1
|
Cdx2 Animal Models Reveal Developmental Origins of Cancers. Genes (Basel) 2019; 10:genes10110928. [PMID: 31739541 PMCID: PMC6895827 DOI: 10.3390/genes10110928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
The Cdx2 homeobox gene is important in assigning positional identity during the finely orchestrated process of embryogenesis. In adults, regenerative responses to tissues damage can require a replay of these same developmental pathways. Errors in reassigning positional identity during regeneration can cause metaplasias-normal tissue arising in an abnormal location-and this in turn, is a well-recognized cancer risk factor. In animal models, a gain of Cdx2 function can elicit a posterior shift in tissue identity, modeling intestinal-type metaplasias of the esophagus (Barrett's esophagus) and stomach. Conversely, loss of Cdx2 function can elicit an anterior shift in tissue identity, inducing serrated-type lesions expressing gastric markers in the colon. These metaplasias are major risk factors for the later development of esophageal, stomach and colon cancer. Leukemia, another cancer in which Cdx2 is ectopically expressed, may have mechanistic parallels with epithelial cancers in terms of stress-induced reprogramming. This review will address how animal models have refined our understanding of the role of Cdx2 in these common human cancers.
Collapse
|
2
|
Ferrero E, Fischer B, Russell S. SoxNeuro orchestrates central nervous system specification and differentiation in Drosophila and is only partially redundant with Dichaete. Genome Biol 2014; 15:R74. [PMID: 24886562 PMCID: PMC4072944 DOI: 10.1186/gb-2014-15-5-r74] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/30/2014] [Indexed: 12/31/2022] Open
Abstract
Background Sox proteins encompass an evolutionarily conserved family of transcription factors with critical roles in animal development and stem cell biology. In common with vertebrates, the Drosophila group B proteins SoxNeuro and Dichaete are involved in central nervous system development, where they play both similar and unique roles in gene regulation. Sox genes show extensive functional redundancy across metazoans, but the molecular basis underpinning functional compensation mechanisms at the genomic level are currently unknown. Results Using a combination of genome-wide binding analysis and gene expression profiling, we show that SoxNeuro directs embryonic neural development from the early specification of neuroblasts through to the terminal differentiation of neurons and glia. To address the issue of functional redundancy and compensation at a genomic level, we compare SoxNeuro and Dichaete binding, identifying common and independent binding events in wild-type conditions, as well as instances of compensation and loss of binding in mutant backgrounds. Conclusions We find that early aspects of group B Sox functions in the central nervous system, such as stem cell maintenance and dorsoventral patterning, are highly conserved. However, in contrast to vertebrates, we find that Drosophila group B1 proteins also play prominent roles during later aspects of neural morphogenesis. Our analysis of the functional relationship between SoxNeuro and Dichaete uncovers evidence for redundant and independent functions for each protein, along with unexpected examples of compensation and interdependency, thus providing new insights into the general issue of transcription factor functional redundancy.
Collapse
|
3
|
Soshnikova N, Dewaele R, Janvier P, Krumlauf R, Duboule D. Duplications of hox gene clusters and the emergence of vertebrates. Dev Biol 2013; 378:194-9. [PMID: 23501471 DOI: 10.1016/j.ydbio.2013.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 11/27/2022]
Abstract
The vertebrate body plan is characterized by an increased complexity relative to that of all other chordates and large-scale gene amplifications have been associated with key morphological innovations leading to their remarkable evolutionary success. Here, we use compound full Hox clusters deletions to investigate how Hox genes duplications may have contributed to the emergence of vertebrate-specific innovations. We show that the combined deletion of HoxA and HoxB leads to an atavistic heart phenotype, suggesting that the ancestral HoxA/B cluster was co-opted to help in diversifying the complex organ in vertebrates. Other phenotypic effects observed seem to illustrate the resurgence of ancestral (plesiomorphic) features. This indicates that the duplications of Hox clusters were associated with the recruitment or formation of novel cis-regulatory controls, which were key to the evolution of many vertebrate features and hence to the evolutionary radiation of this group.
Collapse
Affiliation(s)
- Natalia Soshnikova
- Department of Genetics and Evolution, University of Geneva, Sciences III, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
4
|
Liu J, Wang B, Chen X, Li H, Wang J, Cheng L, Ma X, Gao B. HOXA1 gene is not potentially related to ventricular septal defect in Chinese children. Pediatr Cardiol 2013; 34:226-30. [PMID: 22777240 DOI: 10.1007/s00246-012-0418-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/21/2012] [Indexed: 11/26/2022]
Abstract
The HOXA1 gene plays a fundamental role in embryonic morphogenesis. Recent studies in humans and mice have indicated that HOXA1 plays a previously unrecognized role in cardiovascular system development. Congenital heart disease (CHD), particularly ventricular septal defect (VSD), might be a clinically isolated manifestation of HOXA1 mutations. The purpose of the present study was to identify potential pathological mutations in the HOXA1 gene in Chinese children with VSD and to gain insight into the etiology of CHD. A total of 340 nonsyndromic VSD patients and 200 normal subjects were sampled. Two exons and the nearby introns of the human HOXA1 gene were amplified using polymerase chain reaction (PCR). The PCR products were purified and directly sequenced. However, no nonsynonymous mutations in the coding regions of the HOXA1 gene were observed: Only two novel synonymous mutations (c.C210T p.His70His, and c.T861A p.Arg287Arg) were found in two patients. Two previously reported single and multiple histidine-deletion variants were identified in both normal and VSD patients. To our knowledge, this is the first study to investigate the role of the HOXA1 gene in CHD. Although our results did not show any pathogenic HOXA1 mutation, our results suggest that VSD might not be a clinically isolated manifestation of HOXA1 mutations.
Collapse
Affiliation(s)
- Jiangyan Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gharbaran R, Aisemberg GO. Identification of leech embryonic neurons that express a Hox gene required for the differentiation of a paired, segment‐specific motor neuron. Int J Dev Neurosci 2012; 31:105-15. [DOI: 10.1016/j.ijdevneu.2012.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 10/10/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022] Open
Affiliation(s)
- Rajendra Gharbaran
- Department of Biological SciencesLehman College of City University of New YorkBronxNY10468United States
| | - Gabriel O. Aisemberg
- Department of Biological SciencesLehman College of City University of New YorkBronxNY10468United States
| |
Collapse
|
6
|
Gharbaran R, Aisemberg GO, Alvarado S. Segmental and regional differences in neuronal expression of the leech Hox genes Lox1 and Lox2 during embryogenesis. Cell Mol Neurobiol 2012; 32:1243-53. [PMID: 22569741 PMCID: PMC11498516 DOI: 10.1007/s10571-012-9849-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
Using double immunofluorescence experiments, we described the expression of the leech Hox genes, Lox1 and Lox2 by central neurons that stained for either serotonin or the leech-specific neuronal marker, Laz1-1. The goal is to determine whether the segmental boundaries of Lox1 and Lox2 expression in identified neurons coincide with segmental and regional differences in the differentiation of these cells. A number of neurons described here have been previously identified. The anteromedial serotonergic neurons are restricted to rostral ganglion 1 (R1) to midbody ganglion 3 (M3), but only express Lox1 in M2 and M3. The posteromedial serotonergic neurons which are situated in all segments as bilateral pairs early in development, but later become unpaired starting at M3, expressed Lox1 only in M2 and M3, and Lox2 in M8 to M21, in all paired and unpaired stages. The Retzius neurons, which stain for serotonin, express Lox2 in M7 to M21 where they exhibit different morphologies from their segmental homologs of the sex ganglia in M5 and M6. The Laz1-1 immunoreactive (Laz1-1+) heart accessory-like neurons express Lox1 in M4 and Lox2 in M7 to M17, but not in their segmental homologs of the heart accessory (HA) neurons located exclusively in M5 and M6. Also, Laz1-1+ neurons, which we named Lz3 expressed Lox1 in M4 to M8 where they are unpaired, but express Lox2 in M9 to M16 where they are bilaterally paired. Other Laz1-1 cells show more restricted and isolated Lox1 and Lox2 expression patterns. These results suggest a role of Lox1 and/or Lox2 in defining the anteroposterior boundaries of segmentally iterated neurons.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Department of Biological Sciences, Lehman College of The City University of New York, 250 Bedford Park Blvd., Bronx, NY 10468, USA.
| | | | | |
Collapse
|
7
|
Li G, Holland PWH. The origin and evolution of ARGFX homeobox loci in mammalian radiation. BMC Evol Biol 2010; 10:182. [PMID: 20565723 PMCID: PMC2894831 DOI: 10.1186/1471-2148-10-182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 06/17/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Many homeobox genes show remarkable conservation between divergent animal phyla. In contrast, the ARGFX (Arginine-fifty homeobox) homeobox locus was identified in the human genome but is not present in mouse or invertebrates. Here we ask when and how this locus originated and examine its pattern of molecular evolution. RESULTS Phylogenetic and phylogenomic analyses suggest that ARGFX originated by gene duplication from Otx1, Otx2 or Crx during early mammalian evolution, most likely on the stem lineage of the eutherians. ARGFX diverged extensively from its progenitor homeobox gene and its exons have been functional and subject to purifying selection through much of placental mammal radiation. Surprisingly, the coding region is disrupted in most mammalian genomes analysed, with human being the only mammal identified in which the full open reading frame is retained. Indeed, we describe a transcript from human testis that has the potential to encode the full deduced protein. CONCLUSIONS The unusual pattern of evolution suggests that the ARGFX gene may encode a functional RNA or alternatively it may have 'flickered' between functional and non-functional states in the evolutionary history of mammals, particularly in the period when many mammalian lineages diverged within a relatively short time span.
Collapse
Affiliation(s)
- Guang Li
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | |
Collapse
|
8
|
Lomberk GA, Imoto I, Gebelein B, Urrutia R, Cook TA. Conservation of the TGFbeta/Labial homeobox signaling loop in endoderm-derived cells between Drosophila and mammals. Pancreatology 2010; 10:74-84. [PMID: 20339309 PMCID: PMC2865486 DOI: 10.1159/000276895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/12/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Midgut formation in Drosophila melanogaster is dependent upon the integrity of a signaling loop in the endoderm which requires the TGFbeta-related peptide, Decapentaplegic, and the Hox transcription factor, Labial. Interestingly, although Labial-like homeobox genes are present in mammals, their participation in endoderm morphogenesis is not clearly understood. METHODS We report the cloning, expression, localization, TGFbeta inducibility, and biochemical properties of the mammalian Labial-like homeobox, HoxA1, in exocrine pancreatic cells that are embryologically derived from the gut endoderm. RESULTS HoxA1 is expressed in pancreatic cell populations as two alternatively spliced messages, encoding proteins that share their N-terminal domain, but either lack or include the homeobox at the C-terminus. Transcriptional regulatory assays demonstrate that the shared N-terminal domain behaves as a strong transcriptional activator in exocrine pancreatic cells. HoxA1 is an early response gene for TGFbeta(1) in pancreatic epithelial cell populations and HoxA1 protein co-localizes with TGFbeta(1) receptors in the embryonic pancreatic epithelium at a time when exocrine pancreatic morphogenesis occurs (days E16 and E17). CONCLUSIONS These results report a role for HoxA1 in linking TGFbeta-mediated signaling to gene expression in pancreatic epithelial cell populations, thus suggesting a high degree of conservation for a TGFbeta/labial signaling loop in endoderm-derived cells between Drosophila and mammals. and IAP.
Collapse
Affiliation(s)
- Gwen A. Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine and Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minn., USA
| | - Issei Imoto
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan,Department of Genome Medicine, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine and Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minn., USA
| | - Tiffany A. Cook
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA,Department of Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA,*Tiffany A. Cook, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7003, Cincinnati, OH 45229 (USA), Tel. +1 513 636 6991, Fax +1 513 803 0740, E-Mail
| |
Collapse
|
9
|
Function and specificity of synthetic Hox transcription factors in vivo. Proc Natl Acad Sci U S A 2010; 107:4087-92. [PMID: 20147626 DOI: 10.1073/pnas.0914595107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeotic (Hox) genes encode transcription factors that confer segmental identity along the anteroposterior axis of the embryo. However the molecular mechanisms underlying Hox-mediated transcription and the differential requirements for specificity in the regulation of the vast number of Hox-target genes remain ill-defined. Here we show that synthetic Sex combs reduced (Scr) genes that encode the Scr C terminus containing the homedomain (HD) and YPWM motif (Scr-HD) are functional in vivo. Synthetic Scr-HD peptides can induce ectopic salivary glands in the embryo and homeotic transformations in the adult fly, act as transcriptional activators and repressors during development, and participate in protein-protein interactions. Their transformation capacity was found to be enhanced over their full-length counterpart and mutations known to transform the full-length protein into constitutively active or inactive variants behaved accordingly in the synthetic peptides. Our results show that synthetic Scr-HD genes are sufficient for homeotic function in Drosophila and suggest that the N terminus of Scr has a role in transcriptional potency, rather than specificity. We also demonstrate that synthetic peptides behave largely in a predictable way, by exhibiting Scr-specific phenotypes throughout development, which makes them an important tool for synthetic biology.
Collapse
|
10
|
Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution. J Biosci 2009; 34:553-72. [DOI: 10.1007/s12038-009-0074-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Pai DA, Engelke DR. Spatial organization of genes as a component of regulated expression. Chromosoma 2009; 119:13-25. [PMID: 19727792 DOI: 10.1007/s00412-009-0236-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 12/15/2022]
Abstract
The DNA of living cells is highly compacted. Inherent in this spatial constraint is the need for cells to organize individual genetic loci so as to facilitate orderly retrieval of information. Complex genetic regulatory mechanisms are crucial to all organisms, and it is becoming increasingly evident that spatial organization of genes is one very important mode of regulation for many groups of genes. In eukaryotic nuclei, it appears not only that DNA is organized in three-dimensional space but also that this organization is dynamic and interactive with the transcriptional state of the genes. Spatial organization occurs throughout evolution and with genes transcribed by all classes of RNA polymerases in all eukaryotic nuclei, from yeast to human. There is an increasing body of work examining the ways in which this organization and consequent regulation are accomplished. In this review, we discuss the diverse strategies that cells use to preferentially localize various classes of genes.
Collapse
Affiliation(s)
- Dave A Pai
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0606, USA
| | | |
Collapse
|
12
|
Newman SA, Bhat R, Mezentseva NV. Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution. J Biosci 2009. [DOI: 10.1007/s12038-009-0001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Lynch VJ, Wagner GP. Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes. PLoS Genet 2009; 5:e1000349. [PMID: 19165336 PMCID: PMC2622764 DOI: 10.1371/journal.pgen.1000349] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 12/18/2008] [Indexed: 11/19/2022] Open
Abstract
While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion--such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these--is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model) occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox "paralogon") and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America.
| | | |
Collapse
|
14
|
Brand-Saberi B, Rudloff S, Gamel AJ. Avian somitogenesis: translating time and space into pattern. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 638:42-57. [PMID: 21038769 DOI: 10.1007/978-0-387-09606-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Vertebrates have a metameric bodyplan that is based on the presence of paired somites. Somites develop from the segmental plate in a cranio-caudal sequence. At the same time, new material is added from Hensen's node, the primitive streak and the tailbud. In this way, the material residing in the segmental plate remains constant and comprises 12 prospective somites on each side. Prospective segment borders are not yet determined in the caudal segmental plate. Prior to segmentation, the cranial segmental plate undergoes epithelialization, which is controlled by signals from the neural tube and ectoderm. The bHLH transcription factor Paraxis is critically involved in this process. Formation of a new somite from the cranial end of the segmental plate is a highly controlled process involving complex cell movements in relation to each other. Hox genes specify regional identity of the somites and their derivatives. In the chicken a transposition of thoracic into cervical vertebrae has occurred as compared to the mouse. Transcription factors of the bHLH and homeodomain type also specify the cranio-caudal polarity and that of particular cell groups within the somites. According to segmentation models, somitogenesis is under the control of a "segmentation clock" in combination with a morphogen gradient. This hypothesis has recently found support from molecular data, especially the cycling expression of genes such as cHairy1 and Lunatic Fringe, which depend on the Notch/Delta pathway of signal transduction. FGF8 has been described to be distributed along a cranio-caudal gradient. The first oscillating gene described shown to be independent of Notch is Axin2, encoding a negative regulator of the canonical Wnt pathway and a target of Wnt3a. Wnt3a and Axin2 show a similar distribution as FGF8 with high levels in the tailbud. The chick embryo has recently become accessible to molecular approaches such as overexpression by electroporation and RNA interference which can be expected to help elucidating some of the still open questions concerning somitogenesis.
Collapse
Affiliation(s)
- Beate Brand-Saberi
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Albertstrasse 23, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
15
|
Postlethwait JH. The zebrafish genome in context: ohnologs gone missing. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:563-77. [PMID: 17068775 DOI: 10.1002/jez.b.21137] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them "novel" genes. The origin of many so-called "novel" genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be "novel" are more appropriately interpreted as "ohnologs gone missing", cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage-specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions.
Collapse
|
16
|
Kappen C, Neubüser A, Balling R, Finnell R. Molecular basis for skeletal variation: insights from developmental genetic studies in mice. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2007; 80:425-50. [PMID: 18157899 PMCID: PMC3938168 DOI: 10.1002/bdrb.20136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Skeletal variations are common in humans, and potentially are caused by genetic as well as environmental factors. We here review molecular principles in skeletal development to develop a knowledge base of possible alterations that could explain variations in skeletal element number, shape or size. Environmental agents that induce variations, such as teratogens, likely interact with the molecular pathways that regulate skeletal development.
Collapse
Affiliation(s)
- C Kappen
- Center for Human Molecular Genetics, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | | | | | |
Collapse
|
17
|
Ryan JF, Burton PM, Mazza ME, Kwong GK, Mullikin JC, Finnerty JR. The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol 2007; 7:R64. [PMID: 16867185 PMCID: PMC1779571 DOI: 10.1186/gb-2006-7-7-r64] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 07/24/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homeodomain transcription factors are key components in the developmental toolkits of animals. While this gene superclass predates the evolutionary split between animals, plants, and fungi, many homeobox genes appear unique to animals. The origin of particular homeobox genes may, therefore, be associated with the evolution of particular animal traits. Here we report the first near-complete set of homeodomains from a basal (diploblastic) animal. RESULTS Phylogenetic analyses were performed on 130 homeodomains from the sequenced genome of the sea anemone Nematostella vectensis along with 228 homeodomains from human and 97 homeodomains from Drosophila. The Nematostella homeodomains appear to be distributed among established homeodomain classes in the following fashion: 72 ANTP class; one HNF class; four LIM class; five POU class; 33 PRD class; five SINE class; and six TALE class. For four of the Nematostella homeodomains, there is disagreement between neighbor-joining and Bayesian trees regarding their class membership. A putative Nematostella CUT class gene is also identified. CONCLUSION The homeodomain superclass underwent extensive radiations prior to the evolutionary split between Cnidaria and Bilateria. Fifty-six homeodomain families found in human and/or fruit fly are also found in Nematostella, though seventeen families shared by human and fly appear absent in Nematostella. Homeodomain loss is also apparent in the bilaterian taxa: eight homeodomain families shared by Drosophila and Nematostella appear absent from human (CG13424, EMXLX, HOMEOBRAIN, MSXLX, NK7, REPO, ROUGH, and UNC4), and six homeodomain families shared by human and Nematostella appear absent from fruit fly (ALX, DMBX, DUX, HNF, POU1, and VAX).
Collapse
Affiliation(s)
- Joseph F Ryan
- Bioinformatics Program, Boston University, Cummington Street, Boston, MA 02215, USA
- National Human Genome Research Institute, Fishers Lane, Bethesda, MD 20892, USA
| | - Patrick M Burton
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| | - Maureen E Mazza
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| | - Grace K Kwong
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| | - James C Mullikin
- National Human Genome Research Institute, Fishers Lane, Bethesda, MD 20892, USA
| | - John R Finnerty
- Bioinformatics Program, Boston University, Cummington Street, Boston, MA 02215, USA
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| |
Collapse
|
18
|
DeVries ME, Kelvin AA, Xu L, Ran L, Robinson J, Kelvin DJ. Defining the origins and evolution of the chemokine/chemokine receptor system. THE JOURNAL OF IMMUNOLOGY 2006; 176:401-15. [PMID: 16365434 DOI: 10.4049/jimmunol.176.1.401] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The chemokine system has a critical role in mammalian immunity, but the evolutionary history of chemokines and chemokine receptors are ill-defined. We used comparative whole genome analysis of fruit fly, sea urchin, sea squirt, pufferfish, zebrafish, frog, and chicken to identify chemokines and chemokine receptors in each species. We report 127 chemokine and 70 chemokine receptor genes in the 7 species, with zebrafish having the most chemokines, 63, and chemokine receptors, 24. Fruit fly, sea urchin, and sea squirt have no identifiable chemokines or chemokine receptors. This study represents the most comprehensive analysis of the chemokine system to date and the only complete characterization of chemokine systems outside of mouse and human. We establish a clear evolutionary model of the chemokine system and trace the origin of the chemokine system to approximately 650 million years ago, identifying critical steps in their evolution and demonstrating a more extensive chemokine system in fish than previously thought.
Collapse
Affiliation(s)
- Mark E DeVries
- Division of Experimental Therapeutics and Department of Immunology, University of Toronto, Toronto General Research Institute, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Kurosawa G, Takamatsu N, Takahashi M, Sumitomo M, Sanaka E, Yamada K, Nishii K, Matsuda M, Asakawa S, Ishiguro H, Miura K, Kurosawa Y, Shimizu N, Kohara Y, Hori H. Organization and structure of hox gene loci in medaka genome and comparison with those of pufferfish and zebrafish genomes. Gene 2006; 370:75-82. [PMID: 16472944 DOI: 10.1016/j.gene.2005.11.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/31/2005] [Accepted: 11/09/2005] [Indexed: 11/19/2022]
Abstract
We isolated BAC clones that cover the entire hox gene loci in the medaka fish Oryzias latipes. The BAC clones were characterized by the Southern hybridization with many hox gene probes isolated in our previous study and by PCR using primers designed for selective amplification of respective hox genes. Then, the BAC clones have been subjected to shotgun sequencing. The results revealed the organization of the entire hox gene loci. Forty-six hox genes in total are encoded in seven clusters as follows: 10 hox genes in Aa cluster; 5 in Ab; 9 in Ba; 4 in Bb; 10 in Ca; 6 in Da; and 2 in Db. Together with the information on the hox gene loci registered in the Fugu genome database and in the Danio genome database, the physical maps of three fish genomes were constructed and compared one another. Not only numbers of hox genes but also the distances between the neighboring hox genes are highly similar between medaka and fugu. As for six clusters, Aa, Ab, Ba, Bb, Ca and Da that are commonly present in the three fishes, only few or no differences were found in each cluster. Thus, the hox gene sets should have been well conserved once they had been established in respective species.
Collapse
Affiliation(s)
- Gene Kurosawa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 460-8602, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Perry GH, Verrelli BC, Stone AC. Molecular evolution of the primate developmental genes MSX1 and PAX9. Mol Biol Evol 2005; 23:644-54. [PMID: 16326750 DOI: 10.1093/molbev/msj072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In primates, the craniofacial skeleton and the dentition are marked by high levels of interspecific variation. Despite this, there are few comparative species studies conducted at the molecular level to investigate this functional diversity. We have determined nucleotide sequences of MSX1 and PAX9, two developmental genes, in a sample of 27 diverse primate species in order to identify coding or regulatory variation that may be associated with phenotypic diversity. Our analyses have identified four highly conserved noncoding sequences, including one that is conserved across primates and with dogs but not with mice. Although we find that substitution rates vary significantly across MSX1 exons, comparisons of nonsynonymous and synonymous substitution rates (dN/dS) suggest that, as a whole, MSX1 and PAX9 amino acid sequences have been under functional constraint throughout primate evolution. Compared to all other primates in our sample, our analysis of exon 1 in MSX1 finds an unusual pattern of amino acid substitution for Tarsius syrichta, a member of a lineage (tarsiers) that has many unique features among primates. For example, tarsiers are the only extant primates without deciduous incisors, and MSX1 is expressed exclusively in the incisor regions during the earliest stages of dental development. Our overall results provide insight into the utility of comparative species analyses of highly conserved developmental genes and their roles in the evolution of complex phenotypes.
Collapse
Affiliation(s)
- George H Perry
- School of Human Evolution and Social Change, Arizona State University, USA
| | | | | |
Collapse
|
21
|
Weiss KM. Homology: The hierarchical basis of comparative biology. Edited by Brian K. Hall (1994) San Diego: Academic Press, xvi + 483 pp ($54.95 hardbound). ISBN 0-12-318920-9. Evol Anthropol 2005. [DOI: 10.1002/evan.1360030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Kim JT, Martinetz T, Polani D. Bioinformatic principles underlying the information content of transcription factor binding sites. J Theor Biol 2003; 220:529-44. [PMID: 12623284 DOI: 10.1006/jtbi.2003.3153] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Empirically, it has been observed in several cases that the information content of transcription factor binding site sequences (R(sequence)) approximately equals the information content of binding site positions (R(frequency)). A general framework for formal models of transcription factors and binding sites is developed to address this issue. Measures for information content in transcription factor binding sites are revisited and theoretic analyses are compared on this basis. These analyses do not lead to consistent results. A comparative review reveals that these inconsistent approaches do not include a transcription factor state space. Therefore, a state space for mathematically representing transcription factors with respect to their binding site recognition properties is introduced into the modelling framework. Analysis of the resulting comprehensive model shows that the structure of genome state space favours equality of R(sequence) and R(frequency) indeed, but the relation between the two information quantities also depends on the structure of the transcription factor state space. This might lead to significant deviations between R(sequence) and R(frequency). However, further investigation and biological arguments show that the effects of the structure of the transcription factor state space on the relation of R(sequence) and R(frequency) are strongly limited for systems which are autonomous in the sense that all DNA-binding proteins operating on the genome are encoded in the genome itself. This provides a theoretical explanation for the empirically observed equality.
Collapse
Affiliation(s)
- Jan T Kim
- Institut für Neuro- und Bioinformatik, Seelandstrasse 1a, 23569 Lübeck, Germany.
| | | | | |
Collapse
|
23
|
Force A, Amores A, Postlethwait JH. Hox cluster organization in the jawless vertebrate Petromyzon marinus. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 294:30-46. [PMID: 11932947 DOI: 10.1002/jez.10091] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Large-scale gene amplifications may have facilitated the evolution of morphological innovations that accompanied the origin of vertebrates. This hypothesis predicts that the genomes of extant jawless fish, scions of deeply branching vertebrate lineages, should bear a record of these events. Previous work suggests that nonvertebrate chordates have a single Hox cluster, but that gnathostome vertebrates have four or more Hox clusters. Did the duplication events that produced multiple vertebrate Hox clusters occur before or after the divergence of agnathan and gnathostome lineages? Can investigation of lamprey Hox clusters illuminate the origins of the four gnathostome Hox clusters? To approach these questions, we cloned and sequenced 13 Hox cluster genes from cDNA and genomic libraries in the lamprey, Petromyzon marinus. The results suggest that the lamprey has at least four Hox clusters and support the model that gnathostome Hox clusters arose by a two-round-no-cluster-loss mechanism, with tree topology [(AB)(CD)]. A three-round model, however, is not rigorously excluded by the data and, for this model, the tree topologies [(D(C(AB))] and [(C(D(AB))] are most parsimonious. Gene phylogenies suggest that at least one Hox cluster duplication occurred in the lamprey lineage after it diverged from the gnathostome lineage. The results argue against two or more rounds of duplication before the divergence of agnathan and gnathostome vertebrates. If Hox clusters were duplicated in whole-genome duplication events, then these data suggest that, at most, one whole genome duplication occurred before the evolution of vertebrate developmental innovations.
Collapse
Affiliation(s)
- Allan Force
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
24
|
Michalová V, Murray BW, Sültmann H, Klein J. A contig map of the Mhc class I genomic region in the zebrafish reveals ancient synteny. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5296-305. [PMID: 10799891 DOI: 10.4049/jimmunol.164.10.5296] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In contrast to the human and mouse Mhc, in which the clusters of class I and class II loci reside in close vicinity to one another, in the zebrafish, Danio rerio, they are found in different linkage groups. Chromosome walking using BAC (bacterial artificial chromosome) and PAC (P1 artificial chromosome) clones reveals the zebrafish class I region to occupy a segment of approximately 450 kb and to encompass at least 19 loci. These include three class I (Dare-UDA, -UEA, -UFA), five proteasome subunit beta (PSMB8, -9A, -9C, -11, -12), two TAPs (TAP2A, TAP2B), and one TAP binding protein (TAPBP). This arrangement contrasts with the arrangements found in human and mouse Mhc, in which the orthologues of the PSMB, TAP, and TAPBP loci reside within the class II region. In addition to this main zebrafish class I contig, a shorter contig of about 150 kb contains two additional class I (UBA, UCA) and at least five other loci. It probably represents a different haplotype of part of the class I region. The previously identified UAA gene shares an identical 5' part with UEA, but the two genes differ in their 3' parts. One of them is probably the result of an unequal crossing over. The described organization has implications for the persistence of syntenic relationships, coevolution of loci, and interpretation of the origin of the human/mouse Mhc organization.
Collapse
Affiliation(s)
- V Michalová
- Max Planck Institut für Biologie, Abteilung Immungenetik, Tübingen, Germany
| | | | | | | |
Collapse
|
25
|
Kappen C. Analysis of a complete homeobox gene repertoire: implications for the evolution of diversity. Proc Natl Acad Sci U S A 2000; 97:4481-6. [PMID: 10781048 PMCID: PMC18260 DOI: 10.1073/pnas.97.9.4481] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The completion of sequencing projects for various organisms has already advanced our insight into the evolution of entire genomes and the role of gene duplications. One multigene family that has served as a paradigm for the study of gene duplications and molecular evolution is the family of homeodomain-encoding genes. I present here an analysis of the homeodomain repertoire of an entire genome, that of the nematode Caenorhabditis elegans, in relation to our current knowledge of these genes in plants, arthropods, and mammals. A methodological framework is developed that proposes approaches for the analysis of homeodomain repertoires and multigene families in general.
Collapse
Affiliation(s)
- C Kappen
- S. C. Johnson Medical Research Center, Mayo Clinic Scottsdale, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA.
| |
Collapse
|
26
|
|
27
|
Richelle-Maurer E, Van de Vyver G. Temporal and spatial expression of EmH-3, a homeobox-containing gene isolated from the freshwater sponge Ephydatia muelleri. Mech Ageing Dev 1999; 109:203-19. [PMID: 10576335 DOI: 10.1016/s0047-6374(99)00037-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Homeoboxes have been particularly valuable in identifying genes involved in development. This prompted us to look for homeobox-containing genes in sponges, the most primitive metazoans, and to explore the potential role of these genes in their development. Using the reverse transcription polymerase reaction (RT-PCR), we analyzed the expression of EmH-3 homeobox-containing gene at different stages of development, and in different cell-type populations. The patterns of EmH-3 expression show that this gene is expressed differentially in the course of development and in a cell-type specific manner. The level of transcripts increases from undetectable levels in resting gemmules to higher levels at the moment of hatching and throughout the sponge's life. EmH-3 is strongly expressed in the pluripotent archaeocytes, whether isolated from fully differentiated sponges (adult archaeocytes) or from HU-treated sponges (embryonic archaeocytes). Conversely, in differentiated cells such as pinacocytes and choanocytes, EmH-3 expression is very weak and similar to that found in the resting gemmules. On the other hand, another freshwater sponge homeobox-containing gene, prox1 from Ephydatia fluviatilis is expressed almost at the same level at all stages of development and in all the investigated cell populations. Together, these results suggest that EmH-3 plays a role in cell determination and/or differentiation. In particular EmH-3 would determine which archaeocytes will multiply and undergo differentiation and which ones will remain undifferentiated.
Collapse
Affiliation(s)
- E Richelle-Maurer
- Laboratoire de Physiologie Cellulaire et Génétique des Levures, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
28
|
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999; 151:1531-45. [PMID: 10101175 PMCID: PMC1460548 DOI: 10.1093/genetics/151.4.1531] [Citation(s) in RCA: 2530] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The origin of organismal complexity is generally thought to be tightly coupled to the evolution of new gene functions arising subsequent to gene duplication. Under the classical model for the evolution of duplicate genes, one member of the duplicated pair usually degenerates within a few million years by accumulating deleterious mutations, while the other duplicate retains the original function. This model further predicts that on rare occasions, one duplicate may acquire a new adaptive function, resulting in the preservation of both members of the pair, one with the new function and the other retaining the old. However, empirical data suggest that a much greater proportion of gene duplicates is preserved than predicted by the classical model. Here we present a new conceptual framework for understanding the evolution of duplicate genes that may help explain this conundrum. Focusing on the regulatory complexity of eukaryotic genes, we show how complementary degenerative mutations in different regulatory elements of duplicated genes can facilitate the preservation of both duplicates, thereby increasing long-term opportunities for the evolution of new gene functions. The duplication-degeneration-complementation (DDC) model predicts that (1) degenerative mutations in regulatory elements can increase rather than reduce the probability of duplicate gene preservation and (2) the usual mechanism of duplicate gene preservation is the partitioning of ancestral functions rather than the evolution of new functions. We present several examples (including analysis of a new engrailed gene in zebrafish) that appear to be consistent with the DDC model, and we suggest several analytical and experimental approaches for determining whether the complementary loss of gene subfunctions or the acquisition of novel functions are likely to be the primary mechanisms for the preservation of gene duplicates. For a newly duplicated paralog, survival depends on the outcome of the race between entropic decay and chance acquisition of an advantageous regulatory mutation. Sidow 1996(p. 717) On one hand, it may fix an advantageous allele giving it a slightly different, and selectable, function from its original copy. This initial fixation provides substantial protection against future fixation of null mutations, allowing additional mutations to accumulate that refine functional differentiation. Alternatively, a duplicate locus can instead first fix a null allele, becoming a pseudogene. Walsh 1995 (p. 426) Duplicated genes persist only if mutations create new and essential protein functions, an event that is predicted to occur rarely. Nadeau and Sankoff 1997 (p. 1259) Thus overall, with complex metazoans, the major mechanism for retention of ancient gene duplicates would appear to have been the acquisition of novel expression sites for developmental genes, with its accompanying opportunity for new gene roles underlying the progressive extension of development itself. Cooke et al. 1997 (p. 362)
Collapse
Affiliation(s)
- A Force
- Department of Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Zebrafish Hox genes are arranged in at least seven clusters, rather than the four clusters typical of vertebrates. This suggests that an additional genome duplication occurred on the fish lineage and explains why many gene families are typically about half the size in land vertebrates than they are in fish.
Collapse
Affiliation(s)
- A Meyer
- Department of Biology, University of Konstanz, 78457 Konstanz,
| | | |
Collapse
|
30
|
Abstract
Traditionally, Panarthropoda (Euarthropoda, Onychophora, Tardigrada) are regarded as being closely related to Annelida in a taxon Articulata, but this is not supported by molecular analyses. Comparisons of gene sequences suggest that all molting taxa (Panarthropoda, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera) are related in a monophyletic taxon Ecdysozoa. An examination of the characters supporting Articulata reveals that only segmentation with a teloblastic segment formation and the existence of segmental coelomic cavities with nephridia support the Articulata, whereas all other characters are modified or reduced in the panarthropod lineage. Another set of characters is presented that supports the monophyly of Ecdysozoa: molting under influence of ecdysteroid hormones, loss of locomotory cilia, trilayered cuticle and the formation of the epicuticle from the tips of epidermal microvilli. Comparative morphology suggests Gastrotricha as the sister group of Ecdysozoa with the synapomorphies: triradiate muscular sucking pharynx and terminal mouth opening. Thus there are morphological characters that support Articulata, but molecular as well as morphological data advocate Ecdysozoa. Comparison of both hypotheses should prompt further thorough and targeted investigations. J. Morphol. 238:263-285, 1998. © 1998 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Andreas Schmidt-Rhaesa
- Fakultät für Biologie, University of Bielefeld, Bielefeld, Germany
- Department of Biological Sciences, University of South Florida, Tampa, Florida
| | | | - Christian Lemburg
- Institut für Zoologie und Anthropologie, University of Göttingen, Göttingen, Germany
| | - Ulrich Ehlers
- Institut für Zoologie und Anthropologie, University of Göttingen, Göttingen, Germany
| | - James R Garey
- Department of Biological Sciences, University of South Florida, Tampa, Florida
| |
Collapse
|
31
|
Schmidt-Rhaesa A, Bartolomaeus T, Lemburg C, Ehlers U, Garey JR. The position of the Arthropoda in the phylogenetic system. J Morphol 1998; 238:263-285. [DOI: 10.1002/(sici)1097-4687(199812)238:3<263::aid-jmor1>3.0.co;2-l] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH. Zebrafish hox clusters and vertebrate genome evolution. Science 1998; 282:1711-4. [PMID: 9831563 DOI: 10.1126/science.282.5394.1711] [Citation(s) in RCA: 1307] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
HOX genes specify cell fate in the anterior-posterior axis of animal embryos. Invertebrate chordates have one HOX cluster, but mammals have four, suggesting that cluster duplication facilitated the evolution of vertebrate body plans. This report shows that zebrafish have seven hox clusters. Phylogenetic analysis and genetic mapping suggest a chromosome doubling event, probably by whole genome duplication, after the divergence of ray-finned and lobe-finned fishes but before the teleost radiation. Thus, teleosts, the most species-rich group of vertebrates, appear to have more copies of these developmental regulatory genes than do mammals, despite less complexity in the anterior-posterior axis.
Collapse
Affiliation(s)
- A Amores
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Godsave SF, Koster CH, Getahun A, Mathu M, Hooiveld M, van der Wees J, Hendriks J, Durston AJ. Graded retinoid responses in the developing hindbrain. Dev Dyn 1998; 213:39-49. [PMID: 9733099 DOI: 10.1002/(sici)1097-0177(199809)213:1<39::aid-aja4>3.0.co;2-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to make an explicit test of the idea that a retinoid could act as a morphogen, differentially activating genes and specifying anteroposterior (a-p) level in the developing vertebrate central nervous system (CNS). Our approach was to characterize the concentration-dependent effects of retinoic acid (RA) on the neural expression of a set of a-p patterning genes, both in vivo and in an in vitro system for neural patterning. Our results indicate that a retinoid is unlikely to specify a-p level along the entire CNS. Instead, our data support the idea that the developing hindbrain may be patterned by a retinoid gradient. Sequentially more posterior hindbrain patterning genes were induced effectively by sequentially higher RA concentration windows. The most posterior CNS level induced under our RA treatment conditions corresponded to the most posterior part of the hindbrain.
Collapse
Affiliation(s)
- S F Godsave
- Netherlands Institute for Developmental Biology, Utrecht
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Kmita-Cunisse M, Loosli F, Bièrne J, Gehring WJ. Homeobox genes in the ribbonworm Lineus sanguineus: evolutionary implications. Proc Natl Acad Sci U S A 1998; 95:3030-5. [PMID: 9501210 PMCID: PMC19689 DOI: 10.1073/pnas.95.6.3030] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
From our current understanding of the genetic basis of development and pattern formation in Drosophila and vertebrates it is commonly thought that clusters of Hox genes sculpt the morphology of animals in specific body regions. Based on Hox gene conservation throughout the animal kingdom it is proposed that these genes and their role in pattern formation evolved early during the evolution of metazoans. Knowledge of the history of Hox genes will lead to a better understanding of the role of Hox genes in the evolution of animal body plans. To infer Hox gene evolution, reliable data on lower chordates and invertebrates are crucial. Among the lower triploblasts, the body plan of the ribbonworm Lineus (nemertini) appears to be close to the common ancestral condition of protostomes and deuterostomes. In this paper we present the isolation and identification of Hox genes in Lineus sanguineus. We find that the Lineus genome contains a single cluster of at least six Hox genes: two anterior-class genes, three middle-class genes, and one posterior-class gene. Each of the genes can be definitely assigned to an ortholog group on the basis of its homeobox and its flanking sequences. The most closely related homeodomain sequences are invariably found among the mouse or Amphioxus orthologs, rather than Drosophila and other invertebrates. This suggests that the ribbonworms have diverged relatively little from the last common ancestors of protostomes and deuterostomes, the urbilateria.
Collapse
Affiliation(s)
- M Kmita-Cunisse
- Laboratoire de Biologie Cellulaire et Moléculaire, Université de Reims Champagne-Ardenne, F-51687 Reims, France
| | | | | | | |
Collapse
|
37
|
Richelle-Maurer E, Van de Vyver G, Vissers S, Coutinho CC. Homeobox-containing genes in freshwater sponges: characterization, expression, and phylogeny. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1998; 19:157-75. [PMID: 15898191 DOI: 10.1007/978-3-642-48745-3_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- E Richelle-Maurer
- Laboratoire de Physiologie Cellulaire et Génétique des Levures, CP 244, Université Libre de Bruxelles, Bd du Triomphe, 1050 Brussels, Belgium
| | | | | | | |
Collapse
|
38
|
Vorbrüggen G, Constien R, Zilian O, Wimmer EA, Dowe G, Taubert H, Noll M, Jäckle H. Embryonic expression and characterization of a Ptx1 homolog in Drosophila. Mech Dev 1997; 68:139-47. [PMID: 9431811 DOI: 10.1016/s0925-4773(97)00139-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We describe the molecular characterization of the paired-type homeobox gene D-Ptx1 of Drosophila, a close homolog of the mouse pituitary homeobox gene Ptx1 and the unc-30 gene of C. elegans, characterized by a lysine residue at position 9 of the third alpha-helix of the homeodomain. D-Ptx1 is expressed at various restricted locations throughout embryogenesis. Initial expression of D-Ptx1 in the posterior-most region of the blastoderm embryo is controlled by fork head activity in response to the activated Ras/Raf signaling pathway. During later stages of embryonic development. D-Ptx1 transcripts and protein accumulate in the posterior portion of the midgut, in the developing Malpighian tubules, in a subset of ventral somatic muscles, and in neural cells. Phenotypic analysis of gain-of-function and lack-of-function mutant embryos show that the D-Ptx1 gene is not involved in morphologically apparent differentiation processes. We conclude that D-Ptx1 is more likely to control physiological cell functions than pattern formation during Drosophila embryogenesis.
Collapse
Affiliation(s)
- G Vorbrüggen
- Max-Planck-Institut für biophysikalische Chemie, Abt. Molekulare Entwicklungsbiologie, Am Fassberg, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The sea star, Asterina minor, was surveyed for Hox genes using the method of PCR and subsequent sequence determination. Seven different Hox-type homeobox fragments and homeobox fragments of two other types, the Gbx-type and the Xlox-type, were identified. The results of comparative analysis with known homeobox sequences suggest that the sea star has only one Hox gene cluster including two genes of the anterior group, four genes of the medial group, and one gene of the posterior group. The existence of a gene of the cognate group 1 has not been known in echinoderm species. Each of the other fragments indicated a definite relationship with one of sea urchin homeoboxes. The hypothetical cluster in the sea star is consistent with the results published for another class of echinoderm, sea urchins, in the putative number of cluster. The present result provides strong evidence that a single Hox cluster is common to echinoderms and its structure in the anterior region is more similar to other deuterostomes than previously thought.
Collapse
Affiliation(s)
- T Mito
- Geological Institute, University of Tokyo, Tokyo, 113, Japan
| | | |
Collapse
|
40
|
Hargrave M, Wright E, Kun J, Emery J, Cooper L, Koopman P. Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. Dev Dyn 1997; 210:79-86. [PMID: 9337129 DOI: 10.1002/(sici)1097-0177(199710)210:2<79::aid-aja1>3.0.co;2-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sry, the mammalian Y-linked testis determining gene, is a member of a family of genes known as Sox genes, which encode transcription factors related by a DNA-binding motif termed the HMG box. Sox genes are known to have diverse roles in vertebrate differentiation and development. We report here the cloning and characterisation of one of these genes, Sox11, in mice. In addition to an N-terminal HMG box domain, the deduced SOX11 protein contains a number of highly conserved C-terminal motifs, which may function in transcriptional regulation. Expression of Sox11 in mouse embryos was prominent in the periventricular cells of the central nervous system, suggesting a role in neuronal maturation. Expression was also observed in a wide range of tissues involved in epithelial-mesenchymal interactions, suggesting an additional role in tissue modelling during development.
Collapse
Affiliation(s)
- M Hargrave
- Centre for Molecular and Cellular Biology, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Urrutia R. Exploring the role of homeobox and zinc finger proteins in pancreatic cell proliferation, differentiation, and apoptosis. INTERNATIONAL JOURNAL OF PANCREATOLOGY : OFFICIAL JOURNAL OF THE INTERNATIONAL ASSOCIATION OF PANCREATOLOGY 1997; 22:1-14. [PMID: 9387019 DOI: 10.1007/bf02803899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcription factors are DNA binding proteins that regulate gene expression in response to a large variety of extracellular stimuli, and thereby act as key molecular switches for controlling cell differentiation, proliferation, and apoptosis. During the last decade, a myriad of these proteins have been identified and classified into different structural families, including homeobox, zinc finger, leucine zipper, and helix-loop-helix transcription factors. Members of the homeobox and zinc finger superfamilies are among the best-characterized transcription factors known to act as potent regulators of normal development in organisms ranging from insects to humans. In addition, mutations or aberrant expression in genes encoding these proteins can result in neoplastic transformation in several different cell types, further supporting their role as "guardians" of normal cell growth and differentiation. Therefore, the purpose of this article is to review this field of research with a particular emphasis on the role of homeobox- and zinc finger-containing transcription factors in pancreatic cell growth, cell differentiation, and apoptosis. The potential participation of these proteins in neoplastic transformation is also discussed.
Collapse
Affiliation(s)
- R Urrutia
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
42
|
Theissen G, Kim JT, Saedler H. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 1996; 43:484-516. [PMID: 8875863 DOI: 10.1007/bf02337521] [Citation(s) in RCA: 285] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The MADS-box encodes a novel type of DNA-binding domain found so far in a diverse group of transcription factors from yeast, animals, and seed plants. Here, our first aim was to evaluate the primary structure of the MADS-box. Compilation of the 107 currently available MADS-domain sequences resulted in a signature which can strictly discriminate between genes possessing or lacking a MADS-domain and allowed a classification of MADS-domain proteins into several distinct subfamilies. A comprehensive phylogenetic analysis of known eukaryotic MADS-box genes, which is the first comprising animal as well as fungal and plant homologs, showed that the vast majority of subfamily members appear on distinct subtrees of phylogenetic trees, suggesting that subfamilies represent monophyletic gene clades and providing the proposed classification scheme with a sound evolutionary basis. A reconstruction of the history of the MADS-box gene subfamilies based on the taxonomic distribution of contemporary subfamily members revealed that each subfamily comprises highly conserved putative orthologs and recent paralogs. Some subfamilies must be very old (1,000 MY or more), while others are more recent. In general, subfamily members tend to share highly similar sequences, expression patterns, and related functions. The defined species distribution, specific function, and strong evolutionary conservation of the members of most subfamilies suggest that the establishment of different subfamilies was followed by rapid fixation and was thus highly advantageous during eukaryotic evolution. These gene subfamilies may have been essential prerequisites for the establishment of several complex eukaryotic body structures, such as muscles in animals and certain reproductive structures in higher plants, and of some signal transduction pathways. Phylogenetic trees indicate that after establishment of different subfamilies, additional gene duplications led to a further increase in the number of MADS-box genes. However, several molecular mechanisms of MADS-box gene diversification were used to a quite different extent during animal and plant evolution. Known plant MADS-domain sequences diverged much faster than those of animals, and gene duplication and sequence diversification were extensively used for the creation of new genes during plant evolution, resulting in a relatively large number of interacting genes. In contrast, the available data on animal genes suggest that increase in gene number was only moderate in the lineage leading to mammals, but in the case of MEF2-like gene products, heterodimerization between different splice variants may have increased the combinatorial possibilities of interactions considerably. These observations demonstrate that in metazoan and plant evolution, increased combinatorial possibilities of MADS-box gene product interactions correlated with the evolution of increasingly complex body plans.
Collapse
Affiliation(s)
- G Theissen
- Max-Planck-Institut für Züchtungsforschung, Abteilung Molekulare Pflanzengenetik, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | |
Collapse
|
43
|
Affiliation(s)
- C Kappen
- Samuel C. Johnson Medical Research Center, Mayo Clinic, Scottsdale, Arizona 85258, USA
| |
Collapse
|
44
|
Zeltser L, Desplan C, Heintz N. Hoxb-13: a new Hox gene in a distant region of the HOXB cluster maintains colinearity. Development 1996; 122:2475-84. [PMID: 8756292 DOI: 10.1242/dev.122.8.2475] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hox genes are involved in patterning along the A/P axes of animals. The clustered organization of Hox genes is conserved from nematodes to vertebrates. During evolution, the number of Hox genes within the ancestral complex increased, exemplified by the five-fold amplification of the AbdB-related genes, leading to a total number of thirteen paralogs. This was followed by successive duplications of the cluster to give rise to the four vertebrate HOX clusters. A specific subset of paralogs was subsequently lost from each cluster, yet the composition of each cluster was likely conserved during tetrapod evolution. While the HOXA, HOXC and HOXD clusters contain four to five AbdB-related genes, only one gene (Hoxb-9) is found in the HOXB complex. We have identified a new member of paralog group 13 in human and mouse, and shown that it is in fact Hoxb-13. A combination of genetic and physical mapping demonstrates that the new gene is found approx. 70 kb upstream of Hoxb-9 in the same transcriptional orientation as the rest of the cluster. Despite its relatively large distance from the HOX complex, Hoxb-13 exhibits temporal and spatial colinearity in the main body axis of the mouse embryo. The onset of transcription occurs at E9.0 in the tailbud region. At later stages of development, Hoxb-13 is expressed in the tailbud and posterior domains in the spinal cord, digestive tract and urogenital system. However, it is not expressed in the secondary axes such as the limbs and genital tubercle. These results indicate that the 5′ end of the HOXB cluster has not been lost and that at least one member exists and is highly conserved among different vertebrate species. Because of its separation from the complex, Hoxb-13 may provide an important system to dissect the mechanism(s) responsible for the maintenance of colinearity.
Collapse
Affiliation(s)
- L Zeltser
- Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
45
|
Kappen C. Theoretical approaches to the analysis of homeobox gene evolution. COMPUTERS & CHEMISTRY 1996; 20:49-59. [PMID: 8867841 DOI: 10.1016/s0097-8485(96)80007-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The homeobox gene system presents a unique model for experimental and theoretical analyses of gene evolution. Homeobox genes play a role in patterning the embryonic development of diverse organisms and as such are likely to have been fundamental to the evolution of the specialized body plans of many animal species. The organization of Hox-genes in chromosomal, clusters in many species implicates gene duplication as a prominent mechanism in the evolution of this multigene family. I review here various theoretical analyses that have contributed to our understanding of the molecular evolution of this class of developmental control genes. This article also illustrates relationships between theoretical predictions and experimental studies and outlines future avenues for the evolutionary analysis of developmental systems.
Collapse
Affiliation(s)
- C Kappen
- Department of Biochemistry and Molecular Biology, Mayo Clinic/Foundation, Scottsdale, AZ 85259, USA
| |
Collapse
|
46
|
Affiliation(s)
- A Buonanno
- National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
47
|
Abstract
The hox/hom homeobox genes code for DNA-binding proteins that confer positional information during animal development; these genes have been found in a wide range of triploblasts and in cnidarians. We report here the identification of a hox/hom gene and two other homeobox genes in the genomes of sponges. This finding extends the detection of hox/hom genes to the lowest metazoan phylum and suggests a monophyletic origin of the kingdom Animalia. Because, in culture, sponge cells quickly reaggregate, differentiate and construct tissue after disaggregation, they can provide a useful model system for characterization of the basic roles of homeobox genes in the control of cellular differentiation.
Collapse
Affiliation(s)
- B M Degnan
- Marine Biotechnology Center, University of California, Santa Barbara 93106, USA
| | | | | | | |
Collapse
|
48
|
Aparicio S, Morrison A, Gould A, Gilthorpe J, Chaudhuri C, Rigby P, Krumlauf R, Brenner S. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc Natl Acad Sci U S A 1995; 92:1684-8. [PMID: 7878040 PMCID: PMC42584 DOI: 10.1073/pnas.92.5.1684] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Comparative vertebrate genome sequencing offers a powerful method for detecting conserved regulatory sequences. We propose that the compact genome of the teleost Fugu rubripes is well suited for this purpose. The evolutionary distance of teleosts from other vertebrates offers the maximum stringency for such evolutionary comparisons. To illustrate the comparative genome approach for F. rubripes, we use sequence comparisons between mouse and Fugu Hoxb-4 noncoding regions to identify conserved sequence blocks. We have used two approaches to test the function of these conserved blocks. In the first, homologous sequences were deleted from a mouse enhancer, resulting in a tissue-specific loss of activity when assayed in transgenic mice. In the second approach, Fugu DNA sequences showing homology to mouse sequences were tested for enhancer activity in transgenic mice. This strategy identified a neural element that mediates a subset of Hoxb-4 expression that is conserved between mammals and teleosts. The comparison of noncoding vertebrate sequences with those of Fugu, coupled to a transgenic bioassay, represents a general approach suitable for many genome projects.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cloning, Molecular
- Enhancer Elements, Genetic
- Fishes, Poisonous/genetics
- Gene Expression Regulation, Developmental
- Genes, Homeobox
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Molecular Sequence Data
- Nervous System/embryology
- Nervous System/metabolism
- RNA, Messenger/genetics
- Regulatory Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- S Aparicio
- Department of Medicine, Addenbrookes Hospital, Cambridge, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Weiss KM, Bollekens J, Ruddle FH, Takashita K. Distal-less and other homeobox genes in the development of the dentition. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1994; 270:273-84. [PMID: 7964557 DOI: 10.1002/jez.1402700306] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mammalian tooth develops through an interaction between two tissue layers of different embryologic origin. A number of transcription factors and as well as two members of the Msx class of homeobox genes have been shown to be involved in the histogenesis of the mammalian tooth. This raised the possibility that other homeobox genes might be involved in dental morphogenesis. We have amplified mouse tooth germ cDNA from three different gestational ages by the polymerase chain reaction with degenerate primers for 18 classes of homeobox genes. Members of several classes have been isolated, including the Msx genes, two Dlx genes, and the Dbx, MHox, Mox2A genes. One of the Dlx genes, Dlx-7, had not previously been reported in mammals, and some details are presented of its cDNA sequence. This work plus that of other investigators has shown that at least six Dlx genes are expressed in developing teeth or in first branchial arches, suggesting the possibility that these genes are involved in specifying complexity within or between teeth. The screening approach with degenerate primers is a successful way to identify new as well as previously known regulatory genes expressed in developing tooth embryos.
Collapse
Affiliation(s)
- K M Weiss
- Department of Anthropology, Penn State University, University Park 16802
| | | | | | | |
Collapse
|
50
|
Abstract
Organization into gene clusters is an essential and diagnostic feature of Hox genes. Insect and nematode genomes possess single Hox gene clusters (split in Drosophila); in mammals, there are 38 Hox genes in four clusters on different chromosomes. A collinear relationship between chromosomal position, activation time and anterior expression limit of vertebrate Hox genes suggests that clustering may be important for precise spatiotemporal gene regulation and hence embryonic patterning. Hox genes have a wide phylogenetic distribution within the metazoa, and are implicated in the control of regionalization along the anteroposterior body axis. It has been suggested that changes in Hox gene number and genomic organization played a role in metazoan body-plan evolution, but identifying significant changes is difficult because Hox gene organization is known from only very few and widely divergent taxa (principally insects, nematodes and vertebrates). Here we analyse the complexity and organization of Hox genes in a cephalochordate, amphioxus, the taxon thought to be the sister group of the vertebrates. We find that the amphioxus genome has only one Hox gene cluster. It has similar genomic organization to the four mammalian Hox clusters, and contains homologues of at least the first ten paralogous groups of vertebrate Hox genes in a collinear array. Remarkably, this organization is compatible with that inferred for a direct ancestor of the vertebrates; we conclude that amphioxus is a living representative of a critical intermediate stage in Hox cluster evolution.
Collapse
|