1
|
Stoffel CI, Eichhoff O, Cheng PF, Seiler L, Tellenbach F, Dzung A, Chiovaro F, Dummer R, Levesque MP. Protein Kinase C Inhibition Overcomes Targeted Therapy Resistance in Cutaneous Melanoma. Exp Dermatol 2025; 34:e70093. [PMID: 40243348 DOI: 10.1111/exd.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
WNT5a expression is associated with a MAPK inhibitor resistant phenotype in melanoma driving cell polarity and invasion. No small molecules specifically targeting WNT5a are available. Promising results of targeting non-canonical WNT5a-dependent WNT signalling with a pan-PKC inhibitor in uveal melanoma prompted us to investigate the relevance of PKC inhibition in cutaneous melanoma. We revealed PKC signalling and WNT5a expression to be associated in a positive feedback loop, suggesting pan-PKC inhibitor as a potent inhibitor of WNT5a in cutaneous melanoma. Combinatorial PKC and MAPK pathway inhibition significantly reduced proliferation and invasion by induction of apoptosis in targeted therapy-resistant melanoma in vitro. In in vivo xenograft studies, we found less proliferation and apoptosis induction in the PKC inhibitor single and combination treatment group with MAPK pathway inhibitors than in the standard of care treatment group. Thus, targeting the non-canonical WNT signalling pathway via combinatorial PKC and MAPK pathway inhibition is beneficial for therapy-resistant cutaneous melanoma combating tumour heterogeneity in vivo. With our study, we are providing an alternate treatment strategy we think is worth investigating as future clinical interventions in cutaneous melanoma.
Collapse
Affiliation(s)
- Corinne I Stoffel
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ossia Eichhoff
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Phil F Cheng
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Luzia Seiler
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Flavia Tellenbach
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas Dzung
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Tang R, Ding A, Fu C, Umerori K, Rivera M, Alt DS, Carmean CM, Li L, Eppell SJ, Wynshaw-Boris A, Alsberg E. Three-dimensional tissue platform co-laid with native collagen fibers and cells for phenotypic screening of stem cell interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640824. [PMID: 40093051 PMCID: PMC11908223 DOI: 10.1101/2025.02.28.640824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Phenotypic screening of cell-cell and cell-matrix interactions is critical yet challenging for drug discovery and disease modeling. In this study, a scalable 3D tissue platform was developed by co-laying extracted natural insoluble collagen fibers, mesenchymal stem cells, endothelial cells, and neural progenitor cells for phenotypic screening. Cell growth and interactions were enhanced in the co-laid platform, evident through increased cell proliferation, viability, and vascularization. Dense vascular networks rapidly formed through cell-cell and cell-matrix interactions without adding a traditionally needed growth factor set. Both in vitro and implantation studies confirmed that these blood vessels were of human origin. To evaluate the phenotypic screening of cell-cell and cell-matrix interactions, we propose a phenotype screening prototype for stem cell interactions that utilized multivariate analysis encompassing both cell-cell and cell-matrix interactions and demonstrated its effectiveness to screen vasculature formation and autism spectrum disorder (ASD) models. Using the prototype, we confirmed that collagen crosslinking, ROCK, WNT, and YAP pathways impact vasculogenesis. In addition, ASD donor-derived neural progenitor cells can be distinguished from non-ASD control donor-derived neural progenitor cells.
Collapse
|
3
|
Handschin C, Shalhoub H, Mazet A, Guyon C, Dusserre N, Boutet-Robinet E, Oliveira H, Guillermet-Guibert J. Biotechnological advances in 3D modeling of cancer initiation. Examples from pancreatic cancer research and beyond. Biofabrication 2025; 17:022008. [PMID: 40018875 DOI: 10.1088/1758-5090/adb51c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
In recent years, biofabrication technologies have garnered significant attention within the scientific community for their potential to create advancedin vitrocancer models. While these technologies have been predominantly applied to model advanced stages of cancer, there exists a pressing need to develop pertinent, reproducible, and sensitive 3D models that mimic cancer initiation lesions within their native tissue microenvironment. Such models hold profound relevance for comprehending the intricacies of cancer initiation, to devise novel strategies for early intervention, and/or to conduct sophisticated toxicology assessments of putative carcinogens. Here, we will explain the pivotal factors that must be faithfully recapitulated when constructing these models, with a specific focus on early pancreatic cancer lesions. By synthesizing the current state of research in this field, we will provide insights into recent advances and breakthroughs. Additionally, we will delineate the key technological and biological challenges that necessitate resolution in future endeavors, thereby paving the way for more accurate and insightfulin vitrocancer initiation models.
Collapse
Affiliation(s)
- C Handschin
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - H Shalhoub
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
| | - A Mazet
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - C Guyon
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - N Dusserre
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - E Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - H Oliveira
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - J Guillermet-Guibert
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| |
Collapse
|
4
|
Buchholz MB, Scheerman DI, Levato R, Wehrens EJ, Rios AC. Human breast tissue engineering in health and disease. EMBO Mol Med 2024; 16:2299-2321. [PMID: 39179741 PMCID: PMC11473723 DOI: 10.1038/s44321-024-00112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/26/2024] Open
Abstract
The human mammary gland represents a highly organized and dynamic tissue, uniquely characterized by postnatal developmental cycles. During pregnancy and lactation, it undergoes extensive hormone-stimulated architectural remodeling, culminating in the formation of specialized structures for milk production to nourish offspring. Moreover, it carries significant health implications, due to the high prevalence of breast cancer. Therefore, gaining insight into the unique biology of the mammary gland can have implications for managing breast cancer and promoting the well-being of both women and infants. Tissue engineering techniques hold promise to narrow the translational gap between existing breast models and clinical outcomes. Here, we provide an overview of the current landscape of breast tissue engineering, outline key requirements, and the challenges to overcome for achieving more predictive human breast models. We propose methods to validate breast function and highlight preclinical applications for improved understanding and targeting of breast cancer. Beyond mammary gland physiology, representative human breast models can offer new insight into stem cell biology and developmental processes that could extend to other organs and clinical contexts.
Collapse
Affiliation(s)
- Maj-Britt Buchholz
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Demi I Scheerman
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Reich H, Savage-Dunn C. Signaling circuits and the apical extracellular matrix in aging: connections identified in the nematode Caenorhabditis elegans. Am J Physiol Cell Physiol 2023; 325:C1201-C1211. [PMID: 37721005 PMCID: PMC10861026 DOI: 10.1152/ajpcell.00195.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Numerous conserved signaling pathways play critical roles in aging, including insulin/IGF-1, TGF-β, and Wnt pathways. Some of these pathways also play prominent roles in the formation and maintenance of the extracellular matrix. The nematode Caenorhabditis elegans has been an enduringly productive system for the identification of conserved mechanisms of biological aging. Recent studies in C. elegans highlight the regulatory circuits between conserved signaling pathways and the extracellular matrix, revealing a bidirectional relationship between these factors and providing a platform to address how regulation of and by the extracellular matrix can impact lifespan and organismal health during aging. These discoveries provide new opportunities for clinical advances and novel therapeutic strategies.
Collapse
Affiliation(s)
- Hannah Reich
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
- PhD Program in Biology, The Graduate Center, City University of New York, New York, New York, United States
| |
Collapse
|
6
|
Constantin AM, Mihu CM, Boşca AB, Melincovici CS, Mărginean MV, Jianu EM, Onofrei MM, Micu CM, Alexandru BC, Sufleţel RT, Moldovan IM, Coneac A, Crintea A, Ştefan RA, Ştefan PA, Djouini A, Şovrea AS. Short histological kaleidoscope - recent findings in histology. Part III. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:115-133. [PMID: 37518868 PMCID: PMC10520383 DOI: 10.47162/rjme.64.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
The paper provides an overview of the current understanding of different cells' biology (e.g., keratinocytes, Paneth cells, myoepithelial cells, myofibroblasts, chondroclasts, monocytes, atrial cardiomyocytes), including their origin, structure, function, and role in disease pathogenesis, and of the latest findings in the medical literature concerning the brown adipose tissue and the juxtaoral organ of Chievitz.
Collapse
Affiliation(s)
- Anne Marie Constantin
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jang MJ, Lim C, Lim B, Kim JM. Integrated multiple transcriptomes in oviductal tissue across the porcine estrous cycle reveal functional roles in oocyte maturation and transport. J Anim Sci 2022; 100:skab364. [PMID: 34918099 PMCID: PMC8846367 DOI: 10.1093/jas/skab364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022] Open
Abstract
Understanding the changes in the swine female reproductive system is important for solving issues related to reproductive failure and litter size. Elucidating the regulatory mechanisms of the natural estrous cycle in the oviduct under non-fertilisation conditions can improve our understanding of its role in the reproductive system. Herein, whole transcriptome RNA sequencing of oviduct tissue samples was performed. The differentially expressed genes (DEGs) were identified for each time point relative to day 0 and classified into three clusters based on their expression patterns. Clusters 1 and 2 included genes involved in the physiological changes through the estrous cycle. Cluster 1 genes were mainly involved in PI3K-Akt signaling and steroid hormone biosynthesis pathways. Cluster 2 genes were involved in extracellular matrix-receptor interactions and protein digestion pathways. In Cluster 3, the DEGs were downregulated in the luteal phase; they were strongly associated with cell cycle, calcium signaling, and oocyte meiosis. The gene expression in the oviduct during the estrous cycle influenced oocyte transport and fertilization. Our findings provide a basis for successfully breeding pigs and elucidating the mechanisms underlying the changes in the pig oviduct during the estrous cycle.
Collapse
Affiliation(s)
- Min-Jae Jang
- Department of Animal Science and Technology, Functional Genomics and Bioinformatics Laboratory, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Chiwoong Lim
- Department of Animal Science and Technology, Functional Genomics and Bioinformatics Laboratory, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Functional Genomics and Bioinformatics Laboratory, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Functional Genomics and Bioinformatics Laboratory, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
8
|
Kolundzic N, Khurana P, Crumrine D, Celli A, Mauro TM, Ilic D. Epidermal Basement Membrane Substitutes for Bioengineering of Human Epidermal Equivalents. JID INNOVATIONS 2021; 2:100083. [PMID: 35199088 PMCID: PMC8844655 DOI: 10.1016/j.xjidi.2021.100083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 10/26/2022] Open
|
9
|
Goddi A, Schroedl L, Brey EM, Cohen RN. Laminins in metabolic tissues. Metabolism 2021; 120:154775. [PMID: 33857525 DOI: 10.1016/j.metabol.2021.154775] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
Laminins are extracellular matrix proteins that reside in the basement membrane and provide structural support in addition to promoting cellular adhesion and migration. Through interactions with cell surface receptors, laminins stimulate intracellular signaling cascades which direct specific survival and differentiation outcomes. In metabolic tissues such as the pancreas, adipose, muscle, and liver, laminin isoforms are expressed in discrete temporal and spatial patterns suggesting that certain isoforms may support the development and function of particular metabolic cell types. This review focuses on the research to date detailing the expression of laminin isoforms, their potential function, as well as known pathways involved in laminin signaling in metabolic tissues. We will also discuss the current biomedical therapies involving laminins in these tissues in addition to prospective applications, with the goal being to encourage future investigation of laminins in the context of metabolic disease.
Collapse
Affiliation(s)
- Anna Goddi
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, 900 East 57th St, Chicago, IL 60637, USA
| | - Liesl Schroedl
- Pritzker School of Medicine, The University of Chicago, 924 E 57th St, Chicago, IL 60637, USA
| | - Eric M Brey
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ronald N Cohen
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, 900 East 57th St, Chicago, IL 60637, USA; Section of Endocrinology, Diabetes, and Metabolism, The University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Tanizaki Y, Shibata Y, Zhang H, Shi YB. Analysis of Thyroid Hormone Receptor α-Knockout Tadpoles Reveals That the Activation of Cell Cycle Program Is Involved in Thyroid Hormone-Induced Larval Epithelial Cell Death and Adult Intestinal Stem Cell Development During Xenopus tropicalis Metamorphosis. Thyroid 2021; 31:128-142. [PMID: 32515287 PMCID: PMC7840310 DOI: 10.1089/thy.2020.0022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: There are two highly conserved thyroid hormone (triiodothyronine [T3]) receptor (TR) genes, TRα and TRβ, in all vertebrates, and the expression of TRα but not TRβ is activated earlier than T3 synthesis during development. In human, high levels of T3 are present during the several months around birth, and T3 deficiency during this period causes severe developmental abnormalities including skeletal and intestinal defects. It is, however, difficult to study this period in mammals as the embryos and neonates depend on maternal supply of nutrients for survival. However, Xenopus tropicalis undergoes a T3-dependent metamorphosis, which drastically changes essentially every organ in a tadpole. Of interest is intestinal remodeling, which involves near complete degeneration of the larval epithelium through apoptosis. Concurrently, adult intestinal stem cells are formed de novo and subsequently give rise to the self-renewing adult epithelial system, resembling intestinal maturation around birth in mammals. We have previously demonstrated that T3 signaling is essential for the formation of adult intestinal stem cells during metamorphosis. Methods: We studied the function of endogenous TRα in the tadpole intestine by using knockout animals and RNA-seq analysis. Results: We observed that removing endogenous TRα caused defects in intestinal remodeling, including drastically reduced larval epithelial cell death and adult intestinal stem cell proliferation. Using RNA-seq on intestinal RNA from premetamorphic wild-type and TRα-knockout tadpoles treated with or without T3 for one day, before any detectable T3-induced cell death and stem cell formation in the tadpole intestine, we identified more than 1500 genes, which were regulated by T3 treatment of the wild-type but not TRα-knockout tadpoles. Gene Ontology and biological pathway analyses revealed that surprisingly, these TRα-regulated genes were highly enriched with cell cycle-related genes, in addition to genes related to stem cells and apoptosis. Conclusions: Our findings suggest that TRα-mediated T3 activation of the cell cycle program is involved in larval epithelial cell death and adult epithelial stem cell development during intestinal remodeling.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, and Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Building 49 Room 6A82, Bethesda, MD 20814, USA
| |
Collapse
|
11
|
Khan NM, Clifton KB, Lorenzo J, Hansen MF, Drissi H. Comparative transcriptomic analysis identifies distinct molecular signatures and regulatory networks of chondroclasts and osteoclasts. Arthritis Res Ther 2020; 22:168. [PMID: 32650826 PMCID: PMC7353397 DOI: 10.1186/s13075-020-02259-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/02/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Chondroclasts and osteoclasts have been previously identified as the cells capable of resorbing mineralized cartilage and bone matrices, respectively. While both cell types appear morphologically similar, contain comparable ultrastructural features, and express tartrate-resistant acid phosphatase (TRAP), however, no information is available about the genomic similarities and differences between osteoclasts and chondroclasts. METHODS To address this question, we laser captured homogeneous populations of TRAP-positive cells that interact with bone (osteoclasts) and TRAP-positive cells that interact with mineralized cartilage (chondroclasts) on the same plane from murine femoral fracture callus sections. We then performed a global transcriptome profiling of chondroclasts and osteoclasts by utilizing a mouse genome Agilent GE 4X44K V2 microarray platform. Multiple computational approaches and interaction networks were used to analyze the transcriptomic landscape of osteoclasts and chondroclasts. RESULTS Our systematic and comprehensive analyses using hierarchical clustering and principal component analysis (PCA) demonstrate that chondroclasts and osteoclasts are transcriptionally distinct cell populations and exhibit discrete transcriptomic signatures as revealed by multivariate analysis involving scatter plot, volcano plot, and heatmap analysis. TaqMan qPCR was used to validate the microarray results. Intriguingly, the functional enrichment and integrated network analyses revealed distinct Gene Ontology terms and molecular pathways specific to chondroclasts and osteoclasts and further suggest that subsets of metabolic genes were specific to chondroclasts. Protein-protein interaction (PPI) network analysis showed an abundance of structured networks of metabolic pathways, ATP synthesis, and proteasome pathways in chondroclasts. The regulatory network analysis using transcription factor-target gene network predicted a pool of genes including ETV6, SIRT1, and ATF1 as chondroclast-specific gene signature. CONCLUSIONS Our study provides an important genetic resource for further exploration of chondroclast function in vivo. To our knowledge, this is the first demonstration of genetic landscape of osteoclasts from chondroclasts identifying unique molecular signatures, functional clustering, and interaction network.
Collapse
Affiliation(s)
- Nazir M Khan
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA-30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Kari B Clifton
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Joseph Lorenzo
- Department of Medicine, UConn Health, Farmington, CT, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA
| | - Marc F Hansen
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA-30033, USA. .,Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
12
|
Anupa G, Poorasamy J, Bhat MA, Sharma JB, Sengupta J, Ghosh D. Endometrial stromal cell inflammatory phenotype during severe ovarian endometriosis as a cause of endometriosis-associated infertility. Reprod Biomed Online 2020; 41:623-639. [PMID: 32792135 DOI: 10.1016/j.rbmo.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
RESEARCH QUESTION Do endometrial stromal cells from primary infertile patients with severe ovarian endometriosis display differential secretory profiles of inflammation-associated cytokines during the implantation window that may cause infertility? DESIGN Forty-eight cytokines were measured in conditioned medium of isolated endometrial stromal cells obtained from primary infertile patients without endometriosis (control group, n = 12) or with stage IV ovarian endometriosis (ovarian endometriosis group, n = 14) using multiplex assays. Key cytokines showing differential secretory profiles were validated using Western immunoblotting. Cellular phenotypic validation was carried out in vitro by comparing proliferation and migration capacity between control (n = 6) and ovarian endometriosis (n = 7) groups. RESULTS CCL3, CCL4, CCL5, CXCL10, FGF2, IFNG, IL1RN, IL5, TNFA, and VEGF could be detected only in the conditioned media of stromal cells obtained from the ovarian endometriosis group. Among other cytokines detected in the conditioned media of both groups, CCL2 (P = 0.0018), CSF3 (P = 0.0017), IL1B (P = 0.0066), IL4 (P = 0.036), IL6 (P = 0.0039) and IL13 (P = 0.036) were found to be higher, whereas the concentration of IL18 was lower (P = 0.023) in the ovarian endometriosis group. Concentrations of CCL2, IL1B, IL4 and IL13 in conditioned medium reflected significant diagnostic performance for predicting ovarian endometriosis. Cellular phenotypic validation in vitro revealed an enhanced proliferative phenotype (P = 0.046) with no change in cell migratory capacity of endometrial stromal cells from the ovarian endometriosis group. CONCLUSIONS Endometrial stromal cells derived from severe ovarian endometriosis samples displayed a hyperinflammatory and hyperproliferative bias in the endometrial stroma during the 'window of implantation' putatively causing loss of fecundability.
Collapse
Affiliation(s)
- Geethadevi Anupa
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India; Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Jeevitha Poorasamy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Muzaffer A Bhat
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Jayasree Sengupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Debabrata Ghosh
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
13
|
Liu Y, Keikhosravi A, Pehlke CA, Bredfeldt JS, Dutson M, Liu H, Mehta GS, Claus R, Patel AJ, Conklin MW, Inman DR, Provenzano PP, Sifakis E, Patel JM, Eliceiri KW. Fibrillar Collagen Quantification With Curvelet Transform Based Computational Methods. Front Bioeng Biotechnol 2020; 8:198. [PMID: 32373594 PMCID: PMC7186312 DOI: 10.3389/fbioe.2020.00198] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
Quantification of fibrillar collagen organization has given new insight into the possible role of collagen topology in many diseases and has also identified candidate image-based bio-markers in breast cancer and pancreatic cancer. We have been developing collagen quantification tools based on the curvelet transform (CT) algorithm and have demonstrated this to be a powerful multiscale image representation method due to its unique features in collagen image denoising and fiber edge enhancement. In this paper, we present our CT-based collagen quantification software platform with a focus on new features and also giving a detailed description of curvelet-based fiber representation. These new features include C++-based code optimization for fast individual fiber tracking, Java-based synthetic fiber generator module for method validation, automatic tumor boundary generation for fiber relative quantification, parallel computing for large-scale batch mode processing, region-of-interest analysis for user-specified quantification, and pre- and post-processing modules for individual fiber visualization. We present a validation of the tracking of individual fibers and fiber orientations by using synthesized fibers generated by the synthetic fiber generator. In addition, we provide a comparison of the fiber orientation calculation on pancreatic tissue images between our tool and three other quantitative approaches. Lastly, we demonstrate the use of our software tool for the automatic tumor boundary creation and the relative alignment quantification of collagen fibers in human breast cancer pathology images, as well as the alignment quantification of in vivo mouse xenograft breast cancer images.
Collapse
Affiliation(s)
- Yuming Liu
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
| | - Adib Keikhosravi
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Carolyn A. Pehlke
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Jeremy S. Bredfeldt
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States
| | - Matthew Dutson
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Haixiang Liu
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Guneet S. Mehta
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
| | - Robert Claus
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Akhil J. Patel
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
| | - Matthew W. Conklin
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI, United States
| | - David R. Inman
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI, United States
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Eftychios Sifakis
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Jignesh M. Patel
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin–Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
| |
Collapse
|
14
|
Li J, Wang Y, Wang Y, Yan Y, Tong H, Li S. Fibronectin type III domain containing four promotes differentiation of C2C12 through the Wnt/β-catenin signaling pathway. FASEB J 2020; 34:7759-7772. [PMID: 32298013 DOI: 10.1096/fj.201902860rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 01/16/2023]
Abstract
Fibronectin type III domain containing 4 (FNDC4) belongs to the fibronectin type III domain containing protein family. FNDC5, which is highly homologous to FNDC4, can promote the differentiation of cardiac cells. We aimed to investigate the role of FNDC4 in the differentiation of C2C12 mouse skeletal muscle cells. Western blotting and immunofluorescence analysis showed that FNDC4 gradually increased with the differentiation of C2C12. Muscle injury repair experiments indicated that FNDC4 may promote the repair of injured muscles. When FNDC4 was either overexpressed or knocked down, the expression of desmin and myogenin myogenic marker molecules followed that of FNDC4, suggesting that FNDC4 can influence the differentiation of C2C12. In addition, immunoprecipitation results showed that FNDC4 can interact with the Wnt/β-catenin signaling pathway receptor low-density lipoprotein receptor-related protein 6 (LRP6), and that β-catenin levels in the nucleus decreased after knocking down FNDC4. Exogenous addition of FNDC4 protein could not restore the blocking of differentiation due to inhibition of both Wnt/β-catenin signal transduction and LRP6 activity via the β-catenin inhibitor XAV-939. Overall, our findings indicate that FDNC4 can influence the differentiation of C2C12 by activating Wnt/β-catenin signal transduction.
Collapse
Affiliation(s)
- Jiwei Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Yanshuang Wang
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Yan Wang
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Yunqin Yan
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Huili Tong
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Shufeng Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
16
|
Li S, Liu D, Fu Y, Zhang C, Tong H, Li S, Yan Y. Podocan Promotes Differentiation of Bovine Skeletal Muscle Satellite Cells by Regulating the Wnt4-β-Catenin Signaling Pathway. Front Physiol 2019; 10:1010. [PMID: 31447699 PMCID: PMC6692459 DOI: 10.3389/fphys.2019.01010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/22/2019] [Indexed: 02/03/2023] Open
Abstract
Background Small leucine-rich repeat proteins (SLRPs) are highly effective and selective modulators of cell proliferation and differentiation. Podocan is a newly discovered member of the SLRP family. Its potential roles in the differentiation of bovine muscle-derived satellite cells (MDSCs) and its underlying functional mechanism remain unclear. Our study aimed to characterize the function of the podocan gene in the differentiation of bovine MDSCs and to clarify the molecular mechanism by which podocan functions in order to contribute to a better understanding of the molecular mechanism by which extracellular matrix promotes bovine MDSC differentiation and provide a theoretical basis for the improvement of beef quality. Methods Bovine MDSCs were transfected with vectors to overexpress or inhibit podocan, and podocan protein was added to differentiation culture medium. qRT-PCR, western blotting, and immunofluorescence were performed to investigate the effects of podocan on MDSC differentiation. Confocal microscopy and western blotting were used to assess the nuclear translocation and expression of β-catenin. An inhibitor and activator of β-catenin were used to assess the effects of the Wnt/β-catenin signaling pathway on MDSC differentiation. We inhibited β-catenin while overexpressing podocan in MDSCs. Then, we performed mass spectrometry to identify which proteins interact with podocan to regulate the Wnt/β-catenin signaling pathway. Finally, we confirmed the relationship between podocan and Wnt4 by co-immunoprecipitation and western blotting. Results Podocan protein expression increased significantly during bovine MDSC differentiation. Differentiation of bovine MDSC was promoted and suppressed by podocan overexpression or inhibition, respectively. Podocan was also shown to modulate the Wnt/β-catenin signaling pathway. Treatment of bovine MDSCs with β-catenin inhibitor and activator showed that the Wnt/β-catenin pathway is involved in bovine MDSC differentiation. Furthermore, the effect of podocan on bovine MDSC differentiation was suppressed when this pathway was inhibited. We also found that podocan interacts with Wnt4. When Wnt4 was inhibited, podocan-induced promotion of bovine MDSC differentiation was attenuated through Wnt/β-catenin signaling. Conclusion Podocan regulates Wnt/β-catenin through Wnt4 to promote bovine MDSC differentiation.
Collapse
Affiliation(s)
- Shuang Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Dan Liu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Yuying Fu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Chunyu Zhang
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Maechler FA, Allier C, Roux A, Tomba C. Curvature-dependent constraints drive remodeling of epithelia. J Cell Sci 2019; 132:jcs222372. [PMID: 30578312 PMCID: PMC6398478 DOI: 10.1242/jcs.222372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Epithelial tissues function as barriers that separate the organism from the environment. They usually have highly curved shapes, such as tubules or cysts. However, the processes by which the geometry of the environment and the cell's mechanical properties set the epithelium shape are not yet known. In this study, we encapsulated two epithelial cell lines, MDCK and J3B1A, into hollow alginate tubes and grew them under cylindrical confinement forming a complete monolayer. MDCK monolayers detached from the alginate shell at a constant rate, whereas J3B1A monolayers detached at a low rate unless the tube radius was reduced. We showed that this detachment is driven by contractile stresses in the epithelium and can be enhanced by local curvature. This allows us to conclude that J3B1A cells exhibit smaller contractility than MDCK cells. Monolayers inside curved tubes detach at a higher rate on the outside of a curve, confirming that detachment is driven by contraction.
Collapse
Affiliation(s)
- Florian A Maechler
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cédric Allier
- CEA, LETI, DTBS, LISA, Université Grenoble Alpes, F-38000 Grenoble, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
- NCCR Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Caterina Tomba
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
18
|
Narayanan K, Kumar S, Padmanabhan P, Gulyas B, Wan ACA, Rajendran VM. Lineage-specific exosomes could override extracellular matrix mediated human mesenchymal stem cell differentiation. Biomaterials 2018; 182:312-322. [PMID: 30153612 PMCID: PMC6371403 DOI: 10.1016/j.biomaterials.2018.08.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
Lineage specification is an essential process in stem cell fate, tissue homeostasis and development. Microenvironmental cues provide direct and selective extrinsic signals to regulate lineage specification of stem cells. Microenvironmental milieu consists of two essential components, one being extracellular matrix (ECM) as the substratum, while the other being cell secreted exosomes and growth factors. ECM of differentiated cells modulates phenotypic expression of stem cells, while their exosomes contain phenotype specific instructive factors (miRNA, RNA and proteins) that control stem cell differentiation. This study demonstrates that osteoblasts-derived (Os-Exo) and adipocytes-derived (Ad-Exo) exosomes contain instructive factors that regulate the lineage specification of human mesenchymal stem cells (hMSCs). Analyses of exosomes revealed the presence of transcription factors in the form of RNA and protein for osteoblasts (RUNX2 and OSX) and adipocytes (C/EBPα and PPARγ). In addition, several miRNAs reported to have osteogenic and adipogenic differentiation potentials are also identified in these exosomes. Kinetic and differentiation analyses indicate that both osteoblast and adipocyte exosomes augment ECM-mediated differentiation of hMSCs into the respective lineage. The combination of osteoblast/adipocyte ECM and exosomes turned-on the lineage specific gene expressions at earlier time points of differentiation compared to the respective ECM or exosomes administered individually. Interestingly, the hMSCs differentiated on osteoblast ECM with adipogenic exosomes showed expression of adipogenic lineage genes, while hMSCs differentiated on adipocyte ECM with osteoblast exosomes showed osteogenic lineage genes. Based on these observations, we conclude that exosomes might override the ECM mediated instructive signals during lineage specification of hMSC.
Collapse
Affiliation(s)
- Karthikeyan Narayanan
- Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Institute of Bioengineering and Nanotechnology, 138669, Singapore.
| | - Sundramurthy Kumar
- Centre for Neuroimaging Research at NTU (CeNReN), Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
| | - Parasuraman Padmanabhan
- Centre for Neuroimaging Research at NTU (CeNReN), Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore.
| | - Balazs Gulyas
- Centre for Neuroimaging Research at NTU (CeNReN), Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
| | - Andrew C A Wan
- Institute of Bioengineering and Nanotechnology, 138669, Singapore
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| |
Collapse
|
19
|
Strauss BE, Silva GRO, de Luna Vieira I, Cerqueira OLD, Del Valle PR, Medrano RFV, Mendonça SA. Perspectives for cancer immunotherapy mediated by p19Arf plus interferon-beta gene transfer. Clinics (Sao Paulo) 2018; 73:e479s. [PMID: 30208166 PMCID: PMC6113850 DOI: 10.6061/clinics/2018/e479s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
While cancer immunotherapy has gained much deserved attention in recent years, many areas regarding the optimization of such modalities remain unexplored, including the development of novel approaches and the strategic combination of therapies that target multiple aspects of the cancer-immunity cycle. Our own work involves the use of gene transfer technology to promote cell death and immune stimulation. Such immunogenic cell death, mediated by the combined transfer of the alternate reading frame (p14ARF in humans and p19Arf in mice) and the interferon-β cDNA in our case, was shown to promote an antitumor immune response in mouse models of melanoma and lung carcinoma. With these encouraging results, we are now setting out on the road toward translational and preclinical development of our novel immunotherapeutic approach. Here, we outline the perspectives and challenges that we face, including the use of human tumor and immune cells to verify the response seen in mouse models and the incorporation of clinically relevant models, such as patient-derived xenografts and spontaneous tumors in animals. In addition, we seek to combine our immunotherapeutic approach with other treatments, such as chemotherapy or checkpoint blockade, with the goal of reducing dosage and increasing efficacy. The success of any translational research requires the cooperation of a multidisciplinary team of professionals involved in laboratory and clinical research, a relationship that is fostered at the Cancer Institute of Sao Paulo.
Collapse
Affiliation(s)
- Bryan E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail: /
| | - Gissele Rolemberg Oliveira Silva
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Igor de Luna Vieira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Otto Luiz Dutra Cerqueira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Paulo Roberto Del Valle
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Ruan Felipe Vieira Medrano
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Samir Andrade Mendonça
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
20
|
Filipe EC, Chitty JL, Cox TR. Charting the unexplored extracellular matrix in cancer. Int J Exp Pathol 2018; 99:58-76. [PMID: 29671911 DOI: 10.1111/iep.12269] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is present in all solid tissues and considered a master regulator of cell behaviour and phenotype. The importance of maintaining the correct biochemical and biophysical properties of the ECM, and the subsequent regulation of cell and tissue homeostasis, is illustrated by the simple fact that the ECM is highly dysregulated in many different types of disease, especially cancer. The loss of tissue ECM homeostasis and integrity is seen as one of the hallmarks of cancer and typically defines transitional events in progression and metastasis. The vast majority of cancer studies place an emphasis on exploring the behaviour and intrinsic signalling pathways of tumour cells. Their goal was to identify ways to target intracellular pathways regulating cancer. Cancer progression and metastasis are powerfully influenced by the ECM and thus present a vast, unexplored repository of anticancer targets that we are only just beginning to tap into. Deconstructing the complexity of the tumour ECM landscape and identifying the interactions between the many cell types, soluble factors and extracellular-matrix proteins have proved challenging. Here, we discuss some of the emerging tools and platforms being used to catalogue and chart the ECM in cancer.
Collapse
Affiliation(s)
- Elysse C Filipe
- Cancer Division, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
| | - Jessica L Chitty
- Cancer Division, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
| | - Thomas R Cox
- Cancer Division, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, New South Wales, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Shen F, Guo Q, Hu Q, Zeng A, Wu W, Yan W, You Y. RelB, a good prognosis predictor, links cell-cycle and migration to glioma tumorigenesis. Oncol Lett 2018. [PMID: 29541209 PMCID: PMC5835853 DOI: 10.3892/ol.2018.7894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nuclear factor κB (NF-κB) exhibits an important role in inflammation and tumorigenesis. The key regulatory protein of the pathway, RELB Proto-Oncogene, NF-KB Subunit (relB), is overexpressed and associated with the pathogenesis of a variety of malignant tumors. However, the molecular features and clinical signature of relB expression in gliomas remains to be elucidated. The present study obtained the raw sequencing data of 325 glioma samples of all grades from the Chinese Glioma Genome Atlas (CGGA) database and human glioma cell line (LN229) from the Chinese Academy of Sciences cell bank. Cell proliferation, invasion and wound healing assays were used for functional annotation of relB. Western blot analysis was used for validating the protein expression of relB, matrix metalloproteinase (MMP)-2 and MMP-9 in a further 77 glioma samples. In Diffuse Glioma data, relB expression was associated with glioma grade, demonstrated a mesenchymal subtype preference and cell development association. The downregulation of relB expression inhibited glioma cell migration and invasion by regulating the MMPs in vitro. relB expression was independently associated with grade and prognosis of grade III and grade IV gliomas, suggesting that relB is a novel biomarker with therapeutic potential for predicting prognosis in glioma.
Collapse
Affiliation(s)
- Feng Shen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Qing Guo
- Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Qi Hu
- Department of Neurosurgery, The First People's Hospital of Yueyang, Yueyang, Hunan 414000, P.R. China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weining Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
22
|
Kwon D, Ahn HJ, Kang KS. Generation of Human Neural Stem Cells by Direct Phenotypic Conversion. Results Probl Cell Differ 2018; 66:103-121. [PMID: 30209656 DOI: 10.1007/978-3-319-93485-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human neural stem cells (hNSC) are multipotent adult stem cells. Various studies are underway worldwide to identify new methods for treatment of neurological diseases using hNSC. This chapter summarizes the latest research trends in and fields for application of patient-specific hNSC using direct phenotypic conversion technology. The aim of the study was to analyze the advantages and disadvantages of current technology and to suggest relevant directions for future hNSC research.
Collapse
Affiliation(s)
- Daekee Kwon
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Seoul National University, Seoul, South Korea
| | - Hee-Jin Ahn
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Seoul National University, Seoul, South Korea
| | - Kyung-Sun Kang
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Seoul National University, Seoul, South Korea.
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
23
|
Hematti P. Role of Extracellular Matrix in Cardiac Cellular Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1098:173-188. [PMID: 30238371 DOI: 10.1007/978-3-319-97421-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) is an essential regulator of homeostasis at the cellular, tissue, and organ level. It is now very well known that ECM dynamic remodeling is indispensable not only for normal growth and development but also recovery from tissue injuries. Indeed, abnormal remodeling of the ECM plays a major role in many pathophysiological processes and contributes to many different pathologies including cardiovascular disorders. Recently, cellular therapies have emerged as a potential therapeutic strategy for restoration of lost cardiomyocytes or their rejuvenation after cardiac damage and injuries. Harnessing the biological properties of ECM could be a viable strategy to enhance the therapeutic effects of cellular therapies by improving the engraftment, integration, survival, and functional adaptation of newly transplanted cells in many different platforms. Conversely, transplanted cells could restore the functionality and original composition of damaged ECM by secreting and depositing new ECM or stimulating normal ECM production by cardiac tissue native cells. Although the ultimate role of cell therapy in treatment of cardiac disorders is still a matter of great debate, the potential utility of ECM in improving the therapeutic effect of transplanted cells and vice versa the potential role of cell therapy as a means to restore the structure and functionality of damaged ECM should be carefully considered in implementation of future clinical cardiovascular cell therapy trials.
Collapse
Affiliation(s)
- Peiman Hematti
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
24
|
Lintz M, Muñoz A, Reinhart-King CA. The Mechanics of Single Cell and Collective Migration of Tumor Cells. J Biomech Eng 2017; 139:2580907. [PMID: 27814431 DOI: 10.1115/1.4035121] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Indexed: 12/20/2022]
Abstract
Metastasis is a dynamic process in which cancer cells navigate the tumor microenvironment, largely guided by external chemical and mechanical cues. Our current understanding of metastatic cell migration has relied primarily on studies of single cell migration, most of which have been performed using two-dimensional (2D) cell culture techniques and, more recently, using three-dimensional (3D) scaffolds. However, the current paradigm focused on single cell movements is shifting toward the idea that collective migration is likely one of the primary modes of migration during metastasis of many solid tumors. Not surprisingly, the mechanics of collective migration differ significantly from single cell movements. As such, techniques must be developed that enable in-depth analysis of collective migration, and those for examining single cell migration should be adopted and modified to study collective migration to allow for accurate comparison of the two. In this review, we will describe engineering approaches for studying metastatic migration, both single cell and collective, and how these approaches have yielded significant insight into the mechanics governing each process.
Collapse
Affiliation(s)
- Marianne Lintz
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 309 Weill Hall, Ithaca, NY 14853
| | - Adam Muñoz
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 309 Weill Hall, Ithaca, NY 14853
| | - Cynthia A Reinhart-King
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 302 Weill Hall, Ithaca, NY 14853 e-mail:
| |
Collapse
|
25
|
Chittiboyina S, Rahimi R, Atrian F, Ochoa M, Ziaie B, Lelièvre SA. Gradient-on-a-Chip with Reactive Oxygen Species Reveals Thresholds in the Nucleus Response of Cancer Cells Depending on the Matrix Environment. ACS Biomater Sci Eng 2017; 4:432-445. [PMID: 33418734 DOI: 10.1021/acsbiomaterials.7b00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative stress-mediated cancer progression depends on exposure to reactive oxygen species (ROS) in the extracellular matrix (ECM). To study the impact of ROS levels on preinvasive breast cancer cells as a function of ECM characteristics, we created a gradient-on-a-chip in which H2O2 progressively mixes with the cell culture medium within connected microchannels and diffuses upward into the ECM of the open cell culture window. The device utilizes a paper-based microfluidic bifurcating mixer insert to prevent leakage and favor an even fluid distribution. The gradient was confirmed by measuring H2O2 catalyzed into oxygen, and increasing oxidative DNA damage and protective (AOP2) response were recorded in 2D and ECM-based 3D cell cultures. Interestingly, the impact of ROS on nuclear shape and size (annunciating phenotypical changes) was governed by the stiffness of the collagen I matrix, suggesting the existence of thresholds for the phenotypic response to microenvironmental chemical exposure depending on ECM conditions.
Collapse
Affiliation(s)
- Shirisha Chittiboyina
- Department of Basic Medical Sciences, 625 Harrison Street, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- Department of Electrical and Computer Engineering, 465 Northwestern Avenue, Purdue University, West Lafayette, Indiana 47907, United States.,Birck Nanotechnology Center, Purdue University, 1205 W State Street, Purdue Discovery Park, West Lafayette, Indiana 47907, United States
| | - Farzaneh Atrian
- Department of Basic Medical Sciences, 625 Harrison Street, Purdue University, West Lafayette, Indiana 47907, United States
| | - Manuel Ochoa
- Department of Electrical and Computer Engineering, 465 Northwestern Avenue, Purdue University, West Lafayette, Indiana 47907, United States.,Birck Nanotechnology Center, Purdue University, 1205 W State Street, Purdue Discovery Park, West Lafayette, Indiana 47907, United States
| | - Babak Ziaie
- Department of Electrical and Computer Engineering, 465 Northwestern Avenue, Purdue University, West Lafayette, Indiana 47907, United States.,Birck Nanotechnology Center, Purdue University, 1205 W State Street, Purdue Discovery Park, West Lafayette, Indiana 47907, United States.,Purdue University Center for Cancer Research, Purdue University, 201 South University Street, West Lafayette, Indiana 47907, United States
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, 625 Harrison Street, Purdue University, West Lafayette, Indiana 47907, United States.,Birck Nanotechnology Center, Purdue University, 1205 W State Street, Purdue Discovery Park, West Lafayette, Indiana 47907, United States.,Purdue University Center for Cancer Research, Purdue University, 201 South University Street, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Hillreiner M, Müller NI, Koch HM, Schmautz C, Küster B, Pfaffl MW, Kliem H. Establishment of a 3D cell culture model of primary bovine mammary epithelial cells extracted from fresh milk. In Vitro Cell Dev Biol Anim 2017. [PMID: 28643224 DOI: 10.1007/s11626-017-0169-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For the investigation of molecular processes underlying diseases of the bovine mammary gland, primary bovine mammary epithelial cells (pbMEC) are used. They are known to contribute to the innate immune system of the bovine mammary gland. The functionality of pbMEC depends on the maintenance of in vivo characteristics. So far, the optimization of pbMEC culture conditions was intended in a variety of experiments. For this purpose, most of the studies used stable cell lines or primary cells obtained from udder biopsies of slaughtered animals. By contrast, within our study, pbMEC of healthy and first lactating Brown Swiss cows were non-invasively isolated from fresh milk. The non-invasively isolated pbMEC were cultivated on the extracellular matrix-like scaffold Matrigel®. Further, they were challenged with different compositions of proliferation media, containing lactogenic hormones and/or the essential amino acid L-lysine. Changes in expression levels of genes coding for milk proteins and for components of the janus kinase/signal transducers and activators of transcription (JAK-STAT) and mTOR pathways were analyzed by RT-qPCR. The secreted proteins were analyzed by LC-MS/MS measurements. We showed for the first time the establishment of a physiologically functional 3D cell culture model of pbMEC isolated from fresh milk. This represents a primary cell culture model system, based on non-invasive cell collection, that can be used to unravel physiological processes in an unbiased manner.
Collapse
Affiliation(s)
- Maria Hillreiner
- Chair of Animal Physiology and Immunology, Technische Universität München, Freising, Germany
| | - Nadine I Müller
- Chair of Animal Physiology and Immunology, Technische Universität München, Freising, Germany
| | - Heiner M Koch
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Christiane Schmautz
- Chair of Animal Physiology and Immunology, Technische Universität München, Freising, Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany.,Bavarian Biomolecular Mass Spectrometry Center, Technische Universität München, Freising, Germany
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, Technische Universität München, Freising, Germany
| | - Heike Kliem
- Chair of Animal Physiology and Immunology, Technische Universität München, Freising, Germany.
| |
Collapse
|
27
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
28
|
Pawelec KM, Best SM, Cameron RE. Collagen: a network for regenerative medicine. J Mater Chem B 2016; 4:6484-6496. [PMID: 27928505 PMCID: PMC5123637 DOI: 10.1039/c6tb00807k] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/20/2016] [Indexed: 12/28/2022]
Abstract
The basic building block of the extra-cellular matrix in native tissue is collagen. As a structural protein, collagen has an inherent biocompatibility making it an ideal material for regenerative medicine. Cellular response, mediated by integrins, is dictated by the structure and chemistry of the collagen fibers. Fiber formation, via fibrillogenesis, can be controlled in vitro by several factors: pH, ionic strength, and collagen structure. After formation, fibers are stabilized via cross-linking. The final bioactivity of collagen scaffolds is a result of both processes. By considering each step of fabrication, scaffolds can be tailored for the specific needs of each tissue, improving their therapeutic potential.
Collapse
Affiliation(s)
- K M Pawelec
- University of Michigan , 2350 Hayward Ave , Ann Arbor , MI 48109 , USA
| | - S M Best
- Cambridge Centre for Medical Materials , University of Cambridge , Cambridge , CB3 0FS , UK .
| | - R E Cameron
- Cambridge Centre for Medical Materials , University of Cambridge , Cambridge , CB3 0FS , UK .
| |
Collapse
|
29
|
Chahal S, Hussain FSJ, Kumar A, Rasad MSBA, Yusoff MM. Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2015.12.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Chen X, Wang J, Chen Y, Cai H, Yang X, Zhu X, Fan Y, Zhang X. Roles of calcium phosphate-mediated integrin expression and MAPK signaling pathways in the osteoblastic differentiation of mesenchymal stem cells. J Mater Chem B 2016; 4:2280-2289. [DOI: 10.1039/c6tb00349d] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BCP ceramics mediated MSC's integrin expression to realize “outside-in signaling” transduction and then activated MAPK signaling to induce osteogenesis.
Collapse
Affiliation(s)
- Xuening Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Ying Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Hanxu Cai
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
31
|
Cho-Clark M, Larco DO, Zahn BR, Mani SK, Wu TJ. GnRH-(1-5) activates matrix metallopeptidase-9 to release epidermal growth factor and promote cellular invasion. Mol Cell Endocrinol 2015; 415:114-25. [PMID: 26277400 DOI: 10.1016/j.mce.2015.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/29/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
Abstract
In the extracellular space, the gonadotropin-releasing hormone (GnRH) is metabolized by the zinc metalloendopeptidase EC3.4.24.15 (EP24.15) to form the pentapeptide, GnRH-(1-5). GnRH-(1-5) diverges in function and mechanism of action from GnRH in the brain and periphery. GnRH-(1-5) acts on the orphan G protein-coupled receptor 101 (GPR101) to sequentially stimulate epidermal growth factor (EGF) release, phosphorylate the EGF receptor (EGFR), and facilitate cellular migration. These GnRH-(1-5) actions are dependent on matrix metallopeptidase (MMP) activity. Here, we demonstrated that these GnRH-(1-5) effects are dependent on increased MMP-9 enzymatic activity in the Ishikawa and ECC-1 cell lines. Furthermore, the effects of GnRH-(1-5) mediated by GPR101 and the subsequent increase in MMP-9 enzymatic activity lead to an increase in cellular invasion. These results suggest that GnRH-(1-5) and GPR101 regulation of MMP-9 may have physiological relevance in the metastatic potential of endometrial cancer cells.
Collapse
Affiliation(s)
- Madelaine Cho-Clark
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Darwin O Larco
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Brian R Zahn
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Shaila K Mani
- Departments of Molecular & Cellular Biology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - T John Wu
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
32
|
Ito Y, Iwashita J, Kudoh A, Kuramata C, Murata J. MUC5B mucin production is upregulated by fibronectin and laminin in human lung epithelial cells via the integrin and ERK dependent pathway. Biosci Biotechnol Biochem 2015; 79:1794-801. [PMID: 26057585 DOI: 10.1080/09168451.2015.1052769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
MUC5B mucin is a principal component of airway mucus and plays a key role in biodefense. We investigated the regulation of MUC5B production using the signals from extracellular matrix (ECM) components in NCI-H292 human lung epithelial cells. We found that MUC5B production in NCI-H292 cells cultured on fibronectin or laminin increased by 4-5-fold, with the increase occurring in a dose- and time-dependent manner. In contrast, MUC5B production was unchanged on type-IV collagen. Inhibition of integrin β1 induced upregulation of MUC5B and MUC5AC; however, inhibition of p38 MAPK did not show any remarkable change in overproduced MUC5B. Inhibition of extracellular signal-regulated kinase (ERK) pathway or the transcription factor NF-κB induced the recovery of overproduced MUC5B on fibronectin and laminin. These results suggest that MUC5B production can be regulated by ECM components and that MUC5B is upregulated by fibronectin and laminin via the integrin, ERK, and NF-κB dependent pathway.
Collapse
Affiliation(s)
- Yuho Ito
- a Faculty of Bioresource Sciences , Akita Prefectural University , Akita , Japan
| | - Jun Iwashita
- a Faculty of Bioresource Sciences , Akita Prefectural University , Akita , Japan
| | - Arisa Kudoh
- a Faculty of Bioresource Sciences , Akita Prefectural University , Akita , Japan
| | - Chika Kuramata
- a Faculty of Bioresource Sciences , Akita Prefectural University , Akita , Japan
| | - Jun Murata
- a Faculty of Bioresource Sciences , Akita Prefectural University , Akita , Japan
| |
Collapse
|
33
|
Murney R, Stelwagen K, Wheeler T, Margerison J, Singh K. Activation of signal transducer and activator of transcription 5 (STAT5) is linked to β1-integrin protein abundance in unilaterally milked bovine mammary glands. J Dairy Sci 2015; 98:3133-42. [DOI: 10.3168/jds.2014-9003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022]
|
34
|
Yu L, Grist SM, Nasseri SS, Cheng E, Hwang YCE, Ni C, Cheung KC. Core-shell hydrogel beads with extracellular matrix for tumor spheroid formation. BIOMICROFLUIDICS 2015; 9:024118. [PMID: 25945144 PMCID: PMC4401801 DOI: 10.1063/1.4918754] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/07/2015] [Indexed: 05/09/2023]
Abstract
Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since they may provide a better model of the tumor than conventional monolayer culture. Moreover, tumor cell interaction with the extracellular matrix can determine cell organization and behavior. In this work, a microfluidic system was used to form cell-laden core-shell beads which incorporate elements of the extracellular matrix and support the formation of multicellular spheroids. The bead core (comprising a mixture of alginate, collagen, and reconstituted basement membrane, with gelation by temperature control) and shell (comprising alginate hydrogel, with gelation by ionic crosslinking) were simultaneously formed through flow focusing using a cooled flow path into the microfluidic chip. During droplet gelation, the alginate acts as a fast-gelling shell which aids in preventing droplet coalescence and in maintaining spherical droplet geometry during the slower gelation of the collagen and reconstituted basement membrane components as the beads warm up. After droplet gelation, the encapsulated MCF-7 cells proliferated to form uniform spheroids when the beads contained all three components: alginate, collagen, and reconstituted basement membrane. The dose-dependent response of the MCF-7 cell tumor spheroids to two anticancer drugs, docetaxel and tamoxifen, was compared to conventional monolayer culture.
Collapse
Affiliation(s)
- L Yu
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - S M Grist
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - S S Nasseri
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - E Cheng
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Y-C E Hwang
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - C Ni
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - K C Cheung
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
35
|
Tissue-engineered 3D tumor angiogenesis models: potential technologies for anti-cancer drug discovery. Adv Drug Deliv Rev 2014; 79-80:30-9. [PMID: 24819220 DOI: 10.1016/j.addr.2014.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/14/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023]
Abstract
Angiogenesis is indispensable for solid tumor expansion, and thus it has become a major target of cancer research and anti-cancer therapies. Deciphering the arcane actions of various cell populations during tumor angiogenesis requires sophisticated research models, which could capture the dynamics and complexity of the process. There is a continuous need for improvement of existing research models, which engages interdisciplinary approaches of tissue engineering with life sciences. Tireless efforts to develop a new model to study tumor angiogenesis result in innovative solutions, which bring us one step closer to decipher the dubious nature of cancer. This review aims to overview the recent developments, current limitations and future challenges in three-dimensional tissue-engineered models for the study of tumor angiogenesis and for the purpose of elucidating novel targets aimed at anti-cancer drug discovery.
Collapse
|
36
|
Finesilver G, Kahana M, Mitrani E. Kidney-Specific Microscaffolds and Kidney-Derived Serum-Free Conditioned Media Support In Vitro Expansion, Differentiation, and Organization of Human Embryonic Stem Cells. Tissue Eng Part C Methods 2014; 20:1003-15. [DOI: 10.1089/ten.tec.2013.0574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Gershon Finesilver
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Meygal Kahana
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduardo Mitrani
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
37
|
Volckaert T, De Langhe S. Lung epithelial stem cells and their niches: Fgf10 takes center stage. FIBROGENESIS & TISSUE REPAIR 2014; 7:8. [PMID: 24891877 PMCID: PMC4041638 DOI: 10.1186/1755-1536-7-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Abstract
Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA ; The Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, 9052 Ghent, Belgium ; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Stijn De Langhe
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA ; Department of Cellular and Developmental Biology, School of Medicine, University of Colorado Denver, 12605 E 16th Avenue, Aurora CO 80045, USA
| |
Collapse
|
38
|
Iwashita J, Ito Y, Yokoo M, Takahashi S, Murata J. Akt induces down regulation of MUC5AC production in NCI-H292 human airway epithelial cells cultured on extracellular matrix. Biosci Biotechnol Biochem 2014; 78:212-21. [PMID: 25036673 DOI: 10.1080/09168451.2014.877829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MUC5AC mucin overproduction is a key feature of asthma as contributes to airway obstruction. The production of MUC5AC is regulated in part by signals from extracellular matrix via integrin pathways, but it remains largely unclear. We investigated the role of Akt, a typical signal transducer in the integrin pathway, in the regulation of MUC5AC production. When NCI-H292 human airway epithelial cells were cultured on laminin or Matrigel, we found that the activity of Akt was suppressed, as compared to control cells with upregulated MUC5AC production. In contrast, Akt was activated in cells cultured on type IV collagen with downregulated MUC5AC production. The Akt inhibitor induced upregulation of MUC5AC. In contrast, overexpression of active Akt induced downregulation of MUC5AC production. These results suggest that a signal from laminin or Matrigel induces upregulation of MUC5AC by suppressing Akt activity, whereas a signal from type IV collagen induces downregulation of MUC5AC, mediated by Akt activation.
Collapse
Affiliation(s)
- Jun Iwashita
- a Faculty of Bioresource Sciences, Akita Prefectural University , Akita , Japan
| | | | | | | | | |
Collapse
|
39
|
Zegers MM. 3D in vitro cell culture models of tube formation. Semin Cell Dev Biol 2014; 31:132-40. [PMID: 24613912 DOI: 10.1016/j.semcdb.2014.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/13/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
Building the complex architecture of tubular organs is a highly dynamic process that involves cell migration, polarization, shape changes, adhesion to neighboring cells and the extracellular matrix, physicochemical characteristics of the extracellular matrix and reciprocal signaling with the mesenchyme. Understanding these processes in vivo has been challenging as they take place over extended time periods deep within the developing organism. Here, I will discuss 3D in vitro models that have been crucial to understand many of the molecular and cellular mechanisms and key concepts underlying branching morphogenesis in vivo.
Collapse
Affiliation(s)
- Mirjam M Zegers
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Department of Cell Biology, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
40
|
Bunse S, Garg S, Junek S, Vogel D, Ansari N, Stelzer EHK, Schuman E. Role of N-cadherin cis and trans interfaces in the dynamics of adherens junctions in living cells. PLoS One 2013; 8:e81517. [PMID: 24312555 PMCID: PMC3847041 DOI: 10.1371/journal.pone.0081517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/11/2013] [Indexed: 12/03/2022] Open
Abstract
Cadherins, Ca2+-dependent adhesion molecules, are crucial for cell-cell junctions and remodeling. Cadherins form inter-junctional lattices by the formation of both cis and trans dimers. Here, we directly visualize and quantify the spatiotemporal dynamics of wild-type and dimer mutant N-cadherin interactions using time-lapse imaging of junction assembly, disassembly and a FRET reporter to assess Ca2+-dependent interactions. A trans dimer mutant (W2A) and a cis mutant (V81D/V174D) exhibited an increased Ca2+-sensitivity for the disassembly of trans dimers compared to the WT, while another mutant (R14E) was insensitive to Ca2+-chelation. Time-lapse imaging of junction assembly and disassembly, monitored in 2D and 3D (using cellular spheroids), revealed kinetic differences in the different mutants as well as different behaviors in the 2D and 3D environment. Taken together, these data provide new insights into the role that the cis and trans dimers play in the dynamic interactions of cadherins.
Collapse
Affiliation(s)
- Stefanie Bunse
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Sakshi Garg
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Stephan Junek
- Department of Neural Systems, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Dirk Vogel
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität, Frankfurt am Main, Frankfurt am Main, Germany
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität, Frankfurt am Main, Frankfurt am Main, Germany
| | - Erin Schuman
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
41
|
Jacob A, Jing J, Lee J, Schedin P, Gilbert SM, Peden AA, Junutula JR, Prekeris R. Rab40b regulates trafficking of MMP2 and MMP9 during invadopodia formation and invasion of breast cancer cells. J Cell Sci 2013; 126:4647-58. [PMID: 23902685 DOI: 10.1242/jcs.126573] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Invadopodia-dependent degradation of the basement membrane plays a major role during metastasis of breast cancer cells. Basement membrane degradation is mediated by targeted secretion of various matrix metalloproteinases (MMPs). Specifically, MMP2 and MMP9 (MMP2/9) possess the ability to hydrolyze components of the basement membrane and regulate various aspects of tumor growth and metastasis. However, the membrane transport machinery that mediates targeting of MMP2/9 to the invadopodia during cancer cell invasion remains to be defined. Because Rab GTPases are key regulators of membrane transport, we screened a human Rab siRNA library and identified Rab40b GTPase as a protein required for secretion of MMP2/9. We also have shown that Rab40b functions during at least two distinct steps of MMP2/9 transport. Here, we demonstrate that Rab40b is required for MMP2/9 sorting into VAMP4-containing secretory vesicles. We also show that Rab40b regulates transport of MMP2/9 secretory vesicles during invadopodia formation and is required for invadopodia-dependent extracellular matrix degradation. Finally, we demonstrate that Rab40b is also required for breast cancer cell invasion in vitro. On the basis of these findings, we propose that Rab40b mediates trafficking of MMP2/9 during invadopodia formation and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Abitha Jacob
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mitra A, Mishra L, Li S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends Biotechnol 2013; 31:347-54. [PMID: 23597659 DOI: 10.1016/j.tibtech.2013.03.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/06/2013] [Accepted: 03/14/2013] [Indexed: 01/02/2023]
Abstract
For decades, immortal cancer cell lines have constituted an accessible, easily usable set of biological models to investigate cancer biology and explore the potential efficacy of anticancer drugs. However, numerous studies have suggested that these cell lines poorly represent the diversity, heterogeneity, and drug-resistant tumors occurring in patients. The derivation and short-term culture of primary cells from solid tumors have thus gained significant importance in personalized cancer therapy. This review focuses on our current understanding and the pros and cons of different methods for primary tumor cell culture. Furthermore, various culture matrices such as biomimetic scaffolds and chemically defined media supplemented with essential nutrients, have been prepared for different tissues. These well-characterized primary tumor cells redefine cancer therapies with high translational relevance.
Collapse
Affiliation(s)
- Abhisek Mitra
- Department of Pediatrics, Unit 853, The University of Texas MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, Texas 77030, USA
| | | | | |
Collapse
|
43
|
Smalley KS, Lioni M, Noma K, Haass NK, Herlyn M. In vitro three-dimensional tumor microenvironment models for anticancer drug discovery. Expert Opin Drug Discov 2013; 3:1-10. [PMID: 23480136 DOI: 10.1517/17460441.3.1.1] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anticancer drug discovery has long been hampered by the poor predictivity of the preclinical models. There is a growing realization that the tumor microenvironment is a critical determinant of the response of cancer cells to therapeutic agents. The past 5 years have seen a great deal of progress in our understanding of how the three-dimensional microenvironment modulates the signaling behavior of tumor cells. The present review discusses how three-dimensional in vitro cell culture models can benefit cancer drug discovery through an accurate modeling of the tumor microenvironment, leading to more physiologically relevant experimental outcomes.
Collapse
Affiliation(s)
- Keiran Sm Smalley
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA +1 215 898 0002 ;
| | | | | | | | | |
Collapse
|
44
|
Chichinadze K, Lazarashvili A, Tkemaladze J. RNA in centrosomes: structure and possible functions. PROTOPLASMA 2013; 250:397-405. [PMID: 22684578 DOI: 10.1007/s00709-012-0422-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/22/2012] [Indexed: 06/01/2023]
Abstract
A novel RNA was detected in the centrosomes of Spisula solidissima mollusk oocytes in 2006. This RNA was named centrosomal RNA (cnRNA); five different cnRNAs were described. During the sequencing of the first transcript, cnRNA 11, it was discovered that the transcript contained a conserved structure--a reverse transcriptase domain. In a 2005 study, we speculated about several possible mechanisms for determining the most important functions of centrosomal structures and referred to one of them as an "RNA-dependent mechanism". The discovery of RNA specific to the centrosome is indirect evidence of the centrosomal hypothesis of cellular aging and differentiation. The presence of a reverse transcriptase domain in this type of RNA, together with its uniqueness and specificity, makes the centrosome a place of information storage and reproduction.
Collapse
Affiliation(s)
- Konstantin Chichinadze
- I. Beritashvili Center Experimental Biomedicine, 14 Gotua Street, 0160, Tbilisi, Georgia.
| | | | | |
Collapse
|
45
|
Song X, Sato Y, Sekiguchi K, Tanaka H, Ohta K. Equarin is involved in cell adhesion by means of heparan sulfate proteoglycan during lens development. Dev Dyn 2012; 242:23-9. [DOI: 10.1002/dvdy.23902] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2012] [Indexed: 11/08/2022] Open
|
46
|
Barbolina MV, Liu Y, Gurler H, Kim M, Kajdacsy-Balla AA, Rooper L, Shepard J, Weiss M, Shea LD, Penzes P, Ravosa MJ, Stack MS. Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein. J Biol Chem 2012; 288:141-51. [PMID: 23152495 DOI: 10.1074/jbc.m112.431411] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling.
Collapse
Affiliation(s)
- Maria V Barbolina
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, Illinois 60622, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu Y, Lim J, Teoh SH. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 2012; 31:688-705. [PMID: 23142624 DOI: 10.1016/j.biotechadv.2012.10.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 10/21/2012] [Accepted: 10/26/2012] [Indexed: 12/15/2022]
Abstract
Clinical translation of scaffold-based bone tissue engineering (BTE) therapy still faces many challenges despite intense investigations and advancement over the years. To address these clinical barriers, it is important to analyse the current technical challenges in constructing a clinically relevant scaffold and subsequent clinical issues relating to bone repair. This review highlights the key challenges hampering widespread clinical translation of scaffold-based vascularised BTE, with a focus on the repair of large non-union defects. The main limitations of current scaffolds include the lack of sufficient vascularisation, insufficient mechanical strength as well as issues relating to the osseointegration of the bioresorbable scaffold and bone infection management. Critical insights on the current trends of scaffold technologies and future directions for advancing next-generation BTE scaffolds into the clinical realm are discussed. Considerations concerning regulatory approval and the route towards commercialisation of the scaffolds for widespread clinical utility will also be introduced.
Collapse
Affiliation(s)
- Yuchun Liu
- Division of Bioengineering, School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore 637459, Singapore
| | | | | |
Collapse
|
48
|
Parvin B, Yang Q, Fontenay G, Barcellos-Hoff MH. BioSig: an imaging bioinformatics system for phenotypic analysis. ACTA ACUST UNITED AC 2012; 33:814-24. [PMID: 18238234 DOI: 10.1109/tsmcb.2003.816929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Organisms express their genomes in a cell-specific manner, resulting in a variety of cellular phenotypes or phenomes. Mapping cell phenomes under a variety of experimental conditions is necessary in order to understand the responses of organisms to stimuli. Representing such data requires an integrated view of experimental and informatic protocols. The proposed system, named BioSig, provides the foundation for cataloging cellular responses as a function of specific conditioning, treatment, staining, etc., for either fixed tissue or living cell studies. A data model has been developed to capture experimental variables and map them to image collections and their computed representation. This representation is hierarchical and spans across sample tissues, cells, and organelles, which are imaged with light microscopy. At each layer, content is represented with an attributed graph, which contains information about cellular morphology, protein localization, and cellular organization in tissue or cell culture. The Web-based multilayer informatics architecture uses the data model to provide guided workflow access for content exploration.
Collapse
Affiliation(s)
- B Parvin
- Lawrence Berkeley Nat. Lab., CA, USA
| | | | | | | |
Collapse
|
49
|
Weaver VM, Roskelley CD. Extracellular matrix: the central regulator of cell and tissue homeostasis. Trends Cell Biol 2012; 7:40-2. [PMID: 17708898 DOI: 10.1016/s0962-8924(97)30078-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- V M Weaver
- The Ernest Orlando Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | | |
Collapse
|
50
|
Chichinadze K, Tkemaladze J, Lazarashvili A. A new class of RNAs and the centrosomal hypothesis of cell aging. ADVANCES IN GERONTOLOGY 2012. [DOI: 10.1134/s2079057012040054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|