1
|
Zhao Z, Dai X, Jiang G, Lin F. Absent, Small, or Homeotic 2-Like-Mediated H3K4 Methylation and Nephrogenesis. J Am Soc Nephrol 2025; 36:798-811. [PMID: 39774048 DOI: 10.1681/asn.0000000600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Key Points
Deficits in nephron numbers are associated with higher risk of adult-onset kidney disease seen in congenital anomalies of the kidney and urinary tract.Mouse model experiments suggested that absent, small, or homeotic 2-like was vital for kidney development by activating cell cycle genes through histone methylation.Our findings identified absent, small, or homeotic 2-like–regulated genes as a potential target for treating congenital anomalies of the kidney and urinary tract.
Background
Many congenital anomalies of the kidney and urinary tract involve deficits in the number of nephrons, which are associated with a higher risk of hypertension and CKD later in life. Prior work has implicated histone modifications in regulating kidney lineage–specific gene transcription and nephron endowment. Our earlier study suggested that absent, small, or homeotic 2-like (ASH2L), a core subunit of the H3K4 methyltransferase complex, plays a role in ureteric bud morphogenesis during mammalian kidney development. However, the potential involvement of ASH2L in nephron formation remains an open question.
Methods
To investigate the role of ASH2L in nephron development, we inactivated Ash2l specifically in nephron progenitor cells by crossing Six2-e(Kozak-GFPCre-Wpre-polyA)1 mice with Ash2l
fl/fl mice. We used RNA sequencing combined with Cleavage Under Targets and Tagmentation sequencing to screen for gene and epigenomic changes, which were further verified by rescue experiments conducted on ex vivo culture explants.
Results
Inactivating ASH2L in nephron progenitor cells disrupted H3K4 trimethylation establishment at promoters of genes controlling nephron progenitor cell stemness, differentiation, and cell cycle, inhibiting their progression through the cell cycle and differentiation into epithelial cell types needed to form nephrons. Inhibition of the TGF-β/suppressor of mothers against decapentaplegic signaling pathway partially rescued the dysplastic phenotype of the mutants.
Conclusions
ASH2L-mediated H3K4 methylation was identified as a novel epigenetic regulator of kidney development. Downregulation of ASH2L expression or H3K4 trimethylation may be linked to congenital anomalies of the kidney and urinary tract.
Collapse
Affiliation(s)
- Ziyi Zhao
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuantong Dai
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Fujun Lin
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| |
Collapse
|
2
|
Parvez RK, Csipán RL, Liu J, Gevorgyan A, Rutledge EA, Guo J, Kim DK, McMahon AP. Developmental and Cell Fate Analyses Support a Postnatal Origin for the Cortical Collecting System in the Mouse Kidney. J Am Soc Nephrol 2025; 36:812-824. [PMID: 39665296 DOI: 10.1681/asn.0000000579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Key Points
An adult-like corticomedullary organization underlying kidney function is established 10 days after birth in the mouse kidney.Genetic lineage tracing demonstrates the cortical collecting duct network is generated from progenitors after birth.Mature cell types of the nephron progenitor–derived connecting tubule and ureteric progenitor–derived collecting epithelium are established by P15.
Background
Structure and function in the mammalian kidney are organized along a radial axis highlighted by the corticomedullary organization and regional patterning of the collecting system. The arborized collecting epithelium arises through controlled growth, branching, and commitment of Wnt11+ ureteric progenitor cells within cortically localized branch tips until postnatal day 3.
Methods
We applied in situ hybridization and immunofluorescence to key markers of collecting duct cell types to examine their distribution in the embryonic and postnatal mouse kidneys. To address the contribution of ureteric progenitor cells at a given time to cell diversity and spatial organization in the adult mouse kidney, we performed genetic lineage tracing of Wnt11
+
cells in the embryonic and early postnatal mouse kidney.
Results
Cell fate analyses showed much of the cortical collecting duct network was established postnatally. Furthermore, epithelial reorganization, regional differentiation, and functional maturation of key cell types to an adult-like collecting epithelium was not complete until around 2 weeks after birth in both ureteric progenitor cell–derived collecting system and structurally homologous nephron progenitor cell–derived connecting tubule.
Conclusions
These studies underline the importance of the relatively understudied early postnatal period to the development of a functional mammalian kidney.
Collapse
Affiliation(s)
- Riana K Parvez
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
| | - Réka L Csipán
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
| | - Jing Liu
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ara Gevorgyan
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
| | - Elisabeth A Rutledge
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
- Amgen, Inc., Thousand Oaks, California
| | - Jinjin Guo
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
| | - Doh Kyung Kim
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
| | - Andrew P McMahon
- Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, California
- Division of Biology and Biological Engineering, California Institute for Technology, Pasadena, California
| |
Collapse
|
3
|
Lund-Ricard Y, Calloch J, Glippa V, Vandenplas S, Huysseune A, Witten PE, Morales J, Boutet A. Postembryonic Maintenance of Nephron Progenitor Cells with Low Translational Activity in the Chondrichthyan Scyliorhinus canicula. J Am Soc Nephrol 2025; 36:571-586. [PMID: 39699552 PMCID: PMC11975252 DOI: 10.1681/asn.0000000558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Key Points Unlike mammals, chondrichthyan species exhibit postembryonic nephrogenesis, where new nephrons are continuously added in the kidney. Nephron progenitor cells in catsharks display slow cycling property, akin to other somatic stem cells, indicating their potential for tissue renewal and regeneration. Molecular analysis suggests a potential link between protein synthesis rate and nephron progenitor cell maintenance. Background While adult mammals are unable to grow new nephrons, cartilaginous fish kidneys display nephrogenesis throughout life. In this study, we investigated the molecular properties of nephron progenitor cells (NPCs) within the kidney of the catshark (Scyliorhinus canicula ). Methods We used branched DNA in situ hybridization to analyze markers expressed in catshark NPCs. Bromodesoxyuridine pulse-chase labeling was also performed to test whether NPCs are slow-cycling cells. To question the mechanisms allowing NPC maintenance in the catshark postembryonic kidney, we measured global protein synthesis rates using in vivo OP-puromycin incorporation. We also investigated the expression of two targets of the mammalian target of rapamycin pathway, an important signaling pathway for translation initiation. Results We found that NPCs express molecular markers previously identified in mice and teleost embryonic NPCs, such as the transcription factors Six2, Pax2, and Wt1. At postembryonic stages, these NPCs are integrated into a specific nephrogenic area of the kidney and contain slow-cycling cells. We also evidenced that NPCs have lower protein synthesis levels than the differentiated cells present in forming nephrons. Such transition from low to high translation rates has been previously observed in several populations of vertebrate stem cells as they undergo differentiation. Finally, we reported the phosphorylation of two targets of the mammalian target of rapamycin pathway, p4E-BP1 and pS6K1, in catshark differentiated epithelial cells but not in the NPCs. Conclusions This first molecular analysis of NPCs in a chondrichthyan species indicates that translation rate increases in NPCs as they differentiate into epithelial cells of the nephron. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2025_01_22_ASN0000000558.mp3
Collapse
Affiliation(s)
- Yasmine Lund-Ricard
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique, CNRS, Sorbonne Université, Roscoff, France
| | - Julien Calloch
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique, CNRS, Sorbonne Université, Roscoff, France
| | - Virginie Glippa
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique, CNRS, Sorbonne Université, Roscoff, France
| | - Sam Vandenplas
- Biology Department, Evolutionary Developmental Biology Group, Ghent University, Ghent, Belgium
| | - Ann Huysseune
- Biology Department, Evolutionary Developmental Biology Group, Ghent University, Ghent, Belgium
| | - P. Eckhard Witten
- Biology Department, Evolutionary Developmental Biology Group, Ghent University, Ghent, Belgium
| | - Julia Morales
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique, CNRS, Sorbonne Université, Roscoff, France
| | - Agnès Boutet
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique, CNRS, Sorbonne Université, Roscoff, France
| |
Collapse
|
4
|
Brockwell M, Hergenrother S, Satariano M, Shah R, Raina R. Pathophysiology of Congenital Anomalies of the Kidney and Urinary Tract: A Comprehensive Review. Cells 2024; 13:1866. [PMID: 39594614 PMCID: PMC11593116 DOI: 10.3390/cells13221866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) represent a broad range of diseases with differing mechanisms, clinical presentations, and prognoses. With an estimated prevalence of between 4 and 60 per 10,000 births, CAKUT represents a sizable number of patients for pediatric and adult nephrologists as therapies have progressed, allowing longer life spans. Many CAKUT disorders are associated with genetic mutations, and with advances in genomic sequencing, these genes are being identified at an increasing rate. Understanding these mutations provides insight into these conditions' molecular mechanisms and pathophysiology. In this article, we discuss the epidemiology, presentation, and outcomes of CAKUT in addition to our current understanding of genetic and molecular mechanisms in these diseases.
Collapse
Affiliation(s)
- Maximilian Brockwell
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (M.B.); (S.H.); (M.S.); (R.S.)
| | - Sean Hergenrother
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (M.B.); (S.H.); (M.S.); (R.S.)
| | - Matthew Satariano
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (M.B.); (S.H.); (M.S.); (R.S.)
| | - Raghav Shah
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (M.B.); (S.H.); (M.S.); (R.S.)
| | - Rupesh Raina
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA
- Department of Nephrology, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
5
|
Bahrami M, Darabi S, Roozbahany NA, Abbaszadeh HA, Moghadasali R. Great potential of renal progenitor cells in kidney: From the development to clinic. Exp Cell Res 2024; 434:113875. [PMID: 38092345 DOI: 10.1016/j.yexcr.2023.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
The mammalian renal organ represents a pinnacle of complexity, housing functional filtering units known as nephrons. During embryogenesis, the depletion of niches containing renal progenitor cells (RPCs) and the subsequent incapacity of adult kidneys to generate new nephrons have prompted the formulation of protocols aimed at isolating residual RPCs from mature kidneys and inducing their generation from diverse cell sources, notably pluripotent stem cells. Recent strides in the realm of regenerative medicine and the repair of tissues using stem cells have unveiled critical signaling pathways essential for the maintenance and generation of human RPCs in vitro. These findings have ushered in a new era for exploring novel strategies for renal protection. The present investigation delves into potential transcription factors and signaling cascades implicated in the realm of renal progenitor cells, focusing on their protection and differentiation. The discourse herein elucidates contemporary research endeavors dedicated to the acquisition of progenitor cells, offering crucial insights into the developmental mechanisms of these cells within the renal milieu and paving the way for the formulation of innovative treatment modalities.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hojjat Allah Abbaszadeh
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Davis SN, Grindel SH, Viola JM, Liu GY, Liu J, Qian G, Porter CM, Hughes AJ. Nephron progenitors rhythmically alternate between renewal and differentiation phases that synchronize with kidney branching morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568157. [PMID: 38045273 PMCID: PMC10690271 DOI: 10.1101/2023.11.21.568157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The mammalian kidney achieves massive parallelization of function by exponentially duplicating nephron-forming niches during development. Each niche caps a tip of the ureteric bud epithelium (the future urinary collecting duct tree) as it undergoes branching morphogenesis, while nephron progenitors within niches balance self-renewal and differentiation to early nephron cells. Nephron formation rate approximately matches branching rate over a large fraction of mouse gestation, yet the nature of this apparent pace-maker is unknown. Here we correlate spatial transcriptomics data with branching 'life-cycle' to discover rhythmically alternating signatures of nephron progenitor differentiation and renewal across Wnt, Hippo-Yap, retinoic acid (RA), and other pathways. We then find in human stem-cell derived nephron progenitor organoids that Wnt/β-catenin-induced differentiation is converted to a renewal signal when it temporally overlaps with YAP activation. Similar experiments using RA activation indicate a role in setting nephron progenitor exit from the naive state, the spatial extent of differentiation, and nephron segment bias. Together the data suggest that nephron progenitor interpretation of consistent Wnt/β-catenin differentiation signaling in the niche may be modified by rhythmic activity in ancillary pathways to set the pace of nephron formation. This would synchronize nephron formation with ureteric bud branching, which creates new sites for nephron condensation. Our data bring temporal resolution to the renewal vs. differentiation balance in the nephrogenic niche and inform new strategies to achieve self-sustaining nephron formation in synthetic human kidney tissues.
Collapse
Affiliation(s)
- Sachin N Davis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Samuel H Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - John M Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace Y Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Catherine M Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|
7
|
Cheng T, Agwu C, Shim K, Wang B, Jain S, Mahjoub MR. Aberrant centrosome biogenesis disrupts nephron and collecting duct progenitor growth and fate resulting in fibrocystic kidney disease. Development 2023; 150:dev201976. [PMID: 37982452 PMCID: PMC10753588 DOI: 10.1242/dev.201976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Mutations that disrupt centrosome biogenesis or function cause congenital kidney developmental defects and fibrocystic pathologies. Yet how centrosome dysfunction results in the kidney disease phenotypes remains unknown. Here, we examined the consequences of conditional knockout of the ciliopathy gene Cep120, essential for centrosome duplication, in the nephron and collecting duct progenitor niches of the mouse embryonic kidney. Cep120 loss led to reduced abundance of both cap mesenchyme and ureteric bud populations, due to a combination of delayed mitosis, increased apoptosis and premature differentiation of progenitor cells. These defects resulted in dysplastic kidneys at birth, which rapidly formed cysts, displayed increased interstitial fibrosis and decline in kidney function. RNA sequencing of embryonic and postnatal kidneys from Cep120-null mice identified changes in the pathways essential for development, fibrosis and cystogenesis. Our study defines the cellular and developmental defects caused by centrosome dysfunction during kidney morphogenesis and identifies new therapeutic targets for patients with renal centrosomopathies.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Chidera Agwu
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Kyuhwan Shim
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Sanjay Jain
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Moe R. Mahjoub
- Department of Medicine, Division of Nephrology, Washington University in St Louis, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University in St Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Cheng T, Agwu C, Shim K, Wang B, Jain S, Mahjoub MR. Aberrant centrosome biogenesis disrupts nephron progenitor cell renewal and fate resulting in fibrocystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535568. [PMID: 37066373 PMCID: PMC10104032 DOI: 10.1101/2023.04.04.535568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Mutations that disrupt centrosome structure or function cause congenital kidney developmental defects and fibrocystic pathologies. Yet, it remains unclear how mutations in proteins essential for centrosome biogenesis impact embryonic kidney development. Here, we examined the consequences of conditional deletion of a ciliopathy gene, Cep120 , in the two nephron progenitor niches of the embryonic kidney. Cep120 loss led to reduced abundance of both metanephric mesenchyme and ureteric bud progenitor populations. This was due to a combination of delayed mitosis, increased apoptosis, and premature differentiation of progenitor cells. These defects resulted in dysplastic kidneys at birth, which rapidly formed cysts, displayed increased interstitial fibrosis, and decline in filtration function. RNA sequencing of embryonic and postnatal kidneys from Cep120-null mice identified changes in pathways essential for branching morphogenesis, cystogenesis and fibrosis. Our study defines the cellular and developmental defects caused by centrosome dysfunction during kidney development, and identifies new therapeutic targets for renal centrosomopathies. Highlights Defective centrosome biogenesis in nephron progenitors causes:Reduced abundance of metanephric mesenchyme and premature differentiation into tubular structuresAbnormal branching morphogenesis leading to reduced nephron endowment and smaller kidneysChanges in cell-autonomous and paracrine signaling that drive cystogenesis and fibrosisUnique cellular and developmental defects when compared to Pkd1 knockout models.
Collapse
|
9
|
Perl AJ, Schuh MP, Kopan R. Regulation of nephron progenitor cell lifespan and nephron endowment. Nat Rev Nephrol 2022; 18:683-695. [PMID: 36104510 PMCID: PMC11078284 DOI: 10.1038/s41581-022-00620-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Low nephron number - resulting, for example, from prematurity or developmental anomalies - is a risk factor for the development of hypertension, chronic kidney disease and kidney failure. Considerable interest therefore exists in the mechanisms that regulate nephron endowment and contribute to the premature cessation of nephrogenesis following preterm birth. The cessation of nephrogenesis in utero or shortly after birth is synchronized across multiple niches in all mammals, and is coupled with the exhaustion of nephron progenitor cells. Consequently, no nephrons are formed after the cessation of developmental nephrogenesis, and lifelong renal function therefore depends on the complement of nephrons generated during gestation. In humans, a tenfold variation in nephron endowment between individuals contributes to differences in susceptibility to kidney disease; however, the mechanisms underlying this variation are not yet clear. Salient advances in our understanding of environmental inputs, and of intrinsic molecular mechanisms that contribute to the regulation of cessation timing or nephron progenitor cell exhaustion, have the potential to inform interventions to enhance nephron endowment and improve lifelong kidney health for susceptible individuals.
Collapse
Affiliation(s)
- Alison J Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meredith P Schuh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Motojima M, Tanaka M, Kume T. Foxc1 and Foxc2 are indispensable for maintenance of progenitors of nephron and stroma in the developing kidney. J Cell Sci 2022; 135:276938. [PMID: 36073617 DOI: 10.1242/jcs.260356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Nephron development proceeds with reciprocal interactions among three layers: nephron progenitors (NPs), ureteric buds, and stromal progenitors (SPs). We found Foxc1 and Foxc2 (Foxc1/2) expression in NPs and SPs. Systemic deletion of Foxc1/2 two days after the onset of metanephros development (E13.5) resulted in epithelialization of NPs and ectopic formation of renal vesicles. NP-specific deletion did not cause these phenotypes, indicating that Foxc1/2 in other cells (likely in SPs) contributed to the maintenance of NPs. Single-cell RNA-seq analysis revealed NP and SP subpopulations, the border between committed NPs and renewing NPs, and similarity among cortical interstitium and vascular smooth muscle type cells. Integrated analysis of the control and knockout data indicated transformation of some NPs to strange cells expressing markers of vascular endothelium, reduced numbers of self-renewing NP and SP populations, downregulation of crucial genes for kidney development such as Fgf20 and Frem1 in NPs, and Foxd1 and Sall1 in SPs. It also revealed upregulation of genes that were not usually expressed in NPs and SPs. Thus, Foxc1/2 maintains NPs and SPs by regulating the expression of multiple genes.
Collapse
Affiliation(s)
- Masaru Motojima
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Masayuki Tanaka
- Medical Science College Office, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
11
|
Rankin SA, Zorn AM. The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during
Xenopus
lung development. Dev Growth Differ 2022; 64:347-361. [PMID: 36053777 PMCID: PMC10088502 DOI: 10.1111/dgd.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
Ventx2 is an Antennapedia superfamily/NK-like subclass homeodomain transcription factor best known for its roles in the regulation of early dorsoventral patterning during Xenopus gastrulation and in the maintenance of neural crest multipotency. In this work we characterize the spatiotemporal expression pattern of ventx2 in progenitor cells of the Xenopus respiratory system epithelium. We find that ventx2 is directly induced by BMP signaling in the ventral foregut prior to nkx2-1, the earliest epithelial marker of the respiratory lineage. Functional studies demonstrate that Ventx2 regulates the number of Nkx2-1/Sox9+ respiratory progenitor cells induced during foregut development, the timing and level of surfactant protein gene expression, and proper tracheal-esophageal separation. Our data suggest that Ventx2 regulates the balance of respiratory progenitor cell expansion and differentiation. While the ventx gene family has been lost from the mouse genome during evolution, humans have retained a ventx2-like gene (VENTX). Finally, we discuss how our findings might suggest a possible function of VENTX in human respiratory progenitor cells.
Collapse
Affiliation(s)
- Scott A. Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
| | - Aaron M. Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
- University of Cincinnati, College of Medicine, Department of Pediatrics Cincinnati OH
| |
Collapse
|
12
|
Taglienti M, Graf D, Schumacher V, Kreidberg JA. Bmp7 drives proximal tubule expansion and determines nephron number in the developing kidney. Development 2022; 149:dev200773. [PMID: 35877077 PMCID: PMC9382899 DOI: 10.1242/dev.200773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/23/2022] [Indexed: 07/27/2023]
Abstract
The mammalian kidney is composed of thousands of nephrons that are formed through reiterative induction of a mesenchymal-to-epithelial transformation by a population of nephron progenitor cells. The number of nephrons in human kidneys ranges from several hundred thousand to nearly a million, and low nephron number has been implicated as a risk factor for kidney disease as an adult. Bmp7 is among a small number of growth factors required to support the proliferation and self-renewal of nephron progenitor cells, in a process that will largely determine the final nephron number. Once induced, each nephron begins as a simple tubule that undergoes extensive proliferation and segmental differentiation. Bmp7 is expressed both by nephron progenitor cells and the ureteric bud derivative branches that induce new nephrons. Here, we show that, in mice, Bmp7 expressed by progenitor cells has a major role in determining nephron number; nephron number is reduced to one tenth its normal value in its absence. Postnatally, Bmp7 also drives proliferation of the proximal tubule cells, and these ultimately constitute the largest segment of the nephron. Bmp7 appears to act through Smad 1,5,9(8), p38 and JNK MAP kinase. In the absence of Bmp7, nephrons undergo a hypertrophic process that involves p38. Following a global inactivation of Bmp7, we also see evidence for Bmp7-driven growth of the nephron postnatally. Thus, we identify a role for Bmp7 in supporting the progenitor population and driving expansion of nephrons to produce a mature kidney.
Collapse
Affiliation(s)
- Mary Taglienti
- Department of Urology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Graf
- School of Dentistry and Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Valerie Schumacher
- Department of Urology, Harvard Medical School, Boston, MA 02115, USA
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Departments of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jordan A. Kreidberg
- Department of Urology, Harvard Medical School, Boston, MA 02115, USA
- Departments of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Guan N, Kobayashi H, Ishii K, Davidoff O, Sha F, Ikizler TA, Hao CM, Chandel NS, Haase VH. Disruption of mitochondrial complex III in cap mesenchyme but not in ureteric progenitors results in defective nephrogenesis associated with amino acid deficiency. Kidney Int 2022; 102:108-120. [PMID: 35341793 PMCID: PMC9232975 DOI: 10.1016/j.kint.2022.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022]
Abstract
Oxidative metabolism in mitochondria regulates cellular differentiation and gene expression through intermediary metabolites and reactive oxygen species. Its role in kidney development and pathogenesis is not completely understood. Here we inactivated ubiquinone-binding protein QPC, a subunit of mitochondrial complex III, in two types of kidney progenitor cells to investigate the role of mitochondrial electron transport in kidney homeostasis. Inactivation of QPC in sine oculis-related homeobox 2 (SIX2)-expressing cap mesenchyme progenitors, which give rise to podocytes and all nephron segments except collecting ducts, resulted in perinatal death from severe kidney dysplasia. This was characterized by decreased proliferation of SIX2 progenitors and their failure to differentiate into kidney epithelium. QPC inactivation in cap mesenchyme progenitors induced activating transcription factor 4-mediated nutritional stress responses and was associated with a reduction in kidney tricarboxylic acid cycle metabolites and amino acid levels, which negatively impacted purine and pyrimidine synthesis. In contrast, QPC inactivation in ureteric tree epithelial cells, which give rise to the kidney collecting system, did not inhibit ureteric differentiation, and resulted in the development of functional kidneys that were smaller in size. Thus, our data demonstrate that mitochondrial oxidative metabolism is critical for the formation of cap mesenchyme-derived nephron segments but dispensable for formation of the kidney collecting system. Hence, our studies reveal compartment-specific needs for metabolic reprogramming during kidney development.
Collapse
Affiliation(s)
- Nan Guan
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Division of Nephrology, Huashan Hospital and Nephrology Research Institute, Fudan University, Shanghai, China; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hanako Kobayashi
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ken Ishii
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Olena Davidoff
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Feng Sha
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Talat A Ikizler
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital and Nephrology Research Institute, Fudan University, Shanghai, China
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago, Illinois, USA
| | - Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Section of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Berghaus C, Groh AC, Breljak D, Ciarimboli G, Sabolić I, Pavenstädt H, Weide T. Impact of Pals1 on Expression and Localization of Transporters Belonging to the Solute Carrier Family. Front Mol Biosci 2022; 9:792829. [PMID: 35252349 PMCID: PMC8888964 DOI: 10.3389/fmolb.2022.792829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Pals1 is part of the evolutionary conserved Crumbs polarity complex and plays a key role in two processes, the formation of apicobasal polarity and the establishment of cell-cell contacts. In the human kidney, up to 1.5 million nephrons control blood filtration, as well as resorption and recycling of inorganic and organic ions, sugars, amino acids, peptides, vitamins, water and further metabolites of endogenous and exogenous origin. All nephron segments consist of polarized cells and express high levels of Pals1. Mice that are functionally haploid for Pals1 develop a lethal phenotype, accompanied by heavy proteinuria and the formation of renal cysts. However, on a cellular level, it is still unclear if reduced cell polarization, incomplete cell-cell contact formation, or an altered Pals1-dependent gene expression accounts for the renal phenotype. To address this, we analyzed the transcriptomes of Pals1-haploinsufficient kidneys and the littermate controls by gene set enrichment analysis. Our data elucidated a direct correlation between TGFβ pathway activation and the downregulation of more than 100 members of the solute carrier (SLC) gene family. Surprisingly, Pals1-depleted nephrons keep the SLC's segment-specific expression and subcellular distribution, demonstrating that the phenotype is not mainly due to dysfunctional apicobasal cell polarization of renal epithelia. Our data may provide first hints that SLCs may act as modulating factors for renal cyst formation.
Collapse
Affiliation(s)
- Carmen Berghaus
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Münster, Germany
| | - Ann-Christin Groh
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Münster, Germany
| | - Davorka Breljak
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Giuliano Ciarimboli
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Münster, Germany
| | - Ivan Sabolić
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Hermann Pavenstädt
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Münster, Germany
| | - Thomas Weide
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Münster, Germany
| |
Collapse
|
15
|
Generation of chimeric kidneys using progenitor cell replacement: Oshima Award Address 2021. Clin Exp Nephrol 2022; 26:491-500. [PMID: 35138500 PMCID: PMC9114015 DOI: 10.1007/s10157-022-02191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/28/2022] [Indexed: 11/03/2022]
Abstract
It is believed that the development of new renal replacement therapy (RRT) will increase treatment options for end-stage kidney disease and help reduce the mismatch between supply and demand. Technological advancement in the development of kidney organoids derived from pluripotent stem cells and xenotransplantation using porcine kidneys has been accelerated by a convergence of technological innovations, including the discovery of induced pluripotent stem cells and genome editing, and improvement of analysis techniques such as single-cell ribonucleic acid sequencing. Given the difficulty associated with kidney regeneration, hybrid kidneys are studied as an innovative approach that involves the use of stem cells to generate kidneys, with animal fetal kidneys used as a scaffold. Hybrid kidney technology entails the application of local chimerism for the generation of chimeric kidneys from exogenous renal progenitor cells by borrowing complex nephrogenesis programs from the developmental environment of heterologous animals. Hybrid kidneys can also utilize the urinary tract and bladder tissue of animal fetuses for urine excretion. Generating nephrons from syngeneic stem cells to increase self-cell ratio in xeno-tissues can reduce the risk of xeno-rejection. We showed that nephrons can be generated by ablation of host nephron progenitor cells (NPCs) in the nephron development region of animals and replacing them with exogenous NPCs. This progenitor cell replacement is the basis of hybrid kidney regeneration from progenitor cells using chimera technology. The goal of xeno-regenerative medicine using hybrid kidneys is to overcome serious organ shortage.
Collapse
|
16
|
Generation of Induced Nephron Progenitor-like Cells from Human Urine-Derived Cells. Int J Mol Sci 2021; 22:ijms222413449. [PMID: 34948246 PMCID: PMC8708572 DOI: 10.3390/ijms222413449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Regenerative medicine strategies employing nephron progenitor cells (NPCs) are a viable approach that is worthy of substantial consideration as a promising cell source for kidney diseases. However, the generation of induced nephron progenitor-like cells (iNPCs) from human somatic cells remains a major challenge. Here, we describe a novel method for generating NPCs from human urine-derived cells (UCs) that can undergo long-term expansion in a serum-free condition. Results: Here, we generated iNPCs from human urine-derived cells by forced expression of the transcription factors OCT4, SOX2, KLF4, c-MYC, and SLUG, followed by exposure to a cocktail of defined small molecules. These iNPCs resembled human embryonic stem cell-derived NPCs in terms of their morphology, biological characteristics, differentiation potential, and global gene expression and underwent a long-term expansion in serum-free conditions. Conclusion: This study demonstrates that human iNPCs can be readily generated and expanded, which will facilitate their broad applicability in a rapid, efficient, and patient-specific manner, particularly holding the potential as a transplantable cell source for patients with kidney disease.
Collapse
|
17
|
Schreiber J, Liaukouskaya N, Fuhrmann L, Hauser AT, Jung M, Huber TB, Wanner N. BET Proteins Regulate Expression of Osr1 in Early Kidney Development. Biomedicines 2021; 9:biomedicines9121878. [PMID: 34944697 PMCID: PMC8698285 DOI: 10.3390/biomedicines9121878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
In utero renal development is subject to maternal metabolic and environmental influences affecting long-term renal function and the risk of developing chronic kidney failure and cardiovascular disease. Epigenetic processes have been implicated in the orchestration of renal development and prenatal programming of nephron number. However, the role of many epigenetic modifiers for kidney development is still unclear. Bromodomain and extra-terminal domain (BET) proteins act as histone acetylation reader molecules and promote gene transcription. BET family members Brd2, Brd3 and Brd4 are expressed in the nephrogenic zone during kidney development. Here, the effect of the BET inhibitor JQ1 on renal development is evaluated. Inhibition of BET proteins via JQ1 leads to reduced growth of metanephric kidney cultures, loss of the nephron progenitor cell population, and premature and disturbed nephron differentiation. Gene expression of key nephron progenitor transcription factor Osr1 is downregulated after 24 h BET inhibition, while Lhx1 and Pax8 expression is increased. Mining of BRD4 ChIP-seq and gene expression data identify Osr1 as a key factor regulated by BRD4-controlled gene activation. Inhibition of BRD4 by BET inhibitor JQ1 leads to downregulation of Osr1, thereby causing a disturbance in the balance of nephron progenitor cell self-renewal and premature differentiation of the nephron, which ultimately leads to kidney hypoplasia and disturbed nephron development. This raises questions about the potential teratogenic effects of BET inhibitors for embryonic development. In summary, our work highlights the role of BET proteins for prenatal programming of nephrogenesis and identifies Osr1 as a potential target of BET proteins.
Collapse
Affiliation(s)
- Janina Schreiber
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (L.F.); (T.B.H.)
| | - Nastassia Liaukouskaya
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (L.F.); (T.B.H.)
| | - Lars Fuhrmann
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (L.F.); (T.B.H.)
| | - Alexander-Thomas Hauser
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany; (A.-T.H.); (M.J.)
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany; (A.-T.H.); (M.J.)
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias B. Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (L.F.); (T.B.H.)
| | - Nicola Wanner
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (L.F.); (T.B.H.)
- Correspondence:
| |
Collapse
|
18
|
Jarmas AE, Brunskill EW, Chaturvedi P, Salomonis N, Kopan R. Progenitor translatome changes coordinated by Tsc1 increase perception of Wnt signals to end nephrogenesis. Nat Commun 2021; 12:6332. [PMID: 34732708 PMCID: PMC8566581 DOI: 10.1038/s41467-021-26626-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/17/2021] [Indexed: 11/29/2022] Open
Abstract
Mammalian nephron endowment is determined by the coordinated cessation of nephrogenesis in independent niches. Here we report that translatome analysis in Tsc1+/- nephron progenitor cells from mice with elevated nephron numbers reveals how differential translation of Wnt antagonists over agonists tips the balance between self-renewal and differentiation. Wnt agonists are poorly translated in young niches, resulting in an environment with low R-spondin and high Fgf20 promoting self-renewal. In older niches we find increased translation of Wnt agonists, including R-spondin and the signalosome-promoting Tmem59, and low Fgf20, promoting differentiation. This suggests that the tipping point for nephron progenitor exit from the niche is controlled by the gradual increase in stability and possibly clustering of Wnt/Fzd complexes in individual cells, enhancing the response to ureteric bud-derived Wnt9b inputs and driving synchronized differentiation. As predicted by these findings, removing one Rspo3 allele in nephron progenitors delays cessation and increases nephron numbers in vivo.
Collapse
Affiliation(s)
- Alison E Jarmas
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eric W Brunskill
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Praneet Chaturvedi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
19
|
Rowton M, Guzzetta A, Rydeen AB, Moskowitz IP. Control of cardiomyocyte differentiation timing by intercellular signaling pathways. Semin Cell Dev Biol 2021; 118:94-106. [PMID: 34144893 PMCID: PMC8968240 DOI: 10.1016/j.semcdb.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Congenital Heart Disease (CHD), malformations of the heart present at birth, is the most common class of life-threatening birth defect (Hoffman (1995) [1], Gelb (2004) [2], Gelb (2014) [3]). A major research challenge is to elucidate the genetic determinants of CHD and mechanistically link CHD ontogeny to a molecular understanding of heart development. Although the embryonic origins of CHD are unclear in most cases, dysregulation of cardiovascular lineage specification, patterning, proliferation, migration or differentiation have been described (Olson (2004) [4], Olson (2006) [5], Srivastava (2006) [6], Dunwoodie (2007) [7], Bruneau (2008) [8]). Cardiac differentiation is the process whereby cells become progressively more dedicated in a trajectory through the cardiac lineage towards mature cardiomyocytes. Defects in cardiac differentiation have been linked to CHD, although how the complex control of cardiac differentiation prevents CHD is just beginning to be understood. The stages of cardiac differentiation are highly stereotyped and have been well-characterized (Kattman et al. (2011) [9], Wamstad et al. (2012) [10], Luna-Zurita et al. (2016) [11], Loh et al. (2016) [12], DeLaughter et al. (2016) [13]); however, the developmental and molecular mechanisms that promote or delay the transition of a cell through these stages have not been as deeply investigated. Tight temporal control of progenitor differentiation is critically important for normal organ size, spatial organization, and cellular physiology and homeostasis of all organ systems (Raff et al. (1985) [14], Amthor et al. (1998) [15], Kopan et al. (2014) [16]). This review will focus on the action of signaling pathways in the control of cardiomyocyte differentiation timing. Numerous signaling pathways, including the Wnt, Fibroblast Growth Factor, Hedgehog, Bone Morphogenetic Protein, Insulin-like Growth Factor, Thyroid Hormone and Hippo pathways, have all been implicated in promoting or inhibiting transitions along the cardiac differentiation trajectory. Gaining a deeper understanding of the mechanisms controlling cardiac differentiation timing promises to yield insights into the etiology of CHD and to inform approaches to restore function to damaged hearts.
Collapse
|
20
|
Abstract
The postnatal kidney is predominantly composed of nephron epithelia with the interstitial components representing a small proportion of the final organ, except in the diseased state. This is in stark contrast to the developing organ, which arises from the mesoderm and comprises an expansive stromal population with distinct regional gene expression. In many organs, the identity and ultimate function of an epithelium is tightly regulated by the surrounding stroma during development. However, although the presence of a renal stromal stem cell population has been demonstrated, the focus has been on understanding the process of nephrogenesis whereas the role of distinct stromal components during kidney morphogenesis is less clear. In this Review, we consider what is known about the role of the stroma of the developing kidney in nephrogenesis, where these cells come from as well as their heterogeneity, and reflect on how this information may improve human kidney organoid models.
Collapse
Affiliation(s)
- Sean B. Wilson
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Melissa H. Little
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
21
|
Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R. Regulation of Solute Carriers OCT2 and OAT1/3 in the Kidney: A Phylogenetic, Ontogenetic and Cell Dynamic Perspective. Physiol Rev 2021; 102:993-1024. [PMID: 34486394 DOI: 10.1152/physrev.00009.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the course of more than 500 million years, the kidneys have undergone a remarkable evolution from primitive nephric tubes to intricate filtration-reabsorption systems that maintain homeostasis and remove metabolic end products from the body. The evolutionarily conserved solute carriers Organic Cation Transporter 2 (OCT2), and Organic Anion Transporters 1 and 3 (OAT1/3) coordinate the active secretion of a broad range of endogenous and exogenous substances, many of which accumulate in the blood of patients with kidney failure despite dialysis. Harnessing OCT2 and OAT1/3 through functional preservation or regeneration could alleviate the progression of kidney disease. Additionally, it would improve current in vitro test models that lose their expression in culture. With this review, we explore OCT2 and OAT1/3 regulation using different perspectives: phylogenetic, ontogenetic and cell dynamic. Our aim is to identify possible molecular targets to both help prevent or compensate for the loss of transport activity in patients with kidney disease, and to enable endogenous OCT2 and OAT1/3 induction in vitro in order to develop better models for drug development.
Collapse
Affiliation(s)
- Carla Pou Casellas
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands.,Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Makayes Y, Resnick E, Hinden L, Aizenshtein E, Shlomi T, Kopan R, Nechama M, Volovelsky O. Increasing mTORC1 Pathway Activity or Methionine Supplementation during Pregnancy Reverses the Negative Effect of Maternal Malnutrition on the Developing Kidney. J Am Soc Nephrol 2021; 32:1898-1912. [PMID: 33958489 PMCID: PMC8455268 DOI: 10.1681/asn.2020091321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/01/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Low nephron number at birth is associated with a high risk of CKD in adulthood because nephrogenesis is completed in utero. Poor intrauterine environment impairs nephron endowment via an undefined molecular mechanism. A calorie-restricted diet (CRD) mouse model examined the effect of malnutrition during pregnancy on nephron progenitor cells (NPCs). METHODS Daily caloric intake was reduced by 30% during pregnancy. mRNA expression, the cell cycle, and metabolic activity were evaluated in sorted Six2 NPCs. The results were validated using transgenic mice, oral nutrient supplementation, and organ cultures. RESULTS Maternal CRD is associated with low nephron number in offspring, compromising kidney function at an older age. RNA-seq identified cell cycle regulators and the mTORC1 pathway, among other pathways, that maternal malnutrition in NPCs modifies. Metabolomics analysis of NPCs singled out the methionine pathway as crucial for NPC proliferation and maintenance. Methionine deprivation reduced NPC proliferation and lowered NPC number per tip in embryonic kidney cultures, with rescue from methionine metabolite supplementation. Importantly, in vivo, the negative effect of caloric restriction on nephrogenesis was prevented by adding methionine to the otherwise restricted diet during pregnancy or by removing one Tsc1 allele in NPCs. CONCLUSIONS These findings show that mTORC1 signaling and methionine metabolism are central to the cellular and metabolic effects of malnutrition during pregnancy on NPCs, contributing to nephrogenesis and later, to kidney health in adulthood.
Collapse
Affiliation(s)
- Yaniv Makayes
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Elad Resnick
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Liad Hinden
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University, Jerusalem, Israel
| | | | | | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Morris Nechama
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
- Wohl’s Translation Research Institute at Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Oded Volovelsky
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
- Wohl’s Translation Research Institute at Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
23
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
24
|
Renin-angiotensin system in mammalian kidney development. Pediatr Nephrol 2021; 36:479-489. [PMID: 32072306 DOI: 10.1007/s00467-020-04496-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
Abstract
Mutations in the genes of the renin-angiotensin system result in congenital anomalies of the kidney and urinary tract (CAKUT), the main cause of end-stage renal disease in children. The molecular mechanisms that cause CAKUT are unclear in most cases. To improve the care of children with CAKUT, it is critical to determine the underlying mechanisms of CAKUT. In this review, we discuss recent advances that have helped to better understand how disruption of the renin-angiotensin system during kidney development contributes to CAKUT.
Collapse
|
25
|
Sene LDB, Scarano WR, Zapparoli A, Gontijo JAR, Boer PA. Impact of gestational low-protein intake on embryonic kidney microRNA expression and in nephron progenitor cells of the male fetus. PLoS One 2021; 16:e0246289. [PMID: 33544723 PMCID: PMC7864410 DOI: 10.1371/journal.pone.0246289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Here, we have demonstrated that gestational low-protein (LP) intake offspring present lower birth weight, reduced nephron numbers, renal salt excretion, arterial hypertension, and renal failure development compared to regular protein (NP) intake rats in adulthood. We evaluated the expression of various miRNAs and predicted target genes in the kidney in gestational 17-days LP (DG-17) fetal metanephros to identify molecular pathways involved in the proliferation and differentiation of renal embryonic or fetal cells. METHODS Pregnant Wistar rats were classified into two groups based on protein supply during pregnancy: NP (regular protein diet, 17%) or LP diet (6%). Renal miRNA sequencing (miRNA-Seq) performed on the MiSeq platform, RT-qPCR of predicted target genes, immunohistochemistry, and morphological analysis of 17-DG NP and LP offspring were performed using previously described methods. RESULTS A total of 44 miRNAs, of which 19 were up and 25 downregulated, were identified in 17-DG LP fetuses compared to age-matched NP offspring. We selected 7 miRNAs involved in proliferation, differentiation, and cellular apoptosis. Our findings revealed reduced cell number and Six-2 and c-Myc immunoreactivity in metanephros cap (CM) and ureter bud (UB) in 17-DG LP fetuses. Ki-67 immunoreactivity in CM was 48% lesser in LP compared to age-matched NP fetuses. Conversely, in LP CM and UB, β-catenin was 154%, and 85% increased, respectively. Furthermore, mTOR immunoreactivity was higher in LP CM (139%) and UB (104%) compared to that in NP offspring. TGFβ-1 positive cells in the UB increased by approximately 30% in the LP offspring. Moreover, ZEB1 metanephros-stained cells increased by 30% in the LP offspring. ZEB2 immunofluorescence, although present in the entire metanephros, was similar in both experimental groups. CONCLUSIONS Maternal protein restriction changes the expression of miRNAs, mRNAs, and proteins involved in proliferation, differentiation, and apoptosis during renal development. Renal ontogenic dysfunction, caused by maternal protein restriction, promotes reduced reciprocal interaction between CM and UB; consequently, a programmed and expressive decrease in nephron number occurs in the fetus.
Collapse
Affiliation(s)
- Letícia de Barros Sene
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Bioscience Institute, São Paulo State University, Botucatu, SP, Brazil
| | - Adriana Zapparoli
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
26
|
Wang F, Ngo J, Li Y, Liu H, Chen CH, Saifudeen Z, Sequeira-Lopez MLS, El-Dahr SS. Targeted disruption of the histone lysine 79 methyltransferase Dot1L in nephron progenitors causes congenital renal dysplasia. Epigenetics 2020; 16:1235-1250. [PMID: 33315499 DOI: 10.1080/15592294.2020.1861168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The epigenetic regulator Dot1, the only known histone H3K79 methyltransferase, has a conserved role in organismal development and homoeostasis. In yeast, Dot1 is required for telomeric silencing and genomic integrity. In Drosophila, Dot1 (Grappa) regulates homoeotic gene expression. Dysregulation of DOT1L (human homologue of Dot1) causes leukaemia and is implicated in dilated cardiomyopathy. In mice, germline disruption of Dot1L and loss of H3K79me2 disrupt vascular and haematopoietic development. Targeted inactivation of Dot1L in principal cells of the mature collecting duct affects terminal differentiation and cell type patterning. However, the role of H3K79 methylation in mammalian tissue development has been questioned, as it is dispensable in the intestinal epithelium, a rapidly proliferating tissue. Here, we used lineage-specific Cre recombinase to delineate the role of Dot1L methyltransferase activity in the mouse metanephric kidney, an organ that develops via interactions between ureteric epithelial (Hoxb7) and mesenchymal (Six2) cell lineages. The results demonstrate that Dot1LHoxb7 is dispensable for ureteric bud branching morphogenesis. In contrast, Dot1LSix2 is critical for the maintenance and differentiation of Six2+ progenitors into epithelial nephrons. Dot1LSix2 mutant kidneys exhibit congenital nephron deficit and cystic dysplastic kidney disease. Molecular analysis implicates defects in key renal developmental regulators, such as Lhx1, Pax2 and Notch. We conclude that the developmental functions of Dot1L-H3K79 methylation in the kidney are lineage-restricted. The link between H3K79me and renal developmental pathways reaffirms the importance of chromatin-based mechanisms in organogenesis.
Collapse
Affiliation(s)
- Fenglin Wang
- Divisions of Pediatric Nephrology and Human Genetics, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jenny Ngo
- Divisions of Pediatric Nephrology and Human Genetics, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuwen Li
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Hongbing Liu
- Divisions of Pediatric Nephrology and Human Genetics, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chao-Hui Chen
- Divisions of Pediatric Nephrology and Human Genetics, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zubaida Saifudeen
- Divisions of Pediatric Nephrology and Human Genetics, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Maria Luisa S Sequeira-Lopez
- Division of Pediatric Nephrology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samir S El-Dahr
- Divisions of Pediatric Nephrology and Human Genetics, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
27
|
Li B, Zhu C, Dong L, Qin J, Xiang W, Davidson AJ, Feng S, Wang Y, Shen X, Weng C, Wang C, Zhu T, Teng L, Wang J, Englert C, Chen J, Jiang H. ADAM10 mediates ectopic proximal tubule development and renal fibrosis through Notch signalling. J Pathol 2020; 252:274-289. [PMID: 32715474 PMCID: PMC7702158 DOI: 10.1002/path.5517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Disturbed intrauterine development increases the risk of renal disease. Various studies have reported that Notch signalling plays a significant role in kidney development and kidney diseases. A disintegrin and metalloproteinase domain 10 (ADAM10), an upstream protease of the Notch pathway, is also reportedly involved in renal fibrosis. However, how ADAM10 interacts with the Notch pathway and causes renal fibrosis is not fully understood. In this study, using a prenatal chlorpyrifos (CPF) exposure mouse model, we investigated the role of the ADAM10/Notch axis in kidney development and fibrosis. We found that prenatal CPF‐exposure mice presented overexpression of Adam10, Notch1 and Notch2, and led to premature depletion of Six2+ nephron progenitors and ectopic formation of proximal tubules (PTs) in the embryonic kidney. These abnormal phenotypic changes persisted in mature kidneys due to the continuous activation of ADAM10/Notch and showed aggravated renal fibrosis in adults. Finally, both ADAM10 and NOTCH2 expression were positively correlated with the degree of renal interstitial fibrosis in IgA nephropathy patients, and increased ADAM10 expression was negatively correlated with decreased kidney function evaluated by serum creatinine, cystatin C, and estimated glomerular filtration rate. Regression analysis also indicated that ADAM10 expression was an independent risk factor for fibrosis in IgAN. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bingjue Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Chaohong Zhu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Lihua Dong
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jing Qin
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, PR China
| | - Wenyu Xiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Xiujin Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Chunhua Weng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Tingting Zhu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Lisha Teng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Junwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, USA.,College of Health Solutions, Arizona State University, Scottsdale, AZ, USA
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.,Institute of Biochemistry and Biophysics, Friedrich-Schiller-University, Jena, Germany
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.,Key Laboratory of Nephropathy, Hangzhou, PR China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, PR China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health, Hangzhou, PR China.,Institute of Nephropathy, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
28
|
Harer MW, Charlton JR, Tipple TE, Reidy KJ. Preterm birth and neonatal acute kidney injury: implications on adolescent and adult outcomes. J Perinatol 2020; 40:1286-1295. [PMID: 32277164 DOI: 10.1038/s41372-020-0656-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
As a result of preterm birth, immature kidneys are exposed to interventions in the NICU that promote survival, but are nephrotoxic. Furthermore, the duration of renal development may be truncated in these vulnerable neonates. Immaturity and nephrotoxic exposures predispose preterm newborns to acute kidney injury (AKI), particularly in the low birth weight and extremely preterm gestational age groups. Several studies have associated preterm birth as a risk factor for future chronic kidney disease (CKD). However, only a few publications have investigated the impact of neonatal AKI on CKD development. Here, we will review the evidence linking preterm birth and AKI in the NICU to CKD and highlight the knowledge gaps and opportunities for future research. For neonatal intensive care studies, we propose the inclusion of AKI as an important short-term morbidity outcome and CKD findings such as a reduced glomerular filtration rate in the assessment of long-term outcomes.
Collapse
Affiliation(s)
- Matthew W Harer
- Department of Pediatrics, Division of Neonatology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jennifer R Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia Children's Hospital, Box 800386, Charlottesville, VA, USA.
| | - Trent E Tipple
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma College of Medicine, Oklahoma City, OK, USA
| | - Kimberly J Reidy
- Department of Pediatrics, Division of Pediatric Nephrology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
29
|
AP-2β/KCTD1 Control Distal Nephron Differentiation and Protect against Renal Fibrosis. Dev Cell 2020; 54:348-366.e5. [PMID: 32553120 DOI: 10.1016/j.devcel.2020.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Abstract
The developmental mechanisms that orchestrate differentiation of specific nephron segments are incompletely understood, and the factors that maintain their terminal differentiation after nephrogenesis remain largely unknown. Here, the transcription factor AP-2β is shown to be required for the differentiation of distal tubule precursors into early stage distal convoluted tubules (DCTs) during nephrogenesis. In contrast, its downstream target KCTD1 is essential for terminal differentiation of early stage DCTs into mature DCTs, and impairment of their terminal differentiation owing to lack of KCTD1 leads to a severe salt-losing tubulopathy. Moreover, sustained KCTD1 activity in the adult maintains mature DCTs in this terminally differentiated state and prevents renal fibrosis by repressing β-catenin activity, whereas KCTD1 deficiency leads to severe renal fibrosis. Thus, the AP-2β/KCTD1 axis links a developmental pathway in the nephron to the induction and maintenance of terminal differentiation of DCTs that actively prevents their de-differentiation in the adult and protects against renal fibrosis.
Collapse
|
30
|
O'Hara RE, Arsenault MG, Esparza Gonzalez BP, Patriquen A, Hartwig S. Three Optimized Methods for In Situ Quantification of Progenitor Cell Proliferation in Embryonic Kidneys Using BrdU, EdU, and PCNA. Can J Kidney Health Dis 2019; 6:2054358119871936. [PMID: 31523438 PMCID: PMC6734617 DOI: 10.1177/2054358119871936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/02/2019] [Indexed: 01/02/2023] Open
Abstract
Background: Nephron progenitor cells derived from the metanephric mesenchyme undergo a complex balance of self-renewal and differentiation throughout kidney development to give rise to the mature nephron. Cell proliferation is an important index of progenitor population dynamics. However, accurate and reproducible in situ quantification of cell proliferation within progenitor populations can be technically difficult to achieve due to the complexity and harsh tissue treatment required of certain protocols. Objective: To optimize and compare the performance of the 3 most accurate S phase–specific labeling methods used for in situ detection and quantification of nephron progenitor and ureteric bud cell proliferation in the developing kidney, namely, 5-bromo-2’-deoxyuridine (BrdU), 5-ethynyl-2’-deoxyuridine (EdU), and proliferating cell nuclear antigen (PCNA). Methods: Protocols for BrdU, EdU, and PCNA were optimized for fluorescence labeling on paraformaldehyde-fixed, paraffin-embedded mouse kidney tissue sections, with co-labeling of nephron progenitor cells and ureteric bud with Six2 and E-cadherin antibodies, respectively. Image processing and analysis, including quantification of proliferating cells, were carried out using free ImageJ software. Results: All 3 methods detect similar ratios of nephron progenitor and ureteric bud proliferating cells. The BrdU staining protocol is the lengthiest and most complex protocol to perform, requires tissue denaturation, and is most subject to interexperimental signal variability. In contrast, bound PCNA and EdU protocols are relatively more straightforward, consistently yield clear results, and far more easily lend themselves to co-staining; however, the bound PCNA protocol requires substantive additional postexperimental analysis to distinguish the punctate nuclear PCNA staining pattern characteristic of proliferating cells. Conclusions: All 3 markers exhibit distinct advantages and disadvantages in quantifying cell proliferation in kidney progenitor populations, with EdU and PCNA protocols being favored due to greater technical ease and reproducibility of results associated with these methods.
Collapse
Affiliation(s)
- Rosalie E O'Hara
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Michel G Arsenault
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Blanca P Esparza Gonzalez
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Ashley Patriquen
- Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Sunny Hartwig
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
31
|
Lawlor KT, Zappia L, Lefevre J, Park JS, Hamilton NA, Oshlack A, Little MH, Combes AN. Nephron progenitor commitment is a stochastic process influenced by cell migration. eLife 2019; 8:41156. [PMID: 30676318 PMCID: PMC6363379 DOI: 10.7554/elife.41156] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Progenitor self-renewal and differentiation is often regulated by spatially restricted cues within a tissue microenvironment. Here, we examine how progenitor cell migration impacts regionally induced commitment within the nephrogenic niche in mice. We identify a subset of cells that express Wnt4, an early marker of nephron commitment, but migrate back into the progenitor population where they accumulate over time. Single cell RNA-seq and computational modelling of returning cells reveals that nephron progenitors can traverse the transcriptional hierarchy between self-renewal and commitment in either direction. This plasticity may enable robust regulation of nephrogenesis as niches remodel and grow during organogenesis.
Collapse
Affiliation(s)
- Kynan T Lawlor
- Murdoch Children's Research Institute, Parkville, Australia
| | - Luke Zappia
- Murdoch Children's Research Institute, Parkville, Australia.,School of Biosciences, University of Melbourne, Melbourne, Australia
| | - James Lefevre
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Joo-Seop Park
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Nicholas A Hamilton
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Alicia Oshlack
- Murdoch Children's Research Institute, Parkville, Australia.,School of Biosciences, University of Melbourne, Melbourne, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Alexander N Combes
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| |
Collapse
|
32
|
Wanner N, Vornweg J, Combes A, Wilson S, Plappert J, Rafflenbeul G, Puelles VG, Rahman RU, Liwinski T, Lindner S, Grahammer F, Kretz O, Wlodek ME, Romano T, Moritz KM, Boerries M, Busch H, Bonn S, Little MH, Bechtel-Walz W, Huber TB. DNA Methyltransferase 1 Controls Nephron Progenitor Cell Renewal and Differentiation. J Am Soc Nephrol 2019; 30:63-78. [PMID: 30518531 PMCID: PMC6317605 DOI: 10.1681/asn.2018070736] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Nephron number is a major determinant of long-term renal function and cardiovascular risk. Observational studies suggest that maternal nutritional and metabolic factors during gestation contribute to the high variability of nephron endowment. However, the underlying molecular mechanisms have been unclear. METHODS We used mouse models, including DNA methyltransferase (Dnmt1, Dnmt3a, and Dnmt3b) knockout mice, optical projection tomography, three-dimensional reconstructions of the nephrogenic niche, and transcriptome and DNA methylation analysis to characterize the role of DNA methylation for kidney development. RESULTS We demonstrate that DNA hypomethylation is a key feature of nutritional kidney growth restriction in vitro and in vivo, and that DNA methyltransferases Dnmt1 and Dnmt3a are highly enriched in the nephrogenic zone of the developing kidneys. Deletion of Dnmt1 in nephron progenitor cells (in contrast to deletion of Dnmt3a or Dnm3b) mimics nutritional models of kidney growth restriction and results in a substantial reduction of nephron number as well as renal hypoplasia at birth. In Dnmt1-deficient mice, optical projection tomography and three-dimensional reconstructions uncovered a significant reduction of stem cell niches and progenitor cells. RNA sequencing analysis revealed that global DNA hypomethylation interferes in the progenitor cell regulatory network, leading to downregulation of genes crucial for initiation of nephrogenesis, Wt1 and its target Wnt4. Derepression of germline genes, protocadherins, Rhox genes, and endogenous retroviral elements resulted in the upregulation of IFN targets and inhibitors of cell cycle progression. CONCLUSIONS These findings establish DNA methylation as a key regulatory event of prenatal renal programming, which possibly represents a fundamental link between maternal nutritional factors during gestation and reduced nephron number.
Collapse
Affiliation(s)
| | - Julia Vornweg
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
- Faculty of Biology
| | - Alexander Combes
- Anatomy and Neuroscience
- Cell Biology Theme, Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Julia Plappert
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
| | - Gesa Rafflenbeul
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
| | | | - Raza-Ur Rahman
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, and
| | - Timur Liwinski
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, and
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Lindner
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
| | | | - Oliver Kretz
- III. Department of Medicine
- Department of Neuroanatomy, University of Freiburg, Freiburg, Germany
| | | | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Melanie Boerries
- German Cancer Consortium, Heidelberg, Germany
- German Cancer Research Center, Heidelberg, Germany
- Institute of Molecular Medicine and Cell Research
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research
- Lübeck Institute of Experimental Dermatology, Lübeck, Germany; and
| | - Stefan Bonn
- Institute of Molecular Medicine and Cell Research
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Melissa H Little
- Cell Biology Theme, Murdoch Children's Research Institute, Melbourne, Australia
- Pediatrics, University of Melbourne, Melbourne, Australia
| | - Wibke Bechtel-Walz
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
| | - Tobias B Huber
- III. Department of Medicine,
- Faculty of Medicine, Department of Medicine IV, Medical Center-University of Freiburg, and
- Centre for Biological Signalling Studies (BIOSS) and Center for Biological Systems Analysis (ZBSA), and
- Freiburg Institute for Advanced Studies, Albert Ludwig University of Freiburg, Freiburg, Germany; Departments of
| |
Collapse
|
33
|
Zhang P, Gu L, Cong J, Zhang J, Thomsen JS, Andreasen A, Chang SJ, Deng SQ, Xing J, Zhai XY. Morphology of the initial nephron-collecting duct connection in mice using computerized 3D tracing and electron microscopy. Biochem Biophys Res Commun 2019; 509:114-118. [DOI: 10.1016/j.bbrc.2018.12.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
|
34
|
O'Brien LL. Nephron progenitor cell commitment: Striking the right balance. Semin Cell Dev Biol 2018; 91:94-103. [PMID: 30030141 DOI: 10.1016/j.semcdb.2018.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
The filtering component of the kidney, the nephron, arises from a single progenitor population. These nephron progenitor cells (NPCs) both self-renew and differentiate throughout the course of kidney development ensuring sufficient nephron endowment. An appropriate balance of these processes must be struck as deficiencies in nephron numbers are associated with hypertension and kidney disease. This review will discuss the mechanisms and molecules supporting NPC maintenance and differentiation. A focus on recent work will highlight new molecular insights into NPC regulation and their dynamic behavior in both space and time.
Collapse
Affiliation(s)
- Lori L O'Brien
- Department of Cell Biology and Physiology, UNC Kidney Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
35
|
Rowan CJ, Li W, Martirosyan H, Erwood S, Hu D, Kim YK, Sheybani-Deloui S, Mulder J, Blake J, Chen L, Rosenblum ND. Hedgehog-GLI signaling in Foxd1-positive stromal cells promotes murine nephrogenesis via TGFβ signaling. Development 2018; 145:dev.159947. [PMID: 29945868 DOI: 10.1242/dev.159947] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/30/2018] [Indexed: 01/17/2023]
Abstract
Normal kidney function depends on the proper development of the nephron: the functional unit of the kidney. Reciprocal signaling interactions between the stroma and nephron progenitor compartment have been proposed to control nephron development. Here, we show that removal of hedgehog intracellular effector smoothened (Smo-deficient mutants) in the cortical stroma results in an abnormal renal capsule, and an expanded nephron progenitor domain with an accompanying decrease in nephron number via a block in epithelialization. We show that stromal-hedgehog-Smo signaling acts through a GLI3 repressor. Whole-kidney RNA sequencing and analysis of FACS-isolated stromal cells identified impaired TGFβ2 signaling in Smo-deficient mutants. We show that neutralization and knockdown of TGFβ2 in explants inhibited nephrogenesis. In addition, we demonstrate that concurrent deletion of Tgfbr2 in stromal and nephrogenic cells in vivo results in decreased nephron formation and an expanded nephrogenic precursor domain similar to that observed in Smo-deficient mutant mice. Together, our data suggest a mechanism whereby a stromal hedgehog-TGFβ2 signaling axis acts to control nephrogenesis.
Collapse
Affiliation(s)
- Christopher J Rowan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Winny Li
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hovhannes Martirosyan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Steven Erwood
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Di Hu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sepideh Sheybani-Deloui
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jaap Mulder
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Division of Nephrology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Joshua Blake
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lin Chen
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Division of Nephrology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
36
|
Hamartin regulates cessation of mouse nephrogenesis independently of Mtor. Proc Natl Acad Sci U S A 2018; 115:5998-6003. [PMID: 29784808 DOI: 10.1073/pnas.1712955115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nephrogenesis concludes by the 36th week of gestation in humans and by the third day of postnatal life in mice. Extending the nephrogenic period may reduce the onset of adult renal and cardiovascular disease associated with low nephron numbers. We conditionally deleted either Mtor or Tsc1 (coding for hamartin, an inhibitor of Mtor) in renal progenitor cells. Loss of one Mtor allele caused a reduction in nephron numbers; complete deletion led to severe paucity of glomeruli in the kidney resulting in early death after birth. By contrast, loss of one Tsc1 allele from renal progenitors resulted in a 25% increase in nephron endowment with no adverse effects. Increased progenitor engraftment rates ex vivo relative to controls correlated with prolonged nephrogenesis through the fourth postnatal day. Complete loss of both Tsc1 alleles in renal progenitors led to a lethal tubular lesion. The hamartin phenotypes are not dependent on the inhibitory effect of TSC on the Mtor complex but are dependent on Raptor.
Collapse
|
37
|
Neirijnck Y, Reginensi A, Renkema KY, Massa F, Kozlov VM, Dhib H, Bongers EMHF, Feitz WF, van Eerde AM, Lefebvre V, Knoers NVAM, Tabatabaei M, Schulz H, McNeill H, Schaefer F, Wegner M, Sock E, Schedl A. Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT). Kidney Int 2018; 93:1142-1153. [PMID: 29459093 PMCID: PMC11783626 DOI: 10.1016/j.kint.2017.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 11/26/2017] [Accepted: 11/30/2017] [Indexed: 12/24/2022]
Abstract
Congenital abnormalities of the kidney and the urinary tract (CAKUT) belong to the most common birth defects in human, but the molecular basis for the majority of CAKUT patients remains unknown. Here we show that the transcription factor SOX11 is a crucial regulator of kidney development. SOX11 is expressed in both mesenchymal and epithelial components of the early kidney anlagen. Deletion of Sox11 in mice causes an extension of the domain expressing Gdnf within rostral regions of the nephrogenic cord and results in duplex kidney formation. On the molecular level SOX11 directly binds and regulates a locus control region of the protocadherin B cluster. At later stages of kidney development, SOX11 becomes restricted to the intermediate segment of the developing nephron where it is required for the elongation of Henle's loop. Finally, mutation analysis in a cohort of patients suffering from CAKUT identified a series of rare SOX11 variants, one of which interferes with the transactivation capacity of the SOX11 protein. Taken together these data demonstrate a key role for SOX11 in normal kidney development and may suggest that variants in this gene predispose to CAKUT in humans.
Collapse
Affiliation(s)
| | | | - Kirsten Y Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Filippo Massa
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
| | | | - Haroun Dhib
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
| | - Ernie M H F Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wout F Feitz
- Department of Urology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Albertien M van Eerde
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Veronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic-Lerner Research Institute, Cleveland, Ohio, USA
| | - Nine V A M Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mansoureh Tabatabaei
- Division of Pediatric Nephrology, Heidelberg University Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Herbert Schulz
- University of Cologne, Cologne Center for Genomics, Cologne, Germany
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, Heidelberg University Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Elisabeth Sock
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Andreas Schedl
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France.
| |
Collapse
|
38
|
Development of the Human Fetal Kidney from Mid to Late Gestation in Male and Female Infants. EBioMedicine 2017; 27:275-283. [PMID: 29329932 PMCID: PMC5828465 DOI: 10.1016/j.ebiom.2017.12.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/27/2017] [Accepted: 12/14/2017] [Indexed: 01/03/2023] Open
Abstract
Background During normal human kidney development, nephrogenesis (the formation of nephrons) is complete by term birth, with the majority of nephrons formed late in gestation. The aim of this study was to morphologically examine nephrogenesis in fetal human kidneys from 20 to 41 weeks of gestation. Methods Kidney samples were obtained at autopsy from 71 infants that died acutely in utero or within 24 h after birth. Using image analysis, nephrogenic zone width, the number of glomerular generations, renal corpuscle cross-sectional area and the cellular composition of glomeruli were examined. Kidneys from female and male infants were analysed separately. Findings The number of glomerular generations formed within the fetal kidneys was directly proportional to gestational age, body weight and kidney weight, with variability between individuals in the ultimate number of generations (8 to 12) and in the timing of the cessation of nephrogenesis (still ongoing at 37 weeks gestation in one infant). There was a slight but significant (r2 = 0.30, P = 0.001) increase in renal corpuscle cross-sectional area from mid gestation to term in females, but this was not evident in males. The proportions of podocytes, endothelial and non-epithelial cells within mature glomeruli were stable throughout gestation. Interpretation These findings highlight spatial and temporal variability in nephrogenesis in the developing human kidney, whereas the relative cellular composition of glomeruli does not appear to be influenced by gestational age. There is spatial and temporal variability in nephrogenesis in the developing human kidney. The relative cellular composition of mature glomeruli does not appear to be influenced by gestational age. There is apparent sexual dimorphism in the growth of glomeruli during late gestation.
The number of glomeruli (filtering units of the kidneys) you are born with directly influences your life-long kidney health, therefore it is important to understand how they are formed. Between mid-pregnancy and term, there was variability between individuals in relation to the number of layers of glomeruli formed in the developing kidney, and variation in the timing of when they stopped being formed. In fully-formed glomeruli, the proportion of the different cell types in glomeruli remained constant within the developing kidneys throughout pregnancy. Female infants, but not males, exhibited an increase in the size of glomeruli from mid-pregnancy to term.
Collapse
|
39
|
Minuth WW. Concepts for a therapeutic prolongation of nephrogenesis in preterm and low-birth-weight babies must correspond to structural-functional properties in the nephrogenic zone. Mol Cell Pediatr 2017; 4:12. [PMID: 29218481 PMCID: PMC5721096 DOI: 10.1186/s40348-017-0078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Numerous investigations are dealing with anlage of the mammalian kidney and primary development of nephrons. However, only few information is available about the last steps in kidney development leading at birth to a downregulation of morphogen activity in the nephrogenic zone and to a loss of stem cell niches aligned beyond the organ capsule. Surprisingly, these natural changes in the developmental program display similarities to processes occurring in the kidneys of preterm and low-birth-weight babies. Although those babies are born at a time with a principally intact nephrogenic zone and active niches, a high proportion of them suffers on impairment of nephrogenesis resulting in oligonephropathy, formation of atypical glomeruli, and immaturity of parenchyma. The setting points out that up to date not identified noxae in the nephrogenic zone hamper primary steps of parenchyma development. In this situation, a possible therapeutic aim is to prolong nephrogenesis by medications. However, actual data provide information that administration of drugs is problematic due to an unexpectedly complex microanatomy of the nephrogenic zone, in niches so far not considered textured extracellular matrix and peculiar contacts between mesenchymal cell projections and epithelial stem cells via tunneling nanotubes. Thus, it remains to be figured out whether disturbance of morphogen signaling altered synthesis of extracellular matrix, disturbed cell-to-cell contacts, or modified interstitial fluid impair nephrogenic activity. Due to most unanswered questions, search for eligible drugs prolonging nephrogenesis and their reliable administration is a special challenge for the future.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
40
|
Combes AN, Wilson S, Phipson B, Binnie BB, Ju A, Lawlor KT, Cebrian C, Walton SL, Smyth IM, Moritz KM, Kopan R, Oshlack A, Little MH. Haploinsufficiency for the Six2 gene increases nephron progenitor proliferation promoting branching and nephron number. Kidney Int 2017; 93:589-598. [PMID: 29217079 DOI: 10.1016/j.kint.2017.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/03/2017] [Accepted: 09/07/2017] [Indexed: 01/05/2023]
Abstract
The regulation of final nephron number in the kidney is poorly understood. Cessation of nephron formation occurs when the self-renewing nephron progenitor population commits to differentiation. Transcription factors within this progenitor population, such as SIX2, are assumed to control expression of genes promoting self-renewal such that homozygous Six2 deletion results in premature commitment and an early halt to kidney development. In contrast, Six2 heterozygotes were assumed to be unaffected. Using quantitative morphometry, we found a paradoxical 18% increase in ureteric branching and final nephron number in Six2 heterozygotes, despite evidence for reduced levels of SIX2 protein and transcript. This was accompanied by a clear shift in nephron progenitor identity with a distinct subset of downregulated progenitor genes such as Cited1 and Meox1 while other genes were unaffected. The net result was an increase in nephron progenitor proliferation, as assessed by elevated EdU (5-ethynyl-2'-deoxyuridine) labeling, an increase in MYC protein, and transcriptional upregulation of MYC target genes. Heterozygosity for Six2 on an Fgf20-/- background resulted in premature differentiation of the progenitor population, confirming that progenitor regulation is compromised in Six2 heterozygotes. Overall, our studies reveal a unique dose response of nephron progenitors to the level of SIX2 protein in which the role of SIX2 in progenitor proliferation versus self-renewal is separable.
Collapse
Affiliation(s)
- Alexander N Combes
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| | - Sean Wilson
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Belinda Phipson
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Brandon B Binnie
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Adler Ju
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kynan T Lawlor
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Cristina Cebrian
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah L Walton
- School of Biomedical Sciences and Centre for Children's Health Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian M Smyth
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Australia; Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Karen M Moritz
- School of Biomedical Sciences and Centre for Children's Health Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alicia Oshlack
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
41
|
Chung E, Deacon P, Park JS. Notch is required for the formation of all nephron segments and primes nephron progenitors for differentiation. Development 2017; 144:4530-4539. [PMID: 29113990 DOI: 10.1242/dev.156661] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
Notch signaling plays important roles during mammalian nephrogenesis. To investigate whether Notch regulates nephron segmentation, we performed Notch loss-of-function and gain-of-function studies in developing nephrons in mice. Contrary to the previous notion that Notch signaling promotes the formation of proximal tubules and represses the formation of distal tubules in the mammalian nephron, we show that inhibition of Notch blocks the formation of all nephron segments and that constitutive activation of Notch in developing nephrons does not promote or repress the formation of a specific segment. Cells lacking Notch fail to form the S-shaped body and show reduced expression of Lhx1 and Hnf1b Consistent with this, we find that constitutive activation of Notch in mesenchymal nephron progenitors causes ectopic expression of Lhx1 and Hnf1b and that these cells eventually form a heterogeneous population that includes proximal tubules and other types of cells. Our data suggest that Notch signaling is required for the formation of all nephron segments and that it primes nephron progenitors for differentiation rather than directing their cell fates into a specific nephron segment.
Collapse
Affiliation(s)
- Eunah Chung
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Patrick Deacon
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Joo-Seop Park
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
42
|
Oxburgh L, Rosen CJ. New Insights into Fuel Choices of Nephron Progenitor Cells. J Am Soc Nephrol 2017; 28:3133-3135. [PMID: 28874403 DOI: 10.1681/asn.2017070795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Leif Oxburgh
- Center for Molecular Medicine and .,Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
| | - Clifford J Rosen
- Center for Molecular Medicine and .,Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
| |
Collapse
|
43
|
Graft Growth and Podocyte Dedifferentiation in Donor-Recipient Size Mismatch Kidney Transplants. Transplant Direct 2017; 3:e210. [PMID: 29026873 PMCID: PMC5627741 DOI: 10.1097/txd.0000000000000728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/05/2017] [Accepted: 07/22/2017] [Indexed: 12/23/2022] Open
Abstract
Background Kidney transplantation is the treatment choice for patients with end-stage renal diseases. Because of good long-term outcome, pediatric kidney grafts are also accepted for transplantation in adult recipients despite a significant mismatch in body size and age between donor and recipient. These grafts show a remarkable ability of adaptation to the recipient body and increase in size in a very short period, presumably as an adaptation to hyperfiltration. Methods We investigated renal graft growth as well as glomerular proliferation and differentiation markers Kiel-67, paired box gene 2 and Wilms tumor protein (WT1) expression in control biopsies from different transplant constellations: infant donor for infant recipient, infant donor for child recipient, infant donor for adult recipient, child donor for child recipient, child donor for adult recipient, and adult donor for an adult recipient. Results We detected a significant increase in kidney graft size after transplantation in all conditions with a body size mismatch, which was most prominent when an infant donated for a child. Podocyte WT1 expression was comparable in different transplant conditions, whereas a significant increase in WT1 expression could be detected in parietal epithelial cells, when a kidney graft from a child was transplanted into an adult. In kidney grafts that were relatively small for the recipients, we could detect reexpression of podocyte paired box gene 2. Moreover, the proliferation marker Kiel-67 was expressed in glomerular cells in grafts that increased in size after transplantation. Conclusions Kidney grafts rapidly adapt to the recipient size after transplantation if they are transplanted in a body size mismatch constellation. The increase in transplant size is accompanied by an upregulation of proliferation and dedifferentiation markers in podocytes. The different examined conditions exclude hormonal factors as the key trigger for this growth so that most likely hyperfiltration is the key trigger inducing the rapid growth response.
Collapse
|
44
|
Xia H, Yan X, Liu Y, Ju P, Liu J, Ni D, Gu Y, Zhou Q, Xie Y. Six2 is involved in GATA1-mediated cell apoptosis in mouse embryonic kidney-derived cell lines. In Vitro Cell Dev Biol Anim 2017; 53:827-833. [PMID: 28842839 DOI: 10.1007/s11626-017-0187-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022]
Abstract
Six2 (Sine oculis homeobox 2), a homeodomain transcription factor, plays a crucial role in the regulation of mammalian nephrogenesis. It is also implicated in numerous biological functions, such as cell proliferation, apoptosis, and migration. However, the underlying regulatory mechanisms of Six2 remain largely unknown. In this study, we predicted that CRX, GATA1, HOXD8, and POU2F2 might target, binding to the promoter region of Six2 (~2000 bp) by bioinformatics analysis. Among the four genes, the predicted binding sequence of GATA1 is most highly conserved across species. Luciferase assays demonstrated that knockdown of GATA1 decreased the activity of Six2 promoter and qPCR result of Six2 expression was in consistent with this in 293T cells. Mutation of GATA1 binding sites of mSix2 promoter led to obvious decrease of the mSix2 promoter activity. Furthermore, knockdown of GATA1 decreased Six2 expression in mk3 cells and increased cell apoptosis of mk3 and mk4 compared with corresponding control cells, but this up-regulation can be rescued by Six2 overexpression. Our findings indicated that GATA1 may be a potential regulator of Six2-maintained population of nephron progenitor cells.
Collapse
Affiliation(s)
- Hua Xia
- The College of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.,The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Yan
- The College of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.,The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yamin Liu
- The College of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Pan Ju
- The College of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.,The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianing Liu
- The College of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.,The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dongsheng Ni
- The College of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.,The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuping Gu
- The College of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.,The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qin Zhou
- The College of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| | - Yajun Xie
- The College of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
45
|
Assady S, Wanner N, Skorecki KL, Huber TB. New Insights into Podocyte Biology in Glomerular Health and Disease. J Am Soc Nephrol 2017; 28:1707-1715. [PMID: 28404664 DOI: 10.1681/asn.2017010027] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Podocyte and glomerular research is center stage for the development of improved preventive and therapeutic strategies for chronic progressive kidney diseases. Held April 3-6, 2016, the 11th International Podocyte Conference took place in Haifa and Jerusalem, Israel, where participants from all over the world presented their work on new developments in podocyte research. In this review, we briefly highlight the advances made in characterizing the mechanisms involved in podocyte development, metabolism, acquired injury, and repair, including progress in determining the roles of genetic variants and microRNA in particular, as well as the advances made in diagnostic techniques and therapeutics.
Collapse
Affiliation(s)
- Suheir Assady
- Department of Nephrology and Hypertension, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl L Skorecki
- Department of Nephrology and Hypertension, Rambam Health Care Campus, Haifa, Israel; .,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tobias B Huber
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany; .,BIOSS-Centre for Biological Signalling Studies and.,III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,ZBSA-Center for Biological Systems Analysis, Albert Ludwigs University, Freiburg, Germany; and
| |
Collapse
|
46
|
Abstract
Congenital abnormalities of the kidney and urinary tract (CAKUT) are one of the leading congenital defects to be identified on prenatal ultrasound. CAKUT represent a broad spectrum of abnormalities, from transient hydronephrosis to severe bilateral renal agenesis. CAKUT are a major contributor to chronic and end stage kidney disease (CKD/ESKD) in children. Prenatal imaging is useful to identify CAKUT, but will not detect all defects. Both genetic abnormalities and the fetal environment contribute to CAKUT. Monogenic gene mutations identified in human CAKUT have advanced our understanding of molecular mechanisms of renal development. Low nephron number and solitary kidneys are associated with increased risk of adult onset CKD and ESKD. Premature and low birth weight infants represent a high risk population for low nephron number. Additional research is needed to identify biomarkers and appropriate follow-up of premature and low birth weight infants into adulthood.
Collapse
Affiliation(s)
- Stacy Rosenblum
- Department of Pediatrics/Neonatology, Children's Hospital of Montefiore/Einstein, Bronx, NY, USA
| | - Abhijeet Pal
- Department of Pediatrics/Nephrology, Children's Hospital of Montefiore/Einstein, Bronx, NY, USA
| | - Kimberly Reidy
- Department of Pediatrics/Nephrology, Children's Hospital of Montefiore/Einstein, Bronx, NY, USA.
| |
Collapse
|
47
|
Yosypiv IV. Prorenin receptor in kidney development. Pediatr Nephrol 2017; 32:383-392. [PMID: 27160552 DOI: 10.1007/s00467-016-3365-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 01/11/2023]
Abstract
Prorenin receptor (PRR), a receptor for renin and prorenin and an accessory subunit of the vacuolar proton pump H+-ATPase, is expressed in the developing kidney. Global loss of PRR is lethal in mice, and PRR mutations are associated with a high blood pressure, left ventricular hypertrophy and X-linked mental retardation in humans. With the advent of modern gene targeting techniques, including conditional knockout approaches, several recent studies have demonstrated critical roles for the PRR in several lineages of the developing kidney. PRR signaling has been shown to be essential for branching morphogenesis of the ureteric bud (UB), nephron progenitor survival and nephrogenesis. PRR regulates these developmental events through interactions with other transcription and growth factors. Several targeted PRR knockout animal models have structural defects mimicking congenital anomalies of the kidney and urinary tract observed in humans. The aim of this review, is to highlight new insights into the cellular and molecular mechanisms by which PRR may regulate UB branching, terminal differentiation and function of UB-derived collecting ducts, nephron progenitor maintenance, progression of nephrogenesis and normal structural kidney development and function.
Collapse
Affiliation(s)
- Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-37, New Orleans, LA, 70112, USA.
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Allogenic kidney transplantation use is limited because of a shortage of kidney organ donors and the risks associated with a long-term immunosuppression. An emerging treatment prospect is autologous transplants of ex vivo produced human kidneys. Here we will review the research advances in this area. RECENT FINDINGS The creation of human induced pluripotent cells (iPSCs) from somatic cells and the emergence of several differentiation protocols that are able to convert iPSCs cells into self-organizing kidney organoids are two large steps toward assembling a human kidney in vitro. Several groups have successfully generated urine-producing kidney organoids upon transplantation in a mouse host. Additional advances in culturing nephron progenitors in vitro may provide another source for kidney engineering, and the emergence of genome editing technology will facilitate correction of congenital mutations. SUMMARY Basic research into the development of metanephric kidneys and iPSC differentiation protocols, the therapeutic use of iPSCs, along with emergence of new technologies such as CRISPR/Cas9 genome editing have accelerated a trend that may prove transformative in the treatment of ESRD and congenital kidney disorders.
Collapse
Affiliation(s)
- Oded Volovelsky
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
49
|
Short KM, Smyth IM. The contribution of branching morphogenesis to kidney development and disease. Nat Rev Nephrol 2016; 12:754-767. [DOI: 10.1038/nrneph.2016.157] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Abstract
Over a decade ago, it was proposed that the regulation of tubular repair in the kidney might involve the recapitulation of developmental pathways. Although the kidney cannot generate new nephrons after birth, suggesting a low level of regenerative competence, the tubular epithelial cells of the nephrons can proliferate to repair the damage after AKI. However, the debate continues over whether this repair involves a persistent progenitor population or any mature epithelial cell remaining after injury. Recent reports have highlighted the expression of Sox9, a transcription factor critical for normal kidney development, during postnatal epithelial repair in the kidney. Indeed, the proliferative response of the epithelium involves expression of several pathways previously described as being involved in kidney development. In some instances, these pathways are also apparently involved in the maladaptive responses observed after repeated injury. Whether development and repair in the kidney are the same processes or we are misinterpreting the similar expression of genes under different circumstances remains unknown. Here, we review the evidence for this link, concluding that such parallels in expression may more correctly represent the use of the same pathways in a distinct context, likely triggered by similar stressors.
Collapse
Affiliation(s)
- Melissa Helen Little
- Murdoch Children's Research Institute, Melbourne, Australia; and .,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Pamela Kairath
- Murdoch Children's Research Institute, Melbourne, Australia; and.,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|