer of sophistication arose when regulatory CD4+ T lymphocytes (Tregs) were shown to require IL-2 for their development, homeostasis, and immunosuppressive functions. Fundamental distinctions in the nature and spatiotemporal expression patterns of IL-2 receptor subunits on naive/memory/effector T cells versus Tregs are now being exploited to manipulate the immunomodulatory effects of IL-2 for therapeutic purposes. Although high-dose IL-2 administration has yielded discrete clinical responses, low-dose IL-2 as well as innovative strategies based on IL-2 derivatives, including “muteins,” immunocomplexes, and immunocytokines, are being explored to therapeutically enhance or inhibit the immune response.
Collapse
Affiliation(s)
- Jonathan G Pol
- Université de Paris, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1138, Paris, France.,Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pamela Caudana
- Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), U932, Paris, France
| | - Juliette Paillet
- Université de Paris, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1138, Paris, France.,Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Eliane Piaggio
- Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Guido Kroemer
- Université de Paris, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1138, Paris, France.,Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance publique - Hôpitaux de Paris (AP-HP), Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Glycogen Synthase Kinase-3β Facilitates Cytokine Production in 12-O-Tetradecanoylphorbol-13-Acetate/Ionomycin-Activated Human CD4 + T Lymphocytes. Cells 2020; 9:cells9061424. [PMID: 32521784 PMCID: PMC7348852 DOI: 10.3390/cells9061424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/02/2022] Open
Abstract
Cytokines are the major immune regulators secreted from activated CD4+ T lymphocytes that activate adaptive immunity to eradicate nonself cells, including pathogens, tumors, and allografts. The regulation of glycogen synthase kinase (GSK)-3β, a serine/threonine kinase, controls cytokine production by regulating transcription factors. The artificial in vitro activation of CD4+ T lymphocytes by a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin, the so-called T/I model, led to an inducible production of cytokines, such as interferon-γ, tumor necrosis factor-α, and interleukin-2. As demonstrated by the approaches of pharmacological targeting and genetic knockdown of GSK-3β, T/I treatment effectively caused GSK-3β activation followed by GSK-3β-regulated cytokine production. In contrast, pharmacological inhibition of the proline-rich tyrosine kinase 2 and calcineurin signaling pathways blocked cytokine production, probably by deactivating GSK-3β. The blockade of GSK-3β led to the inhibition of the nuclear translocation of T-bet, a vital transcription factor of T lymphocyte cytokines. In a mouse model, treatment with the GSK-3β inhibitor 6-bromoindirubin-3’-oxime significantly inhibited T/I-induced mortality and serum cytokine levels. In summary, targeting GSK-3β effectively inhibits CD4+ T lymphocyte activation and cytokine production.
Collapse
|
23
|
Chen Y, Guan SY, Deng J, Yang H, Xu W, Xu S, Shao M, Gao X, Xu S, Shuai Z, Pan F. B7-H3: A promising therapeutic target for autoimmune diseases. Cell Immunol 2020; 352:104077. [PMID: 32113615 DOI: 10.1016/j.cellimm.2020.104077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/02/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
B7-H3 as a newly identified costimulatory molecule that belongs to B7 ligand family, is broadly expressed in both lymphoid and non-lymphoid tissues. The overexpression of B7-H3 has been verified to be correlated with the poor prognosis and poor clinical outcome of several human cancers. In recent years, researchers reveal that B7-H3 is involved in the pathogenesis of various autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), Sjögren's syndrome (SS), ankylosing spondylitis (AS), etc. In this review, we will discuss the biological function of B7-H3 and summarize the progress made over past years regarding its role in the occurrence and development of autoimmune diseases. The insights gained from these findings could serve as the foundation for future therapies of these diseases.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shi-Yang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022,China
| | - Wei Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Ming Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022,China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022,China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
24
|
Miao Z, Zhao W, Guo L, Wang S, Zhang J. Effects of dietary supplementation of chitosan on immune function in growing Huoyan geese. Poult Sci 2020; 99:95-100. [PMID: 32416857 PMCID: PMC7587681 DOI: 10.3382/ps/pez565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 01/14/2023] Open
Abstract
This present experiment was performed to investigate the effects of dietary supplementation of chitosan (CS) on immune function in growing Huoyan geese. A total of 320 28-day-old healthy growing Huoyan geese (sex balance) with similar body weight were randomly allotted into control, CS100, CS200, and CS400 groups. Each group includes 4 replicates with 20 geese per replicate, and the feeding trial lasted for 4 wk. The 4 diets contained 0, 100, 200, and 400 mg CS per kg feed, respectively. The results showed that compared with the control group, the relative weight of thymus, serum concentrations of IGF-I, INS, GH, T3, T4, IgM, IgG, IgA, complement C3, and IL-2 in CS200 group were significantly higher at both 42 and 56 D of age, respectively (P < 0.05). In addition, relative weight of bursa of fabricius (BF), spleen, serum complement C4, and TNF-a concentrations in CS200 group were higher at 56 D of age (P < 0.05), no differences were observed at 42 D of age (P > 0.05). These results indicated that addition of 200 mg/kg CS enhanced immune organs weight, serum concentrations of immunoglobulins, complements, hormone, as well as cytokines, and improved immune function of growing Huoyan geese.
Collapse
Affiliation(s)
- Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| | - Weixin Zhao
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Liping Guo
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Shan Wang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan 453003, PR China
| |
Collapse
|
25
|
Buonocore F, Gerdol M, Pallavicini A, Stocchi V, Randelli E, Belardinelli MC, Miccoli A, Saraceni PR, Secombes CJ, Scapigliati G, Wang T. Identification, molecular characterization and functional analysis of interleukin (IL)-2 and IL-2like (IL-2L) cytokines in sea bass (Dicentrarchus labrax L.). Cytokine 2019; 126:154898. [PMID: 31706201 DOI: 10.1016/j.cyto.2019.154898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/18/2023]
Abstract
In mammals, interleukin (IL)-2, initially known as a T-cell grow factor, is an immunomodulatory cytokine involved in the proliferation of T cells upon antigen activation. In bony fish, some IL-2 orthologs have been identified, but, recently, an additional IL-2like (IL-2L) gene has been found. In this paper, we report the presence of these two divergent IL-2 isoforms in sea bass (Dicentrarchus labrax L.). Genomic analyses revealed that they originated from a gene duplication event, as happened in most percomorphs. These two IL-2 paralogs show differences in the amino acid sequence and in the exon 4 size, and these features could be an indication that they bind preferentially to different specific IL-2 receptors. Sea bass IL-2 paralogs are highly expressed in gut and spleen, which are tissues and organs involved in fish T cell immune functions, and the two cytokines could be up-regulated by both PHA stimulation and vaccination with a bacterial vaccine, with IL-2L being more inducible. To investigate the functional activities of sea bass IL-2 and IL-2L we produced the corresponding recombinant molecules in E. coli and used them to in vitro stimulate HK and spleen leukocytes. IL-2L is able to up-regulate the expression of markers related to different T cell subsets (Th1, Th2 and Th17) and to Treg cells in HK, whereas it has little effect in spleen. IL-2 is not active on these markers in HK, but shows an effect on Th1 markers in spleen. Finally, the stimulation with recombinant IL-2 and IL-2L is also able to induce in vitro proliferation of HK- and spleen-derived leukocytes. In conclusion, we have demonstrated that sea bass possess two IL-2 paralogs that likely have an important role in regulating T cell development in this species and that show distinct bioactivities.
Collapse
Affiliation(s)
- Francesco Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100 Viterbo, VT, Italy.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, TS, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, TS, Italy
| | - Valentina Stocchi
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100 Viterbo, VT, Italy
| | - Elisa Randelli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100 Viterbo, VT, Italy
| | - Maria Cristina Belardinelli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100 Viterbo, VT, Italy
| | - Andrea Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100 Viterbo, VT, Italy
| | - Paolo Roberto Saraceni
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100 Viterbo, VT, Italy
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100 Viterbo, VT, Italy
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
26
|
Xiong Y, Yi Y, Wang Y, Yang N, Rudd CE, Liu H. Ubc9 Interacts with and SUMOylates the TCR Adaptor SLP-76 for NFAT Transcription in T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:3023-3036. [PMID: 31666306 DOI: 10.4049/jimmunol.1900556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/30/2019] [Indexed: 12/25/2022]
Abstract
Although the immune adaptor SH2 domain containing leukocyte phosphoprotein of 76 kDa (SLP-76) integrates and propagates the TCR signaling, the regulation of SLP-76 during the TCR signaling is incompletely studied. In this article, we report that SLP-76 interacts with the small ubiquitin-like modifier (SUMO) E2 conjugase Ubc9 and is a substrate for Ubc9-mediated SUMOylation in human and mouse T cells. TCR stimulation promotes SLP-76-Ubc9 binding, accompanied by an increase in SLP-76 SUMOylation. Ubc9 binds to the extreme C terminus of SLP-76 spanning residues 516-533 and SUMOylates SLP-76 at two conserved residues K266 and K284. In addition, SLP-76 and Ubc9 synergizes to augment the TCR-mediated IL-2 transcription by NFAT in a manner dependent of SUMOylation of SLP-76. Moreover, although not affecting the TCR proximal signaling events, the Ubc9-mediated SUMOylation of SLP-76 is required for TCR-induced assembly of Ubc9-NFAT complex for IL-2 transcription. Together, these results suggest that Ubc9 modulates the function of SLP-76 in T cell activation both by direct interaction and by SUMOylation of SLP-76 and that the Ubc9-SLP-76 module acts as a novel regulatory complex in the control of T cell activation.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Yulan Yi
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Yan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Naiqi Yang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Christopher E Rudd
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; and.,Département de Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Hebin Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China;
| |
Collapse
|
27
|
Zhou NB, Wang KG, Fu ZJ. Effect of morphine and a low dose of ketamine on the T cells of patients with refractory cancer pain in vitro. Oncol Lett 2019; 18:4230-4236. [PMID: 31516618 PMCID: PMC6732974 DOI: 10.3892/ol.2019.10750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/18/2019] [Indexed: 02/05/2023] Open
Abstract
The combination of morphine and ketamine is considered safe and efficacious in many patients. However, a considerable number of immunomodulatory effects have been reported to be produced by both morphine and ketamine. The aim of the present study was to assess the direct effect of morphine and a low dose of ketamine on the T cells of patients with refractory cancer pain in vitro. Venous blood was obtained from patients with refractory cancer pain and peripheral blood mononuclear cells were isolated using the Ficoll-Hypaque density gradient method. Anti-CD3 beads were used to isolate T cells by positive selection. Subsequently, the T cells were treated with vehicle, 200 ng/ml of morphine or 200 ng/ml of morphine + 100 ng/ml ketamine for 24 h, following which the cells were stimulated with anti-CD3 and anti-CD28. Flow cytometric analysis of CD3+ T cells, and interleukin (IL)-2 and interferon (IFN)-γ in the supernatant, reverse transcription-quantitative PCR analysis for the detection of IL-2 and IFN-γ and western blotting for the detection of p65 nuclear factor (NF)-κB were performed. In vitro, the CD4+ and CD8+ T cell counts, CD4+/CD8+ ratio, secretion of IL-2 and IFN-γ in the supernatant, mRNA expression levels of IL-2 and IFN-γ and expression of p65 NF-κB were significantly decreased following treatment with morphine and morphine + ketamine, compared with results in the control group (all P<0.05). However, there was no significant difference between treatment with morphine and that with morphine + ketamine. Treatment with morphine + ketamine in vitro decreased the immune functions of patients with refractory cancer pain, although the effect of treatment with morphine and a low dose of ketamine did not differ significantly from that with morphine treatment alone.
Collapse
Affiliation(s)
- Nai-Bao Zhou
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Kai-Guo Wang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhi-Jian Fu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
28
|
Webb LM, Narvaez Miranda J, Amici SA, Sengupta S, Nagy G, Guerau-de-Arellano M. NF-κB/mTOR/MYC Axis Drives PRMT5 Protein Induction After T Cell Activation via Transcriptional and Non-transcriptional Mechanisms. Front Immunol 2019; 10:524. [PMID: 30941147 PMCID: PMC6433977 DOI: 10.3389/fimmu.2019.00524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) mediated by CD4+ T cells and modeled via experimental autoimmune encephalomyelitis (EAE). Inhibition of PRMT5, the major Type II arginine methyltransferase, suppresses pathogenic T cell responses and EAE. PRMT5 is transiently induced in proliferating memory inflammatory Th1 cells and during EAE. However, the mechanisms driving PRMT5 protein induction and repression as T cells expand and return to resting is currently unknown. Here, we used naive mouse and memory mouse and human Th1/Th2 cells as models to identify mechanisms controlling PRMT5 protein expression in initial and recall T cell activation. Initial activation of naive mouse T cells resulted in NF-κB-dependent transient Prmt5 transcription and NF-κB, mTOR and MYC-dependent PRMT5 protein induction. In murine memory Th cells, transcription and miRNA loss supported PRMT5 induction to a lesser extent than in naive T cells. In contrast, NF-κB/MYC/mTOR-dependent non-transcriptional PRMT5 induction played a major role. These results highlight the importance of the NF-κB/mTOR/MYC axis in PRMT5-driven pathogenic T cell expansion and may guide targeted therapeutic strategies for MS.
Collapse
Affiliation(s)
- Lindsay M Webb
- Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Janiret Narvaez Miranda
- Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephanie A Amici
- Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Shouvonik Sengupta
- Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Gregory Nagy
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Mireia Guerau-de-Arellano
- Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
29
|
Duck IL-2 promoter cloning and the effects of methylation status on mRNA levels in immune tissues. Cent Eur J Immunol 2019; 43:389-398. [PMID: 30799986 PMCID: PMC6384428 DOI: 10.5114/ceji.2018.81350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/10/2017] [Indexed: 12/23/2022] Open
Abstract
Interleukin 2 (IL-2), a cytokine, plays an important role in animal immune systems. To investigate the influences of epigenetic modifications on transcription of the duck IL-2 gene, the promoter region of the duck IL-2 gene was cloned. Then, the DNA methylation status of the IL-2 gene promoter (-1337 bp/-924 bp) in immune tissues of ducks was determined using the Sequenom Mass Array methylation technique, and their corresponding expression levels were determined using real-time PCR. The results showed that 2850 bp of the duck IL-2 gene promoter region were obtained. There was one CpG island (-1231 bp/-902 bp) in which 11 CpG sites were distributed. The CpG1 and CpG2 sites are located between the binding sites of NFAT and AP-1, and they had higher homology methylation patterns in different individuals and tissues. The methylation frequencies of 28.5% CpG sites showed negative correlations with the expression levels of the IL-2 mRNA, whereas 71.5% showed positive correlations. These results indicate that the transcription of duck IL-2 may be distinct from that of mammals. CpG1 (-1284 bp) and CpG2 (-1264 bp) in the duck IL-2 promoter showed a higher homology of methylation patterns, indicating a similar regulatory effect on their gene expression, and these CpG sites may be essential for the regulation of transcription of duck IL-2. The methylation pattern of the IL-2 gene promoter in duck was tissue specific.
Collapse
|
30
|
Activation of PXR inhibits LPS-induced NF-κB activation by increasing IκBα expression in HepG2 cells. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0012-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Hofstetter AR, Eberle KC, Venn-Watson SK, Jensen ED, Porter TJ, Waters TE, Sacco RE. Monitoring bottlenose dolphin leukocyte cytokine mRNA responsiveness by qPCR. PLoS One 2017; 12:e0189437. [PMID: 29272269 PMCID: PMC5741220 DOI: 10.1371/journal.pone.0189437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/24/2017] [Indexed: 11/26/2022] Open
Abstract
Both veterinarians caring for dolphins in managed populations and researchers monitoring wild populations use blood-based diagnostics to monitor bottlenose dolphin (Tursiops truncatus) health. Quantitative PCR (qPCR) can be used to assess cytokine transcription patterns of peripheral blood mononuclear cells (PBMC). This can supplement currently available blood tests with information on immune status. Full realization of this potential requires establishment of normal ranges of cytokine gene transcription levels in bottlenose dolphins. We surveyed four dolphins over the span of seven months by serial bleeds. PBMC were stimulated with phytohaemagglutinin (1, 5, and 10 μg/mL) and concanavalin A (1 μg/mL) for 48 H in vitro. RNA from these cultures was probed by qPCR using Tursiops truncatus-specific primers (IL-1α, IL-1β, IL-1RA, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-13, IL-18, IFN-γ and TNF-α). Two blood samples from an additional bottlenose dolphin diagnosed with acute pulmonary disease add further perspective to the data. We observed that mitogen choice made a significant difference in the magnitude of gene transcription observed. On the other hand, most cytokines tested exhibited limited intra-animal variation. However, IL-6 and IL-12p40 differed between older and younger dolphins. Furthermore, the magnitude of mitogenic response clusters the tested cytokines into three groups. The data provide a reference for the selection of target cytokine mRNAs and their expected range of mitogen-stimulated cytokine gene transcription for future studies.
Collapse
Affiliation(s)
- Amelia Ruth Hofstetter
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
- * E-mail:
| | - Kirsten C. Eberle
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| | - Stephanie K. Venn-Watson
- Translational Medicine and Research Program, National Marine Mammal Foundation, San Diego, California, United States of America
| | - Eric D. Jensen
- United States Navy Marine Mammal Program, San Diego, California, United States of America
| | - Tracy J. Porter
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| | - Theresa E. Waters
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| |
Collapse
|
32
|
Brignall R, Cauchy P, Bevington SL, Gorman B, Pisco AO, Bagnall J, Boddington C, Rowe W, England H, Rich K, Schmidt L, Dyer NP, Travis MA, Ott S, Jackson DA, Cockerill PN, Paszek P. Integration of Kinase and Calcium Signaling at the Level of Chromatin Underlies Inducible Gene Activation in T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2652-2667. [PMID: 28904128 PMCID: PMC5632840 DOI: 10.4049/jimmunol.1602033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/21/2017] [Indexed: 01/20/2023]
Abstract
TCR signaling pathways cooperate to activate the inducible transcription factors NF-κB, NFAT, and AP-1. In this study, using the calcium ionophore ionomycin and/or PMA on Jurkat T cells, we show that the gene expression program associated with activation of TCR signaling is closely related to specific chromatin landscapes. We find that calcium and kinase signaling cooperate to induce chromatin remodeling at ∼2100 chromatin regions, which demonstrate enriched binding motifs for inducible factors and correlate with target gene expression. We found that these regions typically function as inducible enhancers. Many of these elements contain composite NFAT/AP-1 sites, which typically support cooperative binding, thus further reinforcing the need for cooperation between calcium and kinase signaling in the activation of genes in T cells. In contrast, treatment with PMA or ionomycin alone induces chromatin remodeling at far fewer regions (∼600 and ∼350, respectively), which mostly represent a subset of those induced by costimulation. This suggests that the integration of TCR signaling largely occurs at the level of chromatin, which we propose plays a crucial role in regulating T cell activation.
Collapse
Affiliation(s)
- Ruth Brignall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Pierre Cauchy
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Sarah L Bevington
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Bethany Gorman
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Angela O Pisco
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom
| | - James Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Christopher Boddington
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - William Rowe
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Hazel England
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Kevin Rich
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PT, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Lorraine Schmidt
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Nigel P Dyer
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark A Travis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9PT, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom; and
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dean A Jackson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Peter N Cockerill
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
33
|
Webb LM, Amici SA, Jablonski KA, Savardekar H, Panfil AR, Li L, Zhou W, Peine K, Karkhanis V, Bachelder EM, Ainslie KM, Green PL, Li C, Baiocchi RA, Guerau-de-Arellano M. PRMT5-Selective Inhibitors Suppress Inflammatory T Cell Responses and Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2017; 198:1439-1451. [PMID: 28087667 DOI: 10.4049/jimmunol.1601702] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022]
Abstract
In the autoimmune disease multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), expansion of pathogenic, myelin-specific Th1 cell populations drives active disease; selectively targeting this process may be the basis for a new therapeutic approach. Previous studies have hinted at a role for protein arginine methylation in immune responses, including T cell-mediated autoimmunity and EAE. However, a conclusive role for the protein arginine methyltransferase (PRMT) enzymes that catalyze these reactions has been lacking. PRMT5 is the main PRMT responsible for symmetric dimethylation of arginine residues of histones and other proteins. PRMT5 drives embryonic development and cancer, but its role in T cells, if any, has not been investigated. In this article, we show that PRMT5 is an important modulator of CD4+ T cell expansion. PRMT5 was transiently upregulated during maximal proliferation of mouse and human memory Th cells. PRMT5 expression was regulated upstream by the NF-κB pathway, and it promoted IL-2 production and proliferation. Blocking PRMT5 with novel, highly selective small molecule PRMT5 inhibitors severely blunted memory Th expansion, with preferential suppression of Th1 cells over Th2 cells. In vivo, PRMT5 blockade efficiently suppressed recall T cell responses and reduced inflammation in delayed-type hypersensitivity and clinical disease in EAE mouse models. These data implicate PRMT5 in the regulation of adaptive memory Th cell responses and suggest that PRMT5 inhibitors may be a novel therapeutic approach for T cell-mediated inflammatory disease.
Collapse
Affiliation(s)
- Lindsay M Webb
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH 43210.,Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Stephanie A Amici
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Kyle A Jablonski
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Himanshu Savardekar
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Amanda R Panfil
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Linsen Li
- Division of Medicinal Chemistry and Pharmacology, College of Pharmacy, The Ohio State University, Columbus OH 43210
| | - Wei Zhou
- Division of Medicinal Chemistry and Pharmacology, College of Pharmacy, The Ohio State University, Columbus OH 43210
| | - Kevin Peine
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599
| | - Vrajesh Karkhanis
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Eric M Bachelder
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599
| | - Kristy M Ainslie
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599
| | - Patrick L Green
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Chenglong Li
- Division of Medicinal Chemistry and Pharmacology, College of Pharmacy, The Ohio State University, Columbus OH 43210
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Mireia Guerau-de-Arellano
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH 43210; .,Institute of Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210.,Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210; and.,Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
34
|
Vigil D, Konstantinov NK, Barry M, Harford AM, Servilla KS, Kim YH, Sun Y, Ganta K, Tzamaloukas AH. BK nephropathy in the native kidneys of patients with organ transplants: Clinical spectrum of BK infection. World J Transplant 2016; 6:472-504. [PMID: 27683628 PMCID: PMC5036119 DOI: 10.5500/wjt.v6.i3.472] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 02/05/2023] Open
Abstract
Nephropathy secondary to BK virus, a member of the Papoviridae family of viruses, has been recognized for some time as an important cause of allograft dysfunction in renal transplant recipients. In recent times, BK nephropathy (BKN) of the native kidneys has being increasingly recognized as a cause of chronic kidney disease in patients with solid organ transplants, bone marrow transplants and in patients with other clinical entities associated with immunosuppression. In such patients renal dysfunction is often attributed to other factors including nephrotoxicity of medications used to prevent rejection of the transplanted organs. Renal biopsy is required for the diagnosis of BKN. Quantitation of the BK viral load in blood and urine are surrogate diagnostic methods. The treatment of BKN is based on reduction of the immunosuppressive medications. Several compounds have shown antiviral activity, but have not consistently shown to have beneficial effects in BKN. In addition to BKN, BK viral infection can cause severe urinary bladder cystitis, ureteritis and urinary tract obstruction as well as manifestations in other organ systems including the central nervous system, the respiratory system, the gastrointestinal system and the hematopoietic system. BK viral infection has also been implicated in tumorigenesis. The spectrum of clinical manifestations from BK infection and infection from other members of the Papoviridae family is widening. Prevention and treatment of BK infection and infections from other Papovaviruses are subjects of intense research.
Collapse
|
35
|
Juilland M, Gonzalez M, Erdmann T, Banz Y, Jevnikar Z, Hailfinger S, Tzankov A, Grau M, Lenz G, Novak U, Thome M. CARMA1- and MyD88-dependent activation of Jun/ATF-type AP-1 complexes is a hallmark of ABC diffuse large B-cell lymphomas. Blood 2016; 127:1780-9. [PMID: 26747248 PMCID: PMC4863344 DOI: 10.1182/blood-2015-07-655647] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/01/2016] [Indexed: 12/22/2022] Open
Abstract
A hallmark of the diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) type, a molecular subtype characterized by adverse outcome, is constitutive activation of the transcription factor nuclear factor-κB (NF-κB), which controls expression of genes promoting cellular survival and proliferation. Much less, however, is known about the role of the transcription factor activator protein-1 (AP-1) in ABC DLBCL. Here, we show that AP-1, like NF-κB, was controlled by constitutive activation of the B-cell receptor signaling component caspase recruitment domain-containing membrane-associated guanylate kinase 1 (CARMA1) and/or the Toll-like receptor signaling component myeloid differentiation primary response gene 88 (MyD88) in ABC DLBCL cell lines. In contrast to germinal center (GC) B-cell (GCB) DLBCL, ABC DLBCL cell lines expressed high levels of the AP-1 family members c-Jun, JunB, and JunD, which formed heterodimeric complexes with the AP-1 family members activating transcription factor (ATF) 2, ATF3, and ATF7. Inhibition of these complexes by a dominant-negative approach led to impaired growth of a majority of ABC DLBCL cell lines. Individual silencing of c-Jun, ATF2, or ATF3 decreased cellular survival and revealed c-Jun/ATF2-dependent control of ATF3 expression. As a consequence, ATF3 expression was much higher in ABC vs GCB DLBCL cell lines. Samples derived from DLBCL patients showed a clear trend toward high and nuclear ATF3 expression in nodal DLBCL of the non-GC or ABC subtype. These findings identify the activation of AP-1 complexes of the Jun/ATF-type as an important element controlling the growth of ABC DLBCL.
Collapse
Affiliation(s)
- Mélanie Juilland
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Tabea Erdmann
- Translational Oncology, Department of Medicine A, University Hospital Münster, Münster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Zala Jevnikar
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Stephan Hailfinger
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Michael Grau
- Department of Physics, Philipps-University Marburg, Marburg, Germany; and
| | - Georg Lenz
- Translational Oncology, Department of Medicine A, University Hospital Münster, Münster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
36
|
Furusawa Y, Kubo T, Fukazawa T. Phyhd1, an XPhyH-like homologue, is induced in mouse T cells upon T cell stimulation. Biochem Biophys Res Commun 2016; 472:551-6. [PMID: 26970303 DOI: 10.1016/j.bbrc.2016.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 11/28/2022]
Abstract
We previously identified XPhyH-like as a gene whose expression is enhanced in Xenopus blood cells during the refractory period, in which Xenopus tadpoles transiently lose their tail regenerative ability. Although we hypothesized that some autoreactive immune cells attack tail blastemal cells during the refractory period and XPhyH-like expressing immune cells were involved in the process, the nature of cells expressing XPhyH-like remain unknown, partly due to the lack of leukocyte markers available in Xenopus. In the present study, we used mice to analyze the expression pattern of XPhyH-like homologues. When we used quantitative reverse transcription-polymerase chain reaction (RT--PCR) to analyze the expression of mouse Phyhd1, an XPhyH-like orthologue, and Phyh, a Phyhd1 paralogue, both Phyhd1 and Phyh showed similar tissue-specific expression patterns. The expression pattern in leukocytes, however, differed between Phyhd1 and Phyh; Phyhd1 was considerably expressed in T cells and B cells. Moreover, the expression of Phyhd1 in T cells was up-regulated for approximately 3- to 7-times by T cell stimulation 3-4 days after the stimulation, unlike Phyh. Our findings suggest that Phyhd1 and Phyh have distinct roles in mouse leukocytes and Phyhd1 is related to T cell differentiation and/or function of effector T cells.
Collapse
Affiliation(s)
- Yuri Furusawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Taro Fukazawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
37
|
Mizuguchi H, Orimoto N, Kadota T, Kominami T, Das AK, Sawada A, Tamada M, Miyagi K, Adachi T, Matsumoto M, Kosaka T, Kitamura Y, Takeda N, Fukui H. Suplatast tosilate alleviates nasal symptoms through the suppression of nuclear factor of activated T-cells-mediated IL-9 gene expression in toluene-2,4-diisocyanate-sensitized rats. J Pharmacol Sci 2016; 130:151-8. [PMID: 26874672 DOI: 10.1016/j.jphs.2015.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/26/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022] Open
Abstract
Histamine H1 receptor (H1R) gene is upregulated in patients with pollinosis; its expression level is highly correlated with the nasal symptom severity. Antihistamines are widely used as allergy treatments because they inhibit histamine signaling by blocking H1R or suppressing H1R signaling as inverse agonists. However, long-term treatment with antihistamines does not completely resolve toluene-2,4-diisocyanate (TDI)-induced nasal symptoms, although it can decrease H1R gene expression to the basal level, suggesting additional signaling is responsible for the pathogenesis of the allergic symptoms. Here, we show that treatment with suplatast tosilate in combination with antihistamines markedly alleviates nasal symptoms in TDI-sensitized rats. Suplatast suppressed TDI-induced upregulation of IL-9 gene expression. Suplatast also suppressed ionomycin/phorbol-12-myristate-13-acetate-induced upregulation of IL-2 gene expression in Jurkat cells, in which calcineurin (CN)/nuclear factor of activated T-cells (NFAT) signaling is known to be involved. Immunoblot analysis demonstrated that suplatast inhibited binding of NFAT to DNA. Furthermore, suplatast suppressed ionomycin-induced IL-9 mRNA upregulation in RBL-2H3 cells, in which CN/NFAT signaling is also involved. These data suggest that suplatast suppressed NFAT-mediated IL-9 gene expression in TDI-sensitized rats and this might be the underlying mechanism of the therapeutic effects of combined therapy of suplatast with antihistamine.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan.
| | - Naoki Orimoto
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan; Taiho Pharmaceutical Co. LTD., 224-2, Ebisuno Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Takuya Kadota
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Takahiro Kominami
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Asish K Das
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Akiho Sawada
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Misaki Tamada
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Kohei Miyagi
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Tsubasa Adachi
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Mayumi Matsumoto
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Tomoya Kosaka
- Department of Molecular Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Sho-machi, Tokushima 770-8505, Japan
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8503, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8503, Japan
| | - Hiroyuki Fukui
- Department of Molecular Studies for Incurable Diseases, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
38
|
Pérol L, Piaggio E. New Molecular and Cellular Mechanisms of Tolerance: Tolerogenic Actions of IL-2. Methods Mol Biol 2016; 1371:11-28. [PMID: 26530792 DOI: 10.1007/978-1-4939-3139-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Interleukin-2 (IL-2) is an old molecule with brand new functions. Indeed, IL-2 has been first described as a T-cell growth factor but recent data pointed out that its main function in vivo is the maintenance of immune tolerance. Mechanistically, IL-2 is essential for the development and function of CD4(+) Foxp3(+) regulatory T cells (Treg cells) that are essential players in the control of immune responded to self, tumors, microbes and grafts. Treg cells are exquisitely sensitive to IL-2 due to their constitutive expression of the high affinity IL-2 receptor (IL-2R) and the new paradigm suggests that low-doses of IL-2 could selectively boost Treg cells in vivo. Consequently, a growing body of clinical research is aiming at using IL-2 at low doses as a tolerogenic drug to boost endogenous Treg cells in patients suffering from autoimmune or inflammatory conditions. In this manuscript, we briefly review IL-2/IL-2R biology and the role of IL-2 in the development, maintenance, and function of Treg cells; and also its effects on other immune cell populations such as CD4(+) T helper cells and CD8(+) memory T cells. Then, focusing on type 1 diabetes, we review the preclinical studies and clinical trials supporting the use of low-doses IL-2 as a tolerogenic immunotherapy. Finally, we discuss the limitations and future directions for IL-2 based immunotherapy.
Collapse
Affiliation(s)
- Louis Pérol
- INSERM U932, 26 rue d'Ulm, 75005, Paris, France.
- Institut Curie, Section Recherche, 26 rue d'Ulm, 75005, Paris, France.
| | - Eliane Piaggio
- INSERM U932, 26 rue d'Ulm, 75005, Paris, France
- Institut Curie, Section Recherche, 26 rue d'Ulm, 75005, Paris, France
| |
Collapse
|
39
|
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by a loss of tolerance to multiple endogenous antigens. SLE etiology remains largely unknown, despite recent insight into the immunopathogenesis of the disease. T cells are important in the development of the disease by amplifying the immune response and contributing to organ damage. Aberrant signaling, cytokine secretion, and tissue homing displayed by SLE T cells have been extensively studied and the underlying pathogenic molecular mechanisms are starting to be elucidated. T-cell-targeted treatments are being explored in SLE patients. This review is an update on the T-cell abnormalities and related therapeutic options in SLE.
Collapse
Affiliation(s)
- D Comte
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - M P Karampetsou
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - G C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Sun Y, Peng I, Webster JD, Suto E, Lesch J, Wu X, Senger K, Francis G, Barrett K, Collier JL, Burch JD, Zhou M, Chen Y, Chan C, Eastham-Anderson J, Ngu H, Li O, Staton T, Havnar C, Jaochico A, Jackman J, Jeet S, Riol-Blanco L, Wu LC, Choy DF, Arron JR, McKenzie BS, Ghilardi N, Ismaili MHA, Pei Z, DeVoss J, Austin CD, Lee WP, Zarrin AA. Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response. Sci Signal 2015; 8:ra122. [PMID: 26628680 DOI: 10.1126/scisignal.aab0949] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-2 (IL-2)-inducible T cell kinase (ITK) mediates T cell receptor (TCR) signaling primarily to stimulate the production of cytokines, such as IL-4, IL-5, and IL-13, from T helper 2 (TH2) cells. Compared to wild-type mice, ITK knockout mice are resistant to asthma and exhibit reduced lung inflammation and decreased amounts of TH2-type cytokines in the bronchoalveolar lavage fluid. We found that a small-molecule selective inhibitor of ITK blocked TCR-mediated signaling in cultured TH2 cells, including the tyrosine phosphorylation of phospholipase C-γ1 (PLC-γ1) and the secretion of IL-2 and TH2-type cytokines. Unexpectedly, inhibition of the kinase activity of ITK during or after antigen rechallenge in an ovalbumin-induced mouse model of asthma failed to reduce airway hyperresponsiveness and inflammation. Rather, in mice, pharmacological inhibition of ITK resulted in T cell hyperplasia and the increased production of TH2-type cytokines. Thus, our studies predict that inhibition of the kinase activity of ITK may not be therapeutic in patients with asthma.
Collapse
Affiliation(s)
- Yonglian Sun
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ivan Peng
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Eric Suto
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Justin Lesch
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kate Senger
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - George Francis
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kathy Barrett
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jenna L Collier
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jason D Burch
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Meijuan Zhou
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Connie Chan
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Hai Ngu
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Olga Li
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Tracy Staton
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Charles Havnar
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Allan Jaochico
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Janet Jackman
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Surinder Jeet
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lorena Riol-Blanco
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lawren C Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - David F Choy
- Department of Immunology, Tissue Growth, and Repair Diagnostics Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Brent S McKenzie
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Nico Ghilardi
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Zhonghua Pei
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jason DeVoss
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
41
|
Pulliam SR, Uzhachenko RV, Adunyah SE, Shanker A. Common gamma chain cytokines in combinatorial immune strategies against cancer. Immunol Lett 2015; 169:61-72. [PMID: 26597610 DOI: 10.1016/j.imlet.2015.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/15/2015] [Accepted: 11/12/2015] [Indexed: 01/10/2023]
Abstract
Common γ chain (γC) cytokines, namely IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 are important for the proliferation, differentiation, and survival of lymphocytes that display antitumor activity, thus stimulating considerable interest for the use of cytokines in cancer immunotherapy. In this review, we will focus on the γC cytokines that demonstrate the greatest potential for immunotherapy, IL-2, IL-7, IL-15, and IL-21. We will briefly cover their biological function, potential applications in cancer therapy, and update on their use in combinatorial immune strategies for eradicating tumors and hematopoietic malignancies.
Collapse
Affiliation(s)
- Stephanie R Pulliam
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Roman V Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Samuel E Adunyah
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA.
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
42
|
Abstract
BACKGROUND The role of cAMP in regulating T cell activation and function has been controversial. cAMP is generally known as an immunosuppressant, but it is also required for generating optimal immune responses. As the effect of cAMP is likely to depend on its cellular context, the current study investigated whether the mechanism of activation of Gαs and adenylyl cyclase influences their effect on T cell receptor (TCR)-stimulated interleukin-2 (IL-2) mRNA levels. METHODS The effect of blocking Gs-coupled receptor (GsPCR)-mediated Gs activation on TCR-stimulated IL-2 mRNA levels in CD4(+) T cells was compared with that of knocking down Gαs expression or inhibiting adenylyl cyclase activity. The effect of knocking down Gαs expression on TCR-stimulated cAMP accumulation was compared with that of blocking GsPCR signaling. RESULTS ZM-241385, an antagonist to the Gs-coupled A2A adenosine receptor (A2AR), enhanced TCR-stimulated IL-2 mRNA levels in primary human CD4(+) T helper cells and in Jurkat T cells. A dominant negative Gαs construct, GαsDN3, also enhanced TCR-stimulated IL-2 mRNA levels. Similar to GsPCR antagonists, GαsDN3 blocked GsPCR-dependent activation of both Gαs and Gβγ. In contrast, Gαs siRNA and 2',5'-dideoxyadenosine (ddA), an adenylyl cyclase inhibitor, decreased TCR-stimulated IL-2 mRNA levels. Gαs siRNA, but not GαsDN3, decreased TCR-stimulated cAMP synthesis. Potentiation of IL-2 mRNA levels by ZM-241385 required at least two days of TCR stimulation, and addition of ddA after three days of TCR stimulation enhanced IL-2 mRNA levels. CONCLUSIONS GsPCRs play an inhibitory role in the regulation of TCR-stimulated IL-2 mRNA levels whereas Gαs and cAMP can play a stimulatory one. Additionally, TCR-dependent activation of Gαs does not appear to involve GsPCRs. These results suggest that the context of Gαs/cAMP activation and the stage of T cell activation and differentiation determine the effect on TCR-stimulated IL-2 mRNA levels.
Collapse
|
43
|
The BMP Pathway Participates in Human Naive CD4+ T Cell Activation and Homeostasis. PLoS One 2015; 10:e0131453. [PMID: 26110906 PMCID: PMC4481406 DOI: 10.1371/journal.pone.0131453] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/02/2015] [Indexed: 12/15/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) form a group of secreted factors that belongs to the TGF-β superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application.
Collapse
|
44
|
Ortutay Z, Oksanen A, Aittomäki S, Ortutay C, Pesu M. Proprotein convertase FURIN regulates T cell receptor-induced transactivation. J Leukoc Biol 2015; 98:73-83. [PMID: 25926688 DOI: 10.1189/jlb.2a0514-257rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 04/08/2015] [Indexed: 12/23/2022] Open
Abstract
Antigen emergence rapidly stimulates T cells, which leads to changes in cytokine production, cell proliferation, and differentiation. Some of the key molecules involved in these events, such as TGF-β1 and NOTCH1, are synthesized initially as inactive precursors and are proteolytically activated during T cell activation. PCSKs regulate proprotein maturation by catalyzing the proteolytic cleavage of their substrates. The prototype PCSK FURIN is induced upon TCR activation, and its expression in T cells is critical for the maintenance of peripheral immune tolerance. In this study, we tested the hypothesis that FURIN regulates T cell activation. Our data demonstrate that IL-2 is increased initially in FURIN-deficient mouse CD4(+) T cells, but the TCR-induced IL-2 mRNA expression is not sustained in the absence of FURIN. Accordingly, the inhibition of FURIN in human Jurkat T cell lines also results in a decrease in IL-2 production, whereas the overexpression of WT FURIN is associated with elevated IL-2 levels. In Jurkat cells, FURIN is dispensable for immediate TCR signaling steps, such as ERK, ZAP70, or LAT phosphorylation. However, with the use of gene reporter assays, we demonstrate that FURIN regulates the AP-1, NFAT, and NF-κB transcription factors. Finally, by performing a transcription factor-binding site enrichment analysis on FURIN-dependent transcriptomes, we identify the FURIN-regulated transcription factors in mouse CD4(+) T cell subsets. Collectively, our work confirms the hypothesis that the TCR-regulated protease FURIN plays an important role in T cell activation and that it can specifically modulate TCR-activated transactivation.
Collapse
Affiliation(s)
- Zsuzsanna Ortutay
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Anna Oksanen
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Saara Aittomäki
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Csaba Ortutay
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Marko Pesu
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
45
|
Weiss A, Stobo JD. Commentary: "The Role of T3 Surface Molecules in the Activation of Human Cells: A Two-Stimulus Requirement for IL-2 Production Reflects Events Occurring at a Pretranslational Level". Front Immunol 2015; 6:163. [PMID: 25954271 PMCID: PMC4404948 DOI: 10.3389/fimmu.2015.00163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/26/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur Weiss
- Department of Medicine, Rosalind Russell-Ephraim P. Engleman Rheumatology Research Center, Howard Hughes Medical Institute, University of California , San Francisco, CA , USA
| | - John D Stobo
- Office of the President, University of California , Oakland, CA , USA
| |
Collapse
|
46
|
Vogel SZ, Schlickeiser S, Jürchott K, Akyuez L, Schumann J, Appelt C, Vogt K, Schröder M, Vaeth M, Berberich-Siebelt F, Lutz MB, Grütz G, Sawitzki B. TCAIM decreases T cell priming capacity of dendritic cells by inhibiting TLR-induced Ca2+ influx and IL-2 production. THE JOURNAL OF IMMUNOLOGY 2015; 194:3136-46. [PMID: 25750433 DOI: 10.4049/jimmunol.1400713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We previously showed that the T cell activation inhibitor, mitochondrial (Tcaim) is highly expressed in grafts of tolerance-developing transplant recipients and that the encoded protein is localized within mitochondria. In this study, we show that CD11c(+) dendritic cells (DCs), as main producers of TCAIM, downregulate Tcaim expression after LPS stimulation or in vivo alloantigen challenge. LPS-stimulated TCAIM-overexpressing bone marrow-derived DC (BMDCs) have a reduced capacity to induce proliferation of and cytokine expression by cocultured allogeneic T cells; this is not due to diminished upregulation of MHC or costimulatory molecules. Transcriptional profiling also revealed normal LPS-mediated upregulation of the majority of genes involved in TLR signaling. However, TCAIM BMDCs did not induce Il2 mRNA expression upon LPS stimulation in comparison with Control-BMDCs. In addition, TCAIM overexpression abolished LPS-mediated Ca(2+) influx and mitochondrial reactive oxygen species formation. Addition of IL-2 to BMDC-T cell cocultures restored the priming capacity of TCAIM BMDCs for cocultured allogeneic CD8(+) T cells. Furthermore, BMDCs of IL-2-deficient mice showed similarly abolished LPS-induced T cell priming as TCAIM-overexpressing wild type BMDCs. Thus, TCAIM interferes with TLR4 signaling in BMDCs and subsequently impairs their T cell priming capacity, which supports its role for tolerance induction.
Collapse
Affiliation(s)
- Simone Z Vogel
- Institute of Medical Immunology, Charite University Medicine, Berlin 13353, Germany
| | - Stephan Schlickeiser
- Institute of Medical Immunology, Charite University Medicine, Berlin 13353, Germany
| | - Karsten Jürchott
- Berlin Brandenburg Center for Regenerative Therapies, Charite University Medicine, Berlin 13353, Germany
| | - Levent Akyuez
- Institute of Medical Immunology, Charite University Medicine, Berlin 13353, Germany; Berlin Brandenburg Center for Regenerative Therapies, Charite University Medicine, Berlin 13353, Germany
| | - Julia Schumann
- Institute of Medical Immunology, Charite University Medicine, Berlin 13353, Germany
| | - Christine Appelt
- Institute of Medical Immunology, Charite University Medicine, Berlin 13353, Germany
| | - Katrin Vogt
- Institute of Medical Immunology, Charite University Medicine, Berlin 13353, Germany
| | - Martina Schröder
- Institute of Immunology, Department of Biology, Maynooth University, National University of Ireland Maynooth, County Kildare, Ireland
| | - Martin Vaeth
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Würzburg, Würzburg 97080, Germany; and
| | - Friederike Berberich-Siebelt
- Department of Molecular Pathology, Institute of Pathology, Julius Maximilians University of Würzburg, Würzburg 97080, Germany; and
| | - Manfred B Lutz
- Institute of Virology and Immunobiology, Julius Maximilians University of Würzburg, Würzburg 97078, Germany
| | - Gerald Grütz
- Institute of Medical Immunology, Charite University Medicine, Berlin 13353, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charite University Medicine, Berlin 13353, Germany; Berlin Brandenburg Center for Regenerative Therapies, Charite University Medicine, Berlin 13353, Germany;
| |
Collapse
|
47
|
Yost EA, Hynes TR, Hartle CM, Ott BJ, Berlot CH. Inhibition of G-protein βγ signaling enhances T cell receptor-stimulated interleukin 2 transcription in CD4+ T helper cells. PLoS One 2015; 10:e0116575. [PMID: 25629163 PMCID: PMC4309538 DOI: 10.1371/journal.pone.0116575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/10/2014] [Indexed: 01/23/2023] Open
Abstract
G-protein-coupled receptor (GPCR) signaling modulates the expression of cytokines that are drug targets for immune disorders. However, although GPCRs are common targets for other diseases, there are few GPCR-based pharmaceuticals for inflammation. The purpose of this study was to determine whether targeting G-protein βγ (Gβγ) complexes could provide a useful new approach for modulating interleukin 2 (IL-2) levels in CD4+ T helper cells. Gallein, a small molecule inhibitor of Gβγ, increased levels of T cell receptor (TCR)-stimulated IL-2 mRNA in primary human naïve and memory CD4+ T helper cells and in Jurkat human CD4+ leukemia T cells. Gβ1 and Gβ2 mRNA accounted for >99% of Gβ mRNA, and small interfering RNA (siRNA)-mediated silencing of Gβ1 but not Gβ2 enhanced TCR-stimulated IL-2 mRNA increases. Blocking Gβγ enhanced TCR-stimulated increases in IL-2 transcription without affecting IL-2 mRNA stability. Blocking Gβγ also enhanced TCR-stimulated increases in nuclear localization of nuclear factor of activated T cells 1 (NFAT1), NFAT transcriptional activity, and levels of intracellular Ca2+. Potentiation of IL-2 transcription required continuous Gβγ inhibition during at least two days of TCR stimulation, suggesting that induction or repression of additional signaling proteins during T cell activation and differentiation might be involved. The potentiation of TCR-stimulated IL-2 transcription that results from blocking Gβγ in CD4+ T helper cells could have applications for autoimmune diseases.
Collapse
Affiliation(s)
- Evan A. Yost
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, 17822-2623, United States of America
| | - Thomas R. Hynes
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, 17822-2623, United States of America
| | - Cassandra M. Hartle
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, 17822-2623, United States of America
| | - Braden J. Ott
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, 17822-2623, United States of America
| | - Catherine H. Berlot
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, 17822-2623, United States of America
- * E-mail:
| |
Collapse
|
48
|
Resolving Early Signaling Events in T-Cell Activation Leading to IL-2 and FOXP3 Transcription. Processes (Basel) 2014. [DOI: 10.3390/pr2040867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Lou Q, Zhang W, Liu G, Ma Y. The C-type lectin OCILRP2 costimulates EL4 T cell activation via the DAP12-Raf-MAP kinase pathway. PLoS One 2014; 9:e113218. [PMID: 25411776 PMCID: PMC4239057 DOI: 10.1371/journal.pone.0113218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/21/2014] [Indexed: 11/30/2022] Open
Abstract
OCILRP2 is a typical Type-II transmembrane protein that is selectively expressed in activated T lymphocytes, dendritic cells, and B cells and functions as a novel co-stimulator of T cell activation. However, the signaling pathways underlying OCILRP2 in T cell activation are still not completely understood. In this study, we found that the knockdown of OCILRP2 expression with shRNA or the blockage of its activity by an anti-OCILRP2 antagonist antibody reduced CD3/CD28-costimulated EL4 T cell viability and IL-2 production, inhibit Raf1, MAPK3, and MAPK8 activation, and impair NFAT and NF-κB transcriptional activities. Furthermore, immunoprecipitation results indicated that OCILRP2 could interact with the DAP12 protein, an adaptor containing an intracellular ITAM motif that can transduce signals to induce MAP kinase activation for T cell activation. Our data reveal that after binding with DAP12, OCILRP2 activates the Raf-MAP kinase pathways, resulting in T cell activation.
Collapse
Affiliation(s)
- Qiang Lou
- Henan Engineering Lab of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Medical College of Henan University, Kaifeng 475004, China
| | - Wei Zhang
- Henan Engineering Lab of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Medical College of Henan University, Kaifeng 475004, China
| | - Guangchao Liu
- Henan Engineering Lab of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Medical College of Henan University, Kaifeng 475004, China
| | - Yuanfang Ma
- Henan Engineering Lab of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Medical College of Henan University, Kaifeng 475004, China
- * E-mail:
| |
Collapse
|
50
|
Thaker YR, Schneider H, Rudd CE. TCR and CD28 activate the transcription factor NF-κB in T-cells via distinct adaptor signaling complexes. Immunol Lett 2014; 163:113-9. [PMID: 25455592 PMCID: PMC4286576 DOI: 10.1016/j.imlet.2014.10.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/28/2014] [Accepted: 10/15/2014] [Indexed: 01/07/2023]
Abstract
CD28 and TCR receptors use independent pathways to regulate NF-κB activation in T-cells. CD28 mediated NF-κB activation is dependent on the YMN-FM site for GRB-2 adaptor binding. The adaptors ADAP and SKAP1 are dispensable for direct CD28 activation of NF-κB. TCR driven NF-κB activation requires adaptor ADAP expression.
The transcription factor NF-κB is needed for the induction of inflammatory responses in T-cells. Whether its activation by the antigen-receptor and CD28 is mediated by the same or different intracellular signaling pathways has been unclear. Here, using T-cells from various knock-out (Cd28−/−, adap−/−) and knock-in (i.e. Cd28 Y-170F) mice in conjunction with transfected Jurkat T-cells, we show that the TCR and CD28 use distinct pathways to activate NF-κB in T-cells. Anti-CD28 ligation alone activated NF-κB in primary and Jurkat T-cells as measured by NF-κB reporter and EMSA assays. Anti-CD28 also activated NF-κB normally in primary T-cells from adap−/− mice, while anti-CD3 stimulation required the adaptor ADAP. Over-expression of ADAP or its binding partner SKAP1 failed to enhance anti-CD28 activation of NF-κB, while ADAP greatly increased anti-CD3 induced NF-κB activity. By contrast, CD28 activation of NF-κB depended on GRB-2 binding to CD28 as seen in CD28 deficient Jurkat T-cells reconstituted with the CD28 YMN-FM mutant, and in primary T-cells from CD28 Y170F mutant knock-in mice. CD28 associated with GRB-2, and GRB-2 siRNA impaired CD28 NF-κB activation. GRB-2 binding partner and guanine nucleotide exchange factor, VAV1, greatly enhanced anti-CD28 driven activation of NF-κB. Further, unlike in the case of anti-CD28, NF-κB activation by anti-CD3 and its cooperation with ADAP was strictly dependent on LAT expression. Overall, we provide evidence that CD28 and the TCR complex regulate NF-κB via different signaling modules of GRB-2/VAV1 and LAT/ADAP pathways respectively.
Collapse
Affiliation(s)
- Youg Raj Thaker
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| | - Helga Schneider
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Christopher E Rudd
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|