1
|
Craig-Meyer D, Hollenbaugh JA, Morgado S, McGee K, Perkins E, Yarzabek B, Lapinski P, Rowse A, Cooper C, Fortunato M, Cocco M, Cadwallader K, Munday J. Immunophenotypical characterization of immune checkpoint receptor expression in cynomolgus monkeys and human healthy volunteers in resting and in T-cell stimulatory conditions in vitro. J Immunotoxicol 2025; 22:2462106. [PMID: 39945090 DOI: 10.1080/1547691x.2025.2462106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 04/12/2025] Open
Abstract
Immunotherapeutics targeting immune checkpoint receptors or their ligands (i.e., immune checkpoint inhibitors), have been groundbreaking in the field of oncology, radically changing the approach to treatment and improving the clinical outcomes of an ever-expanding list of solid tumors and hematological malignancies. However, immune checkpoint inhibitors (ICI) are not devoid of side effects, collectively regarded as immune-related adverse events (irAE); they are not easily uncovered in preclinical immunotoxicological investigations and are often due to the very low expression of their targets in immunologically-unchallenged non-clinical species. We have characterized expression of a broad range of immune checkpoint receptors in peripheral blood mononuclear cell (PBMC) subpopulations from cynomolgus monkeys and healthy human volunteers, under resting and T-cell stimulatory conditions by multicolor flow cytometry to inform appropriate species selection for modeling potential irAE in immunotherapeutic preclinical research. Focusing on the response of the main lymphocyte populations to interleukin (IL)-2 alone, or in combination with anti-CD3 and anti-CD28 antibodies, checkpoints with shared similarities and key differences between the two species were identified. The results of this first study provide a database for the expression and response to stimulation for immune checkpoint receptors and can help guide future model selection in the design of preclinical studies involving immunotherapeutics directed against these targets.
Collapse
Affiliation(s)
| | | | - Sara Morgado
- Labcorp Early Development Laboratories Limited, Huntingdon, UK
| | - Karen McGee
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - Ethan Perkins
- Labcorp Early Development Laboratories Limited, Harrogate, UK
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, UK
| | | | | | - Amber Rowse
- Labcorp Early Development Laboratories Inc, Ann Arbor, MI
| | - Chris Cooper
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - Mara Fortunato
- Labcorp Early Development Laboratories Limited, Huntingdon, UK
| | - Mario Cocco
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | | | - James Munday
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| |
Collapse
|
2
|
Anderson DJ, Locke JE. Pre-clinical xenotransplantation: physiology and pharmacy in human decedent and non-human primate models. FRONTIERS IN TRANSPLANTATION 2025; 4:1576549. [PMID: 40313358 PMCID: PMC12043684 DOI: 10.3389/frtra.2025.1576549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025]
Abstract
Non-human primates and decedent humans have emerged as the two principal translational models in xenotransplantation. Each model has differing advantages and drawbacks. In this manuscript, we will compare and contrast the relative strengths of each model, focusing on the physiologic function of the xenograft in a human decedent or non-human primate. Additionally, we will discuss the pharmacologic agents typically employed in each model, highlighting both the ability of the decedent model to test clinically-relevant medication strategies that may be impossible in non-human primates due to species-specificity.
Collapse
Affiliation(s)
- Douglas J. Anderson
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
3
|
Adebayo G, Ayanda OI, Rottmann M, Ajibaye OS, Oduselu G, Mulindwa J, Ajani OO, Aina O, Mäser P, Adebiyi E. The Importance of Murine Models in Determining In Vivo Pharmacokinetics, Safety, and Efficacy in Antimalarial Drug Discovery. Pharmaceuticals (Basel) 2025; 18:424. [PMID: 40143200 PMCID: PMC11944934 DOI: 10.3390/ph18030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
New chemical entities are constantly being investigated towards antimalarial drug discovery, and they require animal models for toxicity and efficacy testing. Murine models show physiological similarities to humans and are therefore indispensable in the search for novel antimalarial drugs. They provide a preclinical basis (following in vitro assessments of newly identified lead compounds) for further assessment in the drug development pipeline. Specific mouse strains, non-humanized and humanized, have successfully been infected with rodent Plasmodium species and the human Plasmodium species, respectively. Infected mice provide a platform for the assessment of treatment options being sought. In vivo pharmacokinetic evaluations are necessary when determining the fate of potential antimalarials in addition to the efficacy assessment of these chemical entities. This review describes the role of murine models in the drug development pipeline. It also explains some in vivo pharmacokinetic, safety, and efficacy parameters necessary for making appropriate choices of lead compounds in antimalarial drug discovery. Despite the advantages of murine models in antimalarial drug discovery, certain limitations are also highlighted.
Collapse
Affiliation(s)
- Glory Adebayo
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Opeyemi I. Ayanda
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland; (M.R.); (P.M.)
| | - Olusola S. Ajibaye
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Gbolahan Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Julius Mulindwa
- Department of Biochemistry and Sports Science, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Olayinka O. Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Department of Chemistry, College of Science and Technology, Covenant University, Ota PMB 1023, Nigeria
| | - Oluwagbemiga Aina
- Biochemistry and Nutrition Division, Nigerian Institute of Medical Research, Yaba PMB 2013, Nigeria; (O.S.A.); (O.A.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland; (M.R.); (P.M.)
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota PMB 1023, Nigeria; (G.A.); (G.O.); (O.O.A.)
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- African Centre of Excellence in Bioinformatics & Data Intensive Science (ACE), Kampala P.O. Box 7062, Uganda
- Infectious Diseases Institute, Makerere University, Kampala P.O. Box 22418, Uganda
| |
Collapse
|
4
|
Kim J, Ślęczkowska M, Nobre B, Wieringa P. Study Models for Chlamydia trachomatis Infection of the Female Reproductive Tract. Microorganisms 2025; 13:553. [PMID: 40142446 PMCID: PMC11945960 DOI: 10.3390/microorganisms13030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Chlamydia trachomatis (Ct) is a leading cause of sexually transmitted infections globally, often resulting in inflammatory disorders, ectopic pregnancies, and infertility. Studying Ct's pathogenesis remains challenging due to its unique life cycle and host-specific interactions, which require diverse experimental models. Animal studies using mouse, guinea pig, pig, and non-human primate models provide valuable insights into immune responses, hormonal influences, and disease progression. However, they face limitations in terms of translational relevance due to physiological differences, as well as ethical concerns. Complementing these, in vitro systems, ranging from simple monolayer to advanced three-dimensional models, exhibit improved physiological relevance by replicating the human tissue architecture. This includes the detailed investigation of epithelial barrier disruptions, epithelium-stroma interactions, and immune responses at a cellular level. Nonetheless, in vitro models fall short in mimicking the intricate tissue structures found in vivo and, therefore, cannot faithfully replicate the host-pathogen interactions or infection dynamics observed in living organisms. This review presents a comprehensive overview of the in vivo and in vitro models employed over the past few decades to investigate Ct and its pathogenesis, addressing their strengths and limitations. Furthermore, we explore emerging technologies, including organ-on-chip and in silico models, as promising tools to overcome the existing challenges and refine our understanding of Ct infections.
Collapse
Affiliation(s)
| | | | | | - Paul Wieringa
- Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.K.); (M.Ś.); (B.N.)
| |
Collapse
|
5
|
Mangelberger-Eberl D, Cosenza ME, Härtle S, Luetjens CM, Welsh BT, Steidl S, Flesher DL, Chinn LW. Enhanced Prenatal and Postnatal Development Study in Marmoset Monkeys Following Administration of Felzartamab. Int J Toxicol 2024; 43:561-578. [PMID: 39526914 DOI: 10.1177/10915818241289526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Felzartamab is a recombinant fully human immunoglobulin G1 anti-CD38 monoclonal antibody under clinical investigation for immune-mediated diseases. In support of felzartamab clinical development, toxicology studies were conducted in marmoset monkeys, which was the most relevant species based on CD38 binding affinity, pharmacologic activity, and target expression. The felzartamab toxicology program included an enhanced prenatal and postnatal development (ePPND) study to identify potential reproductive and postnatal development risks. In this ePPND study, pregnant marmoset monkeys were randomized to receive vehicle (0 mg/kg) or felzartamab at two dose levels (15 mg/kg and 75 mg/kg) twice per week until parturition, and maternal animals and infants were evaluated for 6 months thereafter. Felzartamab exposure was confirmed in maternal animals and infants in both dosing groups. Overall, felzartamab was well tolerated by pregnant animals at the evaluated doses, with no effect on body weight or body weight gain during pregnancy. No felzartamab-related effects on pregnancy loss or stillbirth rate were observed, and litter counts and numbers of liveborn infants were similar between the vehicle and felzartamab groups. Among infants, there were no felzartamab-related malformations or variations in external anatomy or skeletal morphology and no felzartamab-related observations in histopathology, hematologic and immune cell development, or humoral immune response to vaccination. In conclusion, among pregnant marmoset monkeys dosed with felzartamab, the lack of reproductive toxicity and felzartamab-related effects on offspring supports the clinical evaluation of felzartamab in women of childbearing potential and further demonstrates the suitability of the marmoset monkey for ePPND studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Donna L Flesher
- Human Immunology Biosciences, Inc., South San Francisco, CA, USA
| | - Leslie W Chinn
- Human Immunology Biosciences, Inc., South San Francisco, CA, USA
| |
Collapse
|
6
|
Tu Q, Liu G, Liu X, Zhang J, Xiao W, Lv L, Zhao B. Perspective on using non-human primates in Exposome research. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117199. [PMID: 39426107 DOI: 10.1016/j.ecoenv.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The physiological and pathological changes in the human body caused by environmental pressures are collectively referred to as the Exposome. Human society is facing escalating environmental pollution, leading to a rising prevalence of associated diseases, including respiratory diseases, cardiovascular diseases, neurological disorders, reproductive development disorders, among others. Vulnerable populations to the pathogenic effects of environmental pollution include those in the prenatal, infancy, and elderly stages of life. Conducting Exposome mechanistic research and proposing effective health interventions are urgent in addressing the current severe environmental pollution. In this review, we address the core issues and bottlenecks faced by current Exposome research, specifically focusing on the most toxic ultrafine nanoparticles. We summarize multiple research models being used in Exposome research. Especially, we discuss the limitations of rodent animal models in mimicking human physiopathological phenotypes, and prospect advantages and necessity of non-human primates in Exposome research based on their evolutionary relatedness, anatomical and physiological similarities to human. Finally, we declare the initiation of NHPE (Non-Human Primate Exposome) project for conducting Exposome research using non-human primates and provide insights into its feasibility and key areas of focus. SYNOPSIS: Non-human primate models hold unique advantages in human Exposome research.
Collapse
Affiliation(s)
- Qiu Tu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuyun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiao Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Wenxian Xiao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Longbao Lv
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
7
|
Lulla V, Sridhar A. Understanding neurotropic enteric viruses: routes of infection and mechanisms of attenuation. Cell Mol Life Sci 2024; 81:413. [PMID: 39365457 PMCID: PMC11452578 DOI: 10.1007/s00018-024-05450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
The intricate connection between the gut and the brain involves multiple routes. Several viral families begin their infection cycle in the intestinal tract. However, amongst the long list of viral intestinal pathogens, picornaviruses, and astroviruses stand out for their ability to transition from the intestinal epithelia to central or peripheral nervous system cells. In immunocompromised, neonates and young children, these viral infections can manifest as severe diseases, such as encephalitis, meningitis, and acute flaccid paralysis. What confers this remarkable plasticity and makes them efficient in infecting cells of the gut and the brain axes? Here, we review the current understanding of the virus infection along the gut-brain axis for some enteric viruses and discuss the molecular mechanisms of their attenuation.
Collapse
Affiliation(s)
- Valeria Lulla
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Amsterdam UMC, location Academic Medical Center, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100 AZ, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100 AZ, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Naware S, Bussing D, Shah DK. Translational physiologically-based pharmacokinetic model for ocular disposition of monoclonal antibodies. J Pharmacokinet Pharmacodyn 2024; 51:493-508. [PMID: 37558929 DOI: 10.1007/s10928-023-09881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
We have previously published a PBPK model comprising the ocular compartment to characterize the disposition of monoclonal antibodies (mAbs) in rabbits. While rabbits are commonly used preclinical species in ocular research, non-human primates (NHPs) have the most phylogenetic resemblance to humans including the presence of macula in the eyes as well as higher sequence homology. However, their use in ocular research is limited due to the strict ethical guidelines. Similarly, in humans the ocular samples cannot be collected except for the tapping of aqueous humor (AH). Therefore, we have translated this rabbit model to monkeys and human species using literature-reported datasets. Parameters describing the tissue volumes, physiological flows, and FcRn-binding were obtained from the literature, or estimated by fitting the model to the data. In the monkey model, the values for the rate of lysosomal degradation for antibodies (Kdeg), intraocular reflection coefficients (σaq, σret, σcho), bidirectional rate of fluid circulation between the vitreous chamber and the aqueous chamber (QVA), and permeability-surface area product of lens (PSlens) were estimated; and were found to be 31.5 h-1, 0.7629, 0.6982, 0.9999, 1.64 × 10-5 L/h, and 4.62 × 10-7 L/h, respectively. The monkey model could capture the data in plasma, aqueous humor, vitreous humor and retina reasonably well with the predictions being within twofold of the observed values. For the human model, only the value of Kdeg was estimated to fit the model to the plasma pharmacokinetics (PK) of mAbs and was found to be 24.4 h-1 (4.14%). The human model could also capture the ocular PK data reasonably well with the predictions being within two- to threefold of observed values for the plasma, aqueous and vitreous humor. Thus, the proposed framework can be used to characterize and predict the PK of mAbs in the eye of monkey and human species following systemic and intravitreal administration. The model can also facilitate the development of new antibody-based therapeutics for the treatment of ocular diseases as well as predict ocular toxicities of such molecules following systemic administration.
Collapse
Affiliation(s)
- Sanika Naware
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, University at Buffalo 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA
| | - David Bussing
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, University at Buffalo 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, University at Buffalo 455 Kapoor Hall, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
9
|
Singh S, Kachhawaha K, Singh SK. Comprehensive approaches to preclinical evaluation of monoclonal antibodies and their next-generation derivatives. Biochem Pharmacol 2024; 225:116303. [PMID: 38797272 DOI: 10.1016/j.bcp.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
Biotherapeutics hold great promise for the treatment of several diseases and offer innovative possibilities for new treatments that target previously unaddressed medical needs. Despite successful transitions from preclinical to clinical stages and regulatory approval, there are instances where adverse reactions arise, resulting in product withdrawals. As a result, it is essential to conduct thorough evaluations of safety and effectiveness on an individual basis. This article explores current practices, challenges, and future approaches in conducting comprehensive preclinical assessments to ensure the safety and efficacy of biotherapeutics including monoclonal antibodies, toxin-conjugates, bispecific antibodies, single-chain antibodies, Fc-engineered antibodies, antibody mimetics, and siRNA-antibody/peptide conjugates.
Collapse
Affiliation(s)
- Santanu Singh
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Kajal Kachhawaha
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sumit K Singh
- Laboratory of Engineered Therapeutics, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
10
|
Garcia JM, Burnett CE, Roybal KT. Toward the clinical development of synthetic immunity to cancer. Immunol Rev 2023; 320:83-99. [PMID: 37491719 DOI: 10.1111/imr.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/07/2023] [Indexed: 07/27/2023]
Abstract
Synthetic biology (synbio) tools, such as chimeric antigen receptors (CARs), have been designed to target, activate, and improve immune cell responses to tumors. These therapies have demonstrated an ability to cure patients with blood cancers. However, there are significant challenges to designing, testing, and efficiently translating these complex cell therapies for patients who do not respond or have immune refractory solid tumors. The rapid progress of synbio tools for cell therapy, particularly for cancer immunotherapy, is encouraging but our development process should be tailored to increase translational success. Particularly, next-generation cell therapies should be rooted in basic immunology, tested in more predictive preclinical models, engineered for potency with the right balance of safety, educated by clinical findings, and multi-faceted to combat a range of suppressive mechanisms. Here, we lay out five principles for engineering future cell therapies to increase the probability of clinical impact, and in the context of these principles, we provide an overview of the current state of synbio cell therapy design for cancer. Although these principles are anchored in engineering immune cells for cancer therapy, we posit that they can help guide translational synbio research for broad impact in other disease indications with high unmet need.
Collapse
Affiliation(s)
- Julie M Garcia
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| | - Cassandra E Burnett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| |
Collapse
|
11
|
Ranjbar S, Zhong XB, Manautou J, Lu X. A holistic analysis of the intrinsic and delivery-mediated toxicity of siRNA therapeutics. Adv Drug Deliv Rev 2023; 201:115052. [PMID: 37567502 PMCID: PMC10543595 DOI: 10.1016/j.addr.2023.115052] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Small interfering RNAs (siRNAs) are among the most promising therapeutic platforms in many life-threatening diseases. Owing to the significant advances in siRNA design, many challenges in the stability, specificity and delivery of siRNA have been addressed. However, safety concerns and dose-limiting toxicities still stand among the reasons for the failure of clinical trials of potent siRNA therapies, calling for a need of more comprehensive understanding of their potential mechanisms of toxicity. This review delves into the intrinsic and delivery related toxicity mechanisms of siRNA drugs and takes a holistic look at the safety failure of the clinical trials to identify the underlying causes of toxicity. In the end, the current challenges, and potential solutions for the safety assessment and high throughput screening of investigational siRNA and delivery systems as well as considerations for design strategies of safer siRNA therapeutics are outlined.
Collapse
Affiliation(s)
- Sheyda Ranjbar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - José Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
12
|
Bauer A, Berben P, Chakravarthi SS, Chattorraj S, Garg A, Gourdon B, Heimbach T, Huang Y, Morrison C, Mundhra D, Palaparthy R, Saha P, Siemons M, Shaik NA, Shi Y, Shum S, Thakral NK, Urva S, Vargo R, Koganti VR, Barrett SE. Current State and Opportunities with Long-acting Injectables: Industry Perspectives from the Innovation and Quality Consortium "Long-Acting Injectables" Working Group. Pharm Res 2023; 40:1601-1631. [PMID: 36811809 DOI: 10.1007/s11095-022-03391-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/06/2022] [Indexed: 02/24/2023]
Abstract
Long-acting injectable (LAI) formulations can provide several advantages over the more traditional oral formulation as drug product opportunities. LAI formulations can achieve sustained drug release for extended periods of time, which results in less frequent dosing requirements leading to higher patient adherence and more optimal therapeutic outcomes. This review article will provide an industry perspective on the development and associated challenges of long-acting injectable formulations. The LAIs described herein include polymer-based formulations, oil-based formulations, and crystalline drug suspensions. The review discusses manufacturing processes, including quality controls, considerations of the Active Pharmaceutical Ingredient (API), biopharmaceutical properties and clinical requirements pertaining to LAI technology selection, and characterization of LAIs through in vitro, in vivo and in silico approaches. Lastly, the article includes a discussion around the current lack of suitable compendial and biorelevant in vitro models for the evaluation of LAIs and its subsequent impact on LAI product development and approval.
Collapse
Affiliation(s)
- Andrea Bauer
- Sunovion Pharmaceuticals, Marlborough, MA, 01752, USA
| | | | | | | | - Ashish Garg
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Ye Huang
- AbbVie Inc., North Chicago, IL, 60064, USA
| | | | | | | | - Pratik Saha
- GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Maxime Siemons
- Janssen R&D, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Yi Shi
- AbbVie Inc., North Chicago, IL, 60064, USA
| | - Sara Shum
- Takeda Development Center Americas, Inc., Cambridge, MA, 02139, USA
| | | | - Shweta Urva
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Ryan Vargo
- Merck & Co., Inc., Rahway, NJ, 07065, USA
| | | | | |
Collapse
|
13
|
Wessels U, Zadak M, Weidmann AM, Stuchly T, Stubenrauch KG. Preclinical Observations of Systemic and Ocular Antidrug Antibody Response to Intravitreally Administered Drugs. AAPS J 2022; 25:2. [PMID: 36414857 DOI: 10.1208/s12248-022-00766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
Intravitreally administered biotherapeutics can elicit local and systemic immune responses with potentially serious clinical consequences. However, little is known about the mechanisms of ocular antidrug immune response, the incidence of ocular antidrug antibodies (ADAs), and the relationship between ocular and systemic ADA levels. Bioanalytical limitations and poor availability of ocular matrices make studies of ocular immunogenicity particularly challenging. We have recently reported a novel bioanalytical ADA assay and shown its applicability for the ADA detection in ocular matrices. In the present study, we used this assay to analyze a large set of preclinical samples from minipig and cynomolgus monkeys treated with different ocular biotherapeutics. We found a significant association between the incidence of ADAs in plasma and ocular fluids after a single intravitreal administration of the drugs. Importantly, none of the animals with ADA-negative results in plasma had detectable ADAs in ocular fluids and systemic ADA response always preceded the appearance of ocular ADAs. Overall, our results suggest the systemic origin of ocular ADAs and support the use of plasma as a surrogate matrix for the detection of ocular ADA response.
Collapse
Affiliation(s)
- Uwe Wessels
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany.
| | - Markus Zadak
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Anja Manuela Weidmann
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Thomas Stuchly
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Kay-Gunnar Stubenrauch
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| |
Collapse
|
14
|
Raasch LE, Yamamoto K, Newman CM, Rosinski JR, Shepherd PM, Razo E, Crooks CM, Bliss MI, Breitbach ME, Sneed EL, Weiler AM, Zeng X, Noguchi KK, Morgan TK, Fuhler NA, Bohm EK, Alberts AJ, Havlicek SJ, Kabakov S, Mitzey AM, Antony KM, Ausderau KK, Mejia A, Basu P, Simmons HA, Eickhoff JC, Aliota MT, Mohr EL, Friedrich TC, Golos TG, O’Connor DH, Dudley DM. Fetal loss in pregnant rhesus macaques infected with high-dose African-lineage Zika virus. PLoS Negl Trop Dis 2022; 16:e0010623. [PMID: 35926066 PMCID: PMC9380952 DOI: 10.1371/journal.pntd.0010623] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/16/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Countermeasures against Zika virus (ZIKV), including vaccines, are frequently tested in nonhuman primates (NHP). Macaque models are important for understanding how ZIKV infections impact human pregnancy due to similarities in placental development. The lack of consistent adverse pregnancy outcomes in ZIKV-affected pregnancies poses a challenge in macaque studies where group sizes are often small (4-8 animals). Studies in small animal models suggest that African-lineage Zika viruses can cause more frequent and severe fetal outcomes. No adverse outcomes were observed in macaques exposed to 1x104 PFU (low dose) of African-lineage ZIKV at gestational day (GD) 45. Here, we exposed eight pregnant rhesus macaques to 1x108 PFU (high dose) of African-lineage ZIKV at GD 45 to test the hypothesis that adverse pregnancy outcomes are dose-dependent. Three of eight pregnancies ended prematurely with fetal death. ZIKV was detected in both fetal and placental tissues from all cases of early fetal loss. Further refinements of this exposure system (e.g., varying the dose and timing of infection) could lead to an even more consistent, unambiguous fetal loss phenotype for assessing ZIKV countermeasures in pregnancy. These data demonstrate that high-dose exposure to African-lineage ZIKV causes pregnancy loss in macaques and also suggest that ZIKV-induced first trimester pregnancy loss could be strain-specific.
Collapse
Affiliation(s)
- Lauren E. Raasch
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Keisuke Yamamoto
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Jenna R. Rosinski
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Phoenix M. Shepherd
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Elaina Razo
- Department of Pediatrics, UW Madison, Madison, Wisconsin, United States of America
| | - Chelsea M. Crooks
- Department of Pathobiological Sciences, UW Madison, Madison, Wisconsin, United States of America
| | - Mason I. Bliss
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Emily L. Sneed
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Kevin K. Noguchi
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Terry K. Morgan
- Department of Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Nicole A. Fuhler
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Alexandra J. Alberts
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Samantha J. Havlicek
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| | - Sabrina Kabakov
- Department of Kinesiology Occupational Therapy Program, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Ann M. Mitzey
- Department of Comparative Biosciences, UW Madison, Madison, Wisconsin, United States of America
| | - Kathleen M. Antony
- Department of Obstetrics and Gynecology, UW Madison, Madison, Wisconsin, United States of America
| | - Karla K. Ausderau
- Department of Kinesiology Occupational Therapy Program, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Waisman Center, UW Madison, Madison, Wisconsin, United States of America
| | - Andres Mejia
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Puja Basu
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Jens C. Eickhoff
- Department of Biostatistics and Medical Informatics, UW Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, UW Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, UW Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Kinesiology Occupational Therapy Program, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, UW Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, UW Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
15
|
Li X, Li D, Biddle KE, Portugal SS, Li MR, Santos R, Burkhardt JE, Khan NK. Age- and sex-related changes in body weights and clinical pathology analytes in cynomolgus monkeys (Macaca Fascicularis) of Mauritius origin. Vet Clin Pathol 2022; 51:356-375. [PMID: 35608195 PMCID: PMC9541124 DOI: 10.1111/vcp.13094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Background Clinical pathology and body weight information for the cynomolgus monkey in the literature is primarily derived from a small number of animals with limited age ranges, varying geographic origins, and mixed genders. Objectives This study aimed to summarize the age‐ and sex‐related changes in clinical pathology analytes and body weights in cynomolgus monkeys of Mauritian origin. Methods Pre‐study age and body weight data were reviewed in 1819 animals, and pre‐study hematologic, coagulation, and serum biochemical analytes were reviewed in 1664 animals. Results Body weights were statistically higher (P < 0.01) in males than females in all age groups (2–10 years). These measurements became prominent after 4 years of age and peaked at 7 to 8 years of age in both sexes. Sex‐related differences were noted in reticulocyte (RETIC) counts, creatinine, cholesterol, and triglyceride concentrations, and alkaline phosphatase (ALP) and gamma‐glutamyl transferase (GGT) activities. Age‐related differences were noted in RETIC and lymphocyte counts, creatinine, triglyceride, phosphorus, and globulin concentrations, and ALP and GGT activities. The youngest (2 to <3 year) age group had the fewest number of clinical pathologic analyte differences including ALP and GGT activity differences which occurred in all age groups from 2 to 10 years; they also had age‐related lower globulin concentrations. There were no age‐ or sex‐related differences in coagulation measurands. Conclusions Sexual dimorphism in body weight was apparent for all ages from 2 to 10 years of age. The only difference in clinical pathology analytes unique to the 2 to <3 years of age group were age‐related lower globulin levels.
Collapse
Affiliation(s)
- Xiantang Li
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - Dingzhou Li
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - Kathleen E Biddle
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - Susan S Portugal
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - Mark R Li
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - Rosemary Santos
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - John E Burkhardt
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| | - Nasir K Khan
- Drug Safety Research & Development and Comparative Medicine. Pfizer, Inc., Groton, Connecticut, USA
| |
Collapse
|
16
|
Chamanza R, Naylor SW, Gregori M, Boyle M, Pereira Bacares ME, Drevon-Gaillot E, Romeike A, Courtney C, Johnson K, Turner J, Swierzawski N, Sharma AK. The Influence of Geographical Origin, Age, Sex, and Animal Husbandry on the Spontaneous Histopathology of Laboratory Cynomolgus Macaques ( Macaca Fascicularis): A Contemporary Global and Multisite Review of Historical Control Data. Toxicol Pathol 2022; 50:607-627. [PMID: 35535738 DOI: 10.1177/01926233221096424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To investigate the influence of geographical origin, age, and sex on toxicologically relevant spontaneous histopathology findings in cynomolgus macaques (Macaca fascicularis), we performed a comparative analysis of historical control data (HCD) from 13 test sites that included 3351 animals (1645 females and 1706 males) sourced from Mauritius, China, Vietnam, and Cambodia, aged from 2 to 9.5 years, and from 446 toxicology studies evaluated between 2016 and 2021. The most common findings were mononuclear infiltrates in the kidney, liver, brain, and lung, which showed highest incidences in Mauritian macaques, and heart, salivary glands, and gastrointestinal tract (GIT), which showed highest incidences of mononuclear infiltrates in mainland Asian macaques. Developmental and degenerative findings were more common in Mauritian macaques, while lymphoid hyperplasia and lung pigment showed higher incidences in Asian macaques. Various sex and age-related differences were also present. Despite origin-related differences, the similarities in the nature and distribution of background lesions indicate that macaques from all geographical regions are suitable for toxicity testing and show comparable lesion spectrum. However, in a toxicity study, it is strongly recommended to use animals from a single geographical origin and to follow published guidelines when using HCD to evaluate and interpretate commonly diagnosed spontaneous lesions.
Collapse
Affiliation(s)
- Ronnie Chamanza
- Janssen Pharmaceutical Companies of Johnson & Johnson, High Wycombe, UK.,Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | - Molly Boyle
- Labcorp Drug Development, Princeton, New Jersey, USA
| | | | | | | | | | - Kelsey Johnson
- Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Julie Turner
- Labcorp Drug Development, Princeton, New Jersey, USA
| | | | | |
Collapse
|
17
|
Phadphon P, Kanthaswamy S, Oldt RF, Hamada Y, Malaivijitnond S. Population Structure of Macaca fascicularis aurea, and their Genetic Relationships with M. f. fascicularis and M. mulatta Determined by 868 RADseq-Derived Autosomal SNPs-A consideration for biomedical research. J Med Primatol 2022; 51:33-44. [PMID: 34825374 PMCID: PMC8849537 DOI: 10.1111/jmp.12554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND This study examined the population structure of Macaca fascicularis aurea and their genetic relationships with M. f. fascicularis and M. mulatta. METHODS The study analyzed 868 RADseq-derived SNPs from samples representing the entire distribution range of M. f. aurea, including their inter- and intraspecific hybrid zones. RESULTS The study supports a M. mulatta/Indochinese M. f. fascicularis, Sundaic M. f. fascicularis, and M. f. aurea trichotomy; M. f. aurea was genetically distinct from both forms of M. f. fascicularis and M. mulatta. Hybridization between M. f. aurea and M. f. fascicularis occurred in two directions: south-north (8°25' to 15°56') and west-east (98°28' to 99°02'). Low levels of M. mulatta introgression were also detected in M. f. aurea. CONCLUSION This study showcases a complicated scenario of genetic relationships between the M. fascicularis subspecies and between M. fascicularis and M. mulatta and underscores the importance of these taxa's population structure and genetic relationships for biomedical research.
Collapse
Affiliation(s)
- Poompat Phadphon
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sree Kanthaswamy
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University West Campus, Glendale, AZ, USA,California National Primate Research Center, University of California, Davis, CA, USA,Correspondence to: Suchinda Malaivijitnond, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Tel./Fax: +66-2-2185275; ; Sree Kanthaswamy, School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University West Campus, Glendale, AZ, USA. Tel.: (602) 543-3405;
| | - Robert F. Oldt
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University West Campus, Glendale, AZ, USA,Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Yuzuru Hamada
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand,National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand,Correspondence to: Suchinda Malaivijitnond, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Tel./Fax: +66-2-2185275; ; Sree Kanthaswamy, School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University West Campus, Glendale, AZ, USA. Tel.: (602) 543-3405;
| |
Collapse
|
18
|
Cipriano M, Schlünder K, Probst C, Linke K, Weiss M, Fischer MJ, Mesch L, Achberger K, Liebau S, Mesquida M, Nicolini V, Schneider A, Giusti AM, Kustermann S, Loskill P. Human immunocompetent choroid-on-chip: a novel tool for studying ocular effects of biological drugs. Commun Biol 2022; 5:52. [PMID: 35027657 PMCID: PMC8758775 DOI: 10.1038/s42003-021-02977-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
Disorders of the eye leading to visual impairment are a major issue that affects millions of people. On the other side ocular toxicities were described for e.g. molecularly targeted therapies in oncology and may hamper their development. Current ocular model systems feature a number of limitations affecting human-relevance and availability. To find new options for pharmacological treatment and assess mechanisms of toxicity, hence, novel complex model systems that are human-relevant and readily available are urgently required. Here, we report the development of a human immunocompetent Choroid-on-Chip (CoC), a human cell-based in vitro model of the choroid layer of the eye integrating melanocytes and microvascular endothelial cells, covered by a layer of retinal pigmented epithelial cells. Immunocompetence is achieved by perfusion of peripheral immune cells. We demonstrate controlled immune cell recruitment into the stromal compartments through a vascular monolayer and in vivo-like cytokine release profiles. To investigate applicability for both efficacy testing of immunosuppressive compounds as well as safety profiling of immunoactivating antibodies, we exposed the CoCs to cyclosporine and tested CD3 bispecific antibodies.
Collapse
Affiliation(s)
- Madalena Cipriano
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katharina Schlünder
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Christopher Probst
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Kirstin Linke
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Martin Weiss
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Mona Julia Fischer
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Lena Mesch
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marina Mesquida
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Valeria Nicolini
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Anneliese Schneider
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Zurich, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Anna Maria Giusti
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Zurich, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefan Kustermann
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - Peter Loskill
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany.
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.
| |
Collapse
|
19
|
Perico N, Casiraghi F, Remuzzi G. Clinical Kidney Xenotransplantation: Major Progress but More Work Needs to Be Done. Nephron Clin Pract 2022; 146:610-615. [PMID: 35340011 DOI: 10.1159/000524095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/12/2022] [Indexed: 01/01/2023] Open
Affiliation(s)
- Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Bergamo, Italy
| | | | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Bergamo, Italy
| |
Collapse
|
20
|
Rho J, Lee JY, Yang MJ. Reference value of hematologic, urologic, and organ weights of 2- to 4-year-old long-tailed macaques (Macaca fascicularis fascicularis) in the context of toxicological studies. J Med Primatol 2021; 50:281-290. [PMID: 34632579 DOI: 10.1111/jmp.12546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/10/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The long-tailed macaque (Macaca fascicularis fascicularis) is an Old World species, which is one among the most commonly used monkeys for pharmaceutical research. However, most of the available background data are not suitable for good laboratory practice (GLP)-regulated drug safety tests because the current reverence value covers fewer indices than necessary. Therefore, in this study, historical data for preclinical safety test were collected and managed. METHODS Twenty-five hematology, 20 clinical chemistry, 19 urine analysis, and 16 organ weights were evaluated in a drug safety test of 228 male and 140 female 2- to 4-year-old long-tailed macaques at the Korea Institute of Toxicology under GLP regulations. RESULTS The absolute and relative count of lymphocyte, basophil, and large unstained cell were higher, whereas neutrophil was lower in male than in female monkeys. In serum biochemistry, IP, GGT, ALP, and TCHO of male were higher than female. CONCLUSION Historical data suitable for preclinical safety analysis were determined.
Collapse
Affiliation(s)
- Jinhyung Rho
- Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Ju-Yeon Lee
- Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Mi-Jin Yang
- Korea Institute of Toxicology, Jeongeup, Republic of Korea
| |
Collapse
|
21
|
Albanese V, Kuan M, Accorsi PA, Berardi R, Marliani G. Evaluation of an enrichment programme for a colony of long-tailed macaques (Macaca fascicularis) in a rescue centre. Primates 2021; 62:585-593. [PMID: 33839997 PMCID: PMC8225535 DOI: 10.1007/s10329-021-00908-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 03/31/2021] [Indexed: 11/27/2022]
Abstract
Long-tailed macaques are highly social primates that are commonly used in biomedical research as animal models. The aim of this study was to evaluate the effects of different kinds of enrichment on the behaviour and faecal cortisol metabolite (FCM) level in a colony of ex-laboratory long-tailed macaques during a programme of rehabilitation. The research was carried out in three periods, divided into two sessions each. Every period was composed of one control session (SC) and one session characterised by one type of enrichment: feeding enrichment (FE), manipulative enrichment (ME), and the last session during which manipulative and feeding enrichment were provided every day but in a mixed way (MIX). The results showed that manipulative and mixed enrichments caused positive changes to the activity budget of the colony, with a decrease in abnormal behaviour rates and an increase in play compared with control sessions. The rate of affiliative behaviours and low rate of aggression were probably because the group was composed mostly of females and it was stable, with a well-defined hierarchy. The research underlines the importance of a well-studied enrichment programme for the welfare of captive animals, which should exploit species-specific motivations.
Collapse
Affiliation(s)
| | - Michela Kuan
- LAV, Viale Regina Margherita, 177, 00198, Roma, Italy
| | - Pier Attilio Accorsi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | | | - Giovanna Marliani
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy.
| |
Collapse
|
22
|
Saravanan C, Flandre T, Hodo CL, Lewis AD, Mecklenburg L, Romeike A, Turner OC, Yen HY. Research Relevant Conditions and Pathology in Nonhuman Primates. ILAR J 2021; 61:139-166. [PMID: 34129672 DOI: 10.1093/ilar/ilab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Biomedical research involving animal models continues to provide important insights into disease pathogenesis and treatment of diseases that impact human health. In particular, nonhuman primates (NHPs) have been used extensively in translational research due to their phylogenetic proximity to humans and similarities to disease pathogenesis and treatment responses as assessed in clinical trials. Microscopic changes in tissues remain a significant endpoint in studies involving these models. Spontaneous, expected (ie, incidental or background) histopathologic changes are commonly encountered and influenced by species, genetic variations, age, and geographical origin of animals, including exposure to infectious or parasitic agents. Often, the background findings confound study-related changes, because numbers of NHPs used in research are limited by animal welfare and other considerations. Moreover, background findings in NHPs can be exacerbated by experimental conditions such as treatment with xenobiotics (eg, infectious morphological changes related to immunosuppressive therapy). This review and summary of research-relevant conditions and pathology in rhesus and cynomolgus macaques, baboons, African green monkeys, common marmosets, tamarins, and squirrel and owl monkeys aims to improve the interpretation and validity of NHP studies.
Collapse
Affiliation(s)
- Chandra Saravanan
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, Massachusetts 02139, USA
| | - Thierry Flandre
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Carolyn L Hodo
- The University of Texas MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, Texas, USA
| | - Anne D Lewis
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | | - Oliver C Turner
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, East Hanover, New Jersey, USA
| | - Hsi-Yu Yen
- Covance Preclinical Services GmbH, Münster 48163, Germany
| |
Collapse
|
23
|
Mukhopadhyay L, Yadav PD, Gupta N, Mohandas S, Patil DY, Shete-Aich A, Panda S, Bhargava B. Comparison of the immunogenicity & protective efficacy of various SARS-CoV-2 vaccine candidates in non-human primates. Indian J Med Res 2021; 153:93-114. [PMID: 33361645 PMCID: PMC8184077 DOI: 10.4103/ijmr.ijmr_4431_20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND & OBJECTIVES The COVID-19 pandemic has emerged as a global public health crisis and research groups worldwide are engaged in developing vaccine candidates to curb its transmission, with a few vaccines having progressed to advanced stages of clinical trials. The aim of this systematic review was to compare immunogenicity and protective efficacy of various SARS-CoV-2 vaccine candidates tested in non-human primate (NHP) models. METHODS Literature on effect of SARS-CoV-2 vaccines in NHP models reported on PubMed and preprint platforms (medRxiv and bioRxiv) till October 22, 2020, was searched with the following terms: coronavirus vaccine, COVID-19 vaccine, SARS-CoV-2 vaccine, nonhuman primate, and rhesus macaque. RESULTS Our search yielded 19 studies, which reported immune response elicited by 18 vaccine candidates in NHP. All the vaccines induced detectable neutralizing antibody (NAb) titres in the serum of vaccinated animals, with some showing effective viral clearance from various organs. The vaccinated animals also showed nil to mild histopathological changes in their lungs compared to placebo groups in the trials that performed necropsy. INTERPRETATION & CONCLUSIONS Our findings highlighted onset of quick immunogenicity and protective efficacy of mRNA-1273, followed by Ad26.CoV2.S, NVX-CoV2373, BNT162b2, RBD and BBV152 vaccine candidates in preclinical trials as compared to the others. NHP data also showed correlation with clinical trial data available for a few vaccines. Preclinical trials of COVID-19 vaccine candidates in NHPs yielded promising results, with some candidates faring better than others.
Collapse
Affiliation(s)
| | - Pragya D. Yadav
- Maximum Containment Laboratory, Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Nivedita Gupta
- Virology Unit, Indian Council of Medical Research, New Delhi, India
| | - Sreelekshmy Mohandas
- Maximum Containment Laboratory, Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Deepak Y. Patil
- Maximum Containment Laboratory, Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Anita Shete-Aich
- Maximum Containment Laboratory, Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Samiran Panda
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | | |
Collapse
|
24
|
Brennan FR, Cavagnaro J, McKeever K, Ryan PC, Schutten MM, Vahle J, Weinbauer GF, Marrer-Berger E, Black LE. Safety testing of monoclonal antibodies in non-human primates: Case studies highlighting their impact on human risk assessment. MAbs 2018; 10:1-17. [PMID: 28991509 PMCID: PMC5800363 DOI: 10.1080/19420862.2017.1389364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies (mAbs) are improving the quality of life for patients suffering from serious diseases due to their high specificity for their target and low potential for off-target toxicity. The toxicity of mAbs is primarily driven by their pharmacological activity, and therefore safety testing of these drugs prior to clinical testing is performed in species in which the mAb binds and engages the target to a similar extent to that anticipated in humans. For highly human-specific mAbs, this testing often requires the use of non-human primates (NHPs) as relevant species. It has been argued that the value of these NHP studies is limited because most of the adverse events can be predicted from the knowledge of the target, data from transgenic rodents or target-deficient humans, and other sources. However, many of the mAbs currently in development target novel pathways and may comprise novel scaffolds with multi-functional domains; hence, the pharmacological effects and potential safety risks are less predictable. Here, we present a total of 18 case studies, including some of these novel mAbs, with the aim of interrogating the value of NHP safety studies in human risk assessment. These studies have identified mAb candidate molecules and pharmacological pathways with severe safety risks, leading to candidate or target program termination, as well as highlighting that some pathways with theoretical safety concerns are amenable to safe modulation by mAbs. NHP studies have also informed the rational design of safer drug candidates suitable for human testing and informed human clinical trial design (route, dose and regimen, patient inclusion and exclusion criteria and safety monitoring), further protecting the safety of clinical trial participants.
Collapse
Affiliation(s)
- Frank R. Brennan
- Non-Clinical Safety, UCB, Slough, Berkshire, United Kingdom, SL1 3WE
| | | | - Kathleen McKeever
- Ultragenyx Pharmaceuticals, 60 Leveroni Court, Novato, California, United States
| | - Patricia C. Ryan
- Toxicology, Medimmune LLC, One Medimmune Way, Gaithersburg, Maryland, United States
| | - Melissa M. Schutten
- Department of Toxicology, Genetech, 1 DNA Way, San Francisco, California, United States
| | - John Vahle
- Toxicology, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | | | - Estelle Marrer-Berger
- Novartis Pharma, Preclinical Safety, F Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, Basel-Stadt, Switzerland CH-4070
| | - Lauren E. Black
- Safety Assessment, Charles River Laboratories, 6995 Longley Lane, Reno, Nevada, United States
| |
Collapse
|